数学人教版八年级上册直角三角形的判定教案
八年级上册数学教案《直角三角形全等的判定》
八年级上册数学教案《直角三角形全等的判定》学情分析本节课是在学生已经会用多种方法判定任意两个三角形全等的基础上,进一步学习判定两个直角三角形全等的简便方法——斜边、直角边。
通过探索直角三角形全等的条件,并用这些结果解决一些实际问题,来提高我们用数学解决实际问题的灵活性和能力。
由于这是第一次涉及特殊三角形的特殊性,为后续学习特殊三角形作准备。
教学目的1、掌握“斜边”“直角边”作直角三角形。
2、探究并掌握利用“斜边、直角边”判定两个直角三角形全等。
3、能恰当利用“HL”解决简单问题。
教学重点1、掌握判定两个直角三角形全等的特殊方法HL。
2、灵活运用直角三角形的判定方法解决问题。
教学难点用“HL”来确定两个三角形全等的条件及证明的书写格式。
教学方法讨论法、谈话法、讲授法、演示法、实验法教学过程一、温习回顾目前我们学过的证明三角形全等的方法有哪些?边边边、边角边、角边角。
二、学习新知1、思考对于两个直角三角形,除了直角相等的条件,还要满足几个条件,这两个直角三角形就全等了?由三角形全等的条件可知,对于两个直角三角形,满足:一直角边及其相对(或相邻)的锐角分别相等斜边和一锐角分别相等。
两直角边分别相等。
这两个直角三角形就全等了。
2、如果满足斜边和一条直角边分别相等,这两个直角三角形全等吗?探究:任意画出一个Rt△ABC,使∠C = 90°,再画一个Rt△A′B′C′,使∠C′ = 90°,B′C′ = BC,A′B′ = AB,把画好的Rt△A′B′C′剪下来,放到Rt△ABC上,它们全等吗?画一个Rt△A′B′C′,使∠C′ = 90°,B′C′ = BC,A′B′ = AB:(1)画∠MC′N =90°(2)在射线C′M上截取B′C′ = BC;(3)以点B′为圆心,AB长为半径画弧,交射线C′N于点A′;(4)连接A′B′。
斜边和一条直角边分别相等的两个直角三角形全等。
人教版八年级数学上册第十一章《直角三角形的性质和判定》教案
人教版八年级数学上册第十一章《直角三角形的性质和判定》教案一、教学目标【知识与技能】掌握直角三角形的两个锐角互余。
掌握有两个角互余的三角形是直角三角形。
【过程与方法】会用直角三角形的性质进行有关推理和计算。
【情感态度与价值观】让学生体会从一般到特殊的思想。
二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】探索并掌握直角三角形的两个锐角互余。
【教学难点】经历直角三角形性质的探索过程,掌握有两个角互余的三角形是直角三角形。
能利用直角三角形的性质和判定解决一些简单问题,会用直角三角形的性质进行有关推理和计算。
五、课前准备教师:课件、三角尺、量角器等。
学生:三角尺、直尺、量角器。
六、教学过程(一)导入新课本节课开始之前,先给大家讲一个故事:在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.你知道其中的道理吗?老大的度数为90°,老二若是比老大的度数大,那么老二的度数要大于90°,而三角形的内角和为180°,相互矛盾,因而是不可能的.(出示课件2)(二)探索新知1.探索直角三角形的性质教师问1:三角形的内角和是多少度?学生回答:三角形内角和为180°.教师问2:我们学习过的三角形按角分类,分为哪些呢?学生回答:所有的三角形只能分为三类:锐角三角形、直角三角形、钝角三角形.今天我们将要一块儿学习三角形里面特殊又别致的一个三角形,大家知道是什么吗?出示直角三角形的图形:学生回答:直角三角形.教师讲解:那么老师说它不一般,而且很特殊,那它到底有些什么样的特殊地方呢?下面我就请大家作为探宝者,把它的秘密都给发掘出来教师问3:如下图所示是我们常用的三角板,两锐角的度数之和为多少度? (出示课件4)学生回答:30°+60°=90°,45°+45°=90°.教师让同学们利用手里的工具(直尺、量角尺),随意构建任何大小的直角三角形,等同学们画完以后,让同位互换所画的三角形.教师问4:请同学们量出自己手中的直角三角形的两个锐角,计算一下它们的和是多少度?学生回答:两个锐角的和是90°.教师问5:如图,在直角三角形ABC中,∠C=90°,两锐角的和等于多少呢?如何证明呢?(出示课件5)学生回答:在直角三角形ABC中,因为∠C=90°,由三角形内角和定理,得∠A +∠B+∠C=180°,即∠A +∠B=90°.教师问6:由此,你可以得到直角三角形有什么性质呢?学生回答:直角三角形的两个锐角互余.教师总结:(出示课件6)直角三角形的性质定理:直角三角形的两个锐角互余.应用格式:在Rt△ABC 中,∵∠C =90°,∴∠A +∠B =90°.直角三角形的表示:直角三角形可以用符号“Rt△”表示,直角三角形ABC 可以写成Rt△ABC .探究1:利用直角三角形的性质证明角相等或求角的度数例1:(1)如图,∠B=∠C=90°,AD交BC于点O,∠A与∠D有什么关系?(出示课件7)师生共同解答如下:方法一(利用平行的判定和性质):∵∠B=∠C=90°,∴AB∥CD,∴∠A=∠D.方法二(利用直角三角形的性质):∵∠B=∠C=90°,∴∠A+∠AOB=90°,∠D+∠COD=90°.∵∠AOB=∠COD,∴∠A=∠D.(2)如图,∠B=∠D=90°,AD交BC于点O,∠A与∠C有什么关系?请说明理由.(出示课件8)师生共同解答如下:解:∠A=∠C. 理由如下:∵∠B=∠D=90°,∴∠A+∠AOB=90°,∠C+∠COD=90°.∵∠AOB=∠COD,∴∠A=∠C.出示课件9,学生自主练习解答。
八年级数学上册《直角三角形的性质和判定定理》教案、教学设计
2.选做题:
(1)针对学习程度较好的学生,布置一道拓展题,如直角三角形与圆的相关问题,激发学生的探究兴趣,提高其数学素养。
(2)针对学习程度一般的学生,布置一道实际应用题,如测量距离、计算面积等,让学生将所学知识运用到生活中,培养其实践能力。
