【高中数学教学设计】二倍角教案

合集下载

二倍角 教案

二倍角 教案

二倍角教案教案标题:二倍角教案教案目标:1. 理解二倍角的概念和性质;2. 掌握计算二倍角的方法;3. 能够运用二倍角的知识解决相关问题。

教学重点:1. 二倍角的定义和性质;2. 二倍角的计算方法。

教学难点:1. 运用二倍角解决实际问题。

教学准备:1. 教材:包含二倍角概念和性质的数学教材;2. 教具:黑板、白板、彩色粉笔/马克笔、计算器。

教学过程:Step 1: 引入(5分钟)1. 引导学生回顾角的概念和度量单位;2. 提问:你知道什么是二倍角吗?它有什么特点?Step 2: 二倍角的定义和性质(10分钟)1. 通过示意图和实例,解释二倍角的定义;2. 介绍二倍角的性质,如sin(2θ) = 2sinθcosθ,cos(2θ) = cos²θ - sin²θ等;3. 让学生自己发现和总结二倍角的其他性质。

Step 3: 二倍角的计算方法(15分钟)1. 介绍计算sin(2θ)和cos(2θ)的方法,并通过示例进行演示;2. 引导学生思考如何计算tan(2θ)和cot(2θ),并给予提示和指导;3. 让学生练习计算不同函数的二倍角,并相互核对答案。

Step 4: 运用二倍角解决实际问题(15分钟)1. 通过实际问题的例子,引导学生运用二倍角解决相关问题;2. 提供一些练习题,让学生独立解答,并进行讨论和解答。

Step 5: 总结与拓展(5分钟)1. 总结二倍角的概念、性质和计算方法;2. 拓展学生的思维,让他们思考如何运用二倍角解决更复杂的问题。

Step 6: 作业布置(5分钟)1. 布置相关的练习题,巩固学生对二倍角的理解和应用能力;2. 鼓励学生利用互联网资源进一步拓展二倍角的知识。

教学反思:1. 教学过程中,要注重学生的参与和思考,引导他们主动探索和发现;2. 配合示意图和实例,帮助学生更好地理解二倍角的概念和性质;3. 在解决实际问题时,引导学生灵活运用二倍角的知识,培养他们的问题解决能力。

二倍角正弦余弦正切公式教案

二倍角正弦余弦正切公式教案

二倍角正弦余弦正切公式教案教案类型:理论课教学教学对象:高中数学学生教学目标:1.理解二倍角指的是一个角的角度是另一个角的两倍。

2.掌握二倍角正弦、余弦和正切的计算公式。

3.能够应用二倍角正弦、余弦和正切公式解决相关问题。

4.培养学生的逻辑思维、分析问题和解决问题的能力。

教学内容:1.二倍角定义。

2.二倍角的正弦、余弦和正切公式。

3.二倍角公式的应用。

教学准备:1. PowerPoint或白板。

2.高中数学教科书。

3.课堂练习题、作业等。

教学过程:一、导入(10分钟)1.出示一个角度为30°的角,问学生30°的二倍角是多少?引导学生思考。

2.引导学生讨论二倍角的概念。

二、概念讲解(15分钟)1.介绍二倍角的定义:一个角的角度是另一个角的两倍。

如角A的二倍角记作2A。

2.通过几个示例讲解二倍角的计算方法,如:30°的二倍角是60°,45°的二倍角是90°等。

三、二倍角正弦公式(15分钟)1.通过几个具体的示例引导学生发现二倍角正弦公式的规律。

2. 讲解二倍角正弦公式:sin(2A) = 2sin(A)cos(A)。

四、二倍角余弦公式(15分钟)1.通过几个具体的示例引导学生发现二倍角余弦公式的规律。

2. 讲解二倍角余弦公式:cos(2A) = cos²(A) - sin²(A)。

五、二倍角正切公式(15分钟)1.通过几个具体的示例引导学生发现二倍角正切公式的规律。

2. 讲解二倍角正切公式:tan(2A) = (2tan(A))/(1 - tan²(A))。

六、应用练习(25分钟)1.分发练习题和作业,让学生自主完成。

2.布置一些应用题,让学生应用二倍角公式解决相关问题。

七、总结(10分钟)1.让学生回顾和总结二倍角正弦、余弦和正切公式。

2.强调二倍角公式的应用,如在解方程、证明等方面的应用。

教学反馈:1.布置课后作业,要求学生进一步熟练掌握二倍角公式的应用。

二倍角公式教学设计整理版

二倍角公式教学设计整理版

二倍角公式教学设计整理版【教学设计整理版】二倍角公式的教学设计教学目标:1.理解二倍角的概念和性质;2.掌握二倍角的计算方法;3.能够灵活运用二倍角公式解决实际问题。

教学重点:1.二倍角概念的理解;2.二倍角公式的掌握;3.实际问题的解决能力。

教学难点:1.灵活运用二倍角公式解决实际问题;2.将角度问题转化为二倍角公式求解。

教具准备:1. PowerPoint课件;2.白板、白板笔。

教学过程:Step 1 引入新知识(5分钟)1.引导学生回顾正弦定理和余弦定理的内容。

2.提问:在解决三角函数问题中,有没有一些特殊的角度,比如原来的角度的两倍?3.导入二倍角的概念,并与学生共同探讨二倍角的性质。

Step 2 二倍角公式的推导(10分钟)1. 在白板上写出正弦和余弦函数的定义式:$sin\theta =\frac{a}{c}$, $cos\theta = \frac{b}{c}$。

2.提问:如何将正弦和余弦函数的角度变为原来的两倍?3. 导出正弦函数的二倍角公式:$sin2\theta = 2sin\thetacos\theta$。

4.提问:如何将余弦函数的角度变为原来的两倍?5. 导出余弦函数的二倍角公式:$cos2\theta = cos^2\theta -sin^2\theta$ 或 $cos2\theta = 2cos^2\theta - 1$。

