山东省春季高考数学考纲完整版

合集下载

(完整版)山东省春季高考数学试题及答案

(完整版)山东省春季高考数学试题及答案

山东省 2019 年一般高校招生(春天)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120 分,考试时间120 分钟。

考生清在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。

2.本次考试同意使用函数型计算器,凡使用计算器的题目,除题目有详细要求外,最后结果精准到。

卷一(选择题共60 分)一、选择题(本大题 20 个小题,每题 3 分,共 60 分。

在每题列出的四个选项中,只有一项切合题目要求,请将切合题目要求的选项字母代号选出.并填涂在答题卡上)1. 已知会合 M={0,1} ,N={1,2},则 M∪ N 等于()A. {1}B. {0,2}C. {0,1,2}D.2. 若实数 a, b 知足 ab>0 , a+b>0 ,则以下选项正确的选项是()A. a>0 , b>0B. a>0 , b<0yC. a<0 , b>0D. a<0 , b<03. 已知指数函数y=a x,对数函数 y=log b x的图像如下图,则以下关系式正确的选项是(y)y=log b y=a xA. 0<a<b<1B. 0<a<1<bO x C. 0<b<1<a D. a<0<1<b4. 已知函数 f(x)=x 3 +x ,若 f(a)=2 ,则 f(-a) 的值是()第 3 题图A. -2B. 2C. -10D. 105. 若等差数列 {a n }的前 7 项和为 70 ,则 a 1+a 7等于()A. 5B. 10C. 15D. 20uuur uuur6. 如下图,已知菱形ABCD 的边长是 2 ,且∠ DAB =60 °,则AB AC 的值是()A. 4B. 4 2 3C. 6D. 4 2 3DA CB第 6 题图7. 对于随意角α,β,“ α = β ”是“ sinα =sin β”的()A. 充足不用要条件B. 必需不充足条件C. 充要条件D. 既不充足也不用要条件8. l⊥ OP ,则直线 l 的方程是(y如下图,直线)A. 3x - 2y=0B. 3x+2y - 12=0 3PC. 2x - 3y+5=0D. 2x+3y - 13=0 O2 x9. 在( 1+x )n的二项睁开式中,若全部项的系数之和为64 ,则第 3 项是(第 8 题图)A. 15x 3B. 20x 3C. 15x 2D. 20x 210. 在 RtV ABC 中,∠ ABC =90 °,AB=3 , BC=4 , M 是线段 AC 上的动点 . 设点 M 到 BC 的距离为 x ,V MBC的面积为y,则y对于x的函数是()A. y=4x , x ∈(0, 4]B. y=2x , x ∈(0,3]C. y=4x , x ∈(0, )D. y=2x , x ∈(0,)11.现把甲、乙等 6 位同学排成一排,若甲同学不可以排在前两位,且乙同学一定排在甲同学前方(相邻或不相邻均可),则不一样排法的种树是()A. 360B. 336C. 312D. 24012. 设会合 M={-2 , 0 , 2 , 4} ,则以下命题为真命题的是()A. a M , a 是正数B. b M , b是自然数C. c M , c 是奇数D. d M , d 是有理数13. 已知 sin1α的值是()α=,则 cos22A. 8B. 8C. 7D. 79 9 9 914. 已知 y=f(x) 在 R 上是减函数,若f(| a|+1)<f(2) ,则实数 a 的取值范围是()A. (-∞,1 )B. (-∞, 1 )∪( 1 ,+∞)C. (- 1 , 1 )D.(-∞,- 1 )∪( 1, +∞)15.已知 O 为坐标原点,点 M 在 x 轴的正半轴上,若直线 MA 与圆 x2 +y 2=2 相切于点 A ,且 |AO|=|AM| ,则点 M 的横坐标是()A. 2B.2C.22D. 416.如下图,点E、F、 G、 H 分别是正方体四条棱的中点,则直线EF 与 GH 的地点关系是()A. 平行B. 订交C.异面D. 重合FGHE第16 题图x y 2 ≥017.如下图,若x,y知足线性拘束条件x ≤0,y≥1则线性目标函数z=2x-y获得最小值时的最优解是()A. ( 0 , 1 )B. ( 0 , 2 )C. ( -1 ,1 ) D . ( -1 , 2 )18. 箱子中放有 6 张黑色卡片和 4 张白色卡片,从中任取一张,恰巧获得黑色卡片的概率是()A. 1B. 1C. 2D. 36 3 5 519. 已知抛物线的极点在座标原点,对称轴为坐标轴,若该抛物线经过点 M( -2 ,4 ),则其标准方程是()A. y 2=-8xB. y 2= - 8x 或 x2=yC. x 2=yD. y 2=8x 或 x2 = - y20. 已知V ABC的内角A,B,C的对边分别是a,b,c,若a=6,sinA=2cosBsinC ,向量 m = ( a, 3b) , 向量 n =( - cosA , sinB) ,且 m ∥ n ,则V ABC 的面积是()A. 18 3B. 9 3C. 3 3D. 3卷二(非选择题共 60 分)二、填空题(本大题 5 个小题,每题 4 分,共 20 分。

(完整版)山东省春季高考数学基础知识点

(完整版)山东省春季高考数学基础知识点

中职数学基础知识汇总预备知识:1.完全平方和(差)公式: (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 22.平方差公式: a 2-b 2=(a+b)(a-b)3.立方和(差)公式: a 3+b 3=(a+b)(a 2-ab+b 2) a 3-b 3=(a-b)(a 2+ab+b 2)第一章 集合1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。

2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。

3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、N +(正整数集)4. 元素与集合、集合与集合之间的关系:(1) 元素与集合是“∈”与“∉”的关系。

(2) 集合与集合是“Í” “”“=”“Í/”的关系。

注:(1)空集是任何集合的子集,任何非空集合的真子集。

(做题时多考虑Ф是否满足题意) (2)一个集合含有n 个元素,则它的子集有2n 个,真子集有2n -1个,非空真子集有2n -2个。

5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) (1){|}A B x x A x B =挝I且:A 与B 的公共元素组成的集合(2){|}A B x x A xB =挝U 或:A 与B 的所有元素组成的集合(相同元素只写一次)。

(3)A C U :U 中元素去掉A 中元素剩下的元素组成的集合。

注:=IU ()U U U C A B C A C B ()U U U C A B C A C B =U I6. 会用文氏图表示相应的集合,会将相应的集合画在文氏图上。

7. 充分必要条件:p 是q 的……条件 p 是条件,q 是结论如果p ⇒q ,那么p 是q 的充分条件;q 是p 的必要条件. 如果p ⇔q ,那么p 是q 的充要条件第二章 不等式1. 不等式的基本性质:(略)注:(1)比较两个实数的大小一般用比较差的方法;另外还可以用平方法、倒数法。

2024年山东春季高考数学考纲

2024年山东春季高考数学考纲

2024年山东春季高考数学科目考试旨在测试中等职业学校学生的数学基础知识、基本技能、基本方法、运算能力、逻辑思维能力、空间想象能力,以及运用所学的数学知识、思想及方法分析问题和解决问题的能力。

考试范围和要求如下:
1. 代数:
* 集合:集合的概念,集合的表示方法,集合之间的关系,集合的基本运算,充分、必要条件。

* 方程与不等式:一元二次方程的解法,实数的基本性质和运算。

2. 几何:
* 平面几何:三角形、四边形、圆的性质和定理。

* 立体几何:空间几何体的性质和定理。

3. 概率与统计:
* 概率初步知识:随机事件、概率、期望值等基本概念。

* 统计初步知识:数据的收集、整理、描述和分析。

考试形式为闭卷、笔试,考试时间为90分钟,满分150分。

考试题型包括选择题、填空题和解答题,其中选择题和填空题分值为70分,解答题分值为80分。

以上信息仅供参考,具体考试内容和要求应以官方发布的考试大
纲为准。

(完整版)山东省春季高考数学基础知识点

(完整版)山东省春季高考数学基础知识点

中职数学基础知识汇总预备知识:1.完全平方和(差)公式: (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 22.平方差公式: a 2-b 2=(a+b)(a-b)3.立方和(差)公式: a 3+b 3=(a+b)(a 2-ab+b 2) a 3-b 3=(a-b)(a 2+ab+b 2)第一章 集合1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。

