药物化学第二章

合集下载

药物化学复习第二章习题及答案

药物化学复习第二章习题及答案

第二章中枢神经系统药物一、单项选择题2-1、异戊巴比妥可与吡啶和硫酸酮溶液作用,生成 BA. 绿色络合物 b. 紫色络合物 C. 白色胶状沉淀 d. 氨气 E. 红色溶液2-2、异戊巴比妥不具有下列哪些性质CA. 弱酸性 b.溶于乙醚、乙醇 C.水解后仍有活性d. 钠盐溶液易水解E. 加入过量的硝酸银试液,可生成银盐沉淀2-3、盐酸吗啡加热的重排产物主要是 DA. 双吗啡 b. 可待因 C. 苯吗喃 d. 阿扑吗啡 E. N-氧化吗啡2-4、结构中没有含氮杂环的镇痛药是DA. 盐酸吗啡 b. 枸橼酸芬太尼 C. 二氢埃托啡 d. 盐酸美沙酮 E. 喷他佐辛2-5、咖啡因的结构如下图,其结构中 R1、R3、R7分别为BNN N NOOR1R3R7A. H、CH3、CH3B. CH3、CH3、CH3C. CH3、CH3、HD. H、H、HE. CH2OH、CH3、CH32-6、盐酸氟西汀属于哪一类抗抑郁药DA. 去甲肾上腺素重摄取抑制剂B.单胺氧化酶抑制剂C. 阿片受体抑制剂D.5-羟色胺再摄取抑制剂E. 5-羟色胺受体抑制剂2-7、盐酸氯丙嗪不具备的性质是 DA. 溶于水、乙醇或氯仿B.含有易氧化的吩嗪嗪母环C. 与硝酸共热后显红色D. 与三氧化铁试液作用,显兰紫色E. 在强烈日光照射下,发生光化毒反应2-8、盐酸氯丙嗪在体内代谢中一般不进行的反应类型为 DA. N-氧化B. 硫原子氧化C. 苯环羟基化D. 脱氯原子E. 侧链去n-甲基2-9、造成氯氮平毒性反应的原因是 BA. 在代谢中产生毒性的氮氧化合物B. 在代谢中产生毒性的硫醚代谢物C. 在代谢中产生毒性的酚类化合物D. 抑制β受体E. 氯氮平产生的光化毒反应2-10、不属于苯并二氮卓的药物是 CA. 地西泮B. 氯氮卓C. 唑吡坦D. 三唑仑E. 美沙唑仑二、配比选择题[2-11~2-15]A.苯巴比妥B. 氯丙嗪C. 咖啡因D. 丙咪嗪E. 氟哌啶醇2-11、N,N-二甲基-10,11-二氢-5H-二苯并[b, f ]氮杂卓-5丙胺()2-12、5-乙基-5苯基-2,4,6-(1H,3H,5H)嘧啶三酮()2-13、1-(4-氟苯基)-4-[4-(4-氯苯基)-4-羟基-1哌啶基]-1-丁酮()2-14、2-氯-N,N-二甲基-10H -吩噻嗪-10-丙胺()2-15、3,7-二氢-1,3,7-三甲基-1H-嘌呤-2,6-二酮一水合物()[2-16~2-20]A. 作用于阿片受体B. 作用多巴胺体C. 作用于苯二氮卓ω1受体D. 作用于磷酸二酯酶E. 作用于GABA受体2-16、美沙酮( A ) 2-17、氯丙嗪( B ) 2-18、卤加比( E )2-19、咖啡因( D ) 2-20、唑吡坦( C )三、比较选择题[2-21~2-25 ]A. 异戊巴比妥B. 地西泮C. A和B 都是D. A 和B都不是2-21、镇静催眠药( C ) 2-22、具有苯并氮杂卓结构( B ) 2-23、可作成钠盐( A ) 2-24、易水解( C ) 2-25、可用于抗焦虑( B )[2-26~2-30 ]A. 吗啡B. 哌替啶C. A和 B都是D. A和B都不是2-26、麻醉药D 2-27、镇痛药C 2-28、主要作用于μ受体C2-29、选择性作用于κ受体D2-30、肝代谢途径之一为去N-甲基 C[2-31~2-35 ]A. 氟西汀B. 氯氮平C. A 和B都是D. A和B都不是2-31、为三环类药物 B 2-32、含丙胺结构 A 2-33、临床用外消旋体 A2-34、属于5-羟色胺重摄取抑制剂 A 2-35、非典型的抗精神病药物 B四、多项选择题2-36、影响巴比妥类药物镇静催眠作用的强弱和起效快慢的理化性质和结构因素是:ABDEA. pKaB. 脂溶性 C . 5位取代基的氧化性质 D. 5取代基碳的数目E. 酰胺氮上是否含烃基取代2-37、巴比妥类药物的性质有:ABDEA. 具有内酰亚胺醇-内酰胺的互变异构体B.与吡啶和硫酸酮试液作用显紫蓝色C. 具有抗过敏作用D. 作用持续时间与代谢速率有关E. pKa值大,在生理pH时,未解离百分率高2-38、在进行吗啡的结构改造研究工作中,得到新的镇痛药的工作有A B DA.羟基的酰化B.氮上的烷基化C.1位的脱氢D.羟基的烷基化E.除去D环2-39、下列哪些药物的作用于阿片受体 ABDA. 哌替啶B. 喷他佐辛C. 氯氮平D. 芬太尼E. 丙咪嗪2-40、中枢兴奋剂可用于 ABCEA. 解救呼吸、循环衰竭B. 儿童遗尿症C. 对抗抑郁症D. 抗解救农药中毒E. 老年性痴呆的治疗2-41、属于5-羟色胺重摄取抑制剂的药物有 ABCDEA. 帕罗西汀B. 氟伏沙明C. 氟西汀D. 文拉法辛E. 舍曲林2-42、氟哌啶醇的主要结构片段有 ABCDA. 对氯苯基B. 对氟苯甲酰基C. 对羟基哌嗪D. 丁酰苯E. 哌嗪环2-43、具三环结构的抗精神失常药有 ACDEA. 氯丙嗪B. 利培酮C. 洛沙平D. 舒必利E. 地昔帕明2-44、镇静催眠药的结构类型有 A C D EA. 巴比妥类B. 三环类C. 苯并氮卓类D. 咪唑并吡啶类E. 西坦类五、问答题2-45、巴比妥类药物的一般合成方法中,用卤烃取代丙二酸二乙酯的氢时,当两个取代基大小不同时,一般应先引入大基团,还是小基团?为什么?答:当引入的两个烃基不同时,一般先引入较大的烃基到次甲基上。

