SARS传播的数学模型(行业信息)

合集下载

关于SARS传播和影响的数学模型

关于SARS传播和影响的数学模型

关于SARS传播和影响问题的模型摘要本文首先采用Logistic模型、人工神经网络两个方法对SARS疫情公布的数据进行分析挖掘后,建立了不同的传染病模型来对疫情的变化趋势给出预测,从而为预防控制提供了可靠、足够的信息。

然后又考虑到证券市场被视为国民经济的晴雨表,因此在收集医药类、交通运输类等行业的股票价格的基础上,分别使用“事件分析法”、Markov 链建立数学模型对SARS给股市的影响进行分析预测。

在对早期模型进行合理性与实用性评价的基础上,对它的参数确定方法进行改进,消除了对港粤地区经验性数据的依赖,建立的二阶Logistic回归模型能就本地已知数据预测疫情发展趋势,给出预测值并拟合出疫情走势图。

并且该模型的决定系数R2高达99.02%,这表明预测值与实际值无显著性差异,拟合效果很好。

由疫情走势图可推算出发病高峰为4月29日及持续时间,且能体现出预防措施对疫情走势有明显的影响,也即随着预防指数K(t)的增大,累计发病人数N(t)趋于稳定。

因此该模型可为疾病的预防和控制提供有效的信息。

又考虑到本问题是一个动态预测问题,故建立了误差逆传播神经网络模型(BP,Back-Propagation)。

经过理论分析和多次实验确定其为三层结构的BP网络模型,节点数分别为(5,6,5),激励函数为双曲正切函数。

该模型能够根据前五天的累计患者数预测出未来五天的累计患者数。

首先,将已知65个数据分为13组,分别作为网络的输入、输出端输入网络,进行学习。

然后,用训练过的网络预测未知数据,正确率达99.9%以上。

最后,考虑到网络初值对模型灵敏度的影响,提出了初始化的合理建议,并将其与早期模型进行了比较。

在分析SARS对证券市场的影响时,由于这是一个突发事件,缺乏历史数据,所以SARS对股市产生的影响很难用传统的计量模型进行分析,因而采用“事件分析法”对其进行研究:利用一个相对短时期的股票价格的变化情况来分析和衡量该事件的影响程度。