2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。

3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、N +(正整数集)4. 元素与集合、集合与集合之间的关系:(1) 元素与集合是“∈”与“∉”的关系。

(2) 集合与集合是“” “”“”“”的关系。

注:(1)空集是任何集合的子集,任何非空集合的真子集。

(做题时多考虑Ф是否满足题意) (2)一个集合含有n 个元素,则它的子集有2n 个,真子集有2n -1个,非空真子集有2n -2个。

5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) (1){|}A B x x A x B 且:A 与B 的公共元素组成的集合(2){|}ABx xA xB 或:A 与B 的所有元素组成的集合(相同元素只写一次)。

(3)A C U :U 中元素去掉A 中元素剩下的元素组成的集合。

注:=()U U U C AB C A C B ()U U U C A B C A C B6. 会用文氏图表示相应的集合,会将相应的集合画在文氏图上。

7. 充分必要条件:p 是q 的……条件 p 是条件,q 是结论如果p ⇒q ,那么p 是q 的充分条件;q 是p 的必要条件. 如果p ⇔q ,那么p 是q 的充要条件第二章 不等式1. 不等式的基本性质:(略)注:(1)比较两个实数的大小一般用比较差的方法;另外还可以用平方法、倒数法。

(2)不等式两边同时乘以负数要变号!!(3)同向的不等式可以相加(不能相减),同正的同向不等式可以相乘。

山东春考数学考纲分析

山东春考数学考纲分析

第1章集合与数理逻辑用语逻辑考纲解读:本章的主要内容是集合的概念,集合与集合的关系,集合的基本运算,充要条件及其判断.本章在历届高考中以集合与集合的关系和充要条件为重点考查内容.第2章不等式考纲解读:本章知识在高考中属主体内容,它与代数内容联系密切,配方法,一元二次方程的解法,不等式的性质,含有绝对值的不等式,一元二次不等式的解法。

又可运用不等式知识解决生产、生活中的许多实际问题,考查内容主要有不等式的性质、不等式的证明、解不本章涉及到的考点有:1.不等式的概念及性质;2.不等式证明的方法;3.含绝对值的不等式和一元二次不等式的解法;4.不等式的应用,例如小型应用题等.等式以及不等式的应用,多与函数、方程、数列等知识相结合.第3、4章函数(包括指数函数,对数函数)考纲解读函数是高考数学中极为重要的内容,函数的观点和方法既贯穿了代数的全过程,又是学习高等数学的基础.纵观近几年来的高考试题,函数在选择、填空、解答三种题型中每年都有试题,约占全卷的25%左右,函数的性质及图象变换多以选择题形式出现.关于这部分的应用题,不仅有解答题,还可能有选择题或填空题.高考正在逐步增加应用题的考查力度.因此,在复习过程中应注意加强对分析问题、解决综合问题能力方面的训练.本章涉及到的考点有:1.函数的定义域和值域; 4.指数、对数及其函数;2.函数的单调性及奇偶性; 5.函数的图象;3.二次函数; 6.函数的最值考纲解读本章的重点是:数列的概念、等差数列与等比数列的通项公式、前n项和公式的应用.难点是如何用上述知识及等差数列与等比数列的性质解决一些综合性应用题.数列内容在历年的高考中约占10%左右.分析近几年高考试卷,我们可以发现如下一些规律性的东西: 等差数列和等比数列的基本知识(定义、通项公式、前n项和公式)是必考内容,每年都有这方面的题目.考题既有选择题、填空题,也有解答题,既有基础题、中等题,也有难题,在实际应用题中也广泛涉及,对于这一点应予以足够重视.考查重点是等差数列、等比数列的通项公式及前n项和公式的灵活运用,主要考查学生的运算能力、逻辑思维能力以及分析问题和解决问题的能力,在选择题与填空题中,突出了“小、巧、活”的特点.本章涉及到的考点有:1.数列的概念.2.求数列的通项公式.3.等差数列与等比数列的通项公式,前n项和公式.4.特殊数列求和.5.应用题考纲解读三角函数是中学数学中一种重要的函数,它不仅具有函数概念性强,变化灵活,联系广泛等特点,更富有自身的变换规律和特征,是考查逻辑推理能力,反映思维品质的良好载体,所以它是高考对基础知识和基本技能的考查的重要内容之一.纵观近几年高考试题,总体来说,考试要求稳中有降,分值比例基本不变,约占全卷的15%,从内容上看,重点考查任意角的三角函数,三角函数的图象和性质,三角函数的求值问题,以及它在斜三角形中的综合应用.三角函数和其他代数、几何知识有密切联系,是研究其他各部分知识的重要工具.因此在高考复习中要以三角函数的概念、图象和性质为重点,深刻理解构建知识网络;以三角变换为主体,熟练灵活掌握三角函数式的恒等变形;要注意三角形的载体功能,重视知识的综合应用和相互转化,要特别关注它与解析几何,不等式,平面向量等知识交汇点上的试题.本章涉及到的考点有:1.角的概念和弧度制的意义;2.诱导公式和同角三角函数关系式;3.和、差、倍、半角的三角函数;4.三角函数的化简、求值和证明;5.三角函数图象的性质及图象变换;6.求三角函数的最值.第7章平面向量考纲解读平面向量在教材中独立成章,可见其重要性逐渐加强,原因之一,向量是数学中的重要概念,并和数一样也能进行运算,而且用向量的有关知识还能有效地解决数学、物理等学科中的很多问题.本章涉及到的考点有:1.平面向量的概念及表示;2.平面向量的运算及位置关系;3.向量的综合应用.本章试题的类型及特点是:平面向量的加、减法主要考查向量的加减运算,向量加、减法的几何意义.2.平面向量的数量积及运算律,平面向量的坐标运算是考试的重点,主要考查平面向量数量积的运算律,两向量平行与垂直的充要条件等问题.第8章直线和圆的方程考纲解读本章是解析几何的基础,也是高考对解析几何进行综合考查的重要组成部分之一.因为直线和圆是最简单、最基本的几何图形.研究直线和圆的思想与方法,也是解析几何研究的基本的思想与方法,同时也是后继学习的基础,所以直线和圆成为高考的必考内容,自然就可以理解了.本章共17个知识点,能力要求的层次大部分是理解、掌握.直线斜率的概念与公式;直线方程的形式;两直线的位置关系的判定方法;点到直线的距离公式; 圆的方程;圆的一般方程;直线与圆的位置关系的判定是本章复习的重点.第9章圆锥曲线考纲解读:解析几何既是高中数学的重要内容之一,它占高考的20%,而直线与圆锥曲线是解析几何的重点内容,因而成为高考考查的重点,它的基本特点是解题思路比较简单,规律性较强,但运算过程往往比较复杂,对运算能力、恒等变形能力、数学结合能力及综合运用各种数学知识和方法的能力要求较高,复习时注意以下几点:(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质.(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质.(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质.考纲解读:解析几何既是高中数学的重要内容之一,它占高考的20%,而直线与圆锥曲线是解析几何的重点内容,因而成为高考考查的重点,它的基本特点是解题思路比较简单,规律性较强,但运算过程往往比较复杂,对运算能力、恒等变形能力、数学结合能力及综合运用各种数学知识和方法的能力要求较高,复习时注意以下几点:(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质.(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质.(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质.第10章立体几何考纲解读:综观近几年高考题可知:占高考的12%,本章高考命题形式比较稳定,难易适中,主要考查线线、线面及面面的平行与垂直,空间角和距离的计算.1.直线和平面是立体几何的基础,也是高考的热点之一.共涉及21个知识点,其考试内容为:(1)平面,平面的基本性质,平面图形直观图斜二测画法的画法.(2)两条直线的位置关系,异面直线所成的角,两条异面直线互相垂直的概念,异面直线的公垂线及距离.(3)直线和平面的位置关系,直线和平面平行的判定和性质,直线和平面垂直的判定和性质,点到平面的距离,斜线在平面上的射影,直线和平面所成的角,三垂线定理及其逆定理.(4)两个平面的位置关系,平行平面的判定和性质,平行平面间的距离,二面角及其平面角,两个平面垂直的判定与性质.第11.12章概率与统计初步考纲解读概率与统计初步占高考的8%,导数中求导运算、函数的单调性、极值和最值是重点知识.因此,要掌握其概念,会求函数的导数,会求函数的极值和最值,会用导数解决一些实际问题. 技术原理中,要注意两种计数原理,排列组合的区别,掌握古典概率这种形式。