Step 3 二倍角公式的运用(15分钟)1.使用示例和图像演示二倍角公式的计算过程,引导学生掌握二倍角公式的具体运用方法。

2.解答学生提出的相关问题,并进行再次强调和巩固。

Step 4 实际问题的解决(20分钟)1.准备一些和角度有关的实际问题,让学生运用二倍角公式进行求解。

2.学生个人或小组合作解决问题,鼓励他们灵活运用二倍角公式并进行推理推导。

Step 5 拓展与应用(15分钟)1.引导学生思考:二倍角公式可以用于什么实际问题的求解中?2.探究二倍角公式在几何图形中的运用。

二倍角公式教学设计

二倍角公式教学设计

二倍角公式教学设计教学设计:二倍角公式一、教学目标1.理解二倍角的概念。

2.掌握正弦、余弦和正切的二倍角公式。

3.能够应用二倍角公式解决实际问题。

二、教学重点1.二倍角概念的理解。

2.正弦、余弦和正切的二倍角公式的掌握和应用。

三、教学难点1.正弦、余弦和正切的二倍角公式的推导。

2.二倍角的应用。

四、教学方法1.情景导入法:例举二倍角的实际应用场景,激发学生的兴趣。

2.讲授法:以黑板、白板或电子屏幕为媒介,向学生介绍二倍角的概念和公式的推导。

3.分组合作法:组织学生分小组合作解决问题,通过讨论和合作来提高理解和应用能力。

4.巩固与评价:设计练习题,巩固学生对二倍角的理解和应用。

五、教学过程Step 1 情景导入(5分钟)老师给学生提出一个问题:“在打篮球时,如果你了解对方投篮动作的周期性,是否有助于你防守?为什么?”引导学生思考二倍角的实际应用。

Step 2 概念介绍(10分钟)通过PPT或黑板,给学生呈现二倍角的概念和定义,解释二倍角的意义和作用。

让学生明白二倍角是原角的两倍大小。

Step 3 推导正弦的二倍角公式(15分钟)1.老师给学生出示一个正弦曲线图,解释正弦的周期性和对称性。

2.将角度分为两种情况:一种是原角在第一象限,另一种是原角在第二,三,四象限。

3.根据正弦的周期性,推导出正弦的二倍角公式。

Step 4 推导余弦的二倍角公式(15分钟)1.向学生出示余弦曲线图,解释余弦的周期性和对称性。

2.将角度分为两种情况:一种是原角在第一象限,另一种是原角在第二,三,四象限。

3.根据余弦的周期性,推导出余弦的二倍角公式。

Step 5 推导正切的二倍角公式(15分钟)1.向学生出示正切曲线图,解释正切的周期性。

2.将角度分为两种情况:一种是原角在第一象限,另一种是原角在第二,四象限。

3.根据正切的周期性,推导出正切的二倍角公式。

Step 6 实例演练(20分钟)1.学生分小组解决二倍角公式的实际问题,如计算太阳高度角,计算炮弹的射程等。

二倍角教案

二倍角教案

二倍角的三角函数(第1课时)一、学习目标1.掌握从两角和的正弦、余弦、正切公式推导出二倍角的正弦、余弦、正切公式的过程,了解它们的内在联系;理解化归思想在推导中的作用.2.掌握二倍角公式(正用、逆用及变形)在求值、化简、证明过程中的应用,提高学生的运算和逻辑推理能力.3.强化学生的参与意识,领会从一般到特殊的数学思想,体会公式中所蕴含的简洁美、和谐美,激发学生学习数学的兴趣.二、教学重难点重点:二倍角公式及变形公式的推导难点:二倍角公式及变形公式的灵活运用三、学法指导让学生通过图形和公式推导,从数和形两个方面自主的探究二倍角公式,激发学生的学习欲望和学习兴趣;通过练习反馈,找出学生对知识点的掌握情况及学生间的问题、差距.四、学习过程(一)、情景设计前面我们学习了两角和与差的正弦、余弦、正切公式,这些公式中的角α、β都带有一般的性质,我们说一般性中总蕴含着特殊性,比如角βα=时,公式中就只有α和α2的三角函数了,那么此时α的三角函数和α2的三角函数有什么样的关系呢,公式会显示出哪些简洁之美呢?这就是我们今天研究的课题。

关于这个课题我们可以从“数”和“形”两个方面去研究。

现在大家就把教学案上的问题1到问题3讨论组织一下,过会我们请小组成员解决一下这几个问题。

(二)、学生活动小组讨论3分钟,请两个小组代表回答教师完善过程与结论(三)、构建数学1、观察函数x y sin =与函数x y 2sin =在图像上有什么样的关系?x y sin = 纵坐标不变,横坐标变为原来的1/2 x y 2sin =用解析式怎样表达出来呢?显然通过“形”---图像是无法给出函数x y sin =与函数x y 2sin =的解析式关系的。

那么从“数”的角度出发,即在两角和的正弦、余弦、正切公式中取一种特殊情况, 使得αβ=,你能得到你想要的关系式吗?哪个小组帮我们解决一下这个问题。

2、二倍角公式αααcos sin 22sin =ααα22sin cos 2cos -=ααα2tan 1tan 22tan -= 由于α2是α的二倍角,我们就把这一组公式称为二倍角公式。

二倍角公式教案

二倍角公式教案

二倍角公式教案二倍角公式是高中数学中的一个重要概念,它与三角函数的性质密切相关。

本教案将以通俗易懂的方式,帮助学生理解和掌握二倍角公式的概念和应用。

一、教学目标1. 理解二倍角公式的定义及其推导过程;2. 能够熟练运用二倍角公式求解相关问题;3. 能够将二倍角公式应用于实际问题的解决;4. 提高学生对数学的抽象思维能力和计算能力。