药物化学第二章-药物设计的基本原理和方法

药物化学第二章-药物设计的基本原理和方法
化学基因组学是近年发展的基因组与药物设计相交叉的学科, 基本思路是基于靶标活性部位的抑制剂的设计及合成。目前, 随着人类基因组的研究,大量的疾病相关基因被发现,使得药 物作用的靶标分子急剧增加,为药物设计开辟了广阔前景。
§ 2. 先导化合物的优化
Lead Optimization
先导化合物的优化
Izant等人于1984年首次提出反义寡核苷酸技术,该技术是根据
核酸间碱基互补原理,利用一小段外源性的人工或生物合成的特
异互补RNA或DNA片断,与靶细胞中的mRNA或DNA通过碱基
互补结合,通过这种寡核苷酸键抑制或封闭其基因的表达。与反
义寡核苷酸相似的是反义DNA,是用一小段人工会成的约8~23
碱基组成的脱氧核苷酸单链,与靶mRNA形成碱基配对的DNA-
S
可旋转键的数量不超过10个。(删去)
ADMET
ADMET (药物的吸收、分配、代谢、排泄 和毒性)药物动力学方法是当代药物设计和 药物筛选中十分重要的方法。
A:吸收 Absorption D:分配 Distribution M:代谢 Metabolism E :排泄 Excretion T: 毒性 Toxcity
3.综合技术平台
目前最快速的发现先导化合物的途径是被各国称为综合技术平台的方法, 简单说就是用液相串联质谱( LC MS/MS)作为化合物的分离和分析结构 的工具,与药理学、组合化学的高通量筛选、计算机辅助设计、分子生物学、 受体(酶)学,及化学基因组学等学科结合起来,可迅速而大量地确定具有 不同活性药物的基本母核(scaffold),作为先导化合物。
药物进入体内后发生的代谢过程实质上是药物在体内 发生的化学转化过程。 代谢失活:体内代谢的结果主要是产物降低或失去 活性,排出体外 代谢活化:有些药物却发生代谢产物活化或产生其 它新的作用,转化为保留活性、毒副作用小的代谢 物,这样的代谢产物可成为新的先导化合物。

药物化学第2章 新药研究的基本原理与方法题库

药物化学第2章 新药研究的基本原理与方法题库

第2章新药研究的基本原理与方法选择题每题1分
第2章新药研究的基本原理与方法填空题1每空1分
填空题2 每空1分
填空题3每空1分
第2章新药研究的基本原理与方法概念题每题2分
第2章新药研究的基本原理与方法问答与讨论题每题6分
前列腺素E2(PGE2)为结晶固体,但室温稳定期短,几个月内可迅速分解,不稳定因素是C-11位羟基易在酸性条件下,发生消除反应生成前列腺素A2(PGA 2) 这也是其口服无效的主因。

请设计两种较为稳定的衍生物。

举例说明根据受体结构进行药物分子设计
HIV蛋白水解酶催化机理
根据催化机理设计的HIV蛋白水解酶抑制剂
第2章新药研究的基本原理与方法合成/代谢/反应/设计题每题6分。

药物化学第二章思维导图

药物化学第二章思维导图

第二章新药研究的基本原理与方法概论新药上市临床前药学研究药效学药代动力学安全性等临床Ⅰ:健康志愿者Ⅱ:患者Ⅲ:大规模、多中心的临床实验新药发现治疗靶分子的确定和选择靶分子的优化先导化合物的发现先导化合物的优化药物的化学结构与生物活性的关系理化性质与生物活性脂水分配系数与生物活性酸碱性与生物活性解离度药物-受体相互作用化学键的作用化学键离子键氢键疏水键范德华力离子-偶极键及偶极-偶极键电荷转移复合物金属配合物立体化学的作用几何异构光学异构构象异构官能团的作用烷基卤素羟基与巯基磺酸基和羧基氨基和酰胺基醚键药物产生药效的两个主要决定因素:药物的理化性质以及药物和受体的相互作用先导化合物的发现从天然产物得到先导化合物植物微生物海洋动植物爬行类两栖类动物例:从植物黄花蒿中分离出含有过氧桥的倍半萜内酯化合物以现有药物作为先导化合物由药物副作用发现先导化合物通过药物的代谢研究发现先导化合物以现有突破性药物作为先导化合物用活性内源性物质作为先导化合物内源性物质神经递质受体酶利用组合化学和高通量筛选得到先导化合物先导化合物的优化现代的方法传统的药物化学方法生物电子等排体经典非经典前药设计分类载体前药生物前药目的和应用提高生物利用度和生物膜通透性提高前药的靶向性设计一个前药(部位指向性药物运输)设计一种前药(部位特异性药物释放)改善药物的水溶性、稳定性、克服不良气味或理化性质以适应制剂的需要软药设计定量构效关系计算机辅助设计自学。