1.教师将学生分成小组,每组4-6人,布置讨论题目:直角三角形的性质和判定定理。
2.学生在小组内展开讨论,分享自己对直角三角形的认识和理解,探讨勾股定理的应用。
3.各小组汇报讨论成果,教师点评并总结,强调直角三角形的性质和判定定理的重要性。
(四)课堂练习,500字
1.教师出示几道与直角三角形相关的练习题,如判断一个三角形是否为直角三角形、计算直角三角形的面积等。
二、学情分析
八年级的学生已经在之前的数学学习中掌握了三角形的基本概念和性质,对勾股定理有了初步的了解。在此基础上,他们对直角三角形的性质和判定定理的学习具备了一定的基础。然而,学生对直角三角形的理解程度不一,部分学生对勾股定理的应用还不够熟练,需要在教学中给予关注和引导。
此外,这个年龄段的学生正处于青春期,思维活跃,好奇心强,具备一定的探究能力和合作意识。他们对于富有挑战性和实际应用性的问题表现出较高的兴趣,因此,在教学过程中,教师应结合学生的这些特点,设计具有启发性和实用性的教学活动,激发学生的学习兴趣,提高他们的主动参与度。
1.创设情境,导入新课
通过生活中的实际例子,如建筑物的直角结构、斜拉桥等,引出直角三角形的概念,激发学生学习兴趣。
2.自主探究,合作交流
学生自主探究直角三角形的性质,如内角之和、斜边与直角边的关系等。在此基础上,小组讨论勾股定理的推导过程,引导学生从几何和代数两个角度去理解和掌握勾股定理。
人教版数学八年级上册13.3:含30°角的直角三角形的性质(教案)
1.引入新课:通过复习直角三角形的定义和性质,引入含30°角的直角三角形,激发学生的好奇心。
2.探索新知:引导学生观察含30°角的直角三角形的图形,发现并证明30°角所对的直角边是斜边的一半,斜边上的中线等于斜边的一半。
3.应用拓展:设计实际问题,让学生运用含30°角的直角三角形的性质解决问题,巩固所学知识。
-难点四:学生可能难以将含30°角的直角三角形的性质与其他知识点进行有效结合。举例:在解决综合问题时,学生可能不知道如何将含30°角的直角三角形的性质与勾股定理、相似三角形的性质等知识点结合起来。
针对以上教学难点,教师应采取以下措施:
1.利用直观的图形和实际操作,引导学生发现含30°角的直角三角形的性质,帮助学生理解比例关系。
-重点二:掌握含30°角的直角三角形中,斜边上的中线等于斜边的一半。举例:在直角三角形ABC中,若∠B=30°,则斜边AC上的中线BD等于AC的一半。
-重点三:能够运用含30°角的直角三角形的性质解决实际问题,如计算直角三角形各边长度等。
2.教学难点
-难点一:学生难以理解含30°角的直角三角形性质中的比例关系。举例:为什么30°角所对的直角边是斜边的一半,需要通过直观图形和实际操作引导学生理解。
人教版数学八年级上册13.3:含30°角的直角三角形的性质(教案)
一、教学内容
人教版数学八年级上册13.3:含30°角的直角三角形的性质。本节课我们将学习以下内容:
1.掌握含30°角的直角三角形中,30°角所对的直角边是斜边的一半。
2.理解并掌握含30°角的直角三角形中,斜边上的中线等于斜边的一半。
在实践活动环节,分组讨论和实验操作使得学生们能够更深入地理解含30°角的直角三角形的性质。每个小学生的合作能力和表达能力。但同时,我也观察到部分学生在讨论过程中过于依赖同伴,缺乏独立思考。针对这一问题,我将在后续教学中注重培养学生的独立思考能力。
人教版八年级数学上册12.2《斜边、直角边判定直角三角形全等》教学设计
3.示范讲解:教师针对HL判定法进行详细讲解,通过动画、板书等形式,让学生直观地理解HL判定法的内涵和运用。
4.实践应用:设计不同类型的练习题,让学生运用HL判定法解决问题,巩固所学知识。同时,注重培养学生的解题思路和技巧。
人教版八年级数学上册12.2《斜边、直角边判定直角三角形全等》教学设计
一、教学目标
(一)知识与技能
1.理解并掌握直角三角形全等的判定方法——斜边、直角边判定法(HL)。
2.能够运用HL判定法判断两个直角三角形是否全等,并能够灵活运用HL判定法解决相关问题。
3.能够运用HL判定法推导出直角三角形全等的其他性质,如对应角相等、对应边成比例等。
a.基础题:直接给出斜边和一个直角边,让学生判断两个直角三角形是否全等。
b.提高题:给出斜边和一个非直角边,让学生运用HL判定法解决问题。
c.拓展题:给出斜边和非直角边的长度,让学生求解直角三角形的其他未知量。
5.小组合作:组织学生进行小组讨论和合作,共同解决实际问题。在此过程中,培养学生团队协作、沟通交流的能力。
4.能够运用全等直角三角形的性质解决实际问题,如计算边长、角度等。
(二)过程与方法
1.引导学生通过观察、思考、讨论的方式,发现斜边、直角边判定直角三角形全等的规律。
2.通过举例、练习、拓展等方式,让学生掌握HL判定法的应用,提高学生的实际操作能力。
3.引导学生运用HL判定法解决实际问题,培养学生的解决问题能力和逻辑思维能力。
b.探索:是否存在其他判定直角三角形全等的方法?请举例说明。
4.小组合作作业:
11.2.2直角三角形的性质和判定教案-人教版八年级数学上册
∴ △ABC是直角三角形.
应用三角形内角和定理探究直角三角形的性质与判定,巩固提高学生的推理证明能力。通过过对问题的解决,体验成功的快乐
课堂练习
完成课本14页练习1题。
学生独立完成,教师巡视指导。学生板演,师生共同检查,规范书写解题过程。
通过练习检测学生对知识的掌握情况。
课堂小结
直角三角形的两个锐角互Байду номын сангаас。
(2)教师介绍直角三角形的表示方法和
直角三角形的性质的几何推理格式
在Rt△ABC中,
∵∠C=90°
∴∠A+∠B=90°
2.例题讲解(课本14页例3)
例 如图,∠C=∠D=90°,AD,BC相交于点E,∠CAE与∠DBE有什么关系?为什么?
教师引导学生进行思路分析,板书解答过程。
1.本节课学习了哪些主要内容?
2.利用直角三角形的性质与判定分别可以解决哪些问题?