二、教学步骤步骤一:引入知识(10分钟)教师可设计一个小游戏或提出一个引人入胜的问题,引起学生的兴趣,来激发学生学习的积极性。

例如,可以出示一个三角形的角度ABC,让学生猜测角度BAC是多大,并给出合理的解释。

步骤二:概念解释与推导过程(15分钟)1. 教师通过对前一步骤的问题的解答,引出二倍角的概念。

2. 教师通过几何图形的引入,解释正弦、余弦和正切函数以及角度的概念。

3. 教师通过将角度的一半和角度的两倍的对比,引出二倍角公式的概念。

4. 教师通过几何图形的推导,解释二倍角公式的推导过程。

步骤三:公式的证明与性质(15分钟)1. 教师通过使用数学恒等式,根据三角函数的性质,证明二倍角公式的正确性。

2. 教师解释二倍角公式的几何意义,即角度的一半和两倍之间的关系。

3. 教师提出二倍角公式的数学性质,让学生通过举例来验证。

步骤四:公式的应用与问题解决(20分钟)1. 教师提供一些二倍角公式的应用问题,并引导学生运用二倍角公式进行计算。

2. 教师通过对问题的解答过程的讲解,让学生理解二倍角公式在解决实际问题中的应用。

3. 教师设计一些扩展问题,让学生发散思维,拓展应用二倍角公式的能力。

步骤五:小结与巩固(10分钟)教师对本节课的内容进行小结,强调二倍角公式的重要性和实用性。

并布置相关练习,巩固学生对二倍角公式的理解和应用。

三、教学重点和难点1. 理解二倍角公式的定义及其推导过程;2. 能够熟练运用二倍角公式求解相关问题。

四、教学方式1. 引导式教学:通过问题引导学生主动思考,激发他们的学习兴趣。

二倍角公式教案

二倍角公式教案

二倍角公式教案教学目标:1. 掌握二倍角公式的概念和基本形式。

2. 理解二倍角公式的几何意义和代数意义。

3. 能够应用二倍角公式解决相关的几何和代数问题。

教学重点:1. 二倍角公式的数学表达。

2. 二倍角公式在几何中的应用。

教学难点:1. 二倍角公式的推导和应用。

2. 二倍角公式与其他三角函数公式的关系。

教学准备:1. 教师准备一份二倍角公式的笔记和示例。

2. 学生准备纸和笔。

教学过程:一、导入(5分钟)教师简单回顾一下学生之前学过的三角函数公式,如正弦、余弦、正切的基本关系等。

二、讲解(20分钟)1. 教师引入二倍角公式的概念,即将角的角度倍增,得到的新角称为二倍角。

2. 教师给出二倍角公式的几何意义和代数意义。

几何意义:将角A的角度倍增得到角B,角A与角B的关系是什么?代数意义:将三角函数的角度加倍得到新的三角函数,如sin2A、cos2A等。

3. 教师给出二倍角公式的具体形式和推导过程。

sin2A = 2sinAcosAcos2A = cos²A - sin²A = 2cos²A - 1 = 1 - 2sin²Atan2A = 2tanA / (1 - tan²A)4. 教师通过几个具体的示例,向学生展示二倍角公式的应用。

三、练习(15分钟)学生完成教师布置的练习题,巩固对二倍角公式的理解和应用。

四、巩固(10分钟)教师提出几个综合性问题,让学生结合二倍角公式进行解答,检验学生的应用能力。

五、总结和拓展(5分钟)教师对本节课所学的二倍角公式进行总结,强调其重要性和应用场景。

同时,鼓励学生拓展学习其他有关三角函数的公式和概念。

六、作业(2分钟)布置课后作业,要求学生继续练习二倍角公式的应用题,并思考与其他三角函数公式的联系与差异。

教学反思:本节课主要介绍了二倍角公式的概念、形式和推导过程,并通过练习和示例加深了学生对二倍角公式的理解和应用。

在教学过程中,可以结合具体的问题和实例,使学生更好地理解和掌握二倍角公式的几何和代数意义。

高中高二数学二倍角的三角函数教案设计

高中高二数学二倍角的三角函数教案设计

高中高二数学二倍角的三角函数教案设计教案设计:高中高二数学二倍角的三角函数一、教学目标:1. 理解二倍角的概念,并掌握二倍角的性质。

2. 掌握二倍角的三角函数公式。

3. 能够运用二倍角的三角函数公式解决实际问题。

二、教学内容:1. 二倍角的概念和性质。

2. 二倍角的三角函数公式。

三、教学过程:步骤一:导入新知识1. 谈论平时的学习和应用中是否有用到过二倍角的概念和公式。

2. 引出本节课的学习内容:二倍角的三角函数。

步骤二:概念讲解和性质说明1. 给出二倍角的定义:在原角的基础上,角度扩大一倍后得到的角即为二倍角。

2. 分析二倍角的正弦、余弦、正切的性质,带入图像和具体数值进行说明。

步骤三:三角函数公式的推导与运用1. 讲解二倍角的三角函数公式的推导过程,并给出公式的表达形式。

2. 讲解公式中的特殊情况,如角度为0°、90°、180°等情况下的三角函数值。

3. 运用二倍角的三角函数公式解决一些实际问题,如角度为30°、45°、60°等情况下的三角函数值的计算。

步骤四:练习与巩固1. 设计一些针对二倍角的三角函数公式的练习题,让学生进行练习并互相交流解题方法。

2. 布置相关的课后习题,供学生进行巩固和拓展。

四、教学手段:1. 板书:绘制二倍角的三角函数公式推导过程和相关例题。

2. 多媒体:播放相关的视频和动画,引导学生更好地理解和掌握知识。

五、教学评价:1. 教师针对学生在课堂上的表现进行口头评价,并及时纠正和解答学生的问题。

2. 布置课后作业,检验学生对二倍角和三角函数公式的掌握情况。

六、教学延伸:可以设计更多的实际问题和练习题,帮助学生进一步巩固和应用二倍角的三角函数知识。

也可以引导学生研究更多二倍角的性质和相关公式。

二倍角公式教案

二倍角公式教案

二倍角公式教案教案标题:二倍角公式教案教案目标:1. 理解二倍角的概念和性质。

2. 掌握二倍角公式的推导和运用。

3. 能够解决与二倍角相关的几何和三角函数问题。

教学资源:1. 教材:包含二倍角概念和公式的数学教科书。

2. 白板、彩色粉笔或白板标记笔。

3. 幻灯片或投影仪,用于展示相关图形和公式。

教学步骤:引入(5分钟):1. 利用一个简单的几何问题引起学生对二倍角的兴趣,例如:一个角的度数是30°,那么它的二倍角是多少度?2. 引导学生思考并讨论,从而引出二倍角的概念。