药物化学02第二章

药物化学02第二章
第二章 中枢神经系统药物 Central Nervous System Drugs
人民卫生出版社
第二章 中枢神经系统药物 Central Nervous System Drugs
1
镇静催眠药
2
抗癫痫药物
3
抗精神病药
4
抗抑郁药
5
镇痛药
6 神经退行性疾病治疗药物
第一节 镇静催眠药 sedative-hypnotics
水溶液呈碱性 苯妥英的pKa 8.3 (H2CO3 pKa
3.9,6.35 )
ON
ONa
N
CO2
H
ON
O
N H
+ NaCO3
一、环内酰脲类
水解性: 水解 (环状酰脲结构)
与碱加热,分解产生二苯基脲基乙酸,最后生成二 苯基氨基乙酸,并释放出氨。(可供鉴别)
O NH
O
N
NaOH
H
O OH
去甲地西泮
替马西泮 temazepam
奥沙西泮 oxazepam
一、苯并二氮䓬类药物
地西泮的合成
一、苯并二氮䓬类药物
其他本类药物
flurazepam
lorazepam
nitrazepam
flunitrazepam
brotizolam
triazolam
estazolam
alprazolam
一、苯并二氮䓬类药物
2
O NaCN pH 7~8
O OH HNO3 105.C, 8h
O O
(NH2)2CO NaOH, C2H5OH
104~108.C
H
ON
O H2N
NaOH
OH

药物化学-第二章-中枢神经系统药物-苯二氮卓类

药物化学-第二章-中枢神经系统药物-苯二氮卓类

首页
(六)其它类
H N H3C N CH2 O
O
CH3
N N N 佐匹克隆 O N N CH3 N O
N(CH3)2 唑吡坦
首页
第二节 抗癫痫药
癫痫是由大脑局部神经元过度兴奋,产生阵发性地放电, 所导致的慢性、反复性和突发性的大脑功能失调。 表现为不同程度的运动、感觉、意识、行为和自主神经功 能障碍等症状。 抗癫痫药可抑制大脑神经的兴奋性,用于防止和控制癫痫 的发作。
首页
(四)奥沙西泮 Oxazepam
本品在酸或碱中加热水解,生成2-苯甲酰基-4-氯胺、乙醛 酸和氨,前者可发生重氮化-偶合反应,产生橙红色沉淀, 放置后渐变暗。 用于治疗焦虑症以及失眠和癫痫的辅助治疗。
首页
(五)艾司唑仑
N N Cl N N
Estazolam
化学名:6-苯基-8-氯-4H-1,4[1,2,4]-三氮唑[4,3a][1,4]苯并二氮杂卓,又名舒乐安定。 性质:白色或类白色结晶性粉末,无臭,味微苦, 易溶于氯仿醋酐,可溶于甲醇,略溶于乙酸乙酯或 乙醇,几乎不溶于水,熔点为229 ~ 232℃。
首页
第二节 抗癫痫药
分类: 1. 巴比妥类及其同型物 苯巴比妥、扑米酮
2. 乙内酰脲类及其同型物 苯妥英钠 乙琥胺 3. 苯二氮卓类 地西泮、硝西泮、氯硝西泮 4. 二苯并氮杂卓类 卡马西平
5. 脂肪羧酸类
丙戊酸钠
首页
(一)苯妥英钠 Phenytoin Sodium
C6H5 C6H5 HN
化学名
苯妥英钠水溶液在放置过程中会变浑浊,因 此苯妥英钠注射液制备成粉针剂,原因是什 么? 如何用化学方法区别苯巴比妥钠和苯妥英钠?
首页

天然药物化学 第二章 糖和苷

天然药物化学 第二章 糖和苷

椅式构象为优势构象,即C1或1C式。C表示椅式(chair form)
二、单糖的立体化学
单糖的构象
单糖构象的表示方法:
O
4 (5) 3 (4) 1 (2) 2 (3)
O O
4
5
O
1 2 4
5
O
3 2
1
3
C1式
1C式
糖和苷
一、概述
二、单糖的立体化学
三、糖和苷的分类 四、糖的化学性质 五、苷键的裂解 六、糖的核磁共振性质 七、糖链的结构测定 八、糖和苷的提取分离
增强免疫功能;延缓衰老;降血脂抗动脉 粥样硬化;增强免疫功能;保肝护肝;
一、概述
苷类(glycosides):又叫配糖体或糖杂体等,是一类
极为复杂、涉及面极广、数目庞大的天然药物化学成分,其 生物活性及药物效用涉及医学的各个领域,是极为重要的一 类化学成分。英文命名常以-in or -oside作后缀,如葛根黄 素(puerarin)、葛根黄素木糖苷(puerarin xyloside)。苷是糖 的衍生物,是糖在植物体内的一种储存形式,因为苷经水解 后能释放出糖。如
CH2OH O H H H OH H OH OH H OH O O
CHO H HO H H OH H OH OH CH2OH
CH2OH O OH H H OH H OH H H OH
Oห้องสมุดไป่ตู้
O
Fisher式
Haworth式
Haworth简略式
优势构象
成环状结构后,多了一个手性碳------端基碳
二、单糖的立体化学
最简单的醛糖是甘油醛,最简单的酮糖是αα′-二羟基丙酮。
二、单糖的立体化学
单糖结构的表示方法