(完整版)2019年山东省春季高考数学试题及答案.doc

(完整版)2019年山东省春季高考数学试题及答案.doc

山东省 2019 年普通高校招生(春季)考试数学试题1.本试卷分卷一(选择题)和卷二(非选择题)两部分,满分120 分,考试时间120 分钟。

考生清在答题卡上答题,考试结束后,请将本试卷和答题卡一并交回。

2.本次考试允许使用函数型计算器,凡使用计算器的题目,除题目有具体要求外,最后结果精确到 0.01。

卷一(选择题共60 分)一、选择题(本大题 20 个小题,每小题 3 分,共 60 分。

在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母代号选出.并填涂在答题卡上)1. 已知集合 M={0,1} ,N={1,2},则 M∪ N 等于()A. {1}B. {0,2}C. {0,1,2}D.2. 若实数 a, b 满足 ab>0 , a+b>0 ,则下列选项正确的是()A. a>0 , b>0B. a>0 , b<0yC. a<0 , b>0D. a<0 , b<03. 已知指数函数y=a x,对数函数 y=log b x的图像如图所示,则下列关系式正确的是(y)y=log b y=a xA. 0<a<b<1B. 0<a<1<bO x C. 0<b<1<a D. a<0<1<b4. 已知函数 f(x)=x 3 +x ,若 f(a)=2 ,则 f(-a) 的值是()第 3 题图A. -2B. 2C. -10D. 105. 若等差数列 {a n }的前 7 项和为 70 ,则 a 1+a 7等于()A. 5B. 10C. 15D. 20uuur uuur6. 如图所示,已知菱形ABCD 的边长是 2 ,且∠ DAB =60 °,则AB AC 的值是()A. 4B. 4 2 3C. 6D. 4 2 3DA CB第 6 题图7. 对于任意角α,β,“ α = β ”是“ sinα =sin β”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8. l⊥ OP ,则直线 l 的方程是(y如图所示,直线)A. 3x - 2y=0B. 3x+2y - 12=0 3PC. 2x - 3y+5=0D. 2x+3y - 13=0 O2 x9. 在( 1+x )n的二项展开式中,若所有项的系数之和为64 ,则第 3 项是(第 8 题图)A. 15x 3B. 20x 3C. 15x 2D. 20x 210. 在 RtV ABC 中,∠ ABC =90 °,AB=3 , BC=4 , M 是线段 AC 上的动点 . 设点 M 到 BC 的距离为 x ,V MBC的面积为y,则y关于x的函数是()A. y=4x , x ∈(0, 4]B. y=2x , x ∈(0,3]C. y=4x , x ∈(0, )D. y=2x , x ∈(0,)11.现把甲、乙等 6 位同学排成一排,若甲同学不能排在前两位,且乙同学必须排在甲同学前面(相邻或不相邻均可),则不同排法的种树是()A. 360B. 336C. 312D. 24012. 设集合 M={-2 , 0 , 2 , 4} ,则下列命题为真命题的是()A. a M , a 是正数B. b M , b是自然数C. c M , c 是奇数D. d M , d 是有理数13. 已知 sin1α的值是()α=,则 cos22A. 8B. 8C. 7D. 79 9 9 914. 已知 y=f(x) 在 R 上是减函数,若f(| a|+1)<f(2) ,则实数 a 的取值范围是()A. (-∞,1 )B. (-∞, 1 )∪( 1 ,+∞)C. (- 1 , 1 )D.(-∞,- 1 )∪( 1, +∞)15.已知 O 为坐标原点,点 M 在 x 轴的正半轴上,若直线 MA 与圆 x2 +y 2=2 相切于点 A ,且 |AO|=|AM| ,则点 M 的横坐标是()A. 2B.2C.22D. 416. 如图所示,点 E 、F 、 G 、 H 分别是正方体四条棱的中点,则直线 EF 与 GH 的位置关系是()A. 平行B. 相交C.异面D. 重合FGHE第 16 题 图x y 2 ≥017. 如图所示,若 x ,y 满足线性约束条件x ≤0,y ≥1则线性目标函数 z=2x-y 取得最小值时的最优解是 ( )A. ( 0 , 1 )B. ( 0 , 2 )C. ( -1 ,1 ) D . ( -1 , 2 )18. 箱子中放有 6 张黑色卡片和 4 张白色卡片,从中任取一张,恰好取得黑色卡片的概率是()A.1 B.1 C.2D.3635519. 已知抛物线的顶点在坐标原点, 对称轴为坐标轴, 若该抛物线经过点 M ( -2 ,4 ),则其标准方程是 ( ) A. y 2=-8x B. y 2= - 8x 或 x 2=yC. x 2=yD. y 2=8x 或 x 2 = - y20. 已知V ABC 的内角 A ,B ,C 的对边分别是 a ,b ,c ,若 a=6 ,sinA=2cosBsinC ,向量 m = ( a, 3b),向量 n =( - cosA , sinB) ,且 m ∥ n ,则 V ABC 的面积是()A. 18 3B. 93C. 3 3D.3卷二(非选择题共 60 分)二、填空题(本大题 5 个小题,每小题 4 分,共 20 分。

(word版)山东省春季高考数学试卷(解析版)

(word版)山东省春季高考数学试卷(解析版)