梳理知识,形成体系,提高学生语言概括能力。
练习与检测
习题11.2复习巩固4题
课本第14页练习2题
板书设计
11.2.2直角三角形的性质和判定
直角三角形的性质
直角三角形的两个锐角互余。
推理格式:
在Rt△ABC中,
∵∠C=90°
学情分析
上节课已经学过三角形的内角和是180°,据此证明直角三角形两锐角互余这个定理并不难,教学中应该加强学生应用三角形内角和定理、直角三角形两内角互余定理解决一些简单的实际问题的能力。
教学目标
1.探索并掌握直角三角形的两个锐角互余。掌握有两个角互余的三角形是直角三角形。
2.经历推理证明得出直角三角形两内角互余定理的过程,巩固提高学生的推理证明能力。
人教版数学八年级上册《直角三角形判定》教学设计
人教版数学八年级上册《直角三角形判定》教学设计一. 教材分析人教版数学八年级上册《直角三角形判定》是初中数学的重要内容,主要让学生了解直角三角形的判定方法,掌握直角三角形的性质。
本节课的教学内容主要包括两个方面:一是利用锐角三角函数的定义判断直角三角形;二是利用直角三角形的性质判断直角三角形。
二. 学情分析学生在学习本节课之前,已经掌握了锐角三角函数的概念、三角形的性质等基础知识,具备一定的空间想象能力和逻辑思维能力。
但部分学生对直角三角形的判定方法理解不透彻,容易混淆。
因此,在教学过程中,要关注学生的学习差异,针对性地进行指导。
三. 教学目标1.让学生掌握直角三角形的判定方法,能运用所学知识解决实际问题。
2.培养学生的空间想象能力、逻辑思维能力和合作交流能力。
3.激发学生对数学的兴趣,提高学生的数学素养。
四. 教学重难点1.教学重点:直角三角形的判定方法。
2.教学难点:如何运用直角三角形的判定方法解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究直角三角形的判定方法。
2.利用多媒体辅助教学,展示直角三角形的判定过程,提高学生的空间想象能力。
3.采用小组合作学习,培养学生的团队协作能力和交流能力。
4.运用实例分析法,让学生学会将所学知识应用于实际问题。
六. 教学准备1.准备相关教学课件,展示直角三角形的判定过程。
2.准备实例题目,用于巩固所学知识。
3.准备黑板、粉笔等教学工具。
七. 教学过程1. 导入(5分钟)教师通过展示生活中的直角三角形实例,如建筑工人测量高度、体育运动员投掷项目等,引导学生关注直角三角形在实际生活中的应用,激发学生的学习兴趣。
同时,提出问题:“如何判断一个三角形是不是直角三角形?”从而引入新课。
2. 呈现(10分钟)教师简要回顾锐角三角函数的定义,引导学生思考如何利用锐角三角函数判断直角三角形。
通过讲解和示范,呈现直角三角形的判定方法,让学生初步掌握。
3. 操练(10分钟)学生分组进行练习,每组选取一道实例题目,运用所学知识判断题目中的三角形是否为直角三角形。
八年级数学上册 直角三角形全等的判定教案
直角三角形全等的判定教学目标一、经历探讨直角三角形全等条件的进程,体会利用操作、归纳取得数学结论的进程;二、把握直角三角形全等的条件,并能运用其解决一些实际问题。
3、在探讨直角三角形全等条件及其运用的进程中,能够进行有层次的试探并进行简单的推理。
教学重点运用直角三角形全等的条件解决一些实际问题。
教学难点熟练运用直角三角形全等的条件解决一些实际问题。
教学进程Ⅰ.提出问题,温习旧知一、判定两个三角形全等的方式:、、、二、如图,Rt△ABC中,直角边是、,斜边是3、如图,AB⊥BE于C,DE⊥BE于E,(1)假设∠A=∠D,AB=DE,那么△ABC与△DEF(填“全等”或“不全等” )依照(用简写法)(2)假设∠A=∠D,BC=EF,那么△ABC与△DEF(填“全等”或“不全等” )依照(用简写法)(3)假设AB=DE,BC=EF,那么△ABC与△DEF(填“全等”或“不全等” )依照(用简写法)(4)假设AB=DE,BC=EF,AC=DF那么△ABC与△DEF(填“全等”或“不全等” )依照(用简写法)Ⅱ.导入新课(一)探讨练习:(动手操作):已知线段a ,c (a<c) 和一个直角α利用尺规作一个Rt△ABC,使∠C=∠α,AB=c ,CB= a一、按步骤作图: a c①作∠MCN=∠α=90°,②在射线CM上截取线段CB=a,③以B 为圆心,C为半径画弧,交射线CN于点A,α④连结AB二、与同桌重叠比较,是不是重合?3、从中你发觉了什么?斜边与一直角边对应相等的两个直角三角形全等.(HL)(二)巩固练习:1.如图,△ABC中,AB=AC,AD是高,那么△ADB与△ADC(填“全等”或“不全等” )依照(用简写法)2.如图,CE⊥AB,DF⊥AB,垂足别离为E、F,(1)假设AC//DB,且AC=DB,那么△ACE≌△BDF,依照(2)假设AC//DB,且AE=BF,那么△ACE≌△BDF,依照(3)假设AE=BF,且CE=DF,那么△ACE≌△BDF,依照(4)假设AC=BD,AE=BF,CE=DF。
2024年人教版八年级数学上册教案及教学反思第12章12.2 三角形全等的判定(第4课时)
第十二章全等三角形12.2.三角形全等的判定第4课时直角三角形全等的判定一、教学目标【知识与技能】掌握直角三角形全等的条件:“斜边、直角边”.能运用全等三角形的条件,解决简单的推理证明问题.【过程与方法】经历探究直角三角形全等条件的过程,体会一般与特殊的辩证关系.【情感、态度与价值观】通过画图、探究、归纳、交流,发展学生的实践能力和创新精神.二、课型新授课三、课时第4课时,共4课时。
四、教学重难点【教学重点】掌握判定两个直角三角形全等的特殊方法——HL.【教学难点】熟练选择判定方法,判定两个直角三角形全等.五、课前准备教师:课件、三角尺、直尺、圆规等。
学生:三角尺、直尺、圆规。
六、教学过程(一)导入新课小明去公园玩,在公园看到了如下两个长度相同的滑梯,左边滑梯的高度AC 与右边滑梯水平方向的长度DF相等,小明说只要测量出左边滑梯AB的长度就可以知道右边滑梯有多高了,小明的说法正确吗?(出示课件2-4)(二)探索新知1.师生互动,探究直角三角形全等的判定方法教师问1:判定两个三角形全等的条件有哪些?(出示课件6)学生回答:SSS、SAS、AAS、ASA教师提出问题:前面学过的四种判定三角形全等的方法,对直角三角形是否适用?(出示课件7)教师问2:两个直角三角形,除了直角相等外,还要满足几个条件,这两个直角三角形就全等了?(出示课件8)(让学生观察课件中的两个直角三角形并思考回答:分析:1.再满足一边一锐角对应相等,就可用“AAS”或“ASA”证全等了.2.再满足两直角边对应相等,就可用“SAS”证全等了.教师问3:那么,如果满足斜边和一条直角边对应相等,这两个直角三角形全等吗?学生不能作肯定回答,经过小组讨论,只能作出猜测:可能全等.教师讲解:现在不要求马上给出结论.看看通过动手探究,你是否能得出结论.直角三角形我们用Rt△表示.教师问4:如图,已知AC=DF,BC=EF,∠B=∠E,△ABC≌△DEF 吗?(出示课件9)学生讨论并回答:证明三角形全等不存在SSA定理.所以一般的三角形不一定全等.