微积分产生的背景
微积分创立的背景与过程

微积分创立的背景与过程微积分是一门综合性的数学学科,它是由牛顿、莱布尼茨等数学家在17世纪末发明的。
微积分的发明是为了解决物理学中的一些问题,如速度、加速度等,因此,它是在物理学的研究中发展起来的。
微积分是研究函数和它们的变化率、极限、积分等的一门数学学科。
微积分的创立过程、背景和发展历程是非常复杂的,这篇文章将从以下几个方面进行介绍。
1. 微积分的背景微积分的发展背景是欧洲文艺复兴时期的科学繁荣。
在这个时期,人们开始追求自由和民主,同时也开始研究自然界和宇宙的规律。
牛顿、莱布尼茨等数学家在这个时期提出了微积分的概念,为物理学和其他科学领域的研究提供了新的数学工具。
2. 微积分的发展过程微积分的发展过程非常漫长,它由牛顿、莱布尼茨等数学家在不同的时间、不同的地方进行研究。
牛顿在1665年至1666年间,在农村避瘟疫的时候,开始研究运动的规律。
他发现物体的速度在不断变化,而速度的变化率就是加速度。
牛顿发明了微积分的基本概念,即导数和积分,从而解决了运动学中的很多问题。
莱布尼茨则在牛顿之后,于1675年左右独立发明了微积分。
他发现导数和积分是可以互相转换的,从而大大简化了微积分的运算。
莱布尼茨还发明了微积分符号,这使得微积分的表达更加简单和精确。
3. 微积分的应用微积分的应用非常广泛,它是物理学、工程学、经济学、生物学、化学等学科中不可或缺的工具。
在物理学中,微积分可以用来研究物体的运动、力学、电磁学等问题。
在工程学中,微积分可以用来设计建筑物、桥梁、道路等。
在经济学中,微积分可以用来研究市场供求关系、价格变动等。
在生物学中,微积分可以用来研究动植物的生长、繁殖等。
在化学中,微积分可以用来研究化学反应的速率、平衡等。
微积分的发明是人类智慧的结晶,它在解决物理学和其他科学领域的问题中发挥了重要作用。
微积分的发展历程是一个漫长而复杂的过程,但它对人类的进步和发展做出了巨大的贡献。
微积分产生的背景

微积分的创立者是牛顿和莱布尼兹严格微积分的奠基者是柯西和威尔斯特拉斯关于微积分的故事,曾经一度迷惑着我,今天有幸弄清其中原委,以消心中疑云。
微积分的萌芽可以追溯到古代的希腊、中国和印度,酝酿于17世纪的欧洲。
1.牛顿和莱布尼兹创立了微积分1.1 牛顿的“流数术”牛顿(I.Newton,1642-1727)1642年生于英格兰伍尔索普村的一个农民家庭。
1661年牛顿进入剑桥大学三一学院,受教于巴罗。
笛卡儿的《几何学》和沃利斯的《无穷算术》,这两部著作引导牛顿走上了创立微积分之路。
牛顿于1664年秋开始研究微积分问题,在家乡躲避瘟疫期间取得了突破性进展。
1666年牛顿将其前两年的研究成果整理成一篇总结性论文—《流数简论》,这也是历史上第一篇系统的微积分文献。
在简论中,牛顿以运动学为背景提出了微积分的基本问题,发明了“正流数术”(微分);从确定面积的变化率入手通过反微分计算面积,又建立了“反流数术”;并将面积计算与求切线问题的互逆关系作为一般规律明确地揭示出来,将其作为微积分普遍算法的基础论述了“微积分基本定理”。
这样,牛顿就以正、反流数术亦即微分和积分,将自古以来求解无穷小问题的各种方法和特殊技巧有机地统一起来。
正是在这种意义下,牛顿创立了微积分。
牛顿对于发表自己的科学著作持非常谨慎的态度。
1687年,牛顿出版了他的力学巨著《自然哲学的数学原理》,这部著作中包含他的微积分学说,也是牛顿微积分学说的最早的公开表述,因此该巨著成为数学史上划时代的著作。