2021年山东省春季高考数学试卷一、选择题1.全集U={1,2},集合M={1},那么?UM等于〔〕A.?B.{1}C.{2}D.{1,2}2.函数的定义域是〔〕A.[﹣2,2]B.〔﹣∞,﹣2]∪[2,+∞〕C.〔﹣2,2〕D.〔﹣∞,﹣2〕∪〔2,+∞〕3.以下函数中,在区间〔﹣∞,0〕上为增函数的是〔〕A.y=xB.y=1C. D.y=|x|4.二次函数 f〔x〕的图象经过两点〔0,3〕,〔2,3〕且最大值是5,那么该函数的解析式是〔〕A.f〔x〕=2x2﹣8x+11B.f〔x〕=﹣2x2+8x﹣1C.f〔x〕=2x2﹣4x+3D.〔fx〕=﹣2x2+4x+3 5.等差数列{an}中,a1=﹣5,a3是4与49的等比中项,且a3<0,那么a5等于〔〕A.﹣18 B.﹣23 C.﹣24 D.﹣326.A〔3,0〕,B〔2,1〕,那么向量的单位向量的坐标是〔A.〔1,﹣1〕B.〔﹣1,1〕C.D.7.“p∨q为真〞是“p为真〞的〔〕A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.函数y=cos2x﹣4cosx+1的最小值是〔〕A.﹣3B.﹣2C.5D.69.以下说法正确的选项是〔〕A.经过三点有且只有一个平面B.经过两条直线有且只有一个平面C.经过平面外一点有且只有一个平面与平面垂直D.经过平面外一点有且只有一条直线与平面垂直第1页〔共24页〕10.过直线x+y+1=0与2x ﹣y ﹣4=0的交点,且一个方向向量 的直线方程是〔〕A .3x+y ﹣1=0B .x+3y ﹣5=0C .3x+y ﹣3=0D .x+3y+5=011.文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,假设从中任意选出4个排成节目单,那么能排出不同节目单的数量最多是〔〕A .72B .120C .144D .28812.假设a ,b ,c 均为实数,且a <b <0,那么以下不等式成立的是〔〕A .ac <bc2b2D .B .ac <bcC .a <++kxg 〔x 〕=logf 〔﹣1〕=g 〔9〕,那么实数k 的值是〔〕13.函数f 〔x 〕=2,3x ,假设 A .1B .2C .﹣1D .﹣214.如果 , ,那么 等于〔 〕A .﹣18B .﹣6C .0D .1815.角α的终边落在直线 y=﹣3x 上,那么cos 〔π+2α〕的值是〔〕A .B .C .D .16.二元一次不等式 2x ﹣y >0表示的区域〔阴影局部〕是〔 〕A .B .C .D .17.圆C1和C2关于直线y=﹣x 对称,假设圆C1的方程是〔x+5〕2+y 2=4,那么圆 C2的方程是〔〕A.〔x+5〕2+y2=2 B.x2+〔y+5〕2=4 C.〔x﹣5〕2+y2=2 D.x2+〔y﹣5〕2=418.假设二项式的展开式中,只有第4项的二项式系数最大,那么展开式中的常数项是〔〕A.20 B.﹣20 C.15 D.﹣1519.从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在同样条件下经过多轮测试,成绩分析如表所示,根据表中数据判断,最正确人选为〔〕成绩分析表甲乙丙丁第2页〔共24页〕平均成绩96968585标准差s4242A.甲B.乙C.丙D.丁20.A1,A2为双曲线〔a>0,b>0〕的两个顶点,以A1A2为直径的圆与双曲线的一条渐近线交于M,N两点,假设△A1MN的面积为,那么该双曲线的离心率是〔〕A. B. C. D.二、填空题:21.假设圆锥的底面半径为1,母线长为3,那么该圆锥的侧面积等于.22.在△ABC中,a=2,b=3,∠B=2∠A,那么cosA= .23.F1,F2是椭圆+ =1的两个焦点,过F1的直线交椭圆于P、Q两点,那么△PQF2的周长等于.24.某博物馆需要志愿者协助工作,假设从6名志愿者中任选3名,那么其中甲、乙两名志愿者恰好同时被选中的概率是.25.对于实数m,n,定义一种运算:,函数f〔x〕=a*a x,其中0<a<1,假设f〔t﹣1〕>f〔4t〕,那么实数t的取值范围是.三、解答题:26.函数f〔x〕=log2〔3+x〕﹣log2〔3﹣x〕,1〕求函数f〔x〕的定义域,并判断函数f〔x〕的奇偶性;2〕f〔sinα〕=1,求α的值.27.某职业学校的王亮同学到一家贸易公司实习,恰逢该公司要通过海运出口一批货物,王亮同学随公司负责人到保险公司洽谈货物运输期间的投保事宜,保险公司提供了缴纳保险费的两种方案:①一次性缴纳50万元,可享受9折优惠;第3页〔共24页〕②按照航行天数交纳:第一天缴纳元,从第二天起每天交纳的金额都是其前一天的2倍,共需交纳20天.请通过计算,帮助王亮同学判断那种方案交纳的保费较低.28.直三棱柱ABC﹣A1B1C1的所有棱长都相等,D,E分别是AB,A1C1的中点,如下图.1〕求证:DE∥平面BCC1B1;2〕求DE与平面ABC所成角的正切值.29.函数.1〕求该函数的最小正周期;2〕求该函数的单调递减区间;3〕用“五点法〞作出该函数在长度为一个周期的闭区间上的简图.30.椭圆的右焦点与抛物线y2=4x的焦点F重合,且椭圆的离心率是,如下图.〔1〕求椭圆的标准方程;〔2〕抛物线的准线与椭圆在第二象限相交于点A,过点A作抛物线的切线 l,l 与椭圆的另一个交点为B,求线段AB的长.第4页〔共24页〕第5页〔共24页〕2021年山东省春季高考数学试卷参考答案与试题解析一、选择题1.全集U={1,2},集合M={1},那么?UM等于〔〕A.? B.{1} C.{2}D.{1,2}【考点】1F:补集及其运算.【分析】根据补集的定义求出M补集即可.【解答】解:全集U={1,2},集合M={1},那么?UM={2}.应选:C.2.函数的定义域是〔〕A.[﹣2,2] B.〔﹣∞,﹣2]∪[2,+∞〕C.〔﹣2,2〕D.〔﹣∞,﹣2〕∪〔2,+∞〕【考点】33:函数的定义域及其求法.【分析】根据函数y的解析式,列出不等式求出x的取值范围即可.【解答】解:函数,|x|﹣2>0,即|x|>2,解得x<﹣2或x>2,∴函数y的定义域是〔﹣∞,﹣2〕∪〔2,+∞〕.应选:D.3.以下函数中,在区间〔﹣∞,0〕上为增函数的是〔〕A.y=xB.y=1C.D.y=x|【考点】3E:函数单调性的判断与证明.【分析】根据根本初等函数的单调性,判断选项中的函数是否满足条件即可.第6页〔共24页〕【解答】解:对于A,函数y=x,在区间〔﹣∞,0〕上是增函数,满足题意;对于B,函数y=1,在区间〔﹣∞,0〕上不是单调函数,不满足题意;对于C,函数y=,在区间〔﹣∞,0〕上是减函数,不满足题意;对于C,函数y=|x|,在区间〔﹣∞,0〕上是减函数,不满足题意.应选:A.4.二次函数 f〔x〕的图象经过两点〔0,3〕,〔2,3〕且最大值是5,那么该函数的解析式是〔〕A.f〔x〕=2x2﹣8x+11B.f〔x〕=﹣2x2+8x﹣1C.f〔x〕=2x2﹣4x+3D.〔fx〕=﹣2x2+4x+3【考点】3W:二次函数的性质.【分析】由题意可得对称轴x=1,最大值是5,故可设f〔x〕=a〔x﹣1〕2+5,代入其中一个点的坐标即可求出a的值,问题得以解决【解答】解:二次函数f〔x〕的图象经过两点〔0,3〕,〔2,3〕,那么对称轴x=1,最大值是5,可设f〔x〕=a〔x﹣1〕2+5,于是3=a+5,解得a=﹣2,故f〔x〕=﹣2〔x﹣1〕2+5=﹣2x2+4x+3,应选:D.5.等差数列{an}中,a1=﹣5,a3是4与49的等比中项,且a3<0,那么a5等于〔〕A.﹣18B.﹣23C.﹣24D.﹣32【考点】8F:等差数列的性质;84:等差数列的通项公式.【分析】根据题意,由等比数列的性质可得〔a3〕2×,结合解3<可得= 449aa3的值,进而由等差数列的性质a5=2a3﹣a1,计算即可得答案.【解答】解:根据题意,a3是4与49的等比中项,那么〔a3〕2=4×49,解可得a3=±14,又由a3<0,那么a3=﹣14,又由a1=﹣5,第7页〔共24页〕那么a5=2a3﹣a1=﹣23,应选:B.6.A〔3,0〕,B〔2,1〕,那么向量的单位向量的坐标是〔〕A.〔1,﹣1〕B.〔﹣1,1〕C. D.【考点】95:单位向量.【分析】先求出=〔﹣1,1〕,由此能求出向量的单位向量的坐标.