高中数学数列知识点
高中数学数列知识点归纳
高中数学数列知识点归纳摘要:一、数列的概念与分类1.数列的定义2.等差数列与等比数列3.几何数列与调和数列二、数列的性质与运算1.数列的项与公比2.数列的求和公式3.数列的性质及其应用三、数列的递推关系式1.递推关系式的定义2.常见的递推关系式3.递推关系式的应用四、数列的通项公式1.通项公式的定义2.常见的通项公式3.求解通项公式的方法五、数列的极限与无穷级数1.数列的极限2.无穷级数的概念与性质3.级数的收敛性与发散性正文:高中数学的数列知识点是数学学习中的一个重要部分,它涉及到数列的概念、分类、性质、运算、递推关系式、通项公式以及极限和无穷级数等内容。
首先,我们要了解数列的概念与分类。
数列是一组按照一定规律排列的数字,可以用来描述事物的发展和变化规律。
根据数列中相邻两项的关系,数列可以分为等差数列和等比数列。
等差数列是相邻两项之差相等的数列,而等比数列是相邻两项之比相等的数列。
此外,还有几何数列和调和数列等特殊类型的数列。
其次,我们要掌握数列的性质与运算。
数列的项是指数列中的每一个数字,而公比是指等比数列中相邻两项的比。
数列的求和公式是计算数列和的重要工具,而数列的性质如单调性、有界性等则是解决数列相关问题的关键。
递推关系式是描述数列的一种方法,它是指用一个已知项和其后的项的关系式来表示数列。
掌握常见的递推关系式,如等差数列的通项公式、等比数列的通项公式等,有助于我们更好地理解数列的规律。
数列的通项公式是指能够表示数列中任意一项的公式。
求解通项公式是数列学习中的难点,需要我们灵活运用数学方法。
最后,我们要了解数列的极限与无穷级数。
数列的极限是指当项数趋于无穷时,数列的值趋于一个确定的值。
无穷级数是指一个数列的所有项按照一定的方式排列组成的级数。
理解级数的收敛性与发散性,有助于我们更好地把握数列的性质。
总的来说,高中数学的数列知识点繁多且重要,需要我们认真学习并掌握。
高中数学数列知识点总结
高中数学数列知识总结一.数列的定义及表示方法1.数列的定义按________________着的一列数叫数列,数列中的______________都叫这个数列的项;在函数意义下,数列是________________________的函数,数列的一般形式为:______________________,简记为{a n },其中a n 是数列的第____项.2.通项公式:如果数列{a n }的______与____之间的关系可以____________来表示,那么这个式子叫做数列的通项公式.但并非每个数列都有通项公式,也并非都是唯一的.3.数列常用表示法有:_________、________、________.4.数列的分类:数列按项数来分,分为____________、__________;按项的增减规律分为________、________、__________和__________.递增数列⇔a n +1______a n ;递减数列⇔a n +1______a n ;常数列⇔a n +1______a n .5.a n 与S n 的关系:已知S n ,则a n =⎩⎪⎨⎪⎧,n =1, ,n ≥2.1.一定顺序排列 每一个数 定义域为N *(或它的子集)a 1,a 2,a 3,…,a n ,… n2.第n 项 n 用一个公式3.解析法(通项公式或递推公式) 列表法 图象法4.有穷数列 无穷数列 递增数列 递减数列 摆动数列 常数列 > < =5.S 1 S n -S n -1二.等差数列及其前n 项和1.等差数列的有关定义(1)一般地,如果一个数列从第____项起,每一项与它的前一项的____等于同一个常数,那么这个数列就叫做等差数列.符号表示为____________ (n ∈N *,d 为常数).(2)数列a ,A ,b 成等差数列的充要条件是__________,其中A 叫做a ,b 的__________.2.等差数列的有关公式(1)通项公式:a n =________,a n =a m +________ (m ,n ∈N *).(2)前n 项和公式:S n =__________=____________.3.等差数列的前n 项和公式与函数的关系S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n . 数列{a n }是等差数列的充要条件是其前n 项和公式S n =__________.4.等差数列的性质(1)若m +n =p +q (m ,n ,p ,q ∈N *),则有__________,特别地,当m +n =2p 时,______________.(2)等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列.(3)等差数列的单调性:若公差d >0,则数列为____________;若d <0,则数列为__________;若d =0,则数列为________.1.(1)2 差 a n +1-a n =d (2)A =a +b 2等差中项 2.(1)a 1+(n -1)d (n -m )d (2)na 1+n (n -1)2d (a 1+a n )n 23.An 2+Bn4.(1)a m +a n =a p +a q a m +a n =2a p (3)递增数列 递减数列 常数列三.等比数列及前n 项和1.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列叫做等比数列,这个常数叫做等比数列的________,通常用字母________表示(q ≠0).2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =______________.3.等比中项:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.4.等比数列的常用性质(1)通项公式的推广:a n =a m ·________ (n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则__________________________.(3)若{a n },{b n }(项数相同)是等比数列,则{λa n } (λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列. (4)单调性:⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎨⎧ a 1<00<q <1⇔{a n }是________数列;⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎨⎧a 1<0q >1⇔{a n }是________数列;q =1⇔{a n }是____数列;q <0⇔{a n }是________数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n ,当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1(q n -1)q -1=a 1q n q -1-a 1q -1. 