SARS传播的数学模型 数学建模全国赛优秀论文设计

SARS传播的数学模型  数学建模全国赛优秀论文设计

SARS传播的数学模型(轩辕杰整理)摘要本文分析了题目所提供的早期SARS传播模型的合理性与实用性,认为该模型可以预测疫情发展的大致趋势,但是存在一定的不足.第一,混淆了累计患病人数与累计确诊人数的概念;第二,借助其他地区数据进行预测,后期预测结果不够准确;第三,模型的参数L、K的设定缺乏依据,具有一定的主观性.针对早期模型的不足,在系统分析了SARS的传播机理后,把SARS的传播过程划分为:征兆期,爆发期,高峰期和衰退期4个阶段.将每个阶段影响SARS 传播的因素参数化,在传染病SIR模型的基础上,改进得到SARS传播模型.采用离散化的方法对本模型求数值解得到:SARS疫情的预测持续时间为106天,预测SARS患者累计2514人,与实际情况比较吻合.应用SARS传播模型,对隔离时间及隔离措施强度的效果进行分析,得出结论:“早发现,早隔离”能有效减少累计患病人数;“严格隔离”能有效缩短疫情持续时间.在建立模型的过程中发现,需要认清SARS传播机理,获得真实有效的数据.而题目所提供的累计确诊人数并不等于同期累计患病人数,这给模型的建立带来不小的困难.本文分析了海外来京旅游人数受SARS的影响,建立时间序列半参数回归模型进行了预测,估算出SARS会对入境旅游业造成23.22亿元人民币损失,并预计海外旅游人数在10月以前能恢复正常.最后给当地报刊写了一篇短文,介绍了建立传染病数学模型的重要性.1.问题的重述SARS (严重急性呼吸道综合症,俗称:非典型肺炎)的爆发和蔓延使我们认识到,定量地研究传染病的传播规律,为预测和控制传染病蔓延创造条件,具有很高的重要性.现需要做以下工作:(1) 对题目提供的一个早期模型,评价其合理性和实用性.(2) 建立自己的模型,说明优于早期模型的原因;说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够信息的模型,并指出这样做的困难;评价卫生部门采取的措施,如:提前和延后5天采取严格的隔离措施,估计对疫情传播的影响.(3) 根据题目提供的数据建立相应的数学模型,预测SARS 对社会经济的影响.(4) 给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性.2.早期模型的分析与评价题目要求建立SARS 的传播模型,整个工作的关键是建立真正能够预测以及能为预防和控制提供可靠、足够的信息的模型.如何结合可靠、足够这两个要求评价一个模型的合理性和实用性,首先需要明确:合理性定义 要求模型的建立有根据,预测结果切合实际.实用性定义 要求模型能全面模拟真实情况,以量化指标指导实际.所以合理的模型能为预防和控制提供可靠的信息;实用的模型能为预防和控制提供足够的信息.2.1早期模型简述早期模型是一个SARS 疫情分析及疫情走势预测的模型, 该模型假定初始时刻的病例数为0N ,平均每病人每天可传染K 个人(K 一般为小数),K 代表某种社会环境下一个病人传染他人的平均概率,与全社会的警觉程度、政府和公众采取的各种措施有关.整个模型的K 值从开始到高峰期间保持不变,高峰期后 10天的围K 值逐步被调整到比较小的值,然后又保持不变.平均每个病人可以直接感染他人的时间为L 天.整个模型的L 一直被定为20.则在L 天之,病例数目的增长随时间t (单位天)的关系是:t k N t N )1()(0+⋅=考虑传染期限L 的作用后,变化将显著偏离指数律,增长速度会放慢.采用半模拟循环计算的办法,把到达L 天的病例从可以引发直接传染的基数中去掉.2.2早期模型合理性评价根据早期模型对疫情的分析与预测,其先将的病例起点定在3月1日,经过大约59天在4月29日左右达到高峰,然后通过拟合起点和4月20日以后的数据定出高峰期以前的K =0.13913.高峰期后的K 值按香港情况变化,即10天围K 值逐步被调整到0.0273.L 恒为20.由此画出3月1日至5月7日疫情发展趋势拟合图像以及5月7日以后的疫情发展趋势预测图像,如图1.图1 早期模型计算值与实际值对比图从图1可以看出,从 4月20日至5月7日模型计算值与同期实际值的拟合程度比较好,但5月7日后模型计算值(即预测值)随着日期的增长逐渐偏离实际值.为了进一步验证上述分析,对模型计算值曲线和实际值进行残差分析,记iy 表示第i 天实际累计病例,i yˆ表示第i 天计算累计病例.计算 n i y ye e i i ii ,,2,1,ˆ*Λ=-==σσ 其中,用σˆ作为σ的估计: 2)ˆ(ˆ1--⋅=∑=n yy y n i i i i σ做出标准化残差*i e 的分布图,如图2:图2 早期模型的标准化残差分布图可以很明显地看出,在后期,残差图上出现明显的单减规律性,预测值高于实际值,说明预测值确实逐渐偏离实际值.通过以上分析得合理性评价:○1从预测准确度上有失合理性,虽然早期模型在拟合前期疫情时拟合程度较好,但对后期情况的预测出现较大偏差.○2尽管预测准确程度不高,但是该模型确实预测出了整个疫情的发展趋势.从这一点上看,该模型还是切合实际的.○3该模型选用公布数据直接拟合,从而预测后期疫情发展趋势,这有悖于模型本身的含义.因为模型中的)N实际代表的是t时刻全社会的累计SARS患者,(t而公布数据仅为同期的累计确诊SARS患者,显然前者是大于或等于后者的.如果把公布数据当成实际数据处理,这必然导致模型解出现偏差,且解的实际意义不明确.对于这一点,我们将在建立自己的模型时重点关注!2.3早期模型实用性评价模型的实用性关注的是模型能否真实全面的模拟真实情况,从而用模型指导实际.这里主要抓住早期模型的参数设置情况进行实用性评价:○1该模型简单地以高峰期作为分析的临界点,这似乎对SARS发展的阶段没有了解透彻.同时,模型没有提出高峰期的确定方法,整个模型的建立必须有实际高峰期附近数据的支撑.如果仅有疫情爆发初期的数据,该模型就无法预测出疫情中后期发展的趋势,模型的实际应用围受到限制.○2参数K代表某种社会环境下一个病人每天传染他人的人数,与全社会的警觉程度、政府和公众采取的各种措施有关.在初期,该模型将K固定在一个比较高的定值,在疫情高峰期过后,在10天逐步调整K值到比较小,然后保持不变.但模型并没有给出K值的具体算法,只是不断地进行人工调整,具有一定的主观性.同时沿用了香港疫情分析中的数据来预测的情况,可见该模型未对的实际情况进行充分的考虑.○3参数L代表平均每个病人在被发现前后可以造成直接传染的期限,在此期限后失去传染作用,可能的原因是被严格隔离、病愈不再传染和死去等等.该模型把L的值固定为20,而实际的L应该随疫情发展趋势变化而变化,固定L势必使模型只能片面模拟真实情况.综上,早期模型的一部分分析脱离了实际,而且在整个模型的建立和求解中人工干预过多,实际应用围受到了限制,实用性不强.3. SARS传播过程的分析由于早期模型缺少对SARS传播过程的系统分析,所以,要建立真正能预测病情发展的模型,应该首先对整个传播过程有一个全面而详尽的分析.SARS的传播大致经历了4个过程,相关描述可按照Kink于1986年提出的危机“四阶段说”.第一阶段是征兆期.在SARS传播初期,由于SARS感染者需要经历一定时间才表现出临床症状,所以在病毒实际上已经广泛传播的情况下,政府和公众并未引起注意.在这个时期,携带病毒的传播源没受到控制,平均传播期长,但整个社会的发病率还较低.第二阶段是迅速爆发期和蔓延期.当公众发现感染者不断增加时,恐慌情绪增加,政府随即采取多种措施,但由于对病毒传播的特点不清楚,并未收到预期效果.在这个时期,传播源的平均传播期依然较长,整个社会的发病率突然猛增.第三个阶段是高峰期.当高强度的措施实施后,病毒扩散速度实际已经被控制,发病人数保持稳定,处在一个高平台阶段.在这个时期,有效隔离措施的产生,大大缩短了平均传染期,但由于病患基数较大,社会发病率依然很高.第四个阶段是衰退期和有效控制期.在高平台现象一段时间以后,控制措施的作用开始显现,患病人数开始下降,进入控制时期.在这个时期,平均感染期最短,社会发病率低.疫情进入了4个阶段的最后时期.有了以上的分析,建立的模型就应该体现4个不同时期下疫情的发展过程,并能够在此基础上准确预测疫情变化情况,提出切实可行的控制措施.考虑在经典传染病SIR 模型基础上,通过机理分析,加入合理的实际因素,建立适合SARS 的分段微分方程模型,称为SARS 传播的SIR 改进模型.4. SARS 传播的SIR 改进模型4.1模型的假设1.SARS 的持续期不太长,可以忽略在SARS 持续期的城市人口的自然出生率和自然死亡率.2.被SARS 感染后经治疗康复的人群在SARS 流行期不会被再次感染.3.病人被严格隔离、治愈或者死亡后,不再有感染作用.4.不考虑人口的流动,仅仅在一个城市围研究SARS 疫情的发展过程.4.2模型的符号定义)(t S :易感类人群占城市人口总数的比例.)(t I :传染类人群占城市人口总数的比例.)(t R :排除类人群占城市人口总数的比例.)(t ω:SARS 患者的就诊率患者总数时刻全社会患者数时刻被隔离的SARS SARS t t = λ:单位时间一个传染者与他人的接触率.L :平均传染期.4.3传播机理分析针对早期模型的不足,需要在模型的合理性和实用性方面进行改进.考虑在经典传染病模型SIR 的基础上,通过机理分析,用实际因素来描述SARS 的传播过程.为了简化模型,这里不考虑人口的流动带来的影响,仅仅在一个封闭城市中研究SARS 的传播机理.那么,整个社会人群可以分为3类:S 类:称为易感类,该类成员没有染上传染病,但缺乏免疫能力,可以被染上传染病.I 类:称为传染类,该类成员已经染上传染病,而且可以传染给S 类成员. R 类:称为排除类或恢复类,R 类成员或者是I 类成员被严格隔离、治愈,或者死亡等.I 类成员转化为R 类后,立刻失去传染能力.S(t)、I(t)、R(t)分别表示t 时刻上述3类成员占城市人口总数的比例. 对于传播过程有3条基本假设:1A :人口总数为常数N ,N 足够大,可以把变量S(t)、I(t)、R(t)视为连续变量,还可进一步假定为连续可微变量.2A :人群中3类成员均匀分布,传播方式为接触性传播.单位时间一个传染者与他人的接触率为λ,则一个传播者在单位时间与S 类成员的接触率为)(t S λ,因此,单位时间I 类成员与S 类成员的接触总数为)()(t I t S N ⋅⋅λ,这就是单位时间I 类成员增加的数量,称为发病率,它是S(t)和I(t)的双线性函数.3A :传播者的被控制数正比于传染者的数量)(t NI ,比例系数为v ,v 称为被控制率,则平均传染期为v L /1=.v /λσ=为一个传染者在其传播期与其他成员的接触总数,称为接触数.那么SARS 的传播流程如图3:)()()(t NR t NI t NS vNS NSI 排除类传染类易感类控制传染−−−→−−−−→−⋅⋅λ图3 SARS 传播流程图在这个模型中,排除类)(t NR 就是已确诊SARS 患者累计数,而)](1[t S N -⋅是全社会累计SARS 患者数,包括已确诊的和未被发现的两部分.4.4模型的建立有了以上的机理分析,建立起针对SARS 的改进SIR 模型:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧≥>>=++=-=-=00,01(2) (1)000R I S S R I vI dt dR vI SI dt dI SI dt dS λλ该模型中参数λ和v 在疫情发展的各个阶段受实际因素影响,会有比较明显的变化,现分析如下:○1参数λ表示单位时间一个传染者与他人的接触率,其与全社会的警觉程度和政府、公众采取的各种措施有关,例如,佩戴口罩,减少停留在公共场所的时间,喷洒消毒药剂,提高隔离强度等都能有效地降低接触率λ的值.一般认为,λ的数值随着SARS 发展的4个阶段不断变化.在SARS 初期,由于潜伏期的存在和社会对SARS 病毒传播的速度认识不足,政府和公众并未引起重视,故λ维持在一个较高的数值;进入爆发期后,公众发现感染者不断增加,恐慌情绪增加,随即采取多种措施,使λ得到一定的控制,但效果不明显,此处假设λ呈线性形式缓慢衰减;在高峰期,当高强度的控制措施实施后,病毒传播的有效接触率明显减少,可以认为λ按天数呈指数形式衰减;此后进入衰减期,λ就维持在一个较低值附近.