【解答】解:∵A〔3,0〕,B〔2,1〕,=〔﹣1,1〕,∴||=,∴向量的单位向量的坐标为〔,〕,即〔﹣,〕.应选:C.7.“p∨q为真〞是“p为真〞的〔〕A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】由真值表可知:“p∨q为真命题〞那么p或q为真命题,故由充要条件定义知p∨q为真〞是“p为真〞必要不充分条件【解答】解:“p∨q为真命题〞那么p或q为真命题,所以“p∨q为真〞推不出“p为真〞,但“p为真〞一定能推出“p∨q为真〞,故“p∨q为真〞是“p为真〞的必要不充分条件,应选:B.8.函数y=cos2x﹣4cosx+1的最小值是〔〕A.﹣3B.﹣2C.5 D.6【考点】HW:三角函数的最值.【分析】利用查余弦函数的值域,二次函数的性质,求得y的最小值.【解答】解:∵函数y=cos2x﹣4cosx+1=〔cox﹣2〕2﹣3,且cosx∈[﹣1,1],故当cosx=1时,函数y取得最小值为﹣2,第8页〔共24页〕应选:B.9.以下说法正确的选项是〔〕A.经过三点有且只有一个平面B.经过两条直线有且只有一个平面C.经过平面外一点有且只有一个平面与平面垂直D.经过平面外一点有且只有一条直线与平面垂直【考点】LJ:平面的根本性质及推论.【分析】在A中,经过共线的三点有无数个平面;在B中,两条异面直线不能确定一个平面;在C中,经过平面外一点无数个平面与平面垂直;在D中,由线面垂直的性质得经过平面外一点有且只有一条直线与平面垂直.【解答】在A中,经过不共线的三点且只有一个平面,经过共线的三点有无数个平面,故A错误;在B中,两条相交线能确定一个平面,两条平行线能确定一个平面,两条异面直线不能确定一个平面,故B错误;在C中,经过平面外一点无数个平面与平面垂直,故C错误;在D中,由线面垂直的性质得经过平面外一点有且只有一条直线与平面垂直,故D正确.应选:D.10.过直线x+y+1=0与2x﹣y﹣4=0的交点,且一个方向向量的直线方程是〔〕A.3x+y﹣1=0 B.x+3y﹣5=0 C.3x+y﹣3=0 D.x+3y+5=0【考点】IB:直线的点斜式方程.【分析】求出交点坐标,代入点斜式方程整理即可.【解答】解:由,解得:,由方向向量得:第9页〔共24页〕直线的斜率k=﹣3,故直线方程是:y+2=﹣3〔x﹣1〕,整理得:3x+y﹣1=0,应选:A.11.文艺演出中要求语言类节目不能相邻,现有4个歌舞类节目和2个语言类节目,假设从中任意选出4个排成节目单,那么能排出不同节目单的数量最多是〔〕A.72B.120C.144D.2 88【考点】D8:排列、组合的实际应用.【分析】根据题意,分3种情况讨论:①、取出的4个节目都是歌舞类节目,②、取出的4个节目有3个歌舞类节目,1个语言类节目,③、取出的4个节目有2个歌舞类节目,2个语言类节目,分别求出每种情况下可以排出节目单的数目,由分类计数原理计算可得答案.【解答】解:根据题意,分3种情况讨论:①、取出的4个节目都是歌舞类节目,有1种取法,将4个节目全排列,有A44=24种可能,即可以排出24个不同节目单,②、取出的4个节目有3个歌舞类节目,1个语言类节目,有C21C43=8种取法,将4个节目全排列,有A44=24种可能,那么以排出8×24=192个不同节目单,③、取出的4个节目有2个歌舞类节目,2个语言类节目,有C22C42=6种取法,将2个歌舞类节目全排列,有A22=2种情况,排好后有3个空位,在3个空位中任选2个,安排2个语言类节目,有A32=6种情况,此时有6×2×6=72种可能,就可以排出72个不同节目单,那么一共可以排出24+192+72=288个不同节目单,应选:D.12.假设a,b,c均为实数,且a<b<0,那么以下不等式成立的是〔〕第10页〔共24页〕A.a+c<b+c B.ac<bc C.a2<b2D.【考点】R3:不等式的根本性质.【分析】A,由a<b<0,可得a+c<b+c;B,c的符号不定,那么ac,bc大小关系不定;C,由a<b<0,可得a2>b2;D,由a<b<0,可得﹣a>﹣b?;【解答】解:对于A,由a<b<0,可得ac<bc,故正确;++对于B,c的符号不定,那么ac,bc大小关系不定,故错;对于C,由a<b<0,可得a2>b2,故错;对于D,由a<b<0,可得﹣a>﹣b?,故错;应选:A.函数kx,g〔x〕=log3,假设〔﹣〕〔〕,那么实数的值是〔〕13f〔x〕=2xf1=g9 A.1B.2C.﹣1D.﹣2【考点】4H:对数的运算性质.【分析】由g〔9〕=log39=2=f〔﹣1〕=2﹣k,解得即可.﹣解得k=﹣1,应选:C14.如果,,那么等于〔〕A.﹣18B.﹣6C.0D.18【考点】9R:平面向量数量积的运算.【分析】由求出及与的夹角,代入数量积公式得答案.【解答】解:∵,,∴,且<>=π.那么= =3×6×〔﹣1〕=﹣18.应选:A.第11页〔共24页〕15.角α的终边落在直线 y=﹣3x上,那么cos〔π+2α〕的值是〔〕A. B. C. D.【考点】GO:运用诱导公式化简求值;G9:任意角的三角函数的定义.【分析】由直线方程,设出直线上点的坐标,可求cosα,利用诱导公式,二倍角的余弦函数公式可求cos〔π+2α〕的值.【解答】解:假设角α的终边落在直线 y=﹣3x上,〔1〕当角α的终边在第二象限时,不妨取x=﹣1,那么y=3,r= = ,所以cosα=,可得cos〔π+2α〕=﹣cos2α=1﹣2cos2α=;〔2〕当角α的终边在第四象限时,不妨取x=1,那么y=﹣3,r= = ,所以sinα=,cosα=,可得cos〔π+2α〕=﹣cos2α=1﹣2cos2α=,应选:B.16.二元一次不等式2x﹣y>0表示的区域〔阴影局部〕是〔〕A. B. C. D.【考点】7B:二元一次不等式〔组〕与平面区域.【分析】利用二元一次不等式〔组〕与平面区域的关系,通过特殊点判断即可.【解答】解:因为〔1,0〕点满足2x﹣y>0,所以二元一次不等式2x﹣y>0表示的区域〔阴影局部〕是:C.应选:C.17.圆C1和C2关于直线y=﹣x对称,假设圆C1的方程是〔x+5〕2+y2=4,那么圆C2的方程是〔〕A.〔x+5〕2+y2=2 B.x2+〔y+5〕2=4 C.〔x﹣5〕2+y2=2 D.x2+〔y﹣5〕2=4【考点】J1:圆的标准方程.【分析】由圆的方程求出圆心坐标和半径,求出圆C1的圆心关于y=﹣x的对称点,再由圆的标准方程得答案.第12页〔共24页〕【解答】解:由圆C1的方程是〔x+5〕2+y2=4,得圆心坐标为〔﹣5,0〕,半径为2,设点〔﹣5,0〕关于y=﹣x的对称点为〔x0,y0〕,那么,解得.∴圆C2的圆心坐标为〔0,5〕,那么圆C2的方程是x2+〔y﹣5〕2=4.应选:D.18.假设二项式的展开式中,只有第4项的二项式系数最大,那么展开式中的常数项是〔〕A.20 B.﹣20 C.15 D.﹣15【考点】DB:二项式系数的性质.【分析】先求出n的值,可得二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项的值.【解答】解:∵二项式的展开式中只有第4项的二项式系数最大,∴n=6,那么展开式中的通项公式为Tr+1=C6r?〔﹣1〕r?x .令6﹣3r=0,求得r=2,故展开式中的常数项为C62?〔﹣1〕2=15,应选:C.19.从甲、乙、丙、丁四位同学中选拔一位成绩较稳定的优秀选手,参加山东省职业院校技能大赛,在同样条件下经过多轮测试,成绩分析如表所示,根据表中数据判断,最正确人选为〔〕成绩分析表甲乙丙丁平均成绩96 96 85 85第13页〔共24页〕标准差s 4 2 4 2A.甲B.乙C.丙D.丁【考点】BC:极差、方差与标准差.【分析】根据平均成绩高且标准差小,两项指标选择即可.【解答】解:根据表中数据知,平均成绩较高的是甲和乙,标准差较小的是乙和丙,由此知乙同学成绩较高,且发挥稳定,应选乙参加.应选:B.20.A1,A2为双曲线〔a>0,b>0〕的两个顶点,以A1A2为直径的圆与双曲线的一条渐近线交于M,N两点,假设△A1MN的面积为,那么该双曲线的离心率是〔〕A.B.C.D.【考点】KC:双曲线的简单性质.【分析】由题意求得双曲线的渐近线方程,利用点到直线的距离公式求得A1〔﹣a,0〕到直线渐近线的距离d,根据三角形的面积公式,即可求得△A1MN的面积,即可求得a和b的关系,利用双曲线的离心率公式,即可求得双曲线的离心率.