第二章 药物的构效关系 药物化学 课件

第二章 药物的构效关系 药物化学 课件
金属螯合作用主要应用于:⑴ 金属中毒的解毒;⑵ 灭菌 消毒;⑶ 新药设计;⑷ 某些疾病的治疗等。 化学工业出版社
第二章 药物的构效关系
第四节 药物其它特性对药效的影响
二、电子云密度对药效的影响
各种元素的原子核对其核外电子的吸引力各不相同而显示 电负性的差异。由电负性不同的原子组成的化合物分子就存在 电子密度分布不均匀状态。药物分子的电子密度分布如果和酶 蛋白分子的电荷分布恰好相反,则有利于相互作用而结合,形 成复合物。
化学工业出版社
第二章 药物的构效关系
第一节 药物的基本结构和药效的关系
药物作用过程的三个阶段
过程分类 发生过程 研究目的
药剂相
药物的释放
优化处方和 给药途径
药物动力学
药效相
吸收、分布和消除 药物-受体在靶 (代谢及排泄) 组织的相互作用
优化生物利用度
优化所需的 生物效应
化学工业出版社
化学工业出版社
P=CO/CW
化学工业出版社
第二章 药物的构效关系
第二节 药物的理化性质和药效的关系
二、药物的解离度对药效的影响 多数药物为弱酸、弱碱及其盐类,体液中部分解离,
以离子型和非离子型(分子型)同时存在。药物常以分子型 通过生物膜,在膜内的水介质中解离成离子型,再起作用。 因此药物需有适宜的解离度。
胃肠道各部分的pH不同,不同pKa药物在胃肠道各部分 的吸收情况也就有差异。
化学工业出版社
第二章 药物的构效关系
第一节 药物的基本结构和药效的关系
三、药物的特异结构与非特异结构 (一)结构非特异性药物
药物活性主要取决于药物分子的各种理化性质,与化学结 构的关系不大。临床应用的非特异性药物较少,主要有全身吸 入麻醉药,酚类和长链季铵盐的杀菌药以及巴比妥的催眠药等。 (二)结构特异性药物

药物化学(第二版)第2章 药物设计的基本原理和方法

药物化学(第二版)第2章 药物设计的基本原理和方法


先导化合物的优化可分为:
(1)传统的化学方法 (2)现代的方法: 包括CADD和3DQSAR(在第三章介绍)
先导化合物优化的一般方法
一、烷基链或环的结构改造
二、生物电子等排原理
三、前药原理
四、软药
五、硬药
六、孪药
七、定量构效关系研究
一、烷基链或环的结构改造
1、成环或开环 镇痛药吗啡→哌替啶
N
4 -苯 基 哌 啶 类
2、插烯原理(vinylogues)(烷基链局部减少双键 或引入双键) 抗癫痫药胡椒碱→桂皮酰胺类的衍生物
O O 胡 椒 碱 N O 桂 皮 酰 胺 衍 生 物 X O N H R
3、烃链的同系化原理 利福平(甲基哌嗪)→利福喷汀(环戊基哌嗪)
二、生物电子等排(Bioisosteris)


安西他滨(环胞苷)是阿糖胞苷的中间体, 后发现安西他滨不仅具有抗肿瘤作用,且 副作用轻,体内代谢比阿糖胞苷慢,故作 用时间长,治疗各种白血病。
C H O H O O H O H C H O H 2 H O N O O N N H
.H C l
. O N H 3H 2
N H 2 N H O O N O H O
发展为理想的药物,这一过程称为先导化
合物的优化。
第一节
先导化合物发现的方法和途径
Approaches for lead discovery
一、从天然药物的活性成分中获得
(From Active Component of Natural Resources)
(1)植物来源 p17
青蒿素:来自于中药黄花蒿,以此为先导 物,发现蒿甲醚、青蒿琥酯等; 紫杉醇:来自于红豆杉树皮,以此为先导 物,发现多西他赛等。

药物化学讲稿第二章中枢神经系统药物

药物化学讲稿第二章中枢神经系统药物

第二章中枢神经系统药物Central Nervous System Drugs中枢神经系统药物按治疗的疾病或药物作用分类。

主要有镇静催眠药、抗癫痫药、抗精神失常药、镇痛药和中枢兴奋药。

这些药物对中枢神经活动分别起到抑制或兴奋的作用,用于治疗相关的疾病。

在中枢神经系统药物的发展历史中,有三位科学家在神经系统的信号传导方面作出了巨大的贡献,三位科学家分别在2000年获得了诺贝尔生理学奖。

Göteborg University Rockefeller University Columbia University Göteborg, Sweden New York, NY, USA New York, NY, USA 1923 - 1925 - 1929 -第一节镇静催眠药Sedative-hypnotics镇静药和催眠药之间没有绝对的界限,此类药物,在使用小剂量的时候,对中枢神经系统仅有轻微的抑制作用,可消除患者的紧张和不安,患者仍能保持清醒的精神活动和自如的运动机制;使用中等剂量时则可使患者进入睡眠状态。

镇静催眠药的研究历史:1、很早发现乙醇,鸦片等有镇静、催眠作用。

2、早年无机溴化物曾用作镇静药,但易产生毒副反应,而且溴离子在体内有积蓄作用。

3、不久被水合氯醛(Chloral Hydrate)所代替。

4、其后又相继出现了三聚乙醛、索佛那(Sulfonal)及氨基甲酸乙酯等。

5、1903年费希尔(Fischer)等确证了巴比妥类的药效后,相继合成了一系列巴比妥类药物。

6、20世纪60年代以后,苯二氮卓药物问世,成瘾性小,安全范围大,逐渐替代了巴比妥类药物。

7、20世纪90年代,出现了新型结构的唑吡坦,在发达国家成了主要使用的镇静催眠药物。

镇静催眠药按照结构类型主要分为以下三种类型:巴比妥类、苯二氮卓类、其他类。

一、巴比妥类(一)、巴比妥类药物的共性只有5,5双取代的巴比妥酸才具有一定的药理活性,巴比妥酸存在着内酰胺-内酰亚胺和酮-烯醇互变异构现象。

天然药物化学第二章

天然药物化学第二章
、乙酸乙酯、氯仿、二氯甲烷、环己烷、石油 醚)
常用溶剂的极性大小顺序:
石油醚<四氯化碳<苯<氯仿<乙醚<乙酸乙
酯<正丁醇<丙酮<乙醇(甲醇)<水
医学ppt
7
6、溶剂提取的方法