教师问5:如果这两个三角形都是直角三角形,即∠B=∠E=90°,且AC=DF,BC=EF,现在能判定△ABC≌△DEF吗?(出示课件10)我们完成下边的问题:思考:任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使B′C′=BC,A′B′=AB,把画好的Rt△A′B′C′剪下,放到Rt△ABC 上,看看它们是否全等.(课件出示11-14,师生一起看题)(学生独立探究,动手作图)分析:画法直接由教师给出,而不安排学生画出,是考虑学生画图有一定的难度,况且作图不是本节课的重点.教师问6:Rt△ABC就是所求作的三角形吗?学生回答:是要求作的三角形.教师问7:画好后,把Rt△A′B′C′剪下,放到Rt△ABC上,看它们全等吗?学生动手做后回答:全等.教师问8:这样你发现了什么结论?学生回答:有一条斜边和直角边相等的两个直角三角形全等》教师板书:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边,直角边”或“HL”).总结点拨:(出示课件15)“斜边、直角边”判定方法文字语言:斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL”).几何语言:在Rt△ABC和Rt△ A′B′C′ 中,AB=A′B′,BC=B′C′,∴Rt△ABC ≌ Rt△ A′B′C′ (HL).警示注意:(1)一是“HL”是仅适用于Rt△的特殊方法;二是应用“HL”时,虽只有两个条件,但必须先有两个三角形是Rt△的条件.(2)“SSA”可以判定两个直角三角形全等,但是“边边”指的是斜边和一直角边,而“角”指的是直角.例1:如图,AC⊥BC,BD⊥AD,AC﹦BD.求证:BC﹦AD.(出示课件17)师生共同解答如下:证明:∵ AC⊥BC,BD⊥AD,∴∠C与∠D 都是直角.在Rt△ABC 和Rt△BAD 中,AC=BD .∴Rt△ABC≌Rt△BAD (HL).∴ BC﹦AD.例2:如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE. 求证:BC=BE.(出示课件22)师生共同解答如下:证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC =AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD-CD=BF-EF. 即BC=BE.总结点拨:(出示课件23)证明线段相等可通过证明三角形全等解决,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.例3:如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?师生共同解答如下:解:在Rt△ABC和Rt△DEF中,BC=EF,AC=DF .∴Rt△ABC≌Rt△DEF (HL).∴∠B=∠DEF(全等三角形对应角相等).∵∠DEF+∠F=90°,∴∠B+∠F=90°.(三)课堂练习(出示课件29-34)1. 判断两个直角三角形全等的方法不正确的有()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一条直角边对应相等D.两个锐角对应相等2. 如图,在△ABC中,AD⊥BC于点D,CE⊥AB于点E ,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长为()A.1 B.2 C.3 D.43.如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC________(填“全等”或“不全等”),根据_______________(用简写法).4. 如图,在△ABC中,已知BD⊥AC,CE ⊥AB,BD=CE.求证:△EBC≌△DCB.5. 如图,AB=CD, BF⊥AC,DE⊥AC, AE=CF.求证:BF=DE.6. 如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P,Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时△ABC才能和△APQ全等?参考答案:1.D2.A3. 全等HL4. 证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90 °.在Rt△EBC 和Rt△DCB 中,CE=BD,BC=CB .∴Rt△EBC≌Rt△DCB (HL).5. 证明: ∵ BF⊥AC,DE⊥AC,∴∠BFA=∠DEC=90 °.∵AE=CF,∴AE+EF=CF+EF.即AF=CE.在Rt△ABF和Rt△CDE中,AB=CD,AF=CE.∴Rt△ABF≌Rt△CDE(HL).∴BF=DE.6. 解:(1)当P运动到AP=BC时,∵∠C=∠QAP=90°.在Rt△ABC与Rt△QPA中,∵PQ=AB,AP=BC,∴Rt△ABC≌Rt△QPA(HL),∴AP=BC=5cm;(2)当P运动到与C点重合时,AP=AC.在Rt△ABC与Rt△QPA中,∵PQ=AB,AP=AC,∴Rt△QAP≌Rt△BCA(HL),∴AP=AC=10cm,∴当AP=5cm或10cm时,△ABC才能和△APQ全等.(四)课堂小结今天我们学了哪些内容:1.直角三角形“HL”判定方法2.灵活选择三角形全等的判定方法来解决问题(五)课前预习预习下节课(12.3)教材48页到49页的相关内容。
直角三角形全等的判定(HL)(教学设计)-八年级数学上册同步备课系列(人教版)
12.2.4直角三角形全等的判定(HL)教学设计一、教学目标:1.探索并理解直角三角形全等的判定方法“HL”.2.会用直角三角形全等的判定方法“HL”判定两个直角三角形全等.二、教学重、难点:重点:掌握判定两个直角三角形全等的特殊方法-HL.难点:熟练选择判定方法,判定两个直角三角形全等.三、教学准备:课件、三角尺、圆规等。