而他的微积分论文直到18世纪初才在朋友的再三催促下相继发表。
1.2 莱布尼茨的微积分工作莱布尼茨(W.Leibniz,1646-1716)出生于德国莱比锡一个教授家庭,青少年时期受到良好的教育。
1672年至1676年,莱布尼茨作为梅因茨选帝侯的大使在巴黎工作。
这四年成为莱布尼茨科学生涯的最宝贵时间,微积分的创立等许多重大的成就都是在这一时期完成或奠定了基础。
微积分的历史背景

7
光学研究中,由于透镜的设计需要运用折射定 律、反射定律,就涉及切线、法线问题。这方面的 研究吸引了笛卡儿、惠更斯、牛顿、莱布尼兹等人。 而在运动学研究中,要确定运动物体在某一点的运 动方向,就是求曲线上某一点的切线方向,这就需 要求作切线。
5
如:古希腊的阿基米德(公元前287―212)用 边数越来越多的正多边形去逼近圆的面积,称为 “穷竭法”。
中国魏晋时代的刘徽在其《九章算术注》(公 元263年)中,对于计算圆面积提出了著名的“割 圆术”,他解释说:“割之弥细,所失弥少。割之 又割,以至于不可割,则与圆周合体,而无所失 矣。”这些都是原始的积分思想。
阳时的最远和最近距离等。)
求曲线长;曲线围成的面积;曲面围成的 体积;物体的重心;一个体积相当大的物 体(如行星)作用于另一物体上的引力等。
11
17世纪前期微积分的工作
费尔马 (Fermat)是在牛顿和莱布尼兹之前,在 微分和积分两个方面作出贡献最多的一个数学家。
费尔马《求极大值与极小值的方法》 (写于 1636年以前)在求曲线的切线问题和函数的极大、 极小值问题上做出了重要贡献。用现代语言来说, 他都是先取增量,而后让增量趋于0。这正是微分 学的实质之所在。
0
dx
(2)如果z dy ,则
x
zdx y.
dx
0
巴罗的确已经走到了微积分基本定理的大门口。
但在巴罗的书中,这两个定理相隔二十余个别的定理,
并且没有把它们对照起来,也几乎没有使用过它们。
这说明,巴罗并没有从一般概念意义下理解
15
他们。但是我们知道,只有一般概念才能阐明问题 的本质,才能开拓广阔的应用道路。
中国微积分的发展历程

中国微积分的发展历程微积分是数学中的一个重要分支,也是物理、工程、经济学等学科中的基础知识之一,其发展经历了漫长而曲折的历程。
而中国微积分的发展历程更是充满了变化和发展的阵痛,下文将分步骤介绍中国微积分的发展历程。
一、受西方文化影响引入微积分近代以来,随着中国与西方国家的交往不断密切,西方文化开始在中国大地上广泛传播。
在这种背景下,西方的数学知识也渐渐传入中国,并在近代中国的各个领域得到了广泛的应用。
而微积分正是其中之一,最早引入中国的微积分知识可能要追溯到19世纪初。
二、创造性应用微积分研究国家实际问题20世纪初,中国开始走上了工业化的道路,这使得微积分理论的应用变得更加迫切。
此时一批数学家开始探索如何将微积分理论应用于工业、科学和经济领域,以带动国家的发展。
1927年,中国数学巨匠华罗庚发表了一篇《初等微积分教程》,为中国微积分的发展铺平了道路。
而后,华罗庚等一批中国数学名家,将微积分的理论与实际问题相结合,得到了大量成功的创新成果,其中最著名的便是华罗庚推导不等式和中国剩余定理。
三、微积分与现代科技紧密结合随着科学技术的不断发展,人们对微积分理论的应用越来越深入。
微积分理论不仅在数学中发挥着巨大的作用,而且在现代科技领域如工程、电子、通讯等方面也得到了广泛应用。
20世纪80年代以来,数学家们集中力量发展微积分理论,形成了微积分的“新发现”,如局部解析,调和分析,BVP理论等,为现代科技应用打下了坚实的理论基础。