【解答】解:由双曲线的渐近线方程y=±x,设以A1A2为直径的圆与双曲线的渐近线y= x交于M,N两点,那么A1〔﹣a,0〕到直线y=x的距离d= = ,△A1MN 的面积S=××,整理得:b=2a==c那么a2=b2﹣c2=c2,即a=c,双曲线的离心率e= = ,应选B.第14页〔共24页〕二、填空题:21.假设圆锥的底面半径为1,母线长为3,那么该圆锥的侧面积等于3π.【考点】L5:旋转体〔圆柱、圆锥、圆台〕.【分析】圆锥侧面展开图是一个扇形,半径为l,弧长为2π,那么圆锥侧面积S=πrl,由此能求出结果.【解答】解:圆锥侧面展开图是一个扇形,半径为l,弧长为2πr∴圆锥侧面积:S= =πrl=π×1×3=3π.故答案为:3π.22.在△ABC中,a=2,b=3,∠B=2∠A,那么cosA= .∴【考点】HR:余弦定理.∴【分析】由二倍角的正弦函数公式,正弦定理即可计算得解.∴【解答】解:∵∠B=2∠A,∴sin∠B=2sin∠Acos∠A,第15页〔共24页〕又∵a=2,b=3,∴由正弦定理可得:,∵sin∠A≠0,∴cos∠A=.故答案为:.23.F1,F2是椭圆+ =1的两个焦点,过F1的直线交椭圆于P、Q两点,那么△PQF2的周长等于24 .【考点】K4:椭圆的简单性质.【分析】利用椭圆的定义|PF1|+|PF2|=2a=12,|QF1|+|QF2|=2a=12即可求得△PQF2的周长.【解答】解:椭圆+ =1的焦点在y轴上,那么a=6,b=4,设△PQF2的周长为l,那么l=|PF2|+|QF2|+|PQ|,=〔|PF1|+|PF2|〕+〔|QF1|+|QF2|〕=2a+2a,=4a=24.∴△PQF2的周长24,故答案为:24.第16页〔共24页〕24.某博物馆需要志愿者协助工作,假设从6名志愿者中任选3名,那么其中甲、乙两名志愿者恰好同时被选中的概率是.【考点】CB:古典概型及其概率计算公式.【分析】先求出根本领件总数n= ,其中甲、乙两名志愿者恰好同时被选中包含的根本领件个数:m= =4,由此能求出甲、乙两名志愿者恰好同时被选中的概率.【解答】解:某博物馆需要志愿者协助工作,从6名志愿者中任选3名,根本领件总数n=,其中甲、乙两名志愿者恰好同时被选中包含的根本领件个数:m== 4,∴其中甲、乙两名志愿者恰好同时被选中的概率是:p= = = .故答案为:.25.对于实数m,n,定义一种运算:,函数f〔x〕=a*a x,其中0<a<1,假设f〔t﹣1〕>f〔4t〕,那么实数t的取值范围是〔﹣,2] .【考点】5B:分段函数的应用.【分析】求出f〔x〕的解析式,得出f〔x〕的单调性,根据单调性得出t﹣1和4t的大小关系,从而可得t的范围.【解答】解:∵0<a<1,∴当x≤1时,a x≥a,当x>1时,a>a x,∴∴f〔x〕= .∴∴f〔x〕在〔﹣∞,1]上单调递减,在〔1,+∞〕上为常数函数,∵f〔t﹣1〕>f 〔4t〕,∴t﹣1<4t≤1或t﹣1≤1<4t,第17页〔共24页〕解得﹣<t≤或.∴﹣.故答案为:〔﹣2.,三、解答题:26.函数f〔x〕=log2〔3+x〕﹣log2〔3﹣x〕,1〕求函数f〔x〕的定义域,并判断函数f〔x〕的奇偶性;2〕f〔sinα〕=1,求α的值.【考点】4N:对数函数的图象与性质.【分析】〔1〕要使函数f〔x〕=log23x〕﹣log2〔3﹣x〕有意义,那么?〔+﹣3<x<3即可,由f〔﹣x〕=log2〔3﹣x〕﹣log2〔3+x〕=﹣f〔x〕,可判断函数f〔x〕为奇函数.〔2〕令f〔x〕=1,即,解得x=1.即sinα=1,可求得α.【解答】解:〔1〕要使函数f〔x〕=log2〔3+x〕﹣log2〔3﹣x〕有意义,那么﹣3<x<3,∴函数f〔x〕的定义域为〔﹣3,3〕;∵f〔﹣x〕=log2〔3﹣x〕﹣log2〔3+x〕=﹣f〔x〕,∴函数f〔x〕为奇函数.〔2〕令f〔x〕=1,即,解得x=1.sinα=1,α=2k,〔k∈Z〕.27.某职业学校的王亮同学到一家贸易公司实习,恰逢该公司要通过海运出口一批货物,王亮同学随公司负责人到保险公司洽谈货物运输期间的投保事宜,保险公司提供了缴纳保险费的两种方案:①一次性缴纳50万元,可享受9折优惠;第18页〔共24页〕②按照航行天数交纳:第一天缴纳元,从第二天起每天交纳的金额都是其前一天的2倍,共需交纳20天.请通过计算,帮助王亮同学判断那种方案交纳的保费较低.【考点】5D:函数模型的选择与应用.【分析】分别计算两种方案的缴纳额,即可得出结论.【解答】解:假设按方案①缴费,需缴费50×0.9=45万元;假设按方案②缴费,那么每天的缴费额组成等比数列,其中a1= ,q=2,n=20,∴共需缴费S20= = =219﹣=524288﹣≈万元,∴方案①缴纳的保费较低.28.直三棱柱ABC﹣A1B1C1的所有棱长都相等,D,E分别是AB,A1C1的中点,如下图.1〕求证:DE∥平面BCC1B1;2〕求DE与平面ABC所成角的正切值.【考点】MI:直线与平面所成的角;LS:直线与平面平行的判定.【分析】〔1〕取AC的中点F,连结EF,DF,那么EF∥CC1,DF∥BC,故平面DEF∥平面BCC1B1,于是DE∥平面BCC1B1.2〕在Rt△DEF中求出tan∠EDF.【解答】〔1〕证明:取AC的中点F,连结EF,DF,∵D,E,F分别是AB,A1C1,AC的中点,EF∥CC1,DF∥BC,又DF∩EF=F,AC∩CC1=C,∴平面DEF∥平面BCC1B1,又DE?平面DEF,第19页〔共24页〕DE∥平面BCC1B1.2〕解:∵EF∥CC1,CC1⊥平面BCC1B1.∴EF⊥平面BCC1B1,∴∠EDF是DE与平面ABC所成的角,设三棱柱的棱长为1,那么DF=,EF=1,tan∠EDF=.29.函数.1〕求该函数的最小正周期;2〕求该函数的单调递减区间;3〕用“五点法〞作出该函数在长度为一个周期的闭区间上的简图.【考点】HI:五点法作函数y=Asin〔ωx+φ〕的图象;H2:正弦函数的图象.【分析】〔1〕由利用两角差的正弦函数公式可得 y=3sin〔2x﹣〕,利用周期公式即可得解.〔2〕令2kπ+≤2x﹣≤2kπ+,k∈Z,解得:kπ+≤x≤kπ+,k∈Z,可得函数的单调递减区间.〔3〕根据五点法作图的方法先取值,然后描点即可得到图象.【解答】解:〔1〕∵ =3sin〔2x﹣〕,∴函数的最小正周期T= =π.〔2〕∵令2kπ+≤2x﹣≤2kπ+,k∈Z,解得:kπ+≤x≤kπ+,kZ,∴函数的单调递减区间为:kπ,kπ],k∈Z,++第20页〔共24页〕3〕列表:x2x﹣0π2πy030﹣30描点、连线如下图:30.椭圆的右焦点与抛物线y2=4x的焦点F重合,且椭圆的离心率是,如下图.〔1〕求椭圆的标准方程;〔2〕抛物线的准线与椭圆在第二象限相交于点A,过点A作抛物线的切线l,l 与椭圆的另一个交点为B,求线段AB的长.第21页〔共24页〕【考点】KL:直线与椭圆的位置关系.【分析】〔1〕根据题意得 F〔1,0〕,即c=1,再通过e= 及c2=a2﹣b2计算可得椭圆的方程;〔2〕将准线方程代入椭圆方程,求得A点坐标,求得抛物线的切线方程,由△=0,求得k的值,分别代入椭圆方程,求得B点坐标,利用两点之间的距离公式,即可求得线段AB的长.【解答】解:〔1〕根据题意,得F〔1,0〕,∴c=1,又e=,∴a=2,∴b2=a2﹣c2=3,故椭圆的标准方程为:〔2〕抛物线的准线方程为 x=﹣1由,解得,,由A位于第二象限,那么A〔﹣1,〕,过点A作抛物线的切线l的方程为:即直线l:4x﹣3y﹣4=0由整理得整理得:ky2﹣4y+4k+6=0,当k=0,解得:y=,不符合题意,当k≠0,由直线与抛物线相切,那么△=0,∴〔﹣4〕2﹣4k〔4k+6〕=0,解得:k=或k=﹣2,当k=时,直线l的方程y﹣=〔x+1〕,那么,整理得:〔x+1〕2=0,第22页〔共24页〕直线与椭圆只有一个交点,不符合题意,当k=﹣2时,直线l的方程为y﹣=﹣2〔x+1〕,由,整理得:19x2+8x﹣11=0,解得:x1=﹣1,x2= ,那么y1=,y2=﹣,由以上可知点A〔﹣1,〕,B〔,﹣〕,∴丨AB丨= = ,综上可知:线段AB长度为第23页〔共24页〕2021年7月12日第24页〔共24页〕。