煎煮法(煎中药) 回流提取法
连续回流提取法
医学ppt
8
(1)浸渍法
以水或稀醇反复提取,适于遇热易破坏或 挥发性成分及含淀粉、粘液质较多的材料。
成分有影响,对含多量淀粉、黏液质的原 料也不适用。
传统的中药煎制。
医学ppt
13
煎煮中药小常识
• 铁、铜器的金属化学物质比较不稳定 (注),在高温煎煮过程 中,一些如铜离 子、铁离子等可能活跃出现,而连环的促 进很多复杂的化学反应 。例如使用铁锅煎 中药,很容易与大黄、何首乌、地榆、五 倍子、白芍等药材所 含的鞣质、甘类等成 份起化学反应,孪生一种不溶于水的「鞣 酸铁」及其他有害 成份,使中药汤剂变黑 变绿,药味又涩又腥。轻则改变药液性味, 降低疗效;重 则使服用者发生反胃、恶心、 呕吐等副作用。长期用铝锅煎药会影响脑 神经
医学ppt
15
(4)回流提取法 使用有机溶剂。对遇热易破坏的成分有影响。
应用有机溶剂加热提取,需采用回流加热装
置,以免溶剂挥发损失。小量操作时,可在圆 底烧瓶上连接回流冷凝器。溶剂浸过药材表面 约1~2cm。在水浴中加热回流,一般保持沸腾 约1小时后放冷过滤,再在药渣中加溶剂,作第 二、三次加热回流分别约半小时,或至基本提 尽有效成分为止。此法提取效率较冷浸法高, 大量生产中多采用连续提取法。
医学ppt
19
脂肪提取器
冷凝管
医学ppt

药物化学课件第二章

药物化学课件第二章
• 构象等效性不仅存在于同系化合物或(和)同型 化合物,而且在结构差异很大或化学类型不同的 化合物之间,也可能有相同的药效构象。
第二节 先导化合物的发现 lead discovery
• 先导化合物(lead compound)简称先导 物,又称原型物,是通过各种途径得到的 具有一定生物活性的化合物。
• 例如吩噻嗪类抗精神失常药氯丙嗪(chlorpromazine)及其类似 物,是由结构类似的抗组胺药异丙嗪(promethazine)的镇静副
作用发展而来的。
• 磺酰脲类降血糖药甲苯磺丁脲(tolbutamide)是根据磺胺类药物降 血糖的副作用经结构改造而发现的。抗菌药氨磺丁脲(carbutamide) 具有降低血糖的副作用,但不能用作降糖药,因为其抗菌作用会导 致细菌的耐药性增强。将氨磺丁脲的氨基用甲基取代,得到甲苯磺 丁脲(tolbutamide),消除了抗菌作用,成为第一代磺酰脲类降血 糖药。而在发现了磺胺利尿的副作用系抑制碳酸酐酶的结果之后, 先后合成了许多磺酰胺类利尿药,如呋塞米(furosemide)及吡咯他 尼(piretanide)等都有很强的利尿作用。深入的研究还发现 furosemide、piretanide的利尿作用主要不是抑制碳酸酐酶。
• 立体化学的作用主要包括

几何异构

光学异构

构象异构
(1)几何异构:当药物分子中含有双键,或有刚性或半 刚性的环状结构时,可产生几何异构体。几何异构体的 理化性质和生物活性都有较大的差异,如顺、反式己烯 雌酚的例子。
在雌激素的构效关系研究中,发现两个含氧官能团及氧原子间的距 离对生理作用是主要影响因素。人工合成的反式己烯雌酚中,两个 羟基的距离是1.45nm,这与雌二醇两个羟基的距离近似,表现出 较强的生理活性。顺式己烯雌酚羟基间距离为0.72nm,作用大大

Y02第二章—新药研究的基本原理与方法

Y02第二章—新药研究的基本原理与方法
16
(二)通过药物的代谢研究发现先导化合物
药物通过体内代谢过程,可能被活化,也可能被 失活,甚至转化成有毒的化合物。 在药物研究中,可以选择其活化形式或考虑可以 避免代谢失活或毒化的结构来作为药物研究的先 导物。
采用这类先导化合物,得到优秀的药物的可能性 较大,甚至直接得到比原来药物更好的药物。
优化,先导化合物的发现和先导化合物的优化四
个阶段。
2
临床试验概述
I期—健康志愿者(抗肿瘤药为患者);评价安全性、 耐受性、药代动力学性质等。 II期—患者;主要考察有效性,也考察适应症、治 疗方案以及安全性(不良反应)。 III期—患者;随机、双盲对照;大规模(300)、多 中心;考察有效性和安全性。 完成III期临床后,提交材料,进行新药注册申请 (New Drug Application, NDA)。 IV期—上市后应用研究阶段;考察在广泛使用条 件下的疗效和不良反应,评价在普通或者特殊人 群中使用的利益与风险关系以及改进给药剂量等。
32
载体前药原理是通过共价键把活性药物与载体连 接,从而改变药物的理化性质,然后在酶的作用 下释放出活性药物。
33
载体前药的制备通常是利用活性化合物和药物 分子中含有的极性官能团来合成前药。 含有醇或羧酸基团的药物,最常见的前药形式 是酯; 胺类可采用形成酰胺、亚胺、偶氮、胺甲基化 等形式来制备前药; 含羰基的药物可通过席夫碱(schiff base)、肟、 缩醛或缩酮等的形成来制备前药。
同时配合高通量筛选,寻找先导化合物。
20
高通量筛选是利用生物化学、分子生物学、分 子药理学和生物技术的研究成果,对已阐明影 响生命过程的一些环节的酶、受体、离子通道 等,被用作药物作用的靶标进行分离、纯化和 鉴定,由此建立起来的分子、细胞水平的高特 异性的体外筛选模型,具有灵敏度高、特异性 强、用药量少、快速筛选的特点。