四、探索大数据时代下的微积分进入21世纪,人类进入大数据时代,微积分理论的研究也跟随时代的变迁而变得更加深入和广泛。
在计算机技术高度发达的今天,微积分无疑是数据科学和人工智能等领域的重要基础知识。
微积分与数据科学的结合,可以为人们提供更快、更准确、更高效的数据分析和处理方法。
同时,微积分在人工智能领域也有重要应用,如深度学习、模式识别等技术,正是微积分理论的深入研究和开发让这些技术得以顺利推广。
第7讲微积分发展史

第7讲微积分发展史微积分是近代自然科学和工程技术中广泛应用的一种基本数学工具,它创立于17世纪后半叶的西欧,是适应当时社会生产发展和理论科学的需要而产生的,同时又深刻地影响着生产技术和自然科学的发展。
微积分堪称是人类智慧最伟大的成就之一。
一、微积分产生的背景微分和积分的思想早在古代就已经产生了。
公元前3世纪,古希腊数学家、力学家阿基米德的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲面的体积等问题中就隐含着近代积分的思想。
极限理论作为微积分的基础,也早在我国的古代就有非常详尽的论述,但当时人们习惯于研究常量和有限的对象,遇到无穷时往往束手无策。
生产力和科学技术的不断发展,为微积分的诞生创造了条件。
1492年哥伦布发现了新大陆,由此证实了大地是球形;1543年,哥白尼发表的《天体运行论》确立了“日心说”;开普勒在1609年提出了有关行星绕日运动的第一、第二定律,1618年他又提出了第三定律;1609年,伽利略用自制的望远镜观察了月亮、金星、木星等星球,把人们的视野引向遥远的地方。
这些科学家拓展了人们对世界的认识,引起了人类思想上的巨变。
16世纪,西欧出现资本主义的萌芽,产生了新的生产关系,社会生产力有了很大的发展。
从17世纪开始,随着社会的进步和生产力的发展,在航海、天文、矿山建设、军事技术等方面有许多课题需要解决,数学也开始进入了“变量数学”时代。
通过这些向数学提出了如下4个问题:(1)由距离和时间的关系求瞬时速度和瞬时加速度;反之,由速度求距离,由加速度求速度。
(2)确定物体运动方向(切线方向)或光学中曲线的切线问题。
(3)求最大、最小值问题。
(4)一般的求积(面积、体积)问题,曲线长问题,以及物体的质量、重心等问题。
在17世纪30年代创立的解析几何学里,可以用字母表示流动坐标,用代数方程刻画一般平面曲线,用代数演算代替对几何量的逻辑推导,从而把对几何图形性质的研究转化为对解析式的研究,使数与形紧密地结合起来。
分数阶微积分的历史背景

分数阶微积分的历史背景一、微积分学的创立微积分学作为一门高等数学的基础学科,是在十七世纪产生的。
微积分的基本概念和内容包微分学积分学。
但是早在公元前三世纪,就已经出现过利用微积分思想解决问题的实例了,如庄子在天下篇中曾记载“一尺之锤,日取其半,万世不竭”,阿基米德在研究解决抛物弓形的面积、球和球冠的面积以及旋转双曲体的体积问题中,都体现了极限的概念。
十七世纪,人们面临着许多新的数学问题,比如求瞬时速度的问题等,这些问题促成了微积分的产生,当时有许多著名的数学家都为了解决相关问题做了大量的研究,其中莱布尼茨和牛顿的成就尤为突出。