讲解(15分钟):1. 在白板上绘制一个角θ,并标记其顶点为O,边为OA。

2. 解释二倍角的定义:二倍角是指通过将角θ旋转一周得到的角,记作2θ。

3. 引导学生思考并讨论,通过旋转角θ一周后,边OA的位置和方向发生了什么变化?角度发生了什么变化?4. 讲解二倍角公式的推导过程:根据三角函数的定义,利用三角函数的和差公式,推导出cos2θ和sin2θ的表达式。

示范(10分钟):1. 利用幻灯片或投影仪展示二倍角公式的推导过程,并强调每一步的理由和推理。

2. 通过几个具体的例子,演示如何利用二倍角公式计算cos2θ和sin2θ的值。

练习(15分钟):1. 分发练习题,要求学生利用二倍角公式计算给定角度的cos2θ和sin2θ的值。

2. 监督学生的练习过程,及时解答他们的问题,并给予指导。

3. 鼓励学生互相合作,讨论解题方法和答案。

总结(5分钟):1. 总结二倍角公式的推导过程和应用方法。

2. 强调二倍角在几何和三角函数中的重要性。

3. 鼓励学生在课后继续练习和探索二倍角的相关问题。

拓展练习(可作为课后作业):1. 给定一个角度θ,计算cos3θ和sin3θ的值。

2. 探究二倍角公式在解决三角方程和几何问题中的应用。

教学评估:1. 在课堂上观察学生的参与度和理解程度。

2. 检查学生在练习题中的答案和解题过程。

3. 针对学生的表现,给予反馈和指导。

高中数学《二倍角公式的应用》教案

高中数学《二倍角公式的应用》教案

高中数学《二倍角公式的应用》教案一、教学目标:1. 理解二倍角公式的概念。

2. 掌握二倍角公式的推导方法及应用。

3. 能够合理运用二倍角公式解决实际问题。

二、教学内容:1. 二倍角公式的概念和推导方法。

2. 二倍角公式的应用。

三、教学过程:1. 二倍角公式的概念小结:以正弦函数为例,了解一下二倍角公式的概念。

若已知$\sin\theta$,如何求 $\sin2\theta$?$\sin\theta$ 和 $\cos\theta$ 的二倍角公式:$\sin2\theta=2\sin\theta\cos\theta$,$\cos2\theta=\cos^2\theta-\sin^2\theta=2\cos^2\theta-1=1-2\sin^2\theta$。

2. 二倍角公式的推导方法小结:推导 $\cos2\theta$ 的公式,和 $\sin2\theta$ 基本一样,只不过是利用了 $\cos\theta$ 和 $\sin\theta$ 的平方和差的关系式。

$\cos2\theta=\cos^2\theta-\sin^2\theta=2\cos^2\theta-1=1-2\sin^2\theta$。

3. 二倍角公式的应用例 1 已知 $\sin\theta=\dfrac{3}{5}$,求 $\cos2\theta$。

解:$ \begin{aligned}[t] & \cos^2\theta+\sin^2\theta=1 \\ &\therefore\cos^2\theta=1-\sin^2\theta=1-\dfrac{9}{25}=\dfrac{16}{25} \end{aligned} $由 $\cos2\theta=2\cos^2\theta-1$,得$\cos2\theta=2\times\dfrac{16}{25}-1=-\dfrac{9}{25}$。

例 2 已知 $0<\theta<\dfrac{\pi}{2}$,$\tan\theta=\dfrac{2}{3}$,求 $\sin2\theta$、$\cos2\theta$ 和 $\tan2\theta$。

二倍角公式教案范文

二倍角公式教案范文

二倍角公式教案范文一、教学目标1.理解和掌握二倍角公式的定义和计算方法。

2.学会应用二倍角公式解决实际问题。

3.培养学生的逻辑思维能力和数学计算能力。

4.提高学生解决问题的能力和创新精神。

二、教学重点1.掌握二倍角公式的定义和相关性质。

2.理解二倍角公式的应用场景。

三、教学难点1.学会应用二倍角公式解决实际问题。

2.培养学生的逻辑思维能力和数学计算能力。

四、教学准备1.教师准备:教案、学生习题集、多媒体设备。

2.学生准备:课前预习相关知识。

五、教学过程Step 1 引入与导入(10分钟)1.讲解引入:二倍角公式是解决三角函数问题的重要工具,能够将角度与三角函数的关系进行合理的转换。

2.反问导入:在我们学习过的三角函数中,是否有与之相关的倍角公式呢?让学生回顾一下。

Step 2 二倍角公式的定义与证明(20分钟)1.当0°≤θ≤90°时,定义二倍角公式如下:sin2θ = 2sinθcosθcos2θ = cos^2θ - sin^2θtan2θ = (2tanθ)/(1 - tan^2θ)请学生反问和思考这些定义是如何得出的,然后进行讲解。

2. 证明:以sin2θ = 2sinθcosθ为例,通过画图,运用三角恒等变化式,可以推导出sin2θ = 2sinθcosθ的等式。

其它两个公式的证明也可以通过类似的方法完成。

Step 3 二倍角公式的应用(30分钟)1. 在解决问题中,我们可以通过二倍角公式将复杂的问题转化为简单的问题。

例如,可以用用cos2θ来计算cosθ的值。

2.请学生选做实例,进行实际的计算,解决具体问题。

Step 4 总结与归纳(10分钟)1.总结二倍角公式的定义和证明方法。

2.请学生进行总结和复述,以加深对二倍角公式的理解。

六、巩固与拓展1.布置课后作业:要求学生完成相关题目,巩固和拓展所学知识。

2.提出拓展问题:学生可以尝试推导三倍角、四倍角等多倍角的公式。

二倍角公式教案范文

二倍角公式教案范文

二倍角公式教案范文一、教学目标1.熟练掌握二倍角公式的概念及推导方法2.能够运用二倍角公式解决相关题目3.培养学生的逻辑思维和推理能力4.培养学生的合作意识和团队合作精神二、教学重点与难点1.理解二倍角公式的概念及使用方法2.掌握二倍角公式的推导方法3.运用二倍角公式解决相关题目4.锻炼学生的逻辑思维和推理能力三、教学设计1.导入(5分钟)教师通过展示一个角的图片,并提问:你们知道如何求出这个角的两倍角吗?引出二倍角的概念。