6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为______.1.公比 q 2.a 1·q n -1 4.(1)q n -m (2)a k ·a l =a m ·a n(4)递增 递减 常 摆动 6.q n四:数列的通项及求和1.求数列的通项(1)数列前n 项和S n 与通项a n 的关系:a n =⎩⎪⎨⎪⎧ S 1, n =1,S n -S n -1, n ≥2. (2)当已知数列{a n }中,满足a n +1-a n =f (n ),且f (1)+f (2)+…+f (n )可求,则可用________求数列的通项a n ,常利用恒等式a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1).(3)当已知数列{a n }中,满足a n +1a n=f (n ),且f (1)·f (2)·…·f (n )可求,则可用__________求数列的通项a n ,常利用恒等式a n =a 1·a 2a 1·a 3a 2·…·a n a n -1. (4)作新数列法:对由递推公式给出的数列,经过变形后化归成等差数列或等比数列来求通项.(5)归纳、猜想、证明法.2.求数列的前n 项的和(1)公式法①等差数列前n 项和S n =____________=________________,推导方法:____________;②等比数列前n 项和S n =⎩⎪⎨⎪⎧,q =1, = ,q ≠1. 推导方法:乘公比,错位相减法.③常见数列的前n 项和:a .1+2+3+…+n =__________;b .2+4+6+…+2n =__________;c .1+3+5+…+(2n -1)=______;d .12+22+32+…+n 2=__________;e .13+23+33+…+n 3=__________________. (2)分组求和:把一个数列分成几个可以直接求和的数列. (3)裂项(相消)法:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和. 常见的裂项公式有: ①1n (n +1)=1n -1n +1; ②1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1; ③1n +n +1=n +1-n . (4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和. (5)倒序相加:例如,等差数列前n 项和公式的推导. 1.(2)累加法 (3)累积法 2.(1)①n (a 1+a n )2 na 1+n (n -1)2d 倒序相加法 ②na 1 a 1(1-q n )1-q a 1-a n q 1-q ③n (n +1)2 n 2+n n 2 n (n +1)(2n +1)6 ⎣⎡⎦⎤n (n +1)22五:数列的综合应用1.数列的综合应用数列的综合应用一是指综合运用数列的各种知识和方法求解问题,二是数列与其他数学内容相联系的综合问题.解决此类问题应注意数学思想及方法的运用与体会.(1)数列是一种特殊的函数,解数列题要注意运用方程与函数的思想与方法.(2)转化与化归思想是解数列有关问题的基本思想方法,复杂的数列问题经常转化为等差、等比数列或常见的特殊数列问题.(3)由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想.已知数列的前若干项求通项,由有限的特殊事例推测出一般性的结论,都是利用此法实现的.(4)分类讨论思想在数列问题中常会遇到,如等比数列中,经常要对公比进行讨论;由S n 求a n 时,要对______________进行分类讨论.2.数列的实际应用数列的应用问题是中学数学教学与研究的一个重要内容,解答应用问题的核心是建立数学模型.(1)建立数学模型时,应明确是等差数列模型、等比数列模型,还是递推数列模型,是求a n 还是求S n .(2)分期付款中的有关规定①在分期付款中,每月的利息均按复利计算;②在分期付款中规定每期所付款额相同;③在分期付款时,商品售价和每期所付款额在贷款全部付清前会随时间的推移而不断增值;④各期付款连同在最后一次付款时所生的利息之和,等于商品售价及从购买时到最后一次付款的利息之和.1.(4)n =1或n ≥2。
高中数学数列知识点总结(精华版)
..一、数列1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项a n与项数n是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集(或它的有限子集)的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2.通项公式:如果数列a n的第n项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即af(n)n.3.递推公式:如果已知数列a n的第一项(或前几项),且任何一项a n与它的前一项a(或前几项)间的关系可以用一个式子来表示,即a n f(a n1)或a n f(a n1,a n2),n1那么这个式子叫做数列a的递推公式.如数列an中,a11,a n2a n1,其中na n2a n1是数列a n的递推公式.4.数列的前n项和与通项的公式①Sn a1a2a;②nS(n1)1a n.SS(n2)nn15.数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何nN,均有a n1a n.②递减数列:对于任何nN,均有a n1a n.③摆动数列:例如:1,1,1,1,1,.④常数数列:例如:6,6,6,6,⋯⋯.⑤有界数列:存在正数M使a n M,n N.⑥无界数列:对于任何正数M,总有项a使得a n M.n1、已知n*a2(nN)nn156,则在数列{}a的最大项为__(答:n125);2、数列{}a的通项为nana n,其中a,b均为正数,则a n与a n1的大小关系为___(答:bn1aa n1);n23、已知数列{a}中,a是递增数列,求实数的取值范围(答:3);ann,且{}nnn4、一给定函数yf(x)的图象在下列图中,并且对任意a(0,1),由关系式a n1f(a n)1*得到的数列{}a满足a n1a n(nN),则该函数的图象是()(答:A)neord完美格式..二、等差数列1、等差数列的定义:如果数列a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
高中数学数列知识点