1666年,莱布尼茨写成“论组合术”(De ArtCombinatoria)一文,讨论了平方数序列0,1,4,9,16,…的性质,例如它的第一阶差为1,3,5,7,…,第二阶差则恒等于2,2,2,…等.他注意自然数列的第二阶差消失,平方序列的第三阶差消失,等等.同时他还发现,如果原来的序列是从0开始的,那么第一阶差之和就是序列的最后一项,如在平方序列中,前5项的第一阶差之和为1+3+5+7=16,即序列的第5项.他用X表示序列中项的次序,用Y表示这一项的值.这些讨论为他后来创立微积分奠定了初步思想,可以看作是他微积分思想的萌芽.“论组合术”是他的第一篇数学论文,使他跻身于组合数学研究者之列。
流数(fluxion)1665年5月20日,英国杰出物理学家牛顿第一次提出“流数术”(微积分),后来世人就以这天作为“微积分诞生日”。
牛顿将古希腊以来求解无穷小问题的种种特殊方法统一为两类算法:正流数术(微分)和反流数术(积分),反映在1669年的《运用无限多项方程》、1671年的《流数术与无穷级数》、1676年的《曲线求积术》三篇论文和《原理》一书中,以及被保存下来的1666年10月他写的在朋友们中间传阅的一篇手稿《论流数》中。
所谓“流量”就是随时间而变化的自变量如x、y、s、u等,“流数”就是流量的改变速度即变化率,写作等。
导数和微分的概念产生的历史

3· 反函数的求导 由一个方程F(x,y)所确定的隐函数的 求导法就是将方程两边分别对x求导,在 求出dx/dy即可 常用的基本初等函数的n阶导数公式有: (x^n)^(n)=n! (e^x)^(n)=e^x (sinx)^(n)=sin(x+nπ/2) 现在新增的求导法则我们小组认 为基本和高中是一致的(仅代表 本小组意见),新增加了隐函数 求导和高阶求导 (cosx)^(n)=cos(x+nπ/2)
返回
牛顿在数学上最卓越的成就是创建微积分。 他超越前人的功绩在於,他将古希腊以来 求解无限小问题的各种特殊技巧统一为两 类普遍的算法--微分和积分,并确立了 这两类运算的互逆关系,如:面积计算可 以看作求切线的逆过程。 那时莱布尼兹刚好亦提出微积分研究报告, 更因此引发了一埸微积分发明专利权的争 论,直到莱氏去世才停熄。而後世己认定 微积是他们同时发明的。 微积分方法上,牛顿所作出的极端重要的 贡献是,他不但清楚地看到,而且大赡地 运用了代数所提供的大大优越於几何的方 法论。他以代数方法取代了卡瓦列里、格 雷哥里、惠更斯和巴罗的几何方法,完成 了积分的代数化。从此,数学逐渐从感觉 的学科转向思维的学科。 微积产生的初期,由於还没有建立起巩固 的理论基础,被有受别有用心者钻空子。 更因此而引发了着名的第二次数学危机。 这个问题直到十九世纪极限理论建立,才 得到解
牛顿和莱布尼茨建立微积分的出发点是直观的无 穷小量,因此这门学科早期也称为无穷小分析, 这正是现在数学中分析学这一大分支名称的来源。 牛顿研究微积分着重于从运动学来考虑,莱布尼 茨却是侧重于几何学来考虑的。 牛顿在1671年 写了《流数法和无穷级数》,这本书直到1736年 才,出版它在这本书里指出,变量是由点、线、 面的连续运动产生的,否定了以前自己认为的变 量是无穷小元素的静止集合。他把连续变量叫做 流动量,把这些流动量的导数叫做流数。牛顿在 流数术中所提出的中心问题是:已知连续运动的 路径,求给定时刻的速度(微分法);已知运动 的速度求给定时间内经过的路程 给定时间内经过的路程(积分法)。 微积分学的创立,极大地推动了数学的发展, 过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分 学的非凡威力。 前面已经提到,一门科学的创立决不是某一个人的业绩,他必 定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人 总结完成的。微积分也是这样。