2.介绍二倍角公式(10分钟)教师简要介绍二倍角公式的定义和推导方法,并与学生一起思考如何推导出二倍角公式。

3.推导二倍角公式(20分钟)教师以一个特殊的角为例,引导学生熟悉推导二倍角公式的步骤和方法。

学生根据提示和引导,逐步推导出二倍角公式。

教师提供必要的帮助和解答。

通过学生的互动讨论和集体合作,逐渐理解和掌握推导方法。

4.运用二倍角公式解决问题(25分钟)教师针对不同类型的二倍角问题,提供相关例题并进行解析。

通过学生的思考和讨论,引导学生独立解题,找到问题的突破口。

鼓励学生提出解题思路和方法,并与整个班级合作整理解题方法。

5.进一步拓展(15分钟)教师提供一些拓展性的题目和问题,让学生更深入地思考和应用二倍角公式。

学生可以分组合作解题,展示解题过程和结果。

教师可以帮助学生发现解题中的问题和不足之处,并给予指导和建议。

6.总结与小结(5分钟)教师引导学生进行反思、总结和小结。

学生将自己的收获和体会进行分享。

教师对学生的表现进行评价,并点评一些典型的解题方法和思路。

四、教学辅助材料1.角的图片2.二倍角公式的定义和推导步骤3.二倍角公式的例题4.拓展性题目和问题五、教学评估1.通过学生的实际操作和解题过程,观察学生的理解和掌握情况。

2.监控学生的合作过程和交流情况,评价学生的合作意识和团队精神。

3.基于学生的答案和解题思路,评价学生对二倍角公式的应用能力和逻辑推理能力。

六、教学延伸1.引导学生独立探索其他角的倍角公式2.引导学生探究角的三倍角公式及更大倍数的公式3.引导学生探究其他角的相关公式,如半角公式、求和差化积公式等七、教学反思通过教学,学生可以理解和应用二倍角公式,提高综合分析和问题解决能力,培养学生的合作精神和团队意识。

高中数学_二倍角公式教学设计学情分析教材分析课后反思

高中数学_二倍角公式教学设计学情分析教材分析课后反思

《二倍角公式》教学设计二倍角公式—学情分析学生在必修4第一章已经学习过三角函数的相关内容,对三角函数有了一定的了解,高中一年级学生正值身心发展的鼎盛时期,智力水平已经有了明显上升,观察具有一定的目的性,系统性,全面性但是欠精确,逻辑思维能力尚属经验型,运算能力有待加强。

在知识储备上,通过前面的学习,对三角函数的知识已有较为全面的认识。

教学要尊重学生自主选择学习内容、学习伙伴、学习方式的权利;要充分发挥学生的积极性和主动性,让学生通过自主学习,理解课文思想内容,并在自学实践中逐步提高理解能力。

结合教材的内容和学生的年龄特点及认识水平,在本堂课的教学中,我指导学生采取多质疑、自主学习、合作探究的方法进行学习。

二倍角公式—教材分析教材的地位和作用:二倍角的正弦、余弦、正切是学生在已经学习了两角和、差的正、余弦和正切的公式的基础上的进一步延伸,推导出倍角公式,是三角函数的重要公式 ,应用这组公式也是本章的重点内容。

在第一章,学生接触了同角三角函数的变换,在本章,学生将利用和角公式推导出倍角公式,从而进行三角恒等变换,从而提升学生的推理能力和逻辑推理能力,从而增强学生做题的灵活性。

二倍角公式评测练习(30分钟独立完成,相信自己)1.2. ()51sin ,sin213αα已知=求()132sin cos , ,sin2 ,sin -cos 324ππαααααα+=<<已知求()123cos(),cos(2)333ππαα+=+已知求8sin cos cos cos .48482412ππππ(1)3.巩固提升:二倍角公式—课后反思二倍角公式是两角和的正弦、余弦及正切公式的推广及特殊化。

进而,公式的推导相当简单,难点在于公式的运用,尤其是逆用及变形运用,对于学生的思维及能力是相当大的挑战。

毕竟,公式本身就是符号的集合,抽象是其主要特征。

当然也正因为其抽象性,才具有广泛的迁移性及应用。

从简到繁,由易到难,层层推进,设计练习系列,遵循学生认知规律,或许能够有效化解难点。

二倍角公式教案

二倍角公式教案

二倍角公式教案课程名称:二倍角公式适用年级:高中教学目标:1. 理解二倍角公式的概念及其运用;2. 能够准确地应用二倍角公式解决相关的数学问题;3. 能够将二倍角公式与其他数学公式进行联想和应用。

教学内容:一、二倍角公式的概念1. 介绍二倍角的概念:二倍角是指一个角的角度是另一个角度的两倍,即角A的二倍角为角2A。

二、二倍角公式的推导1. 利用三角函数的公式,推导正弦和余弦的二倍角公式;2. 利用二倍角公式推导正切的二倍角公式。

三、二倍角公式的应用1. 通过练习题来巩固、加深对二倍角公式的理解;2. 调研二倍角公式在实际应用中的具体情况;3. 利用二倍角公式解决数学问题。

教学方法:1. 线上授课:借助网络平台,通过多媒体课件、教学视频等途径进行教学;2. 课堂互动:通过小组或全班讨论、课堂练习等方式,激发学生的兴趣和主动性;3. 个性化教学:根据学生掌握情况和学习需求,进行差异化教学和个别辅导。

课堂活动:1. 通过观看视频、听讲解等方式,了解二倍角公式的定义和推导方法;2. 小组合作讨论和实践,利用二倍角公式解决与日常生活和其他学科相关的问题;3. 课堂练习和答疑,帮助学生更好地掌握和应用二倍角公式。