高中数学数列知识点数列知识点1. 定义:数列是由一系列有规律的数按照一定的顺序排列得到的序列。
2. 常用符号:- 数列:$a_1, a_2, a_3, \cdots, a_n$ 或 $\{a_n\}$;- 首项:$a_1$;- 公差:$d$;- 通项公式:$a_n = a_1 + (n-1)d$;- 前$n$项和:$S_n = \frac{n}{2}(a_1+a_n)$。
3. 等差数列(Arithmetic Progression,简称AP)- 定义:在一个数列中,如果任意两个相邻的数之差都相等,那么这个数列就是等差数列。
这个公差就是等差数列的一个重要特点。
- 常见问题:已知等差数列的首项和公差,求第$n$项和前$n$项和。
- 重要结论: $a_n = a_{n-1} + d$,$S_n = \frac{n}{2}(a_1+a_n)$。
4. 等比数列(Geometric Progression,简称GP)- 定义:在一个数列中,如果任意两个相邻的数之比都相等,那么这个数列就是等比数列。
这个公比就是等比数列的一个重要特点。
- 常见问题:已知等比数列的首项和公比,求第$n$项和前$n$项和。
- 重要结论:$a_n = a_1q^{n-1}$,$S_n = \frac{a_1(1-q^n)}{1-q}$。
5. 等差-等比数列(Arithmetic-Geometric Progression,简称AGP)- 定义:一个数列既是等差数列又是等比数列,那么这个数列就是等差-等比数列。
- 常见问题:已知等差-等比数列的首项、公差、公比,求第$n$项和前$n$项和。
6. 数列的性质- 单调性:设$a_n$是一个数列,如果对于任意的$n\in N^*$,$a_n\geq a_{n-1}$,那么这个数列就是递增的;如果对于任意的$n\in N^*$,$a_n\leq a_{n-1}$,那么这个数列就是递减的。
- 有界性:如果一个数列递增且有上界,那么这个数列就是有界递增数列;如果一个数列递减且有下界,那么这个数列就是有界递减数列。
数列知识点总结(高中数学)
数列知识点总结 数列的概念与简单表示法知识点一、数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项。
数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第一项(通常称为首项),排在第二位的数称为这个数列的第2项……排在第n 位的数称为这个数列的第n 项,所以数列的一般形式可以写成: ,,,,,,321 n a a a a简记为{}n a 。
项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列。
1.从第2项起,每一项都大于它的前一项的数列叫做递增数列; 2.从第2项起,每一项都小于它的前一项的数列叫做递减数列; 3.各项相等的数列叫做常数列;4.从第2项起,有些项大于它的前一项,有些项小于它前一项的数列叫做摆动数列; 知识点二、通项公式如果数列{}n a 的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。
知识点三、数列的前n 项和1.数列的前n 项和的定义:我们把数列{}n a 从第一项起到第n 项止的各项之和,称为数列{}n a 的前n 项和,记作n S ,即n n a a a S +++= 21。
2.数列前n 项和n S 与通项公式n a 之间的关系:⎩⎨⎧≥-==-.2,,1,11n S S n S a n n n等差数列知识点一、等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
知识点二、等差中项有三个数b A a ,,组成的等差数列可以看成简单的等差数列,这时A 叫做b a 与的等差中项。
1.根据等差中项的定义:b A a ,,是等差数列,则2b a A +=;反之,若2ba A +=,则b A a ,,是等差数列。
2.在等差数列{}n a 中,任取相邻的三项()*+-∈≥N n n a a a n n n ,2,,11,则n a 是1-n a 与1+n a 的等差中项;反之,n a 是1-n a 与1+n a 的等差中项对一切*∈≥N n n ,2均成立,则数列{}n a 是等差数列。
高中数学数列知识点精华总结
数 列 专 题考点一:求数列的通项公式1. 由a n 与S n 的关系求通项公式由S n 与a n 的递推关系求a n 的常用思路有:①利用S n -S n -1=a n (n≥2)转化为a n 的递推关系,再求其通项公式;数列的通项a n 与前n 项和S n 的关系是a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n≥2.当n =1时,a 1若适合S n-S n -1,则n =1的情况可并入n≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n .}2.由递推关系式求数列的通项公式由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解.累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; 累乘法:递推关系形如a n +1a n=f(n),常用累乘法求通项;构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p≠1,q≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列;2)递推关系形如“a n +1=pa n +q n(q ,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n转化为类型(4),或同除以p n +1转为用迭加法求解.3)(倒数变形3.数列函数性质的应用数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性.函数思想在数列中的应用(1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法.;(3)数列{a n }的最大(小)项的求法可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1,找到数列的最小项.[例3] 已知数列{a n }.(1)若a n =n 2-5n +4,①数列中有多少项是负数②n 为何值时,a n 有最小值并求出最小值.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立.求实数k 的取值范围.