○2参数v 表示传播者的被控制率.v L /1=称为平均传染期,表示一个传播者在被隔离或者死亡之前具有传播能力的平均时间.一般认为,SARS 患者经过传染期L 过后,将隔离治疗或者死亡,从I 类成员变为R 类,失去传播能力.L 与政府采取的措施密切相关,例如,尽量早地发现病患,对疑似病例提前进行隔离,“早发现,早隔离” ;提供更广围的医疗手段,使更多的人接受有效的治疗等,都可以有效地降低平均传染期L 的长度.因此这里将L 直接抽象为每一时期SARS 患者的就诊率)(t ω的函数.平均传染期L 应随)(t ω的变化而变化.但是在初期,由于政府对SARS 的认识不足,并没有采取有效控制措施, L 的变化很小可以近似看作定值,这里我们取SARS 病毒最长潜伏期(约19天)为这个定值;在爆发期,有效控制措施的逐步加强,使SARS 患者的就诊率)(t ω逐渐增加,而平均传染期L 会逐渐减小并趋于一个定值,这里我们将SARS 病毒平均潜伏期(约7天)定为L 的最小值;在此后的高峰期以及衰减期,由于控制措施都保持在一定水平,L 的值会维持在7天左右.4.5针对疫情求解模型首先采用数学推导的方法,确定参数λ和v ,并证明模型有唯一解.○1确定λ和v 的关系 令v λσ=,方程组中)1()2(÷得:SdS dI σ11+-= 在病情刚开始时,011S dS dI σ+-=,由于)(t S 是单调减少的,且)(t I 最终趋近于0,则当1≤S σ时,)(t I 单调减少趋近于0;当1>S σ时,)(t I 先单调增加达到最大值,然后单调减少趋近于0.容易知道,当1>S σ时,才满足SARS 的传播规律,所以参数λ和v 的取值必须满足这个条件.○2证明模型有唯一解 在初值条件下解微分方程组:⎪⎩⎪⎨⎧=+++-=111000R S I S dS dI σ 得到关系式:)ln(11)(00S S S R t I σ+--= 令∞−→−t ,由○1得 )ln(11000S S S R ∞∞+--=σ 因为0>∞S ,所以令)ln(11)(00S x x R x f σ+--= 则 -∞=−→−)(lim 0x f x ,01)(0000>=--=I S R S f当σ10≤S 时,由于0)(=x f 在),0(0S 围有根,因而在)1,0(σ有根. 当σ10>S 时,因为xx x f σσ-=1)(' 当σ1>x 时,0)('<x f ,所以0)()1(00>=>I S f f σ,因而0)(=x f 在)1,0(σ也有根. 注意到当σ10<<x 时,0)('>x f ,故0)(=x f 在)1,0(σ有唯一根. 所以,∞S 在)1,0(σ有唯一解. ○3划分SARS 传播的4个阶段 由于SARS 的传播经历了4个阶段,所以,要以具体的指标划分这4个阶段.因为在4个阶段中,日发病率)()()(t I t S N t ⋅⋅=λμ是一个区分每个阶段特点的关键特征,所以以日发病率作为划分的指标.从第一个患者出现日开始: 征兆期:日发病率在10(人/天)以下.疫情期的前40天.爆发期:从日发病率10(人/天)到日发病率最大,即0=dtd μ时.疫情期的第40天到第74天. 高峰期:从日发病率最大到患者数量最大,即0=dtdI 时.疫情期的第74天到第79天.衰退期:患者数量最大点以后.疫情期第79天以后.○4确定λ和v 根据最终SARS 患者总数2521人以及人口总数(约14000000人),得19998.01400000025211≈=-=∞S ,所以11>=λσv . 因为平均传染期vL 1=,而L 是SARS 患者就诊率)(t ω的函数,且]19,7[∈L ,所以,这里设计L 函数为:)(17t e L ω-=)(t ω由政府的控制措施决定,它的变化反映了政府控制措施的力度.根据实际情况,推导出:⎪⎪⎩⎪⎪⎨⎧≥<≤+-<≤=74 t174t 40 )178.340(log 40t 0 0)(10t t ω 而接触率λ与全社会的警觉程度和公众采取的各种措施有关,根据实际情况确定为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-<≤-<≤=79t 0672.079t 74 33ln 116.074t 40 3400126.040t 0 126.0t t λ确定出所有的参数后,做出各时期累计全社会SARS 患者数和各时期累计确诊SARS 患者数预测图(图4)以及市预测确诊SARS 患者累计和实际确诊SARS 患者累计对比图(图5).同时得到:SARS 疫情的预测持续时间为106天,预测SARS 患者累计2514人.(计算程序见附件1:SIR 模型程序)图4 市预测非典病人累计总数和预测非典病人确诊病例累计对比图图5 市预测确诊病例累计和实际确诊病例累计对比图5.改进SIR模型的分析与评价5.1合理性评价从图5可以看出,本模型对数据的拟合程度非常高,完全克服了早期模型对后期数据预测不准的缺陷.做出标准化残差分析图,如图6:图6 改进SIR模型的标准化残差分布图(实际值-预测值)可以看出,残差分布比较均匀,残差平方和为2.0361,低于初期模型的5.510.通过以上分析得出结论:改进SIR模型不仅在预测前期病情的时候非常准确,而且在预测后期病情的时候也没有出现明显偏差,预测值与实际值非常吻合.该模型能对整个病情的发展做出准确预测,这是该模型优于早期模型的方面之一.5.2实用性评价对比早期模型实用性方面的不足,对改进SIR模型分析如下:○1早期模型在没有对SARS的传播过程进行系统分析的情况下就简单地以高峰期作为分析的临界点,同时,模型并没有提出高峰期的确定方法,模型的实际应用围受到限制.而改进SIR模型在分析SARS传播过程的前提下,依据日发病率把整个传播过程细分为征兆期,爆发期,高峰期和衰退期4个阶段,并且考虑了每个阶段影响SARS传播的实际因素,能够更好地反映实际因素对SARS传播的影响.○2早期模型预测的仅仅是已确诊累计SARS患者数,不包括未被发现的患者人数,这样的做法不能对防治工作提供真正有用的数据.而改进SIR模型不仅能准确预测已确诊累计病例,而且能够预测未被发现的患者人数,可以对防治工作提供更有用的数据.○3早期模型用参数K代表一个病人每天传染他人的人数.模型没有给出K值的具体算法,只是不断地进行人工调整,同时沿用了香港疫情分析中的数据来预测的情况,未对的实际情况进行充分的考虑.而改进SIR模型用参数λ表示单位时间一个传染者与他人的接触率,并且考虑了4个阶段λ的变化情况,给出了λ的函数表达式.○4早期模型用参数L代表平均每个病人在被发现前后可以造成直接传染的期限,并且把L的值固定在20天,就造成了后期预测值明显偏离实际值的结果.而改进SIR模型中建立了L的分段函数表达式,根据各个阶段的具体影响因素控制L的大小.这样,在后期的预测上,也与实际值相当吻合.综上,改进SIR模型弥补了早期模型的不足,实际应用围得到扩大,实用性强.5.3建立可靠、优良模型的困难要建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,存在着许多的困难,还有许多努力的方向.○1缺乏详尽的,反映SARS疫情的实际统计数据,以及数据基础上的模型参数的具体取值.本文的模型计算与分析研究,主要依据关于市的SARS疫情通告的数据.这些数据不包括未被发现的患者人数的统计,数据的形式不能满足模型求解的要求.○2需要与流行病学家密切合作,更加合理地设计模型结构与调整参数,以及估计并设定比较符合实际的参数取值,从而完善模型以及模拟结果.○3需要研究SARS在不同自然条件和社会条件下的差异性,总结SARS传播与控制的典型地域性模式.6.分析具体措施对SARS传播的影响在SARS传播的实际过程中,有关部门采取了一些控制疫情的措施,在所有措施中,隔离开始的时间和隔离的强度是两个比较关键的因素,究竟这些因素对疫情传播能造成怎样的影响,现分析如下.改变隔离开始的时间通过对L调整实现,减小L的数值就提前了隔离时间;而改变隔离的强度通过对λ调整实现,减小λ的数值就提高了隔离的强度.以的隔离强度为100%,分别在100%和80%强度下用改进SIR模型预测不同控制措施下累计病例总数(人)和疫情持续总时间(天).结果如表1:分析表1,得出结论:○1在相同隔离强度下,发现隔离开始的时间越早,累计病例总数就越小.○2在相同隔离开始时间下,隔离强度越大,疫情持续的时间就越短.○3综上,累计病例总数的大小主要由隔离开始时间的早晚决定;疫情持续时间的长短主要由隔离强度的大小决定.所以,有关部门采取的措施确实对疫情的控制起到了很大的作用:“早发现,早隔离”能有效减少累计病例总数;“严格隔离”能有效缩短疫情持续时间.7.SARS 对旅游业的影响SARS 的流行会对国民经济带来一定的影响.现在题目提供了市接待海外旅游人数的数据,要求根据这些数据,预测SARS 对市的旅游业所产生的影响.7.1预测正常情况下2003年的旅游人数旅游业随着社会经济的发展,会有一个逐年提高的趋势.如果没有SARS 的流行,那么,海外旅游人数会以一定的规律保持增长的趋势.现在需要预测正常情况下2003年的旅游人数,采用季节性时间序列的半参数回归模型进行预测.一般的半参数回归模型是指:(3) ) (T g Y '∈++=β 其中1),(R R T X P ⨯∈ 为随机向量或设计点列,T 的支撑集为有界闭集,β为1P ⨯的未知参数向量, )( g ⋅是定义于一有界闭集上的未知函数, E 为随机误差,22)E(0, )E(σ=∈=∈(未知),且∈与T X ,相互独立.对季节性时间序列资料),,2,1;,,2,1(l j n i X ij ΛΛ==,其中n 为年份长度,l 为季节长度.根据时间序列资料的加法原理有如下半参数回归模型(4) )(j ij j g bi X ε++= 其中b 为模型参数, 主要反应时间序列在年度上的增长趋势.)(j g 为未知函数,主要反应时间序列在季节上的效应,22)(,0)(σεε==ij ij E E 且ij ε相互独立.显然模型中不应包含常数项,因为常数项可包含在季节效应中.在对旅游人数的估计时,因为采用了1997~2002年的数据进行参数估计,所以年份长度6=n ,而季节上的效应实际上就是每个月的效应,季节长度12=l .参数估计如下:○1把b 看为已知时)(j g 的最小二乘估计为使∑--iij j g bi X 2))((最小的解,即(5) 21)(ˆ+⋅-=n b X j gj 其中,∑=iij j n X X /,即为所有数据在季节点j 上的均数.显然)(ˆj g也是)(j g 的一个临近估计.○2将(5)代入(4)后b 的最小二乘估计为使∑∑+---ijj ij n bX bi X 2))21((最小的解.作变换21~,~+-=-=n i i X X X j ij ij 则(6)~~~ˆ2∑∑⋅⋅=iij ij il X i b在小样本条件下,误差的总体方差2σ估计为(7) )~ˆ~(11ˆ2112i b X l nl n i lj ij ---=∑∑==σ将海外旅游人数1997~2002年的数据代入式(5)、(6)、(7),得到:⎪⎩⎪⎨⎧==0044.0ˆ8245.1ˆ2σb)4642.12,1642,18,5808.21,7475.20,0808.21 ,0808.16,3975.16,9975.17,2142.17,5142.12,2808.13,5642.4()(ˆ=j g根据这些参数,预测正常情况下2003年的旅游人数(计算程序见附件2:时间序列程序),结果如表2(单位:万人): 月份1 2 3 4 5 6 7 8 9 10 11 12 人数15.4 17.1 25.3 30.0 30.8 29.2 28.9 33.9 33.6 34.4 31.0 25.31997-2003年旅游人数的变化如图7所示:图7 1997-2003年旅游人数的变化7.2季节性时间序列半参数模型的检验我们利用时间序列模型对1997~2002年的旅游人数进行拟合,再与实际值对照,画出残差图(图8):。