四、教学过程:复习回顾1.判定两个三角形全等方法____________________.2.如图,AB⊥BE于B,DE⊥BE于E.(1)若∠A=∠D,AB=DE.则与△DEF______(填“全等”或“不全等”)根据______(用简写法).(2)若∠A=∠D,BC=EF.则△ABC与△DEF______(填“全等”或“不全等”)根据______(用简写法).(3)若AB=DE,BC=EF.则△ABC与△DEF_______(填“全等”或“不全等”)根据______(用简写法).若AB=DE,AC=DF,此时△ABC与△DEF还会全等吗?知识精讲探究:任意画出一个Rt△ABC,使∠C=90°,再画一个Rt△A′B′C′,使得∠C′=90°,B′C′=BC,A′B′=A B.把画好的Rt△A′B′C′剪下,放到Rt△ABC上,它们全等吗?斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).注意:(1)“HL”定理是仅适用于Rt△的特殊方法.因此,判定两个直角三角形全等的方法除了可以使用“SSS”、“SAS”、“ASA”、“AAS”外还可以使用“HL”.(2)应用HL定理时,虽只有两个条件,但必须先有两个Rt△.书写格式为:在Rt△ABC和Rt△A′B′C′中,==AB A B BC B C′′′′∴Rt△ABC≌Rt△A′B′C′(HL)典例解析例1.如图,AC⊥BC,BD⊥AD,垂足分别为C,D,AC=B D.求证BC=AD.证明:∵AC ⊥BC ,BD ⊥AD ,∴∠C 与∠D 都是直角,在Rt △ABC 和Rt △BA D 中,BDAC BA AB ∴Rt △ABC ≌Rt △BAD (HL),∴BC =AD.【针对练习】如图,C 是路段AB 的中点,两人从C 同时出发,以相同的速度分别沿两条直线行走,并同时到达D 、E 两地.DA ⊥AB ,EB ⊥A B.D ,E 与路段AB 的距离相等吗?为什么?解:AD =BE ,理由如下:依题意可得,AC =BC ,CD =CE .∵DA ⊥AB ,EB ⊥AB ,∴∠A =∠B =90°,在Rt △ACD 和Rt △BCE 中,BCAC CE CD ∴Rt △ACD ≌Rt △BCE (HL),∴AD =BE.例2.如图,AC ⊥AD ,BC ⊥BD ,AC=BD ,求证:AD=BC .证明:连接D C.∵AC ⊥AD ,BC ⊥BD ,∴∠A =∠B =90°,在Rt △ADC 和Rt △BC D 中,AB BA AC BD∴Rt △ADC ≌Rt △BCD (HL),∴AD =BC.【针对练习】已知:如图,AB ,AD DC ,AB AD ,求证:BC DC .证明:连接AC,如下图,∵AB ⊥BC,AD ⊥DC,∴∠B =∠D =90°,在Rt △ABC 和Rt △AD C 中,AC AC AD AB∴Rt △ABC ≌Rt △ADC (HL),∴BC =BD.例3.如图,已知AD 是△ABC 的角平分线,且BD =CD ,DE 、DF 分别垂直于AB 、AC ,垂足分别为E 、F .求证BE =CF.证明:AD 平分∠BAC ,∴∠BAD =∠CAD ,∵DE 、DF 分别垂直于AB 、AC ,∴∠AED =∠AFD =90°,在△AED 和△AFD 中,AED AFD EAD FAD AD AD∴△AED ≌△AFD (AAS),∴DE =DF ,在Rt △BDE 和Rt △CDF 中,BD CD DE DF∴Rt △BDE ≌Rt △CDF (HL ),∴BE =CF .【针对练习】已知:如图,点A 、E 、C 同一条直线上,AB ⊥BC ,AD ⊥DC ,AB =A D .求证:BE =DE.证明:∵AB ⊥BC ,AD ⊥DC ,∴在Rt ABC 与Rt ADC 中,AB AD AC AC,∴Rt ABC ADC ≌R t (HL ),∴∠BAE =∠DAE ,在ABE △与ADE 中,AB AD BAE DAE AE AE,∴ABE ADE ≌(SAS ),∴BE =DE .例4.如图,在△AB C 中,∠C =90°,AD 是∠CAB 的角平分线,DE ⊥AB 于E ,点F 在边AC 上,连接DF .(1)求证:AC =AE ;(2)若DF =DB ,试说明∠B 与∠AFD 的数量关系;(3)在(2)的条件下,若AB =m ,AF =n ,求BE 的长(用含m ,n 的代数式表示).(1)证明:∵∠C =90°,DE ⊥AB ,∴∠C =∠AED =90°,在△ACD 和△AE D 中,C AED CAD EAD AD AD,∴△ACD ≌△AED (AAS ),∴AC =AE ;(2)解:∠B +∠AFD =180°,理由如下:由(1)得:△ACD ≌△AED ,∴DC =DE ,在Rt △CDF 和Rt △ED B 中,DC DE DF DB,∴Rt△CDF≌Rt△EDB(HL),∴∠CFD=∠B,∵∠CFD+∠AFD=180°,∴∠B+∠AFD=180°;(3)解:由(2)知,Rt△CDF≌Rt△EDB,∴CF=BE,由(1)知AC=AE,∵AB=AE+BE,∴AB=AC+BE,∵AC=AF+CF,∴AB=AF+2BE,∵AB=m,AF=n,∴BE=12(m﹣n).课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?【设计意图】培养学生概括的能力。
人教版数学八年级上册11.2 《直角三角形全等的判定》教学设计
人教版数学八年级上册11.2 《直角三角形全等的判定》教学设计一. 教材分析《直角三角形全等的判定》是人教版数学八年级上册第11.2节的内容,本节课主要让学生掌握直角三角形全等的判定方法,并能够运用这些方法解决实际问题。
教材通过引入“HL”、“SAS”、“ASA”三种判定方法,引导学生探索并证明直角三角形全等的条件。
同时,教材还提供了丰富的练习题,帮助学生巩固所学知识。
二. 学情分析学生在七年级已经学习了三角形全等的判定方法,对全等三角形的概念有了初步的认识。
但针对直角三角形全等的特殊性,学生还需要进一步理解并掌握。
此外,学生对于证明过程的书写和逻辑推理能力还需加强。
三. 教学目标1.知识与技能:使学生掌握直角三角形全等的判定方法(HL、SAS、ASA),能够运用这些方法判断直角三角形是否全等。
2.过程与方法:通过观察、操作、猜想、证明等过程,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:直角三角形全等的判定方法(HL、SAS、ASA)。
2.难点:判定方法的灵活运用和证明过程的书写。
五. 教学方法1.采用问题驱动法,引导学生主动探究直角三角形全等的条件。
2.运用分组讨论法,培养学生的团队合作能力和交流能力。
3.利用多媒体辅助教学,增强学生对知识的理解和记忆。
4.采用案例分析法,让学生学会将所学知识应用于解决实际问题。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备直角三角形的模型或挂图。
3.准备练习题和拓展题。
七. 教学过程1.导入(5分钟)利用直角三角形的模型或挂图,引导学生回顾三角形全等的判定方法。
提出问题:“如何判断两个直角三角形是否全等?”2.呈现(10分钟)呈现教材中的三种直角三角形全等的判定方法(HL、SAS、ASA),引导学生观察并分析判定方法的条件。
3.操练(10分钟)学生分组讨论,每组选择一种判定方法,运用判定方法判断给出的直角三角形是否全等。
人教版2020八年级数学上册 第14章 勾股定理 14.1 勾股定理 14.1.2 直角三角形的判定教案 (新版)
C.直角三角形D.钝角三角形
4.将直角三角形的三边扩大相同的倍数后,得到的三角形是( )
A.直角三角形B.锐角三角形
C.钝角三角形D.不能确定
图14-1-
5.如图14-1-:四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面积.(连接AC)
AC=b=A′C′,
AB=c=A′B′,
∴△ABC≌△A′B′C′.