微积分产生的历史背景

微积分产生的历史背景数学中的转折点是笛卡尔的变数,有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分学和积分学也就立刻成为必要的了,而它们也就立刻产生,并且是有牛顿和莱布尼兹大体上完成的,但不是由他们发明的。
恩格斯从15世纪初欧洲文艺复兴时期起,工业、农业、航海事业与商贾贸易的大规模发展,形成了一个新的经济时代,宗教改革与对教会思想禁锢的怀疑,东方先进的科学技术通过阿拉伯的传入,以及拜占庭帝国覆灭后希腊大量文献的流入欧洲,在当时的知识阶层面前呈现出一个完全斩新的面貌。
而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展,生产实践的发展向自然科学提出了新的课题,迫切要求力学、天文学等基础学科的发展,而这些学科都是深刻依赖于数学的,因而也推动的数学的发展。
科学对数学提出的种种要求,最后汇总成车个核心问题:(1)运动中速度与距离的互求问题(几何演示)即,已知物体移动的距离S表为时间的函数的公式S=S(t),求物体在任意时刻的速度和加速度;反过来,已知物体的加速度表为时间的函数的公式,求速度和距离。
这类问题是研究运动时直接出现的,困难在于,所研究的速度和加速度是每时每刻都在变化的。
比如,计算物体在某时刻的瞬时速度,就不能象计算平均速度那样,用运动的时间去除移动的距离,因为在给定的瞬间,物体移动的距离和所用的时间是0,而0/0是无意义的。
但是,根据物理,每个运动的物体在它运动的每一时刻必有速度,这也是无疑的。
已知速度公式求移动距离的问题,也遇到同样的困难。
因为速度每时每刻都在变化,所以不能用运动的时间乘任意时刻的速度,来得到物体移动的距离。
(2)求曲线的切线问题(几何演示)这个问题本身是纯几何的,而且对于科学应用有巨大的重要性。
由于研究天文的需要,光学是时十七世纪的一门较重要的科学研究,透镜的设计者要研究光线通过透镜的通道,必须知道光线入射透镜的角度以便应用反射定律,这里重要的是光线与曲线的法线间的夹角,而法线是垂直于切线的,所以总是就在于求出法线或切线;另一个涉及到曲线的切线的科学问题出现于运动的研究中,求运动物体在它的轨迹上任一点上的运动方向,即轨迹的切线方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阿拉伯和欧洲中世纪——无限和运动的研究
• 代数和三角学的确立 • 对无限和运动的研究
代数和三角学的确立
• 从7世纪开始,阿拉伯帝国逐渐崛起,到8世纪,它已成为一个地跨亚、欧、非三洲,阿拉 伯帝国在所辖的较大城市建立图书馆和天文馆,政府组织人力进行天文观测,编制星表, 集中学者翻译和注释希腊罗马古典名著.正当欧洲处在黑暗时期,“阿拉伯数学”却成了 这时期西方科学的代表.希腊罗马的古典名著正是通过“阿拉伯人”的工作才得以保存下 来,这是阿拉伯人对人类文明的重要贡献之一.不仅如此,阿拉伯也是东西科学文化交流 的桥梁,今天通行的“印度—阿拉伯数码”以及我国古代“四大发明”等,都是通过阿拉 伯从东方传到西方去的,这为欧洲以后科学文化的复苏创造了重要条件.有继承才有发展, 阿拉伯人在保留古希腊罗马文化和传统文化的同时,也有一定的发展和创造.代数和三角 学的确立就是他们对数学所做出的贡献.