SARS传播的数学模型_数学建模全国赛论文1

SARS传播的数学模型_数学建模全国赛论文1

SARS传播的数学模型_数学建模全国赛论文SARS 传播的数学模型摘要本文分析了题目所提供的早期 SARS 传播模型的合理性与实用性,认为该模型可以预测疫情发展的大致趋势,但是存在一定的不足.第一,混淆了累计患病人数与累计确诊人数的概念;第二,借助其他地区数据进行预测,后期预测结果不够准确;第三,模型的参数 L、K 的设定缺乏依据,具有一定的主观性. 针对早期模型的不足,在系统分析了 SARS 的传播机理后,把 SARS 的传播过程划分为:征兆期,爆发期,高峰期和衰退期 4 个阶段.将每个阶段影响SARS传播的因素参数化,在传染病 SIR 模型的基础上,改进得到SARS 传播模型.采用离散化的方法对本模型求数值解得到:北京 SARS 疫情的预测持续时间为 106 天,预测 SARS 患者累计2514 人,与实际情况比较吻合. 应用 SARS 传播模型,对隔离时间及隔离措施强度的效果进行分析,得出结论:早发现,早隔离能有效减少累计患病人数;严格隔离能有效缩短疫情持续时间. 在建立模型的过程中发现,需要认清 SARS 传播机理,获得真实有效的数据.而题目所提供的累计确诊人数并不等于同期累计患病人数,这给模型的建立带来不小的困难. 本文分析了海外来京旅游人数受 SARS 的影响,建立时间序列半参数回归模型进行了预测,估算出 SARS 会对北京入境旅游业造成 23.22 亿元人民币损失,并预计北京海外旅游人数在 10 月以前能恢复正常. 最后给当地1/ 2报刊写了一篇短文,介绍了建立传染病数学模型的重要性. 1.问题的重述 SARS(严重急性呼吸道综合症,俗称:非典型肺炎)的爆发和蔓延使我们认识到,定量地研究传染病的传播规律,为预测和控制传染病蔓延创造条件,具有很高的重要性.现需要做以下工作:(1)对题目提供的一个早期模型,评价其合理性和实用性. (2)建立自己的模型,说明优于早期模型的原因;说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够信息的模型,并指出这样做的困难;评价卫生部门采取的措施,如:提前和延后 5 天采取严格的隔离措施,估计对疫情传播的影响. (3)根据题目提供的数据建立相应的数学模型,预测 SARS 对社会经济的影响. (4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性. 2.早期模型的分析与评价题目要求建立 SARS 的传播模型,整个工作的关键是建立真正能够预测以及能为预防和控制提供可靠、足够的信息的模型.如何结合可靠、足够这两个要求评价一个模型的合理性和实用性,首先需要明确:合理性定义要求模型的建立有根据,预测结果切合实际. 实用性定义要求模型能全面模拟真实情况,以量化指标指导实际. 所以合理的模型能为预防和控制提供可靠的信息;实用的模型能为预防和控制提供足...。