∴.同学们还能找出哪些勾股数呢?
2.今天的结论与前面学习勾股定理有哪些异同呢?
3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?
4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?
教学重点
通过边长判断一个三角形是否是直角三角形,熟悉几组勾股数,并会辨析哪些问题应用哪个结论.
教学难点
解勾股定理的逆定理是通过数的关系来反映形的特点.
授课类型
新授课
课时
第一课时
教具
多媒体课件、四个全等的直角三角形图片
教学活动
教学步骤
师生活动
设计意图
回顾
1.上节课的勾股定理内容是什么?画出图形,写出表达式.
②[讲授效果反思]
注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想、验证及证明的过程,同时遵循由“特殊→一般→特殊”的发展规律.
③[师生互动反思]
________________________________________________________________________
④[习题反思]
好题题号 当堂训练1,2,5
错题题号 例1
八年级数学上册《直角三角形的判定定理》教案、教学设计
10.融入情感教育:在教学过程中,关注学生的情感态度,培养他们积极向上、勇于克服困难的精神风貌。
四、教学内容与过程
(一)导入新课
1.利用生活实例引入:展示一组生活中常见的直角三角形实物图片,如墙角、楼梯等,让学生观察并思考这些实物有什么共同特点。
2.学生独立完成:要求学生在规定时间内独立完成练习题,提高解题能力。
3.互相批改和讨论:学生互相批改练习题,讨论解题过程中遇到的问题,共同进步。
4.教师解答疑惑:针对学生遇到的问题,教师进行解答,巩固知识点。
(五)总结归纳
1.学生总结:让学生回顾本节课所学内容,总结直角三角形的判定定理及其应用。
2.教师点评与补充:教师针对学生的总结进行点评,补充遗漏的部分,强调重点和难点。
4.引导学生运用数学语言和符号表达自己的观点和结论,培养学生的表达能力和逻辑思维能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣和热情,激发他们探索数学奥秘的欲望。
2.培养学生的合作意识和团队精神,让他们在小组活动中学会倾听、尊重、沟通和协作。
3.培养学生勇于探索、敢于质疑的精神,使他们养成良好的学习习惯和自主学习能力。
4.让学生掌握运用直角三角形的判定定理解决一些简单的实际问题,如测量距离、高度等。
(二)过程与方法
1.采用启发式教学方法,引导学生通过观察、思考、讨论、总结等过程,自主发现直角三角形的判定定理。
2.设计丰富的教学活动,如小组合作、问题探究、实例分析等,让学生在实践中掌握直角三角形的判定方法。
3.运用多媒体教学手段,如PPT、动画等,形象直观地展示直角三角形的性质和判定过程,提高学生的学习兴趣。
人教版数学八年级上册《直角三角形全等的判定》教学设计
人教版数学八年级上册《直角三角形全等的判定》教学设计一. 教材分析人教版数学八年级上册《直角三角形全等的判定》是初中数学的重要内容,主要让学生掌握直角三角形全等的判定方法。
本节内容是在学生已经掌握了三角形全等的判定方法的基础上进行学习的,通过本节内容的学习,使学生能够灵活运用直角三角形全等的判定方法解决实际问题。
二. 学情分析八年级的学生已经具备了一定的数学基础,对三角形全等的概念和判定方法有一定的了解。
但学生在解决实际问题时,还不能灵活运用所学知识。
因此,在教学过程中,教师要注重引导学生将理论知识与实际问题相结合,提高学生的解决问题的能力。
三. 教学目标1.理解直角三角形全等的判定方法。
2.能够运用直角三角形全等的判定方法解决实际问题。
3.提高学生的空间想象能力和解决问题的能力。
四. 教学重难点1.重点:直角三角形全等的判定方法。
2.难点:如何运用直角三角形全等的判定方法解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究直角三角形全等的判定方法。
2.利用多媒体展示实例,帮助学生直观理解直角三角形全等的概念。
3.采用小组合作交流的方式,让学生在讨论中加深对直角三角形全等判定方法的理解。
4.运用巩固练习法,提高学生运用直角三角形全等判定方法解决实际问题的能力。
六. 教学准备1.多媒体教学设备。
2.直角三角形的相关模型和图片。
3.练习题。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引导学生思考如何判断直角三角形是否全等。
例如,一个直角三角形的一个锐角和另一个直角三角形的对应锐角相等,这两个三角形是否全等?2.呈现(10分钟)教师通过讲解和展示实例,向学生介绍直角三角形全等的判定方法。
直角三角形全等的判定方法有:(1)HL判定法:如果两个直角三角形的斜边和一个锐角分别相等,那么这两个三角形全等。
(2)ASA判定法:如果两个直角三角形的两个锐角和它们之间的边分别相等,那么这两个三角形全等。
12.2.4直角三角形全等的判定(HL)教学设计 初中八年级上册数学教案教学设计课后反思 人教版
课题:12.2.4直角三角形全等的判定(HL)课型:新授课【教学内容】直角三角形全等的判定(HL)【学习目标】1.知识与技能:(1)探索并掌握直角三角形全等的判定方法“HL”;(2)能够合理选择恰当的直角三角形判定方法来解决问题。
2.过程与方法:经历探索直角三角形全等判定方法的过程,体会利用操作、证明、归纳获得数学结论的过程,培养学生反思的习惯和理性的思维习惯。
3.情感态度与价值观:通过探究与交流,解决一些问题,获得成功的体验,进一步激发探究的积极性。
【学习重点】掌握判定两个直角三角形全等的特殊方法-HL。
【学习难点】灵活应用直角三角形的判定方法解决问题。