教学评估:1. 课堂表现:包括理解、思考、提问和互动等方面的表现;2. 书面作业:巩固和检验学生对二倍角公式的掌握熟练程度;3. 实际应用:探究和分析二倍角公式在实际问题中的应用情况,并形成个人的思考和总结。

教学重点:1. 理解二倍角公式的概念和推导方法;2. 掌握二倍角公式的应用方法。

教学难点:1. 二倍角公式的推导过程和应用方法;2. 在复杂情况下灵活运用二倍角公式。

知识拓展:1. 了解三倍角、四倍角等相关的概念和运用方法;2. 探究二次函数和三角函数之间的关系和应用方法。

教学反思:1. 教师应根据学生兴趣、实际应用、差异化教学等方面的需求,设计更加灵活、丰富、多样化的教学形式和内容,以提升学生的学习效果和体验;2. 学生可以通过独立思考、团队协作、探究实践等途径,发掘二倍角公式更广泛、深入的应用场景,以拓展知识和提升应用能力。

二倍角的正弦余弦正切公式教学设计

二倍角的正弦余弦正切公式教学设计

二倍角的正弦余弦正切公式教学设计教学设计:二倍角的正弦、余弦、正切公式一、教学目标1.掌握二倍角的概念和性质。

2.掌握二倍角的正弦、余弦、正切公式及其推导过程。

3.能够灵活运用二倍角的公式求解相关题目。

二、教学内容1.二倍角的概念和性质。

2.二倍角的正弦、余弦、正切公式及其推导过程。

3.二倍角公式的应用。

三、教学过程步骤一:导入与引入1.导入通过展示一道简单的题目引入二倍角的概念。

例如:已知角α的弧度为π/6,求角2α的弧度。

2.引入引导学生思考,当已知一些角的弧度时,如何求解其二倍角的弧度。

步骤二:二倍角的定义与性质1.定义向学生阐述二倍角的概念:设θ为任意角,则它的二倍角记作2θ。

2.性质向学生介绍二倍角的几个重要性质:(1) 正弦:sin2θ = 2sinθcosθ(2) 余弦:cos2θ = cos²θ - sin²θ(3) 正切:tan2θ = (2tanθ)/(1-tan²θ)步骤三:二倍角公式的推导1.正弦二倍角公式的推导(1)推导思路:利用三角函数的和差化简公式进行推导。

(2)按照推导步骤依次进行:a. sin2θ = sin(θ+θ)b. 根据和差化简公式 sin(A+B) = sinAcosB + cosAsinB,展开得到sin(θ+θ) = sinθcosθ + cosθsinθc. 化简得sin2θ = 2sinθcosθ2.余弦二倍角公式的推导(1)推导思路:同样利用三角函数的和差化简公式进行推导。

(2)按照推导步骤依次进行:a. cos2θ = cos(θ+θ)b. 根据和差化简公式 cos(A+B) = cosAcosB - sinAsinB,展开得到cos(θ+θ) = cos²θ - sin²θc. 化简得cos2θ = cos²θ - sin²θ3.正切二倍角公式的推导(1)推导思路:利用相除消去的方法进行推导。

《二倍角公式》 教学设计

《二倍角公式》 教学设计

《二倍角公式》教学设计一、教学目标1、知识与技能目标学生能够理解和掌握二倍角的正弦、余弦、正切公式,能熟练运用公式进行求值、化简和证明。

2、过程与方法目标通过公式的推导过程,培养学生的逻辑推理能力和数学思维能力;通过公式的应用,提高学生的运算能力和分析问题、解决问题的能力。

3、情感态度与价值观目标激发学生对数学的兴趣,培养学生勇于探索、创新的精神,让学生体会数学知识之间的内在联系,感受数学的美。

二、教学重难点1、教学重点二倍角公式的推导及应用。

2、教学难点二倍角公式的灵活运用,尤其是角的变换和函数名称的变换。

三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过复习两角和与差的正弦、余弦、正切公式,引导学生思考:如果两角相等,会得到怎样的公式呢?从而引出二倍角公式。

2、公式推导(1)引导学生从两角和的正弦公式\(\sin(\alpha +\beta) =\sin\alpha\cos\beta +\cos\alpha\sin\beta\)出发,当\(\alpha =\beta\)时,得到\(\sin 2\alpha = 2\sin\alpha\cos\alpha\)。

(2)同理,从两角和的余弦公式\(\cos(\alpha +\beta) =\cos\alpha\cos\beta \sin\alpha\sin\beta\),当\(\alpha =\beta\)时,得到\(\cos 2\alpha =\cos^2\alpha \sin^2\alpha\),再利用同角三角函数的基本关系\(\sin^2\alpha +\cos^2\alpha = 1\),进一步得到\(\cos 2\alpha = 2\cos^2\alpha 1\)和\(\cos 2\alpha = 12\sin^2\alpha\)。

(3)从两角和的正切公式\(\tan(\alpha +\beta) =\frac{\tan\alpha +\tan\beta}{1 \tan\alpha\tan\beta}\),当\(\alpha =\beta\)时,得到\(\tan 2\alpha =\frac{2\tan\alpha}{1 \tan^2\alpha}\)。

二倍角公式教案

二倍角公式教案

【课题】 1.1两角和与差的正弦公式与余弦公式(二)
【教学目标】
知识目标:
掌握二倍角公式,能正确运用各个公式进行简单的三角函数式的计算和化简. 能力目标:
学生逆向思维能力及灵活选用公式解决问题的能力得到提高.
【教学重点】
本节课的教学重点是二倍角公式.
【教学难点】
难点是公式的推导和运用.
【教学设计】
明确二倍角的概念.二倍角的实质是用一个角的三角函数表示这个角的二倍角的三角函数.二倍角余弦公式的三种形式同等重要,要分析这三种公式各自的形式特点.例9中,要想利用正弦二倍角公式,必须首先求出余弦函数值.求cos2α时,使用的公式有利用同角三角函数关系、利用cos α和利用sin α的三类公式可供选择.选用公式2cos212sin αα=-的主要原因
是考虑到sin α是已知量.例10中,讨论
2
α角的范围是因为利用同角三角函数关系求sin 2α