关于SARS病毒传播的数学模型

关于SARS病毒传播的数学模型

di ( t) dt
=
ks ( t) i ( t)
s ( t) + i ( t) = N
(4)
i (0) = i0
对 (4) 分离变量可解得
i ( t) = 1+
N
N i0
-
1
e- kNt
(5)
i
(t)
~t

di dt
~i
的图形分别如图
2
和图
3
所示

·48 ·
由图可知 :i (t)
=
1 2
1 、问题提出 数学模型是指通过抽象和简化 ,使用数学语言对实际现象的一个近似的刻画 ,以便于人们更深刻地 认识所研究的对象 。它是应用数学知识和计算机解决实际问题的一种有效的重要工具[1] 。文 [ 2 ]研究 了数学建模竞赛对提高学生综合素质的作用 。文 [ 3 ]研究赛程编排的数学模型 。本文拟对 SARS 病毒 的传播的数学模型建立进行研究 。 对于传染病模型 ,可以在较一般的情况下 ,分析受感染人数的变化规律 。由于人们不可能通过试验 来取得传染病流行的数据 ,实际的传染病流行的观测往往也不完整和不充分 ,通常主要是依据机理分析 的方法来建模 ,利用有关计算机的知识求解 。 SARS(Severe Acute Respiratory Syndrome) ,即严重急性呼吸道综合症 ,俗称 :非典型肺炎 ,是 21 世纪初 在世界范围内传播的一种疾病 。SARS 的爆发和蔓延给我国的经济和人民的生活带来了很大的影响 ,我 们从中得到了很多的经验和教训 ,认识到定量地研究传染病的传播的规律 ,为预防和控制传染病蔓延创 造条件的重要性 。 SARS 在爆发初期 ,由于存在潜伏期 ,公众对 SARS 病毒传播速度认识不足 ,感染者迅速增加 ,公众

sars数学建模论文

sars数学建模论文

sars数学建模论文二.数学模型的分析与建立 2.1 分析与假设将人群分为四类:健康者(易受感染者):用 S 表示健康者在人群中的比例。

潜伏期者(已感染,尚未发病):用 E 表示他们在人群众的比率。

发病期者(已发病者):用 I 表示病人在人群中的比例。

退出者(死亡者):用 R 表示退出者在人群中的比例。

2.2 模型的建立 1 .参数设定 1每个病人平均每天有效接触(足以使被接触者感染)的人数。

q 退出率,为 SARS 患者的日死亡率和日治愈率之和。

l (流入)流出人口占本地总人口的比率。

1处于潜伏期的病人的日发病率。

P流入人口中带菌者所占的比例。

2 .控前方程的建立根据我们的分析和各变量的分析,结合实际的疫情的传播规律,我们可以建立如下的方程组:ISdtdS1(1)LE LP E ISdtdE 1 1(2)1/ 3qI EdtdI1(3)qIdtdR(4) 0 0 00, , , E R I S (初值)3 .参数的确定 1) 1根据医学资料和有关数据推导而得。

2) q 由该城市的医疗水平和已知的统计数据分析,求其统计平均值。

3) l 由城市的出入人口流动情况(主要由经济发达程度和交通状况决定)。

可查有关资料。

4) 1根据医学研究和调查的有关结果和该城市的疫情发展状况可得。

5) P由流入该城市人群的地区分布情况和各其他地区的疫情决定。

II 控后模型的建立 1 .参数设定 2 不可控人群(在后面的分析中可得到)在发病后到被隔离前平均每天接触的人的数目。

q 退出率,为 SARS 患者的日死亡率和日治愈率之和。

接触病源的人的发病率。

每天由可控人群和不可控人群转化为病人的日转化率。

2 .控后方程的建立根据上面我们的各种假设和各变量和参数的实际意义,我们可以建立如下控制后的疾病模型的方程组:(5)qI GdtdI(6) qIdtdR(7) SdtdS 2 GGGSdtdG 2GSdtd2 (9) 0 0 0 0 0, , , , E R I S (初值)在得到这个模型后,我们对模型和数据进行了进一步的分析,发现这个模型中存在以下的问题...3/ 3。

sars的传播2003数学建模题目

sars的传播2003数学建模题目

sars的传播2003数学建模题目在2003年,严重急性呼吸综合征(Severe Acute Respiratory Syndrome,简称SARS)的爆发引起了全球范围内的恐慌。

为了更好地了解SARS的传播特点和控制措施,我们可以应用数学建模的方法来分析SARS的传播规律,并提出相关的应对策略。

1. SARS的传播模型为了探究SARS的传播规律,我们可以采用传染病的基本传播模型——SIR模型。

SIR模型将人群分为三类:易感者(Susceptible)、感染者(Infected)和康复者(Recovered)。

根据该模型,我们可以列出如下的微分方程:dS/dt = - βSIdI/dt = βSI - γIdR/dt = γI其中,S,I和R分别表示易感者、感染者和康复者的数量;β表示传染率;γ表示康复率。

2. 参数估计与模型拟合要对SARS的传播模型进行参数估计和模型拟合,我们需要收集大量的疫情数据。

通过对实际数据进行统计学分析,我们可以获得β和γ的估计值,并将其代入SIR模型方程中进行模型拟合。

通过与实际数据的对比,我们可以评估模型的拟合效果以及参数的准确性。

3. 传播速率和传播方式SARS的传播速率直接影响到其传播范围和传播强度。

在SARS爆发期间,我们可以通过统计病例的增长速率来估计SARS的传播速率。

此外,研究发现,SARS主要通过空气飞沫传播,在密闭环境中飞沫的传播距离较远,因此需要采取相应的防控措施,如戴口罩、保持良好的通风等。

4. 人群的易感性和免疫力SARS的传播过程中,人群的易感性和免疫力起着重要的作用。

通过研究易感者和感染者的流行病学数据,我们可以了解人群的易感性和免疫力对于传播过程的影响。

同时,针对易感者的接种疫苗和提高人群的免疫力也是有效控制SARS传播的策略之一。

5. 社会干预措施的效果评估为了控制SARS的传播,社会干预措施起到了至关重要的作用。

例如,早期的病例隔离、密切接触者的追踪和隔离、社交距离的维持等都可以有效降低SARS的传播风险。

大学生数学建模竞赛模板--sars模型灰色预测

大学生数学建模竞赛模板--sars模型灰色预测

SARS对经济指标的影响王海燕徐昊天吴德春摘要本文针对SARS 疫情传播对经济指标影响的问题,建立灰色预测模型,得到03年预测数据,并与实际数据作比较,进而研究SARS疫情对该市各经济指标的影响及其程度。