考点二:等差数列和等比数列等差数列 等比数列 【定义 a n -a n -1=常数(n≥2) a na n -1=常数(n≥2) 通项公式a n =a 1+(n -1)da n =a 1qn -1(q≠0)…也是等差数列,(1)若m 、n 、p 、q∈N *,且m +n =p +q ,则a m ·a n =a p ·a q特别地,若m +n =2p ,则a m ·a n =a 2p . (2)a n =a m qn -m(3) 若等比数列前n 项和为S n 则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m -S 2m )(m ∈N *,公比q≠-1). ,S n =na 1+a n 2=na 1+n n -12d(1)q≠1,S n =a 11-qn1-q =a 1-a n q 1-q(2)q =1,S n =na 11n n 个.解这类问题时,一般是转化为首项a 1和公差d(公比q)这两个基本量的有关运算. 2.等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形.3.用函数的观点理解等差数列、等比数列(1)对于等差数列a n =a 1+(n -1)d =dn +(a 1-d),当d≠0时,a n 是关于n 的一次函数,对应的点(n ,a n )是位于直线上的若干个离散的点;当d >0时,函数是单调增函数,对应的数列是单调递增数列,S n 有最小值;:当d =0时,函数是常数函数,对应的数列是常数列,S n =na 1;当d <0时,函数是减函数,对应的数列是单调递减数列,S n 有最大值.若等差数列的前n 项和为S n ,则S n =pn 2+qn(p ,q∈R ).当p =0时,{a n }为常数列;当p≠0时,可用二次函数的方法解决等差数列问题.(2)对于等比数列a n =a 1qn -1,可用指数函数的性质来理解.当a 1>0,q >1或a 1<0,0<q <1时,等比数列{a n }是单调递增数列;当a 1>0,0<q <1或a 1<0,q >1时,等比数列{a n }是单调递减数列;当q =1时,是一个常数列;当q <0时,无法判断数列的单调性,它是一个摆动数列. 4.常用结论—(1)若{a n },{b n }均是等差数列,S n 是{a n }的前n 项和,则{ma n +kb n },{S nn }仍为等差数列,其中m ,k 为常数.(2)若{a n },{b n }均是等比数列,则{ca n }(c≠0),{|a n |},{a n ·b n },{ma n b n }(m 为常数),{a 2n },{1a n}等也是等比数列.(3)公比不为1的等比数列,其相邻两项的差也依次成等比数列,且公比不变,即a 2-a 1,a 3-a 2,a 4-a 3,…成等比数列,且公比为a 3-a 2a 2-a 1=a 2-a 1qa 2-a 1=q .(4)等比数列(q≠-1)中连续k 项的和成等比数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等比数列,其公比为q k.等差数列中连续k 项的和成等差数列,即S k ,S 2k -S k ,S 3k -S 2k ,…成等差数列,公差为k 2d.5)>5.易错提醒(1)应用关系式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n≥2时,一定要注意分n =1,n≥2两种情况,在求出结果后,看看这两种情况能否整合在一起.(2)三个数a ,b ,c 成等差数列的充要条件是b =a +c2,但三个数a ,b ,c 成等比数列的必要条件是b 2=ac. 6.等差数列的判定方法(1)定义法:对于n≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn.%注意:在解答题中常应用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断. 7.等比数列的判定方法(1)定义法:若a n +1a n =q(q 为非零常数,n ∈N *)或a n a n -1=q(q 为非零常数且n≥2,n ∈N *),则{a n }是等比数列.(2)等比中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列通项公式可写成a n =c·q n(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k·q n -k(k 为常数且k≠0,q≠0,1),则{a n }是等比数列.注意:前两种方法常用于解答题中,而后两种方法常用于选择、填空题中的判定.考点三:数列求和中应用转化与化归思想的常见类型:]1.公式法——直接利用等差数列、等比数列的前n 项和公式求和(1)等差数列的前n 项和公式:S n =na 1+a n 2=na 1+n n -12d ; (2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 11-q n1-q ,q≠1.2.倒序相加法如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的. 3.错位相减法这是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{a n },{b n }分别是等差数列和等比数列.求a 1b 1+a 2b 2+…+a n b n 的和就适用此法.做法是先将和的形式写出,再给式子两边同乘或同除以公比q ,然后将两式相减,相减后以“q n”为同类项进行合并得到一个可求和的数列(注意合并后有两项不能构成等比数列中的项,不要遗漏掉). 4.裂项相消法(注重积累!!!))利用通项变形,将通项分裂成两项或n 项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,适用于求通项为1a n a n +1的数列的前n 项和,其中{a n }若为等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1.利用裂项相消法求和时应注意哪些问题(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项.常见的拆项公式(1)1n n +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ; (2) 12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(3) 1nn +1=1n -1n +1; (4) 1n +n +1=n +1-n ;(5)n +n +k =1k(n +k -n).5.分组求和法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减. 6.并项求和法一个数列的前n 项和,可两两结合求解,则称之为并项求和.形如a n =(-1)nf(n)类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 7.放缩法是证明数列型不等式的压轴题的最重要的方法,放缩法的注意问题以及解题策略(1)明确放缩的方向:即是放大还是缩小,看证明的结论,是小于某项,则放大,是大于某个项,则缩小。