【教法学法】探究、讨论、归纳法【教学准备】直角三角形板、两张透明纸、圆规直尺【课时安排】1课时【教学流程】预习提纲教案1.斜边与一条直角边分别相等的两个直角三角形.(简写成“”或“”).2.如图,△ABC中,AB=AC,AD是高,则△ADB与△ADC (填“全等”或“不全等”)根据(用简写法).3.略.4.课后练习题……(略).教案一、情境导入、目标引领(时间:5分钟)1、判定两个三角形全等的方法有:、、、。
2、这些方法能判定直角三角形全等吗?3、思考:对于两个直角三角形,除了直角相等外,还要添几个条件,这两个直角三角形就全等呢?我们知道直角三角形是特殊的三角形,所以可以用一般三角形全等的判定方法: SSS 、SAS、ASA、AAS。
只要添加一边一锐角或两直角边分别相等,这两个直角三角形就全等了。
4.问题:如果两个直角三角形满足斜边和一条直角边分别相等,那么这两个直角三角形全等吗?二、自主学习、合作探究(时间:10分钟)探究:动手画一画(小组比较)1.任意画出一个Rt△ABC,∠C=90°,再画一个Rt△A´B´C´,使得∠C´= 90°,B´C´=BC,A´B´= AB。
人教版八年级数学上册:12.2三角形全等的判定直角三角形全等的判定(HL)教案
二、核心素养目标
1.培养学生的逻辑推理能力,通过探究直角三角形全等的判定方法,使学生能够理解和运用HL判定法进行推理和证明;
2.提升学生的几何直观和空间想象能力,通过观察和分析直角三角形的性质,培养学生对几何图形的认识和感知;
3.强化学生的数学建模能力,使学生能够运用直角三角形全等的判定解决实际问题,建立数学模型,提高解决问题的能力;
人教版八年级数学上册:12.2三角形全等的判定直角三角形全等的判定(HL)教案
一、教学内容
人教版八年级数学上册:12.2三角形全等的判定——直角三角形全等的判定(HL)
1.掌握直角三角形全等的判定方法(HL);
2.理解并运用“斜边和一对直角边相等”的条件判断直角三角形全等;
3.能够运用HL判定法解决实际问题;
3.重点难点解析:在讲授过程中,我会特别强调斜边和直角边的对应关系以及HL判定法的适用条件。对于难点部分,我会通过对比不同判定法和具体例题来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与直角三角形全等相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用模型或教具来演示HL判定法的原理。
2.学生的课堂参与度。在分组讨论和实验操作环节,大部分学生都能积极参与,主动提出问题和解决问题。但也有部分学生显得较为被动,需要我在旁边引导和鼓励。
3.教学方法的适用性。为了让学生更好地掌握HL判定法,我采用了案例分析、分组讨论和实验操作等多种教学方法。从学生的反馈来看,这些方法对他们的学习起到了积极的促进作用。
4.增强学生的数学交流能力,通过小组合作和课堂讨论,让学生在表达、倾听和交流中加深对直角三角形全等判定方法的理解。
八年级数学上册《一定是直角三角形吗》教案、教学设计
3.学生在解决实际问题时,可能存在一定的困难。因此,教学中应注重培养学生运用数学知识解决实际问题的能力,提高学生的数学应用意识。
4.学生的学习兴趣和积极性是影响教学效果的关键因素。在教学过程中,要注意激发学生的学习兴趣,引导学生主动参与课堂活动,发挥学生的主体作用。
2.直角三角形在实际问题中的应用。
3.解决与直角三角形相关的综合问题。
教学设想:
1.创设情境,导入新课
通过展示生活中的直角三角形实物,如墙角、楼梯等,引导学生观察、思考,激发学生学习兴趣,为新课的学习打下基础。
2.自主探究,合作交流
给学生提供丰富的学习资源,引导学生自主探究直角三角形的判定方法、勾股定理及其逆定理。在此基础上,组织学生进行小组合作交流,分享学习心得,互相借鉴,共同提高。
4.总结反思,巩固提高
在课堂尾声,组织学生对本节课所学知识进行总结,分享学习收获。教师针对学生的总结进行点评,强调重点,突破难点。同时,布置相关作业,巩固所学知识。
5.关注个体差异,分层教学
针对不同学生的学习基础和接受能力,设计不同难度的练习题,使每个学生都能在原有基础上得到提高。对于学习困难的学生,教师应给予个别辅导,关注他们的学习进度。
八年级数学上册《一定是直角三角形吗》教案、教学设计
一、教学目标
(一)知识与技能
1.理解直角三角形的定义,掌握直角三角形的判定方法。
2.学会运用勾股定理及其逆定理解决实际问题,提高解决问题的能力。
3.熟练掌握直角三角形的面积计算公式,并能灵活运用。
4.掌握直角三角形的垂线、斜边、高线等概念,并了解它们之间的关系。
人教版数学八年级上册《“斜边、直角边”判定直角三角形全等》教学设计2
人教版数学八年级上册《“斜边、直角边”判定直角三角形全等》教学设计2一. 教材分析《“斜边、直角边”判定直角三角形全等》是人教版数学八年级上册第三章的内容。
这部分内容是在学生已经掌握了全等图形的概念、判定方法以及直角三角形的性质的基础上进行学习的。
本节课的主要内容是让学生掌握利用“斜边、直角边”判定两个直角三角形全等的方法,并能够运用这一方法解决实际问题。
教材通过例题和练习题的形式,帮助学生理解和掌握这一判定方法。
二. 学情分析学生在学习本节课之前,已经掌握了全等图形的概念、判定方法以及直角三角形的性质。
但学生在运用这些知识解决实际问题时,往往会遇到困难。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生的解决问题的能力。
三. 教学目标1.知识与技能:使学生掌握利用“斜边、直角边”判定两个直角三角形全等的方法,并能够运用这一方法解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:利用“斜边、直角边”判定两个直角三角形全等的方法。
2.难点:如何引导学生将理论知识与实际问题相结合,提高解决问题的能力。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,引导学生发现和总结规律。