药物化学-第二章-抗肿瘤药物

药物化学-第二章-抗肿瘤药物
• 化学结构:分为氮芥类、氮丙啶类、甲磺酸酯类、亚硝基脲 类、三氮烯咪唑类和肼类等。
P-11
(一)氮芥类
CH2CH2Cl RN
CH2CH2Cl
载体部分
烷基化部分
CH2CH2Cl S
CH2CH2Cl
烷基化部分是抗肿瘤活性的功能基; 载体部分可以用以改善药物在体内的吸收、分布等药代动力
学性质,提高选择性和抗肿瘤活性,也会影响药物的毒性。
O
O2
H2N
H3C
N
O
(D)
DNA +
HO2 等
NH2
③临床应用:丝裂霉素对各种腺癌有效。通常与其它抗癌药 合用,治疗胃的腺癌。
P-18
(三)甲磺酸酯类
非氮芥类烷化剂;1-8个次甲基的双甲磺酸酯具抗肿瘤活性,为双功能烷化 剂。
H3C O S
OO
H3C O
O
S O
+ R NH2
白消安
O S H3C O O
①化学名:N,N-双(2-氯乙基)四氢-2H-1,3,2-氧氮 磷杂环己烷-2-胺-2-氧化物一水合物,又名癌得星。
②结构特点:在氮芥的氮原子上连有一个吸电子的环状磷酰 氨基。
P-14
④合成
OH R N OH
Cl SOCl2
R N Cl
P-14
⑤ 临床应用:本品的抗瘤谱较广,主要用于恶性淋巴瘤,急性 淋巴细胞白血病,多发性骨髓瘤、肺癌、神经母细胞瘤等。
O O S CH3 NO HH R
H3C O S
OO
R N H
+ H+ +
H3C O S
OO
①作用机制:甲磺酸酯是较好的离去基团,生成的正碳离子可与DNA中 鸟嘌呤结合产生单分子或双分子交联,毒害肿瘤细胞。

药物化学 第二章-1

药物化学 第二章-1

戊巴比妥 Pentobarbital
超短时
O N O O N H
O O H N SNa N
己锁巴比妥 Hexobarbital
硫喷妥钠 Thiopental Sodium
(一)代表药物
异戊巴比妥 Amobarbital 1、结构与命名
5
O
H N3 O N1 H
O
化学名:5-乙基-5-(3-甲基丁基)-2,4, 6(1H,3H,5H)-嘧啶三酮
3、作用机制
• 与苯二氮卓受体结合而发挥安定、催眠、 肌肉松驰和抗惊厥作用。 • 药物占据苯二氮卓受体时,GABA就更易 打开Cl离子通道,促进Cl离子内流,导致 镇静、催眠、抗焦虑,抗惊厥和中枢性肌 松等药理作用。
GABA受体-氯离子通道复合物模型
GABAA受 体α亚基 苯二氮卓为 GABAA受 体激动剂。
O
• 如将C-2的氧原子以硫原子替代:脂 溶性增加,起效快。
(六)构效关系
O
若R(R1) =H则无活性, 应有2-5碳链 取代,或有 一为苯环取 代,R、R1 的总碳数为 4-8最好。
R2
N O N H
R2以甲基取代 起效快
R R1
O
以硫取代起效快
(七)巴比妥类药物的合成通法
O O O O R1Br CH 3CH 2ONa R1 O O O R2Br CH 3CH 2ONa O
O R1 R2 O O O NH 2CONH 2 CH 3CH 2ONa R1 R2
O
H N O N H
O
先引入大基团还是小基团?
异戊巴比妥的合成
O O O O O O O O O NH2CONH2 EtONa O N H ONa O N H EtONa O O N HCl NH O O Br O CH3CH3Br EtONa

药物化学第二章

药物化学第二章
2-7、盐酸氯丙嗪不具备的性质是
A. 溶于水、乙醇或氯仿 b. 含有易氧化的吩嗪嗪母环
C. 与硝酸共热后显红色 d. 与三氧化铁试液作用,显兰紫色
E. 在强烈日光照射下,发生光化毒反应
2-8、盐酸氯丙嗪在体内代谢中一般不进行的反应类型为
A. N-氧化 b. 硫原子氧化
C. 苯环羟基化 d. 脱氯原子
A. pKa B. 脂溶性
C . 5位取代基的氧化性质 D. 5取代基碳的数目
E. 酰胺氮上是否含烃基取代
2-37、巴比妥类药物的性质有:
A. 具有内酰亚胺醇-内酰胺的互变异构体 B. 与吡啶和硫酸酮试液作用显紫蓝色
C. 具有抗过敏作用 D. 作用持续时间与代谢速率有关
E. pKa值大,在生理pH时,未解离百分率高
E. 侧链去n-甲基
2-9、造成氯氮平毒性反应的原因是
A. 在代谢中产生毒性的氮氧化合物 B. 在代谢中产生毒性的硫醚代谢物
C. 在代谢中产生毒性的酚类化合物 D. 抑制β受体
E. 氯氮平产生的光化毒反应
2-10、不属于苯并二氮卓的药物是
A. 地西泮 B. 氯氮卓
C. 唑吡坦 D. 三唑仑
第二章 中枢神经系统药物
术语解释
1、巴比妥类药物(barbiturates agents):具有5,5二取代基的环丙酰脲结构的一类镇静催眠药。20世纪初问市的一类药物,主要由于5,5取代基的不同,有数十个各具药效学和药动学特色的药物供使用。因毒副反应较大,其应用已逐渐减少。
2、内酰胺-内酰亚胺醇互变异构(lactam- lactim tautomerism):类似酮-烯醇式互变异构,酰胺存在酰胺-酰亚胺醇互变异构。即酰胺羰基的双键转位,羰基成为醇羟基,酰胺的碳氮单键成为亚胺双键,两个异构体间互变共存。这种结构中的亚胺醇的羟基具有酸性,可成钠盐。如下图:

02药物化学第二章

02药物化学第二章
40
吗啡的性质:
(1) 理化性质 吗啡结构中3位有酚羟基,呈弱酸性;17位的叔氮 原子呈碱性;-酸碱两性,临床上常用其盐酸盐 白色、有丝光的针状结晶或结晶性粉末,水中溶解、 乙醇中略溶。
41
(2) 稳定性
a. 3位酚羟基的存在,使吗啡及其盐的水溶液不稳定, 放臵过程中,受光催化易被空气中的氧氧化变色, 生成毒性大的双吗啡(或称伪吗啡)和N-氧化吗啡。
TT
O R1 5 R2 O
H1 N O N 3 H
二、巴比妥类药物
药物的分子和离子形式: 药物应有适当的解离度 分子形式透过生物膜 离子形式产生作用
二、巴比妥类药物
解离度与药效的关系: 在生理pH7.4的条件下体内解离度
[RCOOH] lg pKa pH [RCOO ]
影响 进入脑内药物的量 影响 镇静、催眠作用的强弱和作用的快慢 5-位保留一个或两个氢的巴比妥99%以上呈解离状态, 故不能发挥镇静作用
二、巴比妥类药物
巴比妥酸无活性: 巴比妥酸和苯巴比妥酸(5-苯巴比妥)几乎不能透过细 胞膜和血脑屏障 进入脑内的药量极微 无镇静、催眠作用 O H1 N R1 5 pKa 未解离百分率 O H 巴比妥酸 4.12 0.05 N 3 苯巴比妥酸 3.75 0.02 H O
二、巴比妥类药物
临床常用巴比妥类镇静催眠药物:
长时效
TT
中时效
barbital 短时效
phenobarbital
Amobarbital
Cyclobarbital 超短时效
Secobarbital
pentobarbital
Hexobarbital
thiopental sodium
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内容包括:
第一节 第二节 第三节 第四节 第五节 镇静催眠药 Sedative-hypnotic drugs 抗精神失常药 Antipsychotic drugs 抗抑郁药 Antidepressant drugs 镇痛药 Analgesic drugs 中枢兴奋药 Central stimulants
O
pKa 巴比妥酸 苯巴比妥酸 4.12 3.75 未解离百分率 0.05 0.02
R1 5 H O
H1 N O N 3 H
为什么 5 , 5- 双取代巴比妥酸才可能 有活性?

分子态易于吸收及进入中枢发挥作用
• Phenobarbital、Hexobarbital未解离的 分子分别为50%和90.91% ,可进入中枢产生 活性 • Hexobarbital 的作用比Phenobarbital快
地西泮(安定)
地西泮的取代基改变产物 R1
R2
R3
R4
地西泮的代谢产物
在4,5位并入四氢恶唑环,可使作用增强。
R1
R2
R3
R4
Names
H
H
F
Cl
Br
Cl
H
H
卤沙唑仑Haloxazolam
氯噁唑仑Cloxazolam
CH3
H
Cl
F
Cl
Cl
H
CH2CH2OH
美沙唑仑Mexazolam
氟他唑仑Flutazolam
O R1 R2 O O O NH2CONH2 CH3CH2ONa R1 R2
O
H N O N H
O
(七)临床应用:镇静、催眠、抗癫痫、抗焦虑 缺点:成瘾性、耐受性、安全范围窄
使用受限
内容小结



1,结构与命名 2,发现 3,合成 4,理化性质 5,作用 和 代谢 6,同类药物 7,构效关系
(四)化学命名 地西泮化学名:
7-chloro-1-methyl-5-phenyl-1Hbenzo[e][1,4]diazepin-2(3H)-one
(五)地西泮的性质: 1、性质:遇酸(或碱液)受热易被水解 ---水解性
酰胺水解-----1,2开环
亚胺水解-----4,5开环


可逆性水解
在胃酸作用下,4,5 开环 进入碱性 肠道,又闭环 4,5 开环,不影响 生物利用度
分子形式透过生物膜 离子形式产生作用

解离度和解离率
log1 (pH pKa) 解离率 _ 1 1 log (pH pKa) [B ] [HB] [B ]
为什么巴比妥酸无活性?

巴比妥酸和5-苯基巴比妥酸几乎不能透过 细胞膜和血脑屏障
• 进入脑内的药量极微 • 无镇静、催眠作用
如何通过结构修饰增加1,2位的水解稳定性?
在7位和1,2位有强的吸电子基团存在时,水 解反应几乎都在4,5位上进行(如-NO2或三 唑环等)。 硝西泮、氯硝西泮、三唑仑等的作用之所以强, 可能与此有关。
硝西泮
三唑仑
药物代谢