高中数学必修二数列数列总知识点
高中数学必修二数列数列总知识点
1. 数列的定义与概念
- 数列是指由一系列按照一定规律排列的数构成的序列。
- 数列中的每个数称为项,用an表示第n项。
- 数列按照一定规律排列的规律称为通项公式,用an = f(n)表示。
- 数列的表示方法有通项公式、递推公式和图形表示等。
2. 等差数列
- 等差数列是指数列中相邻两项之间差相等的数列。
- 等差数列的通项公式为an = a1 + (n - 1)d,其中a1为首项,d 为公差,n为项数。
- 等差数列的前n项和公式为Sn = (a1 + an) * n / 2。
3. 等比数列
- 等比数列是指数列中相邻两项之间比相等的数列。
- 等比数列的通项公式为an = a1 * r^(n - 1),其中a1为首项,r 为公比,n为项数。
- 等比数列的前n项和公式为Sn = a1 * (1 - r^n) / (1 - r),当|r| <
1时成立。
4. 通项公式的推导
- 对于一些特定的数列,可以通过观察规律或利用数学方法推
导出通项公式。
- 例如,斐波那契数列的通项公式为an = (φ^n - (1 - φ)^n) / √5,其中φ为黄金分割比。
5. 常见数列的性质与应用
- 数列的性质包括单调性、有界性、极限等,这些性质在数学
应用中起到重要作用。
- 等差数列和等差中项数列常用于计算物体运动的位置和速度
等问题。
- 等比数列常用于计算复利、投资等涉及指数增长的问题。
以上是高中数学必修二数列的总知识点,希望对你的研究有所
帮助!。
高中数学数列知识点总结
高中数学数列知识点总结数列是高中数学中的一个重要概念,涉及到很多的知识点。
下面总结了高中数学数列的常见知识点,以帮助大家更好地理解和掌握数列的相关知识。
一、基本概念和性质1. 数列的定义:数列由若干个依次排列的数按照一定规律组成的有序集合。
2. 通项公式:数列中的每一项都可以表示为一个表达式,这个表达式称为通项公式。
3. 前n项和:数列前n项的和称为前n项和,通常记作Sn。
4. 递推关系式:数列中的各项之间存在递推关系,即通过前一项可以推导出后一项的关系。
5. 有限数列和无限数列:数列中的项数的前者为有限数列,后者为无限数列。
6. 等差数列:数列中的任意两个相邻项之间的差值相等,这个差值称为公差,称这个数列为等差数列。
7. 等差数列的通项公式和前n项和公式。
8. 等差数列的性质,如对称性、删除公共项等。
二、等差数列的应用1. 等差数列的求和公式推导和应用。
2. 算术平均数和等差数列之间的关系。
3. 等差数列在日常生活中的应用,如等差序列的排队等。
三、等比数列1. 等比数列的定义和通项公式。
2. 等比数列的前n项和公式。
3. 等比数列的性质,如比例不为零、删除公共项等。
4. 等比数列和判断常比、范围、含义等的应用。
四、数列的表示方法1. 列举法:将数列的各项按照从前到后的顺序写出来。
2. 通项公式法:通过找到数列中相邻项之间的关系,写出数列的通项公式。
3. 递推关系式法:通过数列中前一项和后一项之间的关系,写出递推关系式。
五、特殊数列1. 等差数列的和数列:等差数列的各项之和组成的数列,称为等差数列的和数列。
2. 平方数列和立方数列:等差数列中的每一项都是平方数或者立方数的数列。
六、应用题和解题方法1. 利用数列的性质和公式解决数列相关的应用题。
2. 利用数列的递推关系解决数列相关的应用题。
3. 利用数列的前n项和求解数列相关的应用题。
综上所述,高中数学数列的知识点包括了数列的基本概念和性质、等差数列的应用、等比数列的性质和应用、数列的表示方法、特殊数列、以及解决数列应用题的方法等。
(完整版)高中数学数列知识点整理
1数列中a n 与S n 之间的关系:a nS ‘(n 1)注意通项能否合并。
S n & i ,(n 2).2、等差数列:⑴定义:如果一个数列从第 2项起,每一项与它的前一项的差等于同一个常数,即a n - a n 1=d , (n >2, n € N ), 那么这个数列就叫做等差数列。
⑵等差中项:若三数 a 、A b 成等差数列或a n pn q (p 、q 是常数)⑷前n 项和公式:n n 1 S n n^d2⑸常用性质: ① 若 mn p q m,n, p,q N ,贝U a m a n a p a q;② 下标为等差数列的项 a k ,a k m ,a k 2m ,,仍组成等差数列; ③ 数列 a n b ( ,b 为常数)仍为等差数列;④ 若{a n }、{0}是等差数列,则{ka n }、{ka n pb n } (k 、p 是非零常数)、{a p nq }( p,q N )、,…也成等差数列。
⑤单调性: a n 的公差为d ,则:i) d 0 a n 为递增数列; ii) d 0 a n 为递减数列; iii) d 0a n 为常数列;⑥数列{a n }为等差数列 a n pn q ( p,q 是常数)⑦若等差数列 a n 的前n 项和S n ,则S k 、S 2kS k 、S 3k S 2k …是等差数列。
3、等比数列⑴定义:如果一个数列从第 2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。
⑵等比中项:若三数a 、Gb 成等比数列G 2 ab, ( ab 同号)。
反之不一定成立。
数列⑶通项公式:a n a 1(n 1)d a m (n m)dn a-i a n2⑶通项公式:a nn 1n maga m q⑷前n 项和公式:a 1 1 q n S i1 qa 1 a n q 1 q⑸常用性质①若m n pq m,n, p,q N , 则 am ana p a q;② a k ,a k m ,a k 2m ,为等比数列, 公比为 q k (下标成等差数列,则对应的项成等比数列)③ 数列a n (为不等于零的常数)仍是公比为 q 的等比数列;正项等比数列 a n ;则lg a n 是公差为lg q 的等差数列;④ 若a n 是等比数列,则 ca n , a n 2 ,a n r(r Z )是等比数列,公比依次是⑤ 单调性:a i 0,q 1或印 0,0 q 1 a “为递增数列; a i 0,0 q 1或q 0,q1a .为递减数列;q 1 a n 为常数列; q 0a n 为摆动数列;⑥ 既是等差数列又是等比数列的数列是常数列。
高中数学数列知识点归纳
高中数学数列知识点归纳一、数列的概念数列是按照一定顺序排列的一列数。
例如,1,2,3,4,5……就是一个自然数列。
数列中的每一个数都叫做这个数列的项,排在第一位的数称为这个数列的第 1 项(通常也叫做首项),排在第二位的数称为这个数列的第 2 项……以此类推。