为研究SARS疫情对该市各经济指标的影响,我们作出了不同经济指标的散点图和数据列表,使得对问题的研究更直观。

(1)SARS对零售业的影响为简化计算,我们以1997--2002年年总值构造参考数列,得到一个预测各年总值的方程。

利用方程先预测出2003年零售额的年总值,根据各月综合服务业数额在年总值中所占比例求得各月预测值。

利用MATLAB软件求解,得到得预测值与实际值有一定的相差但相差并不大。

从表三我们得出结论:SARS疫情的传播对零售业从4月份开始产生影响,5、6月份影响最大,10月份以后影响就很小了。

(2)SARS对海外旅游业的影响以1997--2002年每年同期的数据构造参考数列,可以得到1-12月的共12个预测方程,即可预测2003年各月的海外旅游人数。

利用MATLAB软件求解,得到的预测值和实际值相差很大,说明从4月份开始SARS疫情就对旅游业产生影响,尤其5、6月份影响最大,但10月份以后影响就变小甚至没有影响了。

(3)SARS对综合服务业总额的影响以1997--2002年年总值构造参考数列,得到一个预测各年总值的方程。

利用方程先预测出2003年的年总值,再根据各月综合服务业数额在年总值中所占比例求得各月的预测值。

利用MATLAB软件求解,得到得预测值与实际值是很一致的。

因此,我们得出结论:SARS疫情的传播对综合服务业没有影响。

另外,本文对模型的误差进行了准确的分析,使得结论更加科学更加有说服力。

虽然模型的建立都是采用了灰色预测法,但在具体的数据处理时,采用了不同的方法,使模型更加丰满,更有特色。

关健词:经济指标;灰色预测;MATLAB;相对误差§1问题的提出背景知识与要解决的问题2003年SARS疫情席卷全球,对世界各国各地区各行业都造成一定的影响。

SARS的预测控制模型

SARS的预测控制模型

SARS的预测控制模型SARS(严重急性呼吸综合征)是2002年至2003年期间爆发的一种可怕传染病,给全球健康安全带来了巨大威胁。

在SARS爆发后不久,科学家们就开始研究和开发预测控制模型,以便更好地理解疾病的传播方式,预测疫情的发展趋势并制定相应的预防措施。

本文将探讨SARS的预测控制模型,并介绍其中一些重要的方法和技术。

一、传染病的数学模型传染病的数学模型是一种抽象的方式,用来定量描述和预测疾病的传播过程。

通常,传染病的传播可以分为多个阶段,如潜伏期、感染期等。

数学模型可以根据不同的传播机制来描述这些阶段并计算其动态变化。

二、基本的SARS传播模型基本的SARS传播模型通常基于传统的流行病学模型,其中考虑了人群的易感人数、感染人数和康复人数等因素。

这些模型通常使用微分方程来描述各个人群的数量变化,并根据已知的参数进行数值计算和预测。

此外,还可以结合统计学方法对疫情数据进行分析和建模。

三、网络传播模型针对SARS的网络传播模型是基于人与人之间的接触关系构建的。

这种模型通常将人群构建为一个网络图,图中的节点表示个体,边表示人与人之间的直接接触。

通过该模型可以定量计算每个个体之间的传播概率,并据此预测疫情的扩散路径和规模。

四、随机传播模型随机传播模型是为了更好地描述传染病在人群中随机传播的特性而提出的一种模型。

这种模型通常基于随机过程理论,通过引入概率参数来描述个体之间的传播事件。

在SARS研究中,随机传播模型被广泛应用于疫情的预测和分析。

五、人工智能在SARS预测控制模型中的应用近年来,人工智能技术在SARS预测控制模型中的应用发挥了重要作用。

通过使用机器学习算法,可以从大量的疫情数据中提取有价值的信息,并进行精确的预测和决策。

例如,可以使用支持向量机(SVM)等算法,通过对已有数据进行训练,预测未来一段时间内SARS疫情的发展趋势以及采取相应的控制措施。

六、早期预警系统为了尽早预测和控制SARS疫情,科学家们还提出了早期预警系统。

SARS传播的数学模型

SARS传播的数学模型

SARS传播的数学模型SARS传播的数学模型摘要SARS(严重急性呼吸道综合症,,俗称⾮典型肺炎)是21世纪第⼀个在世界范围内传播的传染病。

SARS的爆发和蔓延给我国的经济发展和⼈民⽣活带来了很⼤影响。

为了能定量的研究传染病的传播的规律,⼈们建⽴了各类模型来预测、控制疾病的发⽣发展。

本题中给出了⼀个早期指数模型,它在短期内有⼀定的合理性与实⽤性,认为该模型可以预测疫情发展的⼤致趋势,但是却存在着⽤短期参数描述长期过程偏离实际的缺陷。

基于此,我们考虑应该引进新的参数,建⽴更优的模型。

由于SARS是新发传染病,⼈们对其的有效防治⼿段还是以预防为主的隔离和检疫,所以我们引进⼀个预防效果指数k,来反映防控措施对SARS传播的影响;⼜由于SARS发病传染迅猛,为了描述这个特征,我们⼜引⼊了参数r,⽤来表⽰发病率。

在假设所研究地区⼈⼝为理想状态下的⼈群、对该病普遍易感等前提下,我们应⽤Logistic回归结合地区SARS发病的疫情资料,⽤Matlab软件模拟,得到了⼀个更为优化的Logistic SARS模型,它给出了SARS流⾏趋势以及控制措施有效性的定量评估。

由于参数k的引进,更符合实际情况也符合医学解释,并且能够预测SARS⾼峰期的到来时间,可能累计最⼤发病数,在测控和拟合世界上优于早期模型。

同时,我们也通过Matlab语⾔对北京疫情的计算和实际数据进⾏了拟合,进⽽验证了这个模型的可靠性。

应⽤SARS传播模型,对隔离时间及隔离措施强度的效果进⾏分析,得出结论:“早发现,早隔离”能有效地减少累计患病⼈数;“严格隔离能有效缩短疫情持续时间。

本⽂亦分析了海外旅游⼈数受SARS的影响情况,并⽤Matlab语⾔对2003年以前的每个⽉份旅游⼈数与⽉份进⾏数据拟合,进⽽估算出正常情况下2003年的旅游⼈数。

在SARS的影响下,求出每个⽉份⼈数的减少率,拟合出⽉份与减少率的曲线图,从图中可以看出旅游⼈数在9⽉份开始恢复。

sars传播模型

sars传播模型
SARS 传播的数学原理及预 测与控制
12-541
假设: 1.统计数据是可靠的 2.病人处于潜伏期时不传染他人 3.采取的所有控制措施对于阻止病毒的传播都是有 效的 4.不考虑地区的流入流出人口
,

病毒的基本传播率。② 是反,Kf未反馈系数 定义输入信号为当前SARS的在社会上的传播状况,输出信号 为一段时间后(1 day)SARS的传播状况
SARS传播情况也可以近似的看成一个负反馈系统,将 当前的SARS感染情况视为输入信号,一段时间后(1 day) 的感染情况作为输出信号。 初始时,感染人数较少,SARS不受重视,病毒得以在 人群中快速传播。一段时候后,感染人数上升到一定数 量,卫生部门开始采取措施,公众也认识到了病毒的危 险性,此时传播速度受到抑制。