对无限和运动的研究
这一时期,除了“印度—阿拉伯数码”的逐渐普及,代数和三角学已经确立以及数学符号化已有 端倪外,对无限的讨论以及对运动和速度的研究已成为数学家们注意的中心.例如德国的红衣主 教库萨的尼古拉,把圆与三角形分别看成边数最多和边数最少的多边形,把无限大和零分别看成 自然数的上界和下界.他还说尽管“世界不是无限的,但毕竟不能认为它是有限的,因为世界没 有一条把它包围起来的界限”,这表明了他把无限看作一个过程的潜无限思想.14世纪英国很有 声誉的数学家苏依塞斯的重要著作《算术》中,已有变量、极大和极小概念的原始形式,预示了 变数和导数即将进入数学领域.他所使用的“流数”、“流量”等概念,被300年后的牛顿所采用. 在无限问题上他指出,要解决所有关于无限的诡辩,只要认识到有限和无限不能有它们的比就行 了,这是关于对有限和无限应有不同的论证的最早认识.
k
.他用这个
方法证明了德漠克利特已得出的求圆锥和棱锥体积的公式.阿基米德(Archimedes) 对穷竭法 也作出了重要贡献,他在《圆的度量》、《论圆柱和球》、《抛物线求积》、《论螺线》等著作中,
应用了穷竭法,并引用了近似现代微积分中的“大和”与“小和”概念.并且他用这种方法计 算出了球的体积和表面积、抛物线弓形的面积以及一些旋转体的体积等数学问题.
芝诺的拟难
芝诺(Zero of Elea) 是古希腊爱利亚学派的代表人,他虽然不是一个科学家,更谈不上是一位 数学家,但他提出的四个拟难——二分法、阿基里斯追龟、飞箭、运动场,客观上把微积分 中的离散和连续的对立统一惹人注目地摆了出来,对微积分发展有一定的影响.其中“二分 法”和“阿基里斯追龟”涉及无穷运算问题,比如,收敛的无穷级数,虽有无穷多项,但其 和仍为有限的;“飞箭”则是一个典型的导数问题,运动的物体在每一时刻不仅有速度,而 且还有加速度等;“运动场”明显地同运动的两个相反的方向即正负概念有关.
求长度、面积、体积、与重心问题
这些问题以计算行星或曲线运动的物体走过的路程为背景的;求曲线围成的面积,以计 算行星扫过的面积为代表;求物体的重心、求两个天体之间的引力等问题。
求最大值和最小值问题
这与天文学和力学都有关,例如求行星运行的近日点和远日点,抛射体的最大射程和最 大高度等问题都可归结为这种类型的问题。
《庄子》和《墨经》中的极限思想
• 极限概念是微积分区别于初等数学的特有概念,没有极限概念就没有现代的微积分.战国时 代的《庄子·天下篇》中,有不少极限思想,其中最脍炙人口的一句话是:“一尺之椎,日取 其半,万世不竭.”可以理解为无穷无尽、永远达不到极限的潜无限思想.无穷或无限概念,是 极限概念的特殊情况,是微积分的重要概念.《墨经》也是战国时代的重要著作之一,该书对 有穷和无穷作了明确的区分.该书说,“穷,或有前,不容尺也”,意思是有穷就是有边界的 区域,用尺沿一个方向去量它一定能量完;“穷,或不容尺,有穷;莫不容尺,无穷也”,即 有穷就是能量尽这个区域,如果量不尽,就是无穷.与此同时《墨经》也有丰富的微分思想, 比如:“端,体之无厚而最前者也”;“端,无间也”;“非半则不动,说在端”.第一句话 就是说,“端”就是不可度量且位于物体的最前面的东西.第二和第三句是说,如果没有空隙、 也不能再进行分割的就是端.这是对构成物质的最基本的元素相当精确的定义,实际上就是对 物体经“化整为零”后的微分概念.
极限法的早期形式穷竭法
为了计算曲边形的面积和体积,欧多克斯(Eudoxus of Cnidos)曾提出了一个计算方法, 这个方法在 17 世纪时被人称为“穷竭法”.用现代的符号表示就是:如果对于任意的正整数
n,等式 an bn
k (常数)成立,且当 n→ 时,an
A ,bn
B ,则有 A B
微积分思想的萌芽
• 古希腊罗马——微分、积分思想的发源地 • 阿拉伯和欧洲中世纪——无限和运动的研究 • 古代中国——面积、体积与极限思想的丰富
古希腊罗马——微分、积分思想的发源地
• 原子论朴素的微分和积分思想 • 极限法的早期形式穷竭法 • 芝诺的拟难
原子论朴素的微分和积分思想.