数列的一般形式可以写成 a₁,a₂,a₃,…,aₙ,…,其中 aₙ 是数列的第 n 项。
我们用{aₙ} 来表示一个数列。
二、数列的分类1、按项数分类(1)有穷数列:项数有限的数列。
例如,数列 1,2,3,4,5 就是一个有穷数列。
(2)无穷数列:项数无限的数列。
比如自然数列 1,2,3,4,……就是一个无穷数列。
2、按项的大小变化分类(1)递增数列:从第 2 项起,每一项都大于它的前一项的数列。
例如,数列 1,2,4,8,16,……就是一个递增数列。
(2)递减数列:从第 2 项起,每一项都小于它的前一项的数列。
比如数列 10,8,6,4,2 就是一个递减数列。
(3)常数列:各项都相等的数列。
例如,数列 3,3,3,3,……就是一个常数列。
(4)摆动数列:从第 2 项起,有些项大于它的前一项,有些项小于它的前一项的数列。
比如数列 1,-1,1,-1,1,……就是一个摆动数列。
三、数列的通项公式如果数列{aₙ} 的第 n 项 aₙ 与 n 之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式。
例如,数列 1,3,5,7,9,……的通项公式为 aₙ = 2n 1 。
通项公式可以帮助我们快速求出数列中的任意一项,也能让我们更深入地了解数列的性质。
四、数列的递推公式如果已知数列{aₙ} 的第 1 项(或前几项),且从第二项(或某一项)开始的任一项 aₙ 与它的前一项 aₙ₋₁(或前几项)间的关系可以用一个公式来表示,那么这个公式叫做这个数列的递推公式。
例如,已知数列{aₙ} 的首项 a₁= 1 ,且 aₙ = aₙ₋₁+ 2 (n ≥2 ),则可以依次求出 a₂= a₁+ 2 =3 ,a₃= a₂+ 2 = 5 ,……五、等差数列1、定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。
高中数列知识点大全
高中数列知识点大全ps:整理不易,点赞支持已完结的地方:一、等差数列二、斐波那契数列三、数列的通项公式四、数列的放缩尚未完结的地方:一、等比数列的部分例题二、拓展:提丢斯数列(全国卷考到了)三、周期数列的部分例题四、求和可能要个目录一、等差数列1、等差数列的基本概念和基本公式如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫作等差数列。
(1)递推关系:a_{n+1}-a_{n}=d(常数),或 a_{n}-a_{n-1}=d(n\inN^\ast且n\geq2)。
(2)通项公式:a_{n}=a_1+(n-1)d 。
推广形式: a_{n}=a_m+(n-m)d (当 d\ne0 时, a_n 是关于 n 的一次函数)(3)求和公式:S_{n}=\dfrac{n\left( a_{1}+a_{n}\right) }{2}=na_{1}+\d frac{n\left( n-1\right) }{2}d (当 d\ne0 时, S_n 是关于 n 的二次函数,且常数项为零)例题:2011 湖北文 92、等差数列的主要性质等差数列的性质主要包括以下12个方面。
(1)若 n+m=p+q ,则 a_n+a_m=a_p+a_q 。
(反之不一定成立,如常数数列)(2)等差中项:若三个数 a,b,c 成等差数列,则称 b 为 a 和 c 的等差中项,即 2b=a+c ,可将这三个数记为:b-d , b ,b+d 。
例题一:例题二(3) a_k,a_{k+m},a_{k+2m},…构成以 md 为公差的等差数列。
(4)在等差数列中依次取出若干个n项,其和也构成等差数列,即S _ { n } , S _{ 2 n } - S _ { n } , S _ { 3 n } - S _ { 2n } , \dots \ldots 也为等差数列,公差为n^2d ;图示理解:\underbrace { a _ { 1 } , a _{ 2 } , \cdots , a _ { m } } _ { s _{ m } },\underbrace { a _ { m + 1 } , a _ { m+ 2 } , \cdots , a _ { 2 m } } _ { s _ { 2 m }- s _ { m } },\underbrace { a _ { 2m + 1 } , a _ { 2m + 2 } , \cdots , a _ { 3 m } } _ { s _ { 3 m } - s _ { 2m } },(5)两个等差数列\left\{ a _ { n } \right\}与\left\{ b _ { n } \right\}的和差的数列 \left\{ a _ { n } \pm b _ { n } \right\} ,\left\{ pa _ { n } \pm qb _{ n } \right\} 仍为等差数列。
高中数学数列知识点归纳
高中数学数列知识点归纳一、数列的概念与性质1.数列的定义:数列是一组按照一定规律排列的实数,通常用{a1, a2,a3,...}表示。
2.数列的分类:根据项的性质,数列可分为整数数列、有理数数列、实数数列等;根据项之间的关系,数列可分为等差数列、等比数列、几何数列等。
3.数列的性质:数列具有交换性、结合律、分配律等基本运算性质。
二、等差数列1.等差数列的定义与性质:等差数列是相邻两项之差为一个常数的数列。
2.等差数列的通项公式:an = a1 + (n-1)d,其中a1为首项,d为公差。
3.等差数列的前n项和公式:Sn = n/2 * (a1 + an) = n/2 * [2a1 + (n-1)d]。
4.等差数列的求和公式应用:求解等差数列前n项和的最值、求解等差数列中的未知量等问题。
三、等比数列1.等比数列的定义与性质:等比数列是相邻两项之比为一个常数的数列。
2.等比数列的通项公式:an = a1 * q^(n-1),其中a1为首项,q为公比。
3.等比数列的前n项和公式:Sn = a1 * (1 - q^n) / (1 - q)。
4.等比数列的求和公式应用:求解等比数列前n项和的最值、求解等比数列中的未知量等问题。
四、其他数列1.几何数列:几何数列是相邻两项之比为一个常数的数列,通项公式为an = a1 * r^(n-1)。
2.调和数列:调和数列是相邻两项之比为根号下n的数列,通项公式为an = a1 * (n^(1/2))^(n-1)。
3.Fibonacci数列:Fibonacci数列是满足递推关系F(n) = F(n-1) + F(n-2)的数列,具有递归关系。
五、数列的递推关系与迭代1.递推关系的定义与性质:递推关系是利用数列的前几项求解后续项的关系。
2.迭代的方法与应用:迭代是求解递推关系的一种方法,可用于求解数列中的未知量、求解数列的极限等。
六、数列的极限与连续1.数列极限的定义与性质:数列极限是数列趋于某个值的过程,具有唯一性、无穷小性等性质。
高中数学数列知识点.总结(精华版)