SARS传播的数学模型PPT

SARS传播的数学模型PPT

SARS传播的数学模型
10
时间序列模型
Fn=K0+fk*(In+Sn) In+1=In+Fn*In-Cn-(Dn-Dn-1) Dn+1=Dn+d(In-Dn-Cn) Sn+1=Sn+(In+1-In)*s1-Sn*s2 Cn+1=Cn+g*(In-In-1)
SARS传播的数学模型
11
模型求解
• 设实际数据为In0,拟合数据为In,则我们确定参数的目标是使总残量最小,
SARS传播的数学模型
7
符号说明
• In – 到第n天为止累计确诊的病人数 • Dn - 到第n天为止累计的死亡人数 • Sn – 第n天的疑似病人数 • Cn - 到第n天为止治愈病人数 • d – 死亡率 • g – 治愈率 • s1 – 新增病人与新增疑似病人的比值 • s2 – 疑似病人转化为正常人的比率
即:
n
minE (Ii Ii0)2
i0
我们使用matlab7.0中的fminsearch函数来求解,得到总残量最小时的各个
参数,并拟合曲线
SARS传播的数学模型
12
原文数据不妥当处
• Fk应该为负数;d应该大于0SARS传播的数学模型 Nhomakorabea13
按原文给出的数据所作的图
SARS传播的数学模型
14
我们用fmins关于I解出的曲线
SARS传播的数学模型
22
符号说明(续)
• R – 免疫类,该类成员为SARS康复者或因患SARS死亡,已经具有免疫力, 不再对其它成员产生任何影响
• H – 潜伏期天数 • L – 传染期天数
SARS传播的数学模型

有关SARS传染病的数学预测模型

有关SARS传染病的数学预测模型

有关SARS传染病的数学预测模型摘要本文针对问题一,首先从附件1所给模型参数选取的合理性和科学性入手,分析了K和L的价值作用,并结合模型的实际预测结果,对模型的实用性和合理性进行了评价。

同时,根据SARS的传播特点,指出了该模型的不足之处。

针对问题二,在克服前模型不足的前提下,把人群划分为五大类,建立了SARS传染病动力学预测方程,并用遗传算法对所给参数进行估计,最后利用龙格—库塔数值积分方法分别做出了这五类人群变化的趋势线,与实际情况的变化相吻合,并根据题意做出了评述。

针对问题三,通过1997年到2003年8月北京海外游客的数据,就非典对旅游业产生的影响进行了分析和预测。

首先不考虑非典的影响,即不考虑2003年4-8月份的数据的情况下,利用神经网络和GM(1,1)模型法分别进行预测,再结合标准差法确定组合权重实现组合预测,得出4-12月份的结果为下:28.9204、30.3630、30.1892、28.7201、31.5473、30.4872、31.2696、29.5585、25.7050。

其次在有非典影响的情况下,引入心理影响因子—收缩因子,将非典对旅游业的负面影响用收缩因子进行描述,根据4-8月份的数据用最小二乘法估计收缩因子的参数,从而得到9-12份的预测因子,最后结合在不考虑非典影响情况下得到的预测数据,便得到了9-12份受非典影响后的预测数据,结果为22.7059,24.0840,23.3815,20.7795。

最后,根据传染病模型的特点和作用,提出了建立数学模型对疫情分析、预测控制方面的重要意义。

关键词:龙格—库塔神经网络 GM(1,1)模型组合预测模型传染病动力学模型遗传算法一、问题的提出SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。

SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。

SARS传播的数学模型

SARS传播的数学模型

SARS传播的数学模型摘要通过对题目附件1的SARS模型进行分析和评价,加深了对SARS的认识和了解。

根据传染病的传播特点,建立了关于SARS病人率和疑似病人率两个常微分方程模型。

以所给数据为基本依据,用Matlab软件进行数值计算,与图形模拟方法求得模型中的有关参数。

当λ1 =1.5 和λ2 =1时,理论图形与实际图形有良好的吻合,分别得到了SARS 病人率和疑似病人率比较符合实际数据的变化图,能正确地预测它们的发展趋势。

他们对于模型中的参数有非常强的灵感性,λ1的值作微小的改变对于整个疫情的发展有很大的影响,所以政府采取对SARS疫情的有关措施是完全正确的。

本文重点分析了关于SARS病人率的模型一,根据求得的参数,利用相轨线理论对结果加以分析并对整个疫情作出预测,并推论出SARS病人率关于t的表达式i(t),然后提出了对传染病的控制方案,同时列举了具体方法,并论证了方法的合理性和可行性,用其它地区的数据对模型进行检验,说明模型的参数有区域性。

关键词:SARS 微分方程曲线拟合数学模型相轨线一、问题的提出SARS俗称非典型肺炎,是21世纪第一个在世界范围内传播的传染病。

我国作为发展中大国深受其害:SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响。

在党和政府的统一领导下,全国人民与SARS顽强抗争,取得了可喜的阶段性胜利,并从中得到了许多重要的经验和教训,认识到在没有找出真正病因和有效治愈方法前,政府采取的强制性政策对抑制SARS自然发展最有效办法。

而本题的目的就是要建立一个适当的模型对SARS传播规律进行定量地分析、研究,为预测和控制SARS蔓延提供可靠、足够的信息,无论对现在还是将来都有其重要的现实意义。

二、模型的假设1.地总人数N可视为常数,即流入人口等于流出人口。

2.据人口所处的健康状态,将人群分为:健康者,SARS病人,退出者(被治愈者、免疫者和死亡者)。

3.在政府的强制措施下,人口基本不流动,故无病源的流入和流出,避免了交叉感染,降低了感染基数。

数学建模sars的传播题目

数学建模sars的传播题目

数学建模sars的传播题目
题目:基于数学建模的SARS病毒传播模型分析
问题描述:
SARS(严重急性呼吸综合征)是一种严重的传染性疾病,其
传播过程受到各种因素的影响。

我们希望建立一个数学模型来分析SARS的传播,并预测其传播趋势。

具体问题如下:
1. 如何建立一个能够描述SARS传播过程的数学模型?
2. 在考虑不同因素的影响下,如何确定传染性疾病的传播速率和传播范围?
3. 如何定量分析不同因素对SARS传播速度和传播范围的影响?例如,人口密度、人口流动性、潜伏期、接触率等等。

4. 如何利用已知的疫情数据,来验证和调整数学模型的参数?
5. 如何利用建立的数学模型来预测疫情的发展趋势和未来传播可能出现的风险地区?
6. 如何制定合理的干预措施,以控制SARS的传播,并最大程度地减少疫情对社会和经济造成的影响?
这些问题涉及到传染病传播规律的研究,需要结合统计分析和数学建模的方法,通过模拟和预测来指导实际应对措施的制定。

通过对SARS传播过程的深入研究,我们可以提高对疫情的认识,加强对传染病的防控措施,保护公共卫生安全。

SARS传播的数学模型

SARS传播的数学模型
N dr Ni dt

(二)、模型建立

(1) (2) (3) (4)
对健康者而言,其增加率为
ds si, s 0 =s 0 dt
对于病人而言,其增加率为
di si i, dt i 0 i0

(三)、模型求解
一、对早期模型的评价

1、该模型加入了每个病人可以传染他人的期限(由于被严 格隔离、治愈、死亡等),并考虑在不同阶段社会条件下传 染概率的变化,然后先分析香港和广东的情况以获得比较合 理的参数,最后初步预测北京的疫情走势。对广东、香港和 北京的疫情进行了分析比较,预测值与实际统计值比较接近。 2、该模型的预测准确度不高,只考虑到传染期限和传染率 的问题,其他影响因素没有考虑到,但确实预测出了北京整 个疫情的走势。从这一点上看,该模型还是切合实际的。依 据参数K ,t ,可以对各个地区进行相关疫情估计,预测SARS 的发病趋势。 3、对于如何确定初始值N 和参数K与L,缺乏具体的算法和 理论依据,这种指数变化的趋势作为长期预测不合理。