山东省春季高考数学基础知识点上课讲义

山东省春季高考数学基础知识点上课讲义

中职数学基础知识汇总预备知识:1.完全平方和(差)公式: (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 22.平方差公式: a 2-b 2=(a+b)(a-b)3.立方和(差)公式: a 3+b 3=(a+b)(a 2-ab+b 2) a 3-b 3=(a-b)(a 2+ab+b 2)第一章 集合1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。

2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。

3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、N +(正整数集)4. 元素与集合、集合与集合之间的关系:(1) 元素与集合是“∈”与“∉”的关系。

(2) 集合与集合是“” “”“”“”的关系。

注:(1)空集是任何集合的子集,任何非空集合的真子集。

(做题时多考虑Ф是否满足题意) (2)一个集合含有n 个元素,则它的子集有2n 个,真子集有2n -1个,非空真子集有2n -2个。

5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) (1){|}A B x x A x B 且:A 与B 的公共元素组成的集合(2){|}ABx xA xB 或:A 与B 的所有元素组成的集合(相同元素只写一次)。

(3)A C U :U 中元素去掉A 中元素剩下的元素组成的集合。

注:=()U U U C AB C A C B ()U U U C A B C A C B6. 会用文氏图表示相应的集合,会将相应的集合画在文氏图上。

7. 充分必要条件:p 是q 的……条件 p 是条件,q 是结论如果p ⇒q ,那么p 是q 的充分条件;q 是p 的必要条件. 如果p ⇔q ,那么p 是q 的充要条件第二章 不等式1. 不等式的基本性质:(略)注:(1)比较两个实数的大小一般用比较差的方法;另外还可以用平方法、倒数法。

(2)不等式两边同时乘以负数要变号!!(3)同向的不等式可以相加(不能相减),同正的同向不等式可以相乘。

山东外贸职业学院2020年单独招生考试《数学》考试大纲

山东外贸职业学院2020年单独招生考试《数学》考试大纲

山东外贸职业学院2020年单独招生考试《数学》考试大纲山东外贸职业学院2020年春季高考《数学》学科考试大纲以教育部颁发的《中等职业学校数学教学大纲》为依据,以教育部职成教司教材处和山东省教育厅颁布的中等职业学校用书目录中有关教材为主要参考教材,并结合山东省中等职业学校数学教学的实际制定。

一、命题原则本考试大纲按照“注重考查基础知识的同时,考查最基本的数学能力”的原则命题,主要考查学生进入高职学院后继续学习所具备的数学基础知识、基本运算和一些基本技能的掌握程度,并考查学生运用数学的最基本能力。

二、考试内容与要求(一)集合1.了解集合的含义、元素与集合的关系、集合的表示法、常用数集的符号表示;2.掌握集合间的关系(子集、真子集、相等);3.会进行集合的交、并运算。

(二)方程与不等式1.掌握配方法,会用配方法解决有关问题;2.会解一元一次方程(组);3.会解一元二次方程;4.会解一元一次不等式(组),会用区间表示不等式的解集;5.会解含绝对值的一元一次不等式;6.会解一元二次不等式;7.通过图像了解一元二次不等式与相应的二次函数、一元二次方程之间的联系,并会求解有关问题。

8.能利用不等式的知识解决简单的实际问题。

(三)函数(基本初等函数Ⅰ、Ⅱ)1.理解函数的概念,会求函数的定义域和函数值,了解函数图像的平移关系;2.理解函数的单调性、奇偶性与周期性,会进行简单的分析;3. 理解幂函数、指数函数、对数函数、三角函数的概念、图像和性质,会进行相关的计算和应用;4.了解任意角的概念、象限角,了解任意角的三角函数的定义及三角函数的符号,掌握角度与弧度的转换,能按定义确定三角函数值,掌握特殊角的三角函数值;5.理解三角函数的周期性,掌握诱导公式、倍角公式、基本恒等关系式,并能进行一定的计算与变换;6.理解正弦型曲线、二次函数的概念、图像和性质,会进行相关的计算和应用。

(四)数列1.理解等差数列、等比数列的相关概念、通项公式与前n项和公式,知道等差中项、等比中项的概念;2.能在具体问题情境中识别数列的等差或等比关系,并能进行简单的综合计算。

山东职高春考专用数学第一章集合

山东职高春考专用数学第一章集合
DC
1.集合的基本概念
1下列各组对象能构成集合的是( )。 A: 参加2013年嘉兴一中校运会的优秀运动员 B: 参加2013年嘉兴一中校运会的美女运动员 C: 参加2013年嘉兴一中校运会的出色运动员 D: 参加2013年嘉兴一中校运会的所有运动员 D
1.1.1集合
1. 集合概念
一般地, 把一些能够确定的对象看成一个整体, 就说这个整体是由这些对象的全体构成的集合(简称 为集)。构成集合的每个对象都叫做集合的元素。
存在∅A
重点符号:包含于 区分符号:属于∈ 开口向大
,包含
(1)真子集
如果集合A是集合B的子集,并且B中至少有一个元 素不属于A,那么集合A叫做集合B的真子集 记作:A⫋B或B A 读作:A真包含于B或B真包含A
重点符号:真包含于,真包含 开口向大
B A
(2)相等 如果两个集合的元素完全相同,那么我们就说这两
A.
B.
C.
D.
cc
1.2集合之间的关系
1.包含于和包含
1. 如果集合A的任意一个元素都是集合B的元素,那么集
合A叫做集合B的子集, 记作 A B(或B A)
读作 A包含于B或B包含A
M= {x∣x是山东人}, N={x ∣x是中国人},
注意:任何集合A都是它本身的子集,即:A A
规定:空集是任意一个集合的子集,即对于任意一个集合A,都
B,B
小结
集合及其表示方式
1. 集合概念
集合 元素 集合的书写 元素与集合的关系 属于 不属于 集合元素的性质: 集合的分类
四边形是矩形⇔四边形的对角线平分
类比定义,一般地:
1)p ⇒q且q ⇒ p,则p是q的
充分不必要条件

山东省春季高考数学考纲完整版

山东省春季高考数学考纲完整版

山东省春季高考数学考纲集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN][2018春考]数学考纲一、考试范围和要求(一)代数1.集合集合的概念,集合元素的确定性和互异性,集合的表示法,集合之间的关系,集合的基本运算,子集与推出的关系。

微信公众号:Jiuwes2.方程与不等式配方法,一元二次方程的解法,实数的大小,不等式的性质与证明,区间,含有绝对值的不等式的解法,一元二次不等式的解法。

3.函数函数的概念,函数的表示方法,函数的单调性、奇偶性。

分段函数,一次函数、二次函数的图像和性质。

微信公众号:Jiuwes函数的实际应用。

4.指数函数与对数函数指数(零指数、负整指数、分数指数)的概念,实数指数幂的运算法则。

指数函数的概念,指数函数的图像和性质。

对数的概念,对数的性质与运算法则。

对数函数的概念,对数函数的图像和性质。

5.数列数列的概念。

等差数列及其通项公式,等差中项,等差数列前n项和公式。

等比数列及其通项公式,等比中项,等比数列前n项和公式。

6.平面向量向量的概念,向量的线性运算。

向量直角坐标的概念,向量坐标与点坐标之间的关系,向量的直角坐标运算,中点式,距离公式。

微信公众号:Jiuwes向量夹角的定义,向量的内积,两向量垂直、平行的条件。

7.逻辑用语命题、量词、逻辑联结词。

8.排列、组合与二项式定理分类计数原理与分步计数原理。

排列的概念,排列数公式。

组合的概念,组合数公式及性质。

二项式定理,二项式系数的性质。

(二)三角角的概念的推广,弧度制。

任意角三角函数(正弦、余弦和正切)的概念,同角三角函数的基本关系式。

三角函数诱导公式。

微信公众号:Jiuwes正弦函数、余弦函数的图像和性质,正弦型函数的图像和性质。

已知三角函数值求指定范围内的角。

和角公式,倍角公式。

正弦定理、余弦定理及三角形的面积公式。

三角计算及应用。

(三)平面解析几何直线的方向向量与法向量的概念,直线的点向式方程及点法式方程。

山东省春季高考数学基础知识点,文档

山东省春季高考数学基础知识点,文档

中职数学基础知识汇总预备知识:1.完好平方和(差)公式: (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 22.平方差公式:a 2-b 2=(a+b)(a-b)3.立方和(差)公式: a 3+b 3=(a+b)(a 2-ab+b 2)a 3-b 3=(a-b)(a 2+ab+b 2)第一章会集1. 构成会集的元素必 足三因素:确立性、互异性、无序性。