2.合作学习法:学生分组讨论,共同解决问题,培养学生的团队合作意识。
3.实践操作法:学生动手操作,观察、分析、总结,提高学生的动手能力和观察能力。
六. 教学准备1.教具:直角三角形模型、多媒体设备。
2.学具:学生用书、练习册、铅笔、橡皮。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾全等图形的概念、判定方法以及直角三角形的性质。
为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体展示几个实际问题,让学生观察、思考。
引导学生发现这些问题都可以归结为判断两个直角三角形是否全等的问题。
初中数学初二数学上册《直角三角形全等的判定》教案、教学设计
-创设轻松愉快的学习氛围,鼓励学生积极参与,勇于提问,敢于表达。
-建立良好的班级纪律,保证课堂教学的有序进行。
-利用学校教学资源,如数学实验室、多媒体教室等,为学生提供丰富的学习资源。
四、教学内容与过程
(一)导入新课
在导入环节,我将采用生活实例引发学生对直角三角形全等判定方法的思考。首先,我会向学生展示一张由两个直角三角形组成的楼梯图片,并提出问题:“如何判断这两个直角三角形是否全等?”让学生在观察图片的基础上,尝试回答问题。接着,我会让学生拿出提前准备好的两个直角三角形纸片,进行实际操作,观察、思考如何判断它们是否全等。
(二)讲授新知
在讲授新知环节,我会按照以下步骤进行:
1.复习全等三角形的判定方法,引导学生回顾SSS、SAS、ASA、AAS等判定方法。
2.引导学生观察直角三角形的特殊性,即有一个角是直角,从而得出直角三角形的全等判定方法。
3.逐一讲解直角三角形全等的五种判定方法(SSS、SAS、ASA、AAS、HL),并结合实例进行说明。
4.教学步骤:
-导入:通过生活中的直角三角形实例,引发学生思考,激发学习兴趣。
-探究:引导学生复习全等三角形的判定方法,自主探究直角三角形全等的判定方法。
-讲解:结合实例,详细讲解五种判定方法的适用条件,帮助学生理解和记忆。
-应用:设计不同难度的练习题,让学生在实际操作中巩固所学知识。
-总结:通过师生共同总结,梳理本节课的知识点,形成知识网络。
此外,初二学生的抽象思维能力逐渐增强,他们对于直观、具体的实例更容易产生兴趣。因此,在本章节的教学中,教师应充分关注学生的认知特点,结合实际情境,激发学生的学习兴趣,帮助他们建立清晰的知识体系。
同时,初二学生正处于青春期,个体差异较大,学习态度、学习习惯等方面存在一定差异。教师需针对不同学生的特点,因材施教,使每个学生都能在原有基础上得到提高,从而提高整体教学效果。在此基础上,注重培养学生的团队合作精神,让学生在交流与合作中共同进步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4课时斜边、直角边
金城二中赵妮
【知识与技能】
掌握两个直角三角形全等的条件,并能应用它证明两个直角三角形全等.
【过程与方法】
通过对知识方法的归纳总结,加深对三角形全等的判定的理解.培养反思习惯,形成理性思维.
【情感态度】
通过探究与交流,解决问题,获得成功的体验,进一步激发探究的积极性.
【教学重点】
理解、掌握直角三角形全等的条件:HL.
【教学难点】
熟练选择判定方法,判定两个直角三角形全等.
一、情境导入,初步认识
问题1舞台的背景形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.
(1)请你设法帮工作人员找到解决问题的方式.
(2)如果工作人员只带了一卷尺,他能完成这个任务吗?
全体学生思考,并互相交流每个人的想法,组长收集每组的结论.
问题2 探究
画出一个Rt△ABC,使∠C=90°,CA=8cm,AB=10cm.
要求:每个学生都动手画图,并剪下所画的直角三角形,每两人把剪下的直角三角形,重叠在一起,观察它们是否重合.
【教学说明】教师讲课前,先让学生完成“自主预习”.
二、思考探究,获取新知
教师根据学生操作、交流情况,引导学生一起归纳上述两个问题的结果.
对于问题1,(1)方法有:测量斜边和一个对应的锐角(AAS),或测量没遮住的一条直角边和一个对应的锐角(ASA 或AAS);(2)可以完成这个条件,其依据正是本节所要学的知识,以此激发学生探究的兴趣.
对于问题2,归纳得到:斜边和一条直角边对应相等的两个直角三角形全等,简写成“斜边、直角边”或“HL ”.
三、讲解例题
例1 如图,已知AC ⊥BC,BD ⊥AD,AC=BD.求证:BC=AD.
【教学说明】由学生思考,交流讨论后,指定学生表述思路,并由教师板书证明过程,引导学生正确书写解题步骤.
证明:∵AC ⊥BC,BD ⊥AD,
∴∠C=∠D=90°.
在Rt △ABC 和Rt △BAD 中,
∴Rt △ABC ≌Rt △BAD(HL).
四、运用新知,深化理解
1如图,AB=CD, BF ⊥AC,DE ⊥AC,AE=CF
求证:BF=DE
2 如图,C 是路段AB 的中点,两人从C 同时出发,以相同的速度分别沿着两条直线行走,并同时到达D 、E 两地。
DA⊥AB,EB⊥AB.
求证:AD=BE
3 解决课前提出的问题。
【教学说明】指导学生解答上述习题时,强调学生应:(1)注意应用“HL ”证三角形全等时的书写格式;(2)归纳总结证明直角三角形全等的判定条件共有几个?它们分别是什么?
五、师生互动,课堂小结
1.回顾本书所学知识,巩固“HL ”的记忆与认识,清楚地了解到“HL
”是直⎩ ⎨ ⎧ AC=BD AB=BA,
(公共边)
角三角形全等所独有的定理,以直角三角形为前提条件.
2.归纳直角三角形全等的证明定理有:SSS,SAS,ASA,AAS,HL共五个,在实际解题时能灵活选用.
【教学说明】
在总结直角三角形全等判定定理共有几个时,鼓励学生踊跃思考发言,发挥集体智慧得到完整答案,利于引导学生形成合作交流意识.
1.布置作业:从教材“习题1
2.2”第7题第8题.
2.完成绩优学案中本课时的练习.。