(二)、相关假设:
1、假设该市的统计数据都是可靠准确的; 2、假设该市在SARS疫情流行期间和结束之后,数据的变化只与SARS疫情 的影响有关,不考虑其他随机因素的影响。
(三)建立灰色预测模型GM(1,1)

由已知数据,对于1997~2002年某项指标记为矩阵,计算每年的年平均值, 记为 A (a,计算每年的年平均值,记为 ij ) 612

1 0.9 0.8 0.7 0.6 s(t)
查资料得,2003年北京总人口数为698.8万人,从而得出初始条件 i0 399 / 698.8 104 4.851105 s0 0.99995149 , 根据附件二可求得日治愈率及死亡率为 =0.06337 0.49973 , 另外求得平均日接触率为 = 0.169346 将上述参数代入(3)、(4)式,求得数值解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 问题描述
• SARS(Severe Acute Respiratory Syndrome,严重急性
呼吸道综合症, 俗称:SARS型肺炎)是21世纪第一个在世 界范围内传播的传染病 。SARS的爆发和蔓延给我国的经 济发展和人民生活带来了很大影响,我们从中得到了许多 重要的经验和教训,认识到定量地研究传染病的传播规律、 为预测和控制传染病蔓延创造条件的重要性。
X (t)
(1
p)r(t) X (t)
( L1
L2 ) X (t)
• 当△t→0时,dXdt(t) (1 p)r(t)X (t) (L1 L2 )X (t)
• 累计死亡人数
• △ t时间内死亡累计人数的变化等于新增死亡人数。
D(t t) D(t) L1 X (t)t
• 当△t→0时
dD(t ) dt L1 X (t )
学习课件
3
4 问题的分析
• 把人群分为四类:正常人群、患病人群、治愈人类和死亡 人群,分别用H(t)、X(t)、R(t)和D(t)表示。
• 在SARS爆发初期,由于整个社会对SARS病毒传播的速 度和危害程度认识不够,政府和公众对之不予重视,没有 采取任何有效的隔离控制措施。当疫情蔓延到4月20号, 政府与社会开始采取强制措施,对SARS进行预防和控制。
dX (t)
dt
rX
(t )
( L1
L2 ) X (t)
dD(t ) dt
பைடு நூலகம்
L1 X (t)
dR(t )
dt
L2 X (t)
Y (t) X (t) D(t) R(t)
初始值
X (0) 1 Y (0) 1 D(0) 0 R(0) 0
学习课件
10
控后模型
• 控后隔离强度从控前的0变为 p。未被隔离 的病人平均每人每天感染的人数r随时间逐 渐变化,它从初始的最大值a+b逐渐减小至 最小值a。设每个未被隔离的病人每天感染 的人数 r(t) a be(tT )
• 7) 不考虑隐性SARS患者,即只要感染上SARS病毒的患 者最终都会表现出症状.
学习课件
2
3 符号说明
• X(t):现有病人数 • Y(t):累计病人数 • R(t):累计治愈人数 • D(t):累计死亡人数 • T:采取强制措施的时间 • L1:病人的死亡率 • L2:病人的治愈率 • P:采取控制措施后的隔离强度 • R(t):未被隔离的病人平均每人每天感染的人数
• 其中,用来反映r(t)的变化快慢,可以用附 件中的数据估计出它的大小。
• 类似于控前模型的分析,我们来考虑在t到 t+ △ t时段内各类人群的变化情况。
学习课件
11
• 现有病人数
• 现有病人数的变化=新增病人数-(死亡人数+治 愈人数)。与控前模型一样,用和表示治愈率和死 亡率。则有
新增病人数=病人数 每人在t时间内感染人数 =(1 p) X (t) r(t)t (1 p)r(t) X (t)t
8
• 累计治愈人数 • 治愈累计人数的变化=新增治愈人数。
R(t t) R(t) L2 X (t)t

dR(t )
dt L2 X (t )
• 累计病人数
• 累计病人数=现有病人数+累计死亡人数+累计 治愈人数
Y(t) X (t) D(t) R(t)
学习课件
9
SARS传播的控前模型

• 2) 将所考查人群分为现有病人、治愈者、死亡者、正常 人四类。
• 3) 假设已治愈的患者二度感染的概率为0,即患者具有 免疫能力,不考虑其再感染。
• 4) 假设所有患者均为“他人输入型”患者,即不考虑人 群个体自身发病。
• 5) 假设各类人群在人群总体中分布均匀。
• 6) 假设已被隔离的人群之间不会发生交叉感染。
• 因此SARS的传播规律可分为“控前”和“控后”两个阶 段
控制前
控制后
近乎自然的传播模式
政府控制后的传播模式
学习课件
4
各类人的转化关系
• 控前模型为近似于自然传播时的S-I-R模型,控后 模型为介入隔离强度后的微分方程模型,两个模 型中各类人的转化关系如图
学习课件
5
5 模型的建立
控前
现有病人数 • 假设某地区产生第一例SARS病人的时间为T0,在
死亡人数=死亡率 病人数 t =L1 X (t) t L1 X (t)t
治愈人数=治愈率 病人数 t =L2 X (t) t L2 X (t)t
学习课件
12
• 于是有
X (t t) X (t) (1 p)r(t) X (t)t (L1 L2 ) X (t)t
X (t
t) t
新增病人数=病人数 每人在t时间内感染人数 =X (t) rt rX (t)t
死亡人数=死亡率 病人数 t =L1 X (t) t L1 X (t)t
治愈人数=治愈率 病人数 t =L2 X (t) t L2 X (t)t
学习课件
7
• 于是有
X (t t) X (t) rX (t)t (L1 L2 ) X (t)t
学习课件
13
• 累计治愈人数 • 治愈累计人数的变化=新增治愈人数。
(T0,T)时段,是近乎于自由传播的时段,隔离 强度为0,每个病人每天感染人数为一常数。
• 考察(t, △t)时段内现有病人数的变化,应该等于
△t时间段新增的病人数减去死亡和治愈的人数。
新增病人
现有病人
死亡和治愈病人
学习课件
6
• 现有病人数的变化=新增病人数-(死亡人数+治 愈人数)。我们设r为每个未被隔离的病人每天感 染的人数,L1和L2分别为治愈率和死亡率。则有
• 1、 对早期模型,评价其合理性和实用性。
• 2、建立自己的模型,特别要说明怎样才能建立一个真正 能够预测以及能为预防和控制提供可靠、足够的信息的模 型,这样做的困难在哪里?
• 3、收集SARS对经济某个方面影响的数据,建立相应的数 学模型并进行预测。
学习课件
1
2 基本假设
• 1) 假设所考查人群的总数恒定,且无病源的输入和输出。
X (t
t ) t
X (t)
rX
(t )
( L1
L2 ) X (t)
• •
当△t→0时, dX (t)
累计死亡人数 dt
rX (t)
(L1
L2 ) X (t)
• 死亡累计人数的变化=新增死亡人数
D(t t) D(t) L1 X (t)t
• 当△t→0时
dD(t ) dt
L1 X (t)
学习课件
相关文档
最新文档