. .一、数列1. 数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.⑴数列中的数是按一定“次序”排列的,在这里,只强调有“次序”,而不强调有“规律”.因此,如果组成两个数列的数相同而次序不同,那么它们就是不同的数列.⑵在数列中同一个数可以重复出现.⑶项a n 与项数n 是两个根本不同的概念.⑷数列可以看作一个定义域为正整数集( 或它的有限子集) 的函数当自变量从小到大依次取值时对应的一列函数值,但函数不一定是数列2. 通项公式:如果数列a n 的第n 项与序号之间可以用一个式子表示, 那么这个公式叫做这个数列的通项公式,即 a f (n)n .3. 递推公式:如果已知数列a n 的第一项(或前几项),且任何一项a n 与它的前一项a (或前几项)间的关系可以用一个式子来表示,即a n f (a n 1 ) 或a n f (a n 1,a n 2) ,n 1那么这个式子叫做数列a的递推公式. 如数列a n 中,a1 1, a n 2a n 1 ,其中na n 2a n 1是数列a n 的递推公式.4. 数列的前n 项和与通项的公式①S n a1 a2 a ;②nS (n 1)1a n .S S (n 2)n n 15. 数列的表示方法:解析法、图像法、列举法、递推法.6. 数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列: 对于任何n N , 均有a n 1 a n .②递减数列: 对于任何n N , 均有a n 1 a n .③摆动数列: 例如: 1,1 ,1, 1, 1, .④常数数列: 例如:6,6,6,6, ⋯⋯.⑤有界数列: 存在正数M 使a n M ,n N .⑥无界数列: 对于任何正数M , 总有项a 使得a n M .n1、已知n*a 2 (n N )nn 156,则在数列{ }a 的最大项为__(答:n125);2、数列{ }a 的通项为nana n ,其中a,b 均为正数,则a n 与a n 1 的大小关系为___(答:bn 1a a n 1);n23、已知数列{ a } 中, a 是递增数列,求实数的取值范围(答:3);a n n ,且{ } nn n4、一给定函数y f (x)的图象在下列图中,并且对任意a( 0,1) ,由关系式a n 1 f (a n )1* 得到的数列{ }a 满足a n 1 a n (n N ) ,则该函数的图象是()(答:A)neord 完美格式. .二、等差数列1、等差数列的定义:如果数列a n 从第二项起每一项与它的前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫等差数列的公差。
高中数学数列知识点归纳
高中数学数列知识点归纳摘要:一、数列的定义与性质1.等差数列的定义与性质2.等比数列的定义与性质二、数列的求和公式1.等差数列的前n 项和公式2.等比数列的前n 项和公式三、数列的应用1.高考数学中数列的知识点考察2.数列在实际问题中的应用正文:高中数学数列知识点归纳数列是高中数学中的一个重要知识点,它在历年的高考中都占有重要的地位。
本文将对数列的定义、性质、求和公式以及应用进行归纳总结。
一、数列的定义与性质1.等差数列的定义与性质等差数列是指一个数列,它的相邻两项之差是一个常数,这个常数称为公差。
等差数列的通项公式为:an = a1 + (n-1)d,其中a1 是首项,d 是公差,n 是项数。
等差数列的前n 项和公式为:sn = n/2 * (a1 + an) = n/2 * (2a1 + (n-1)d)。
2.等比数列的定义与性质等比数列是指一个数列,它的相邻两项之比是一个常数,这个常数称为公比。
等比数列的通项公式为:an = a1 * q^(n-1),其中a1 是首项,q 是公比,n 是项数。
等比数列的前n 项和公式为:sn = a1 * (1 - q^n) / (1 - q),当q = 1 时,等比数列变为等差数列。
二、数列的求和公式1.等差数列的前n 项和公式等差数列的前n 项和公式为:sn = n/2 * (a1 + an) = n/2 * (2a1 + (n-1)d)。
2.等比数列的前n 项和公式等比数列的前n 项和公式为:sn = a1 * (1 - q^n) / (1 - q),当q = 1 时,等比数列变为等差数列。
三、数列的应用1.高考数学中数列的知识点考察高考数学中,数列是一个重要的考点,主要考察等差数列和等比数列的性质、通项公式、前n 项和公式,以及数列的求和、递推关系、极限等。
2.数列在实际问题中的应用数列在实际问题中有很多应用,如在金融领域,等比数列可以用来计算复利的未来值;在生物领域,等差数列可以用来描述种群数量的增长;在物理领域,等差数列可以用来描述匀速运动的速度等。
高中数学《数列》知识点归纳
高中数学《数列》知识点归纳
一、数列的概念
1. 数列的定义与表示
2. 数列的分类:等差数列、等比数列、等差几何数列、斐波那契数列、调和数列等
3. 数列的通项公式、前n项和公式及其应用
五、斐波那契数列
1. 斐波那契数列的定义和性质
2. 斐波那契数列的通项公式及其应用
3. 斐波那契数列的递推公式及其推导方法
4. 斐波那契数列的特殊应用:黄金分割
六、调和数列
1. 调和数列的定义和特征:调和平均数、算术平均数、宾汉姆不等式
2. 调和数列的通项公式及应用
3. 调和数列和几何平均数的关系
4. 调和数列的应用:调和平均数与平均速度等
七、数列极限
1. 数列的极限及其定义
2. 数列极限的性质:唯一性、有界性、保号性、代数运算性等
3. 数列极限的判定法:夹逼定理、单调有界原理等
4. 数列极限的应用:数学归纳法、发散数列的研究等
八、数列的应用领域
1. 数列在经济方面的应用:摆脱“复利”套路等
2. 数列在自然科学中的应用:波动方程、元素周期表等
3. 数列在计算机科学中的应用:搜索算法、排序算法等
4. 数列在生命科学和社会实践中的应用:基因序列分析、大学分配问题等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学数列知识点
高中数学数列知识点1
1.定义:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的`公差,通常用字母d来表示。
同样为数列的等比数列的性质与等差数列也有相通之处。
2.数列为等差数列的充要条件是:数列的前n项和S 可以写成S = an^2 + bn的形式(其中a、b为常数).等差数列练习题
3.性质1:公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.
4.性质2:公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.
5.性质3:当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d =0时,等差数列中的数等于一个常数.