2. 会集的三种表示方法:列 法、描述法、 像法(文氏 ) 。

3. 常用数集: N (自然数集) 、 Z (整数集)、 Q (有理数集) 、 R ( 数集)、 N +(正整数集)4. 元素与会集、会集与会集之 的关系:( 1) 元素与会集是“”与“ ”的关系。

( 2) 会集与会集是“ í” “ ”“ = ”“/í”的关系。

注:( 1)空集是任何会集的子集,任何非空会集的真子集。

(做 多考 Ф能否 足 意)( 2)一个会集含有n 个元素, 它的子集有2n 个,真子集有2n -1 个,非空真子集有2n -2 个。

5. 会集的基本运算(用描述法表示的会集的运算尽量用画数 的方法)( 1) A I B = {x | x 挝A 且 x B } : A 与 B 的公共元素 成的会集 ( 2) A U B = { x | x 挝A 或x B } : A 与 B 的所有元素 成的会集(同样元素只写一次)。

( 3) C U A : U 中元素去掉 A 中元素剩下的元素 成的会集。

注: C U (A I B )C U A U C U BC U (A U B ) = C U A I C U B6. 会用文氏 表示相 的会集,会将相 的会集画在文氏 上。

7. 充分必需条件 : p 是 q 的⋯⋯条件 p 是条件, q 是假如 p q ,那么 p 是 q 的充分条件 ;q 是 p 的必需条件 . 假如 pq ,那么 p 是 q 的充要条件第二章 不等式1. 不等式的基天性 : (略)注:( 1)比 两个 数的大小一般用比 差的方法;别的 可以用平方法、倒数法。

2018山东省春季高考数学考纲

2018山东省春季高考数学考纲

2018山东省春季高考数学考纲[2018春考]数学考纲一、考试范围和要求(一)代数1.集合集合的概念,集合元素的确定性和互异性,集合的表示法,集合之间的关系,集合的基本运算,子集与推出的关系。

微信公众号:Jiuwes2 .方程与不等式配方法,一元二次方程的解法,实数的大小,不等式的性质与证明,区间,含有绝对值的不等式的解法,一元二次不等式的解法。

3.函数函数的概念,函数的表示方法,函数的单调性、奇偶性。

分段函数,一次函数、二次函数的图像和性质。

微信公众号:Jiuwes 函数的实际应用。

4.指数函数与对数函数指数(零指数、负整指数、分数指数)的概念,实数指数幂的运算法则。

指数函数的概念,指数函数的图像和性质。

对数的概念,对数的性质与运算法则。

对数函数的概念,对数函数的图像和性质。

5.数列数列的概念。

等差数列及其通项公式,等差中项,等差数列前n 项和公式。

等比数列及其通项公式,等比中项,等比数列前n 项和公式。

6.平面向量向量的概念,向量的线性运算。

向量直角坐标的概念,向量坐标与点坐标之间的关系,向量的直角坐标运算,中点式,距离公式。

微信公众号:Jiuwes向量夹角的定义,向量的内积,两向量垂直、平行的条件。

7.逻辑用语命题、量词、逻辑联结词。

8.排列、组合与二项式定理分类计数原理与分步计数原理。

排列的概念,排列数公式。

组合的概念,组合数公式及性质。

二项式定理,二项式系数的性质。

(二)三角角的概念的推广,弧度制。

任意角三角函数(正弦、余弦和正切)的概念,同角三角函数的基本关系式。

三角函数诱导公式。

微信公众号:Jiuwes正弦函数、余弦函数的图像和性质,正弦型函数的图像和性质。

已知三角函数值求指定范围内的角。

平面的表示法,平面的基本性质。

微信公众号:Jiuwes空间直线与直线、直线与平面、平面与平面的位置关系。

直线与平面,平面与平面的两种位置(平行、垂直)关系的判定与性质。

点到平面的距离、直线到平面的距离、平行平面间的距离的概念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省春季高考数学考

集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]
[2018春考]数学考纲一、考试范围和要求
(一)代数
1.集合
集合的概念,集合元素的确定性和互异性,集合的表示法,集合之间的关系,集合的基本运算,子集与推出的关系。

微信公众号:Jiuwes
2.方程与不等式
配方法,一元二次方程的解法,实数的大小,不等式的性质与证明,区间,含有绝对值的不等式的解法,一元二次不等式的解法。

3.函数
函数的概念,函数的表示方法,函数的单调性、奇偶性。

分段函数,一次函数、二次函数的图像和性质。

微信公众号:Jiuwes
函数的实际应用。

4.指数函数与对数函数
指数(零指数、负整指数、分数指数)的概念,实数指数幂的运算法则。

指数函数的概念,指数函数的图像和性质。

对数的概念,对数的性质与运算法则。

对数函数的概念,对数函数的图像和性质。

5.数列
数列的概念。

等差数列及其通项公式,等差中项,等差数列前n项和公式。

等比数列及其通项公式,等比中项,等比数列前n项和公式。

6.平面向量
向量的概念,向量的线性运算。

向量直角坐标的概念,向量坐标与点坐标之间的关系,向量的直角坐标运算,中点式,距离公式。

微信公众号:Jiuwes
向量夹角的定义,向量的内积,两向量垂直、平行的条件。

7.逻辑用语
命题、量词、逻辑联结词。

8.排列、组合与二项式定理
分类计数原理与分步计数原理。

排列的概念,排列数公式。

组合的概念,组合数公式及性质。

二项式定理,二项式系数的性质。

(二)三角
角的概念的推广,弧度制。

任意角三角函数(正弦、余弦和正切)的概念,同角三角函数的基本关系式。

三角函数诱导公式。

微信公众号:Jiuwes
正弦函数、余弦函数的图像和性质,正弦型函数的图像和性质。

已知三角函数值求指定范围内的角。

和角公式,倍角公式。

正弦定理、余弦定理及三角形的面积公式。

三角计算及应用。

(三)平面解析几何
直线的方向向量与法向量的概念,直线的点向式方程及点法式方程。

直线斜率的概念,直线的点斜式方程及斜截式方程。

直线的一般式方程。

两条直线垂直与平行的条件,点到直线的距离。

线性规划问题的有关概念,二元一次不等式(组)表示的区域。

线性规划问题的图解法。

线性规划问题的实际应用。

圆的标准方程和一般方程。

待定系数法。

微信公众号:Jiuwes
椭圆的标准方程和性质。

双曲线的标准方程和性质。

抛物线的标准方程和性质。

(四)立体几何
多面体、旋转体和棱柱、棱锥、圆柱、圆锥、球的概念。

柱体、锥体、球的表面积和体积公式。

平面的表示法,平面的基本性质。

微信公众号:Jiuwes
空间直线与直线、直线与平面、平面与平面的位置关系。

直线与平面,平面与平面的两种位置(平行、垂直)关系的判定与性质。

点到平面的距离、直线到平面的距离、平行平面间的距离的概念。

异面直线所成角、直线与平面所成角、二面角的概念。

(五)概率与统计初步
样本空间、随机事件、基本事件、古典概型、古典概率的概念。

直方图与频率分布,总体与样本,抽样方法(简单的随机抽样、系统抽样、分层抽样)。

总体均值,标准差,用样本均值、标准差估计总体均值、标准差。

二、试卷结构
1、试题内容比例
代数:约50%
三角:约15%
平面解析几何:约20%
立体几何:约10%
概率与统计初步:约5%
3、试题题型比例:
选择题:约50%
填空题、解答题(包括证明题):约50% 3.试题难易程度比例
基础知识:约50%
灵活掌握:约30%
综合运用:约20%。

相关文档
最新文档