需要开方.旨在让学生熟悉:只要具备二倍角关系,就可以使用公式.教材在求sin 4
α
时,利用
了升幂公式,由讨论2
α
角的范围来决定开方取正号还是负号.虽然这里就是实际上使用半角
公式,但是教材与大纲中,都没有引入半角公式的要求,因此,不补充半角公式,只作为二倍角余弦变形的应用来介绍.例11是三角证明题.证明的基本思路是将角用半角来表示,再进行三角式的化简.
【教学备品】
教学课件.
【课时安排】
1课时.(45分钟)
【教学过程】
2
2sin75. 【教师教学后记】。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.3 二倍角的正弦、余弦、正切公式教学分析“二倍角的正弦、余弦、正切公式”是在研究了两角和与差的三角函数的基础上,进一步研究具有“二倍角”关系的正弦、余弦、正切公式的,它既是两角和与差的正弦、余弦、正切公式的特殊化,又为以后求三角函数值、化简、证明提供了非常有用的理论工具、通过对二倍角的推导知道,二倍角的内涵是:揭示具有倍数关系的两个三角函数的运算规律、通过推导还让学生加深理解了高中数学由一般到特殊的化归思想、因此本节内容也是培养学生运算和逻辑推理能力的重要内容,对培养学生的探索精神和创新能力、发现问题和解决问题的能力都有着十分重要的意义.本节课通过教师提出问题、设置情境及对和角公式中α、β关系的特殊情形α=β时的简化,让学生在探究中既感到自然、易于接受,还可清晰知道和角的三角函数与倍角公式的联系,同时也让学生学会怎样发现规律及体会由一般到特殊的化归思想.这一切教师要引导学生自己去做,因为,《数学课程标准》提出:“要让学生在参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些体验”.在实际教学过程中不要过多地补充一些高技巧、高难度的练习,更不要再补充一些较为复杂的积化和差或和差化积的恒等变换,否则就违背了新课标在这一章的编写意图和新课改精神.三维目标1.通过让学生探索、发现并推导二倍角公式,了解它们之间、以及它们与和角公式之间的内在联系,并通过强化题目的训练,加深对二倍角公式的理解,培养运算能力及逻辑推理能力,从而提高解决问题的能力.2.通过二倍角的正弦、余弦、正切公式的运用,会进行简单的求值、化简、恒等证明.体会化归这一基本数学思想在发现中和求值、化简、恒等证明中所起的作用.使学生进一步掌握联系变化的观点,自觉地利用联系变化的观点来分析问题,提高学生分析问题、解决问题的能力.3.通过本节学习,引导学生领悟寻找数学规律的方法,培养学生的创新意识,以及善于发现和勇于探索的科学精神.重点难点教学重点:二倍角公式推导及其应用.教学难点:如何灵活应用和、差、倍角公式进行三角式化简、求值、证明恒等式. 课时安排1课时教学过程导入新课(问题导入)出示问题,让学生计算,若sinα=53,α∈(2,π),求sin2α,cos2α的值.学生会很容易看出:sin2α=sin(α+α)=sinαcosα+cosαsinα=2sinαcosα的,以此展开新课,并由此展开联想推出其他公式.推进新课新知探究提出问题①还记得和角的正弦、余弦、正切公式吗?(请学生默写出来,并由一名学生到黑板默写) ②你写的这三个公式中角α、β会有特殊关系α=β吗?此时公式变成什么形式?③在得到的C 2α公式中,还有其他表示形式吗?④细心观察二倍角公式结构,有什么特征呢?⑤能看出公式中角的含义吗?思考过公式成立的条件吗?⑥让学生填空:老师随机给出等号一边括号内的角,学生回答等号另一边括号内的角,稍后两人为一组,做填数游戏:sin( )=2sin( )cos( ),cos( )=cos 2( )-sin 2( ).⑦思考过公式的逆用吗?想一想C 2α还有哪些变形?⑧请思考以下问题:sin2α=2sinα吗?cos2α=2cosα吗?tan2α=2tanα?活动:问题①,学生默写完后,教师打出课件,然后引导学生观察正弦、余弦的和角公式,提醒学生注意公式中的α,β,既然可以是任意角,怎么任意的?你会有些什么样的奇妙想法呢?并鼓励学生大胆试一试.如果学生想到α,β会有相等这个特殊情况,教师就此进入下一个问题,如果学生没想到这种特殊情况,教师适当点拨进入问题②,然后找一名学生到黑板进行简化,其他学生在自己的座位上简化、教师再与学生一起集体订正黑板的书写,最后学生都不难得出以下式子,鼓励学生尝试一下,对得出的结论给出解释.这个过程教师要舍得花时间,充分地让学生去思考、去探究,并初步地感受二倍角的意义.同时开拓学生的思维空间,为学生将来遇到的3α或3β等角的探究附设类比联想的源泉. sin(α+β)=sinαcosβ+cosαsinβsin2α=2sinαcosα(S 2α);cos(α+β)=cosαcosβ-sinαsinβcos2α=cos 2α-sin 2α(C 2α); tan(α+β)=)(tan 1tan 22tan tan tan 1tan tan 22ααααβαβαT -=⇒-+ 这时教师适时地向学生指出,我们把这三个公式分别叫做二倍角的正弦,余弦,正切公式,并指导学生阅读教科书,确切明了二倍角的含义,以后的“倍角”专指“二倍角”、教师适时提出问题③,点拨学生结合sin 2α+cos 2α=1思考,因此二倍角的余弦公式又可表示为以下右表中的公式.这时教师点出,这些公式都叫做倍角公式(用多媒体演示).倍角公式给出了α的三角函数与2α的三角函数之间的关系.问题④,教师指导学生,这组公式用途很广,并与学生一起观察公式的特征与记忆,首先公式左边角是右边角的2倍;左边是2α的三角函数的一次式,右边是α的三角函数的二次式,即左到右→升幂缩角,右到左→降幂扩角、二倍角的正弦是单项式,余弦是多项式,正切是分式.问题⑤,因为还没有应用,对公式中的含义学生可能还理解不到位,教师要引导学生观察思考并初步感性认识到:(Ⅰ)这里的“倍角”专指“二倍角”,遇到“三倍角”等名词时,“三”字等不可省去;(Ⅱ)通过二倍角公式,可以用单角的三角函数表示二倍角的三角函数;(Ⅲ)二倍角公式是两角和的三角函数公式的特殊情况;(Ⅳ)公式(S 2α),(C 2α)中的角α没有限制,都是α∈R .但公式(T 2α)需在α≠21kπ+4π和α≠kπ+2π(k∈Z )时才成立,这一条件限制要引起学生的注意.但是当α=kπ+2π,k∈Z 时,虽然tanα不存在,此时不能用此公式,但tan2α是存在的,故可改用诱导公式.问题⑥,填空是为了让学生明了二倍角的相对性,即二倍角公式不仅限于2α是α的二倍的形式,其他如4α是2α的二倍,2a 是4a 的二倍,3α是23a 的二倍,3a 是6a 的二倍,2π-α是4π-2a 的二倍等,所有这些都可以应用二倍角公式. 例如:sin 2a =2sin 4a cos 4a ,cos 3a =cos 26a -sin 26a 等等. 问题⑦,本组公式的灵活运用还在于它的逆用以及它的变形用,这点教师更要提醒学生引起足够的注意.如:sin3αcos3α=21sin6α,4sin 4a cos 4a =2(2sin 4a cos 4a )=2sin 2a ,40tan 140tan 22-=tan80°,cos 22α-sin 22α=cos4α,ta n2α=2tanα(1-tan 2α)等等. 问题⑧,一般情况下:sin2α≠2sinα,cos2α≠2cosα,tan2α≠2tanα.若sin2α=2sinα,则2sinαcosα=2sinα,即sinα=0或cosα=1,此时α=kπ(k∈Z ). 若cos2α=2cosα,则2cos 2α-2cosα-1=0,即cosα=231-(cosα=231+舍去). 若tan2α=2tanα,则aa 2tan 1tan 2-=2tanα,∴tanα=0,即α=kπ(k∈Z ). 解答:①—⑧(略)应用示例例1.以cosα表示sin 22a ,cos 22a ,tan 22a 。