高中数学数列知识点2
数列的函数理解:
①数列是一种特殊的函数。
其特殊性主要表现在其定义域和值域上。
数列可以看作一个定义域为正整数集N_或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。
②用函数的观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a。
列表法;b。
图像法;c。
解析法。
其中解析法包括以通项公式给出数列和以递推公式给出数列。
③函数不一定有解析式,同样数列也并非都有通项公式。
通项公式:数列的第N项an与项的序数n之间的关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不)。
数列通项公式的特点:
(1)有些数列的通项公式可以有不同形式,即不。
(2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,。
)。
递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。
数列递推公式特点:
(1)有些数列的递推公式可以有不同形式,即不。
(2)有些数列没有递推公式。
有递推公式不一定有通项公式。
注:数列中的项必须是数,它可以是实数,也可以是复数。
等差数列通项公式
an=a1+(n—1)d
n=1时a1=S1
n≥2时an=Sn—Sn—1
an=kn+b(k,b为常数)推导过程:an=dn+a1—d令d=k,a1—d=b则得到an=kn+b
等差中项
由三个数a,A,b组成的等差数列可以堪称最简单的等差数列。
这时,A叫做a与b的等差中项(arithmeticmean)。
有关系:A=(a+b)÷2
前n项和
倒序相加法推导前n项和公式:
Sn=a1+a2+a3+·····+an
=a1+(a1+d)+(a1+2d)+······+[a1+(n—1)d]
①
Sn=an+an—1+an—2+······+a1
=an+(an—d)+(an—2d)+······+[an—(n—1)d]②
由①+②得2Sn=(a1+an)+(a1+an)+······+(a1+an)(n个)=n(a1+an)
∴Sn=n(a1+an)÷2
等差数列的前n项和等于首末两项的和与项数乘积的一半:Sn=n(a1+an)÷2=na1+n(n—1)d÷2
Sn=dn2÷2+n(a1—d÷2)
亦可得
a1=2sn÷n—an=[sn—n(n—1)d÷2]÷n
an=2sn÷n—a1
有趣的是S2n—1=(2n—1)an,S2n+1=(2n+1)an+1
等差数列性质
一、任意两项am,an的关系为:
an=am+(n—m)d
它可以看作等差数列广义的通项公式。
二、从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an—1=a3+an—2=…=ak+an—k+1,k∈N_
三、若m,n,p,q∈N_,且m+n=p+q,则有am+an=ap+aq
四、对任意的k∈N_,有Sk,S2k—Sk,S3k—S2k,…,Snk —S(n—1)k…成等差数列。
怎么样提高数学成绩
首先想要提升数学成绩,成为数学学霸的前提是要对数学有良好的学习兴趣。
其次要学会课前预习,方便自己能够更加深入的吃透课堂上的知识点。
然后还要学会总结复习,总结自己课堂上的问题,复习课堂上的重要知识点,从而提高自己的数学成绩。
提升数学成绩还要拥有一个错题本,和数学资料。
认真对待自己的学习工具,多做练习题,找出自己的薄弱环节和自己常犯的题型,记在错题本上,常练习,常巩固。
在自己的数学资料中摸索出适合自己的解题技巧,反复练习加以运用,一定会提升你的数学成绩。
学会听课,在课堂上勇于提问。
数学最重要的部分都是在课本上,所以必须要掌握好课堂的45分钟。
把握好数学课本,为
自己打下一个好基础,这样才能更有效的提升你的数学成绩。
学会做课堂笔记,把每节课的重要知识点记下来,以便接下来的复习。
学好数学的方法技巧整理
预习的方法
上课之前一定要抽时间进行预习,有时预习比做作业更重要,因为通过预习我们可以初步掌握课程的大致内容,听课就能够把握好重点,针对性比较强,还会带着问题去听课,听课效率就会比较高,上课听明白了,完成作业也会更好更快,最终会形成良性循环。
听懂课的习惯
注意听教师每节课强调的学习重点,注意听对定理、公式、法则的引入与推导的方法和过程,注意听对例题关键部分的提示和处理方法,注意听对疑难问题的解释及一节课最后的小结,这样,抓住重、难点,沿着知识的发生发展的过程来听课,不仅能提高听课效率,而且能由“听会”转变为“会听”。
不断练习
不断练习是指多做数学练习题。
希望学好数学,多做练习是必不可少的。
做练习的原因有以下三点:第一,熟练和巩固学到的数学知识;二,引导同学灵活运用所学知识点以及独立思考独
立做题的水平;第三,融会贯通。
通过做题将所学的所有知识点结合起来,加深同学对数学体系化的理解。
高中数学数列知识点3
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做公差,用符号语言表示为an+1-an=d。
等差数列的性质:
(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;
(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;
(3)m,n∈N__,则am=an+(m-n)d;
(4)若s,t,p,q∈N__,且s+t=p+q,则as+at=ap+aq,其中as,at,ap,aq是数列中的项,特别地,当s+t=2p时,高一,有as+at=2ap;
(5)若数列{an},{bn}均是等差数列,则数列{man+kbn}仍为等差数列,其中m,k均为常数。
(6)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即
对等差数列定义的理解:
①如果一个数列不是从第2项起,而是从第3项或某一项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列,但可以说从第2项或某项开始是等差数列.
②求公差d时,因为d是这个数列的后一项与前一项的差,故有还有
③公差d∈R,当d=0时,数列为常数列(也是等差数列);当d>0时,数列为递增数列;当d<0时,数列为递减数列;
④是证明或判断一个数列是否为等差数列的依据;
⑤证明一个数列是等差数列,只需证明an+1-an是一个与n 无关的常数即可。
等差数列求解与证明的基本方法:
(1)学会运用函数与方程思想解题;
(2)抓住首项与公差是解决等差数列问题的关键;
(3)等差数列的通项公式、前n项和公式涉及五个量:a1,d,n,an,Sn,知道其中任意三个就可以列方程组求出另外两个(俗称“知三求二’).。