在肝脏进行 去甲基(NHCH3) C-3的羟基化 1位去甲基及3位羟基化 的代谢产物仍有活性 羟基代谢产物与葡萄糖 醛酸结合排出
O R1 R2 O H N O N H O H2O - Pyr R! R2 O O 2+ N N R1 R2 O O R2 R1 O N O N H H N O N Cu N N H N OH N O R1 R2 O H N N O- + H+
Cu
• b.汞盐反应:遇硝酸汞试液,生成白色胶状沉 淀, 溶于过量的试剂和氨试液中
在苯二氮卓环1,2位上并合三唑环,增加了对代 谢的稳定性,并可提高其与受体的亲和力。如:
R1 H CH3 CH3
R2 H H Cl
Names 艾司唑仑Estazolam 阿普唑仑Alprazolam 三唑仑Triazolam
【三唑仑】(Triazolam) (别名迷昏药、蒙汗药、 麻醉药) 强力的安眠镇 定用药,致眠效果是安 定的五十至一百倍,每 次用药0.25mg~0.5mg, 可以伴随酒精类共同服 用,致眠效果大概持续 六个小时以上。无任何 味道,压碎后溶于水中, 饮料里,或食品中, (咖啡除外)4片即可, 十 分钟起效.
基本概念:
根据药物化学结构对生物活性的影响程度, 或根据作用方式,宏观上将药物分为结构特异 性药物和结构非特异性药物。 结构特异性药物生物活性与化学结构密切 相关 结构非特异性药物的作用与化学结构之间 的关系较浅,主要与药物的理化性质有关。 药物的结构是否有特异性与药物的作用机 制有关。
二、苯二氮杂卓类
2、苯并二氮杂卓类(20世纪60年代)
•基本结构 •化学命名 •发展及常用药物 •构效关系 •地西泮
3、新型镇静催眠药(20世纪90年代)
一、巴比妥类
(一)基本结构通式:巴比妥酸的5,5-双取代衍生物
5,5-双取代
巴比妥酸(丙二酰脲)
巴比妥类药物
1903年
1912年
(二)理化性质: 1、弱酸性:溶于氢氧化钠 或 碳酸钠溶液
5位取代基对药效的影响(2个要 点):
代谢难易与药物持续作用时间


代谢部位:肝脏 代谢途径:5位取代基的氧化 易氧化 药物作用时间短 不易氧化 药物作用时间长
饱和直链烷烃或芳烃时,作用时间长 支链或不饱和时,作用时间短
取代基的结构要求
1)总碳数以4-8为最好,碳数超过8则产生惊厥作用 2) 在酰亚胺氮引入甲基,也可降低酸性和增加脂溶性 若在2个氮原子上都引入甲基,则产生惊厥作用 3)将C-2上的氧以硫代替,脂溶性增加 ,如硫喷妥 钠,起效快
第二节 抗精神病药(了解部分)
antipsychotics
又称强安定药或神经阻滞药,抗精神分裂症药

不影响意识
-控制兴奋、躁动及幻觉、妄想等症状 -激活精神,改善退缩、淡漠等症状
阳性症状指精神功能的异常亢进,包括幻觉、妄想、 明显的思维形式障碍、反复的行为紊乱和失控。 阴性症状指精神功能的减退或缺失,包括情感平淡、 言语贫乏、意志缺乏、无快感体验、注意障碍。 I型精神分裂症——阳性症状——生物学基础是多巴胺 功能亢进; II型精神分裂症——阴性症状——脑细胞丧失退化 (额叶萎缩),多巴胺功能没有特别变化
O R1 R2 O H N O N H O Hg(NO3)2 R1 R2 O N OH N HgNO3
O NH4OH R1 R2 O N
HgOH ONH4 N
• c. 银盐反应:遇硝酸银试液 ,生成银盐沉淀
O H N ON a N O
O R R' O
H N O N H O
O AgNO3 R R' O H N OAg N O
发展:20世纪60年代发展的第二代镇静催眠药,疗 效好,安全 作用:镇静、催眠、抗焦虑的首选药物, 有些也用作抗癫痫药
(一)基本结构:

氮杂卓
苯并氮杂卓
1,4-苯并二氮杂卓
苯二氮卓类药物的通式
(二)发展及常用药物
氯氮卓(利眠宁)1960年首先于用于临床。 结构简化后得到地西泮(安定)。
氯氮卓(利眠宁)
第二章 中枢神经系统药物 Central Nervous System Drugs
作用于中枢神经系统,对 中枢神经活动起到抑制或兴 奋作用,用于治疗中枢神经 系统疾病。
Central Nervous System (CNS) disorders
Alzheimer’s Disease (阿尔茨海默氏症) Parkinson’s Disease (帕金森氏症) Attentiondeficit (抽动秽语综合征) Hyperactivity Disorder(多动症) Depression (抑郁症) Epilepsy (癫痫) Schizophrenia (精神分裂症) Smoking Cessation (戒烟)
(四)分类:
根据作用时间长短 分为长时、中时、短时、超短时四类。
(五)命名:
通用名:-barbital,-巴比妥、-比妥
N N
化学命名: 以2,4,6(1H,3H,5H)嘧啶三酮为母体
加氢
(六)合成方法:以丙二酸二乙酯为原料
O O O O R1Br CH3CH2ONa R1 O O O R2Br CH3CH2ONa O
小结:苯二氮卓类药物的结构类型
恶唑类
母环:1,4苯并二氮杂卓
(三)苯二氮卓类药物的构效关系
1、结构中七元亚胺内酰胺环是产生药效的必要结构。 2、1位N上引入长链烃基可延长作用时间; 3位的一个氢原子可被羟基取代,虽然活性稍有下降,但毒性 很低。 7位引入吸电子基团(如-NO2 )能增强生理活性; 5位苯环的2′位引入吸电子基团(如-Cl)可使活性增强。 3、在1,2 位或4,5位并入杂环,例如:在1,2 位并入三唑环或咪 唑环,在4,5位并入四氢噁唑环,由于提高了药物对受体的亲 和力和药物对代谢的稳定性,生物活性增强。
第一节 镇静催眠药
睡眠的作用
失眠的危害 失眠怎么办?
作用:镇静、催眠、抗癫痫、抗焦虑
镇静药:
使服用者处于安静或思睡状态的药物。 催眠药: 引起类似正常睡眠状态的药物。

特点:不同剂量产生不同作用
小剂量 镇静
中等剂量 催眠
大剂量 麻醉、抗癫痫
过量 死亡
分类:
1、巴比妥类(20世纪初)
•基本结构 •理化性质 •构效关系 •分类 •命名 •合成通法 •临床应用
通过成Na盐增加水溶性,可制成注射剂 钠盐水溶液勿与酸性药物配伍使用
2、水解性:
酰脲结构易水解,其钠盐水溶液放置易水解放出氨气.
相关文档
最新文档