练习1.求下列值:22(1)sin15cos15(2)cos sin 88ππ︒︒- (3)2tan 22.51tan 22.5︒︒- 2(4)sin 12π(5)21cos 212π- 2,()3παπ<< 例2. 已知sin2α=135,4π<α<2π,求sin4α,cos4α,tan4α的值. 活动:教师引导学生分析题目中角的关系,观察所给条件与结论的结构,注意二倍角公式的选用,领悟“倍角”是相对的这一换元思想.让学生体会“倍”的深刻含义,它是描述两个数量之间关系的.本题中的已知条件给出了2α的正弦值.由于4α是2α的二倍角,因此可以考虑用倍角公式.本例是直接应用二倍角公式解题,目的是为了让学生初步熟悉二倍角的应用,理解二倍角的相对性,教师大胆放手,可让学生自己独立探究完成.解:由4π<α<2π,得2π<2α<π. 又∵sin2α=135, ∴cos2α=a 2sin 12--=1312)135(12-=--.于是sin4α=sin[2×(2α)]=2sin2αcos2α=2×135×(1312-)=169120-; cos4α=cos[2×(2α)]=1-2sin 22α=1-2×(135)2=129119; tan4α=a a 4cos 4sin =(-169120)×119169=119120-. 点评:学生由问题中条件与结论的结构不难想象出解法,但要提醒学生注意,在解题时注意优化问题的解答过程,使问题的解答简捷、巧妙、规范,并达到熟练掌握的程度.本节公式的基本应用是高考的热点.例3 在△ABC 中,cosA=54,tanB=2,求tan(2A+2B)的值. 活动:这是本节课本上最后一个例题,结合三角形,具有一定的综合性,同时也是和与差公式的应用问题.教师可引导学生注意在三角形的背景下研究问题,会带来一些隐含的条件,如A+B+C=π,0<A<π,0<B<π,0<C<π,就是其中的一个隐含条件.可先让学生讨论探究,教师适时点拨.学生探究解法时教师进一步启发学生思考由条件到结果的函数及角的联系.由于对2A+2B 与A,B 之间关系的看法不同会产生不同的解题思路,所以学生会产生不同的解法,不过它们都是对倍角公式、和角公式的联合运用,本质上没有区别.不论学生的解答正确与否,教师都不要直接干预.在学生自己尝试解决问题后,教师可与学生一起比较各种不同的解法,并引导学生进行解题方法的归纳总结.基础较好的班级还可以把求tan(2A+2B)的值改为求tan2C 的值.解:方法一:在△ABC 中,由cosA=54,0<A<π,得 sinA=.53)54(1cos 122=-=-A 所以tanA=A A cos sin =53×45=43, tan2A=724)43(1432tan 1tan 222=-⨯=-A A 又tanB=2,所以tan2B=.342122tan 1tan 222-=-⨯=-B B 于是tan(2A+2B)=.17744)34(7241347242tan 2tan 12tan 2tan =-⨯--=-+B A B A 方法二:在△ABC 中,由cosA=54,0<A<π,得 sinA=.53)54(1cos 122=-=-A所以tanA==A A cos sin 53×45=43.又tanB=2, 所以tan(A+B)=2112431243tan tan 1tan tan -=⨯-+=-+B A B A 于是tan(2A+2B)=tan[2(A+B)] =.11744)211(1)211(2)(tan 1)tan(222=---⨯=+-+B A B A 点评:以上两种方法都是对倍角公式、和角公式的联合运用,本质上没有区别,其目的是为了鼓励学生用不同的思路去思考,以拓展学生的视野.例4.已知2()22cos f x x x a =++,将()f x 化为()sin ,(0)A wx b w ϕ++>的形式。

相关文档
最新文档