古希腊的原子论者具有朴素的微分和积分思想,该学派的创始人是留基伯(Leucippcus of Miletus),代表人物则是百科全书式的学者德漠克利特(Democritus of Abdera).原子论者把宇 宙间的万物看成由不可再分的原子构成,以及原子虽然不能再分但仍有内部结构的思想,表 现在数学上就是对于表示有限的长度、面积和体积的量 x,进行了一次微分(dx)和二次微分 (dx2). 德漠克利特曾用原子论思想第一次算出圆锥和棱锥的体积分别等于和它们同底同高 的圆柱和棱柱体积的三分之一.
古代中国——面积、体积与极限思想的丰富
• 简单几何图形面积和体积的计算. • 《庄子》和《墨经》中的极限思想 • 极限思想的运用——割圆术
简单几何图形面积和体积的计算
在微积分的发展历史上,对任意封闭的平面曲线围成图形面积的计算,和任意封闭的空 间曲线包围立体图形体积的计算,是产生积分概念的主要途径之一.计算面积和体积可以追 溯到原始农业社会,根据我国甲骨文记载,约在300年以前的殷代,就把耕种的土地分成方 形小块以求面积.积分概念就是在初等几何计算面积和体积的基础上逐渐形成的.来自极限思想的运用——割圆术.
• 我国三国时的数学家刘徽提出的“割圆术”,他从圆内接正六边形做起,令边数成倍 地增加,逐步推求圆内接正12边形,正24边形,……,直到正3072边形,用这个正3072边 形面积来逼近圆面积,就得到Π的较精确的值3.1416,“割之弥细,所失弥少;割之又割, 以至于不可割,则与圆周合体而无所失矣.”这就包含着微积分中“无限细分,无限求和” 的思想方法.
微积分产生的数学背景
• 数学中的转折点是笛卡尔的变数,有了变数,运动进入了数学,有了变数,辩证法进入了 数学,有了变数,微分学和积分学也就立刻成为必要的了,而它们也就立刻产生,并且是 有牛顿和莱布尼兹大体上完成的,但不是由他们发明的。 ——恩格斯
• 解析几何是代数与几何相结合的产物,它将变量引进了数学,使运动与变化的定量表述成 为可能,从而为微积分的创立搭起了舞台.
微积分产生的背景
微积分产生的社会背景
• 从15世纪初欧洲文艺复兴时期起,工业、农业、航海事业与商贾贸易的大规模发展,形成 了一个新的经济时代,宗教改革与对教会思想禁锢的怀疑,东方先进的科学技术通过阿拉 伯的传入,以及拜占庭帝国覆灭后希腊大量文献的流入欧洲,在当时的知识阶层面前呈现 出一个完全斩新的面貌。而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很 大的发展,生产实践的发展向自然科学提出了新的课题,迫切要求力学、天文学等基础学 科的发展,而这些学科都是深刻依赖于数学的,因而也推动的数学的发展。科学对数学提 出的种种要求,最后汇总成4个核心问题: 运动中速度与距离的互求问题、求曲线的切线 问题、求长度、面积、体积、与重心问题、求最大值和最小值问题。
运动中速度与距离的互求问题
已知物体移动的距离表示为时间的函数的公式,求物体在任意时刻的速度和加速度;或 者反过来,已知物体的加速度表示为时间的函数,求物体在任意时刻的速度,或已知物体速 度表示为时间的函数,求物体在任意时刻的移动距离。
求曲线的切线问题
物体作曲线运动时,在每一瞬间的速度方向是该曲线相应的点的切线的方向;在光学中 对光的折射和反射的研究要求出界面的法线方向,法线方向是由切线方向决定的。