二次函数的应用--最大面积
二次函数的实际的应用之利润最大值、面积最值问题
30k b 400
k 20
, 解之得 :
,
40k b 200
b 1000
即一次函数表达式为 y 20x 1000 (30 x 50) .
⑵ P (x 20) y ( x 20)( 20 x 1000)
20 x 2 1 4 0 x0 2 0 0 0 0
∵ a 20 0 ∴ P 有最大值.
当x
1400
35 时, Pmax 4500 (元)
[ 练习 ] :1.某商品现在的售价为每件 60 元,每星期可卖出 300 件,市场调查反映:每涨价 1 元,每星期 少卖出 10 件;每降价 1 元,每星期可多卖出 20 件,已知商品的进价为每件 40 元,如何定价才能使利润
最大? 解:设涨价(或降价)为每件
x 元,利润为 y 元,
y1 为涨价时的利润, y 2 为降价时的利润 则: y1 (60 40 x)( 300 10x)
商品定价一类利润计算公式: 经常出现的数据: 商品进价;商品售价;商品销售量;涨价或降价;销售量变化;其他
成本。 总利润 =总售价 -总进价 - 其他成本 =单位商品利润 ×总销售量-其他成本 单位商品利润 =商品定价-商品进价 总售价 =商品定价 ×总销售量;总进价 =商品进价×总销售量
[ 例 1]:某电子厂商投产一种新型电子厂品, 每件制造成本为 18 元,试销过程中发现, 每月销售量 y (万
所以,销售单价定为 25 元或 43 元,
将
z =-2x
2
+136x-1800
2
配方,得 z=-2 ( x-34 ) +512 ,
因此, 当销售单价为 34 元时, 每月能获得最大利润, 最大利润是 512 万元;
北师大版九年级数学下册 二次函数 二次函数的应用 时
A t cm
P
B (6-t)cm
2014.12
问题解决
1.一根铝合金型材长为6m,用它制作一个“日”字型的窗框,如 果恰好用完整条铝合金型材,那么窗架的长、宽各为多少米时, 窗架的面积最大?
y 1(63x)x 2
x
2014.12
问题解决
3.如图,隧道的横截面由抛物线和长方形构成,长方形的长是
(2)设五边形APQCD的面积为Scm2 ,写出S与t的函数关系式, t为何值时S最小?求出S的最小值。
(2)由题意得
D
C
S=12×6 -
1 2
×2t(6-t)
=t2-6t+72=(t-3)2+63
∵1>0 ∴当 t=3 时 S 最小值=63 即 t=3cm 时 S 有最小值 63cm2
Q 2t cm
由题知 24-4x>0 解得 x<6
A
D
∵x>0
∴x 的取值范围是 0<x<6
B
C
(2) ∵-4<0 ∴当 x=-2×2(4-4)=3 时,
S 最大= -4×32+24×3=36 则当 x=3m 时,所围成的花圃面积最大,最大值为 36m2。
2014.12
变式练习2.如图,在一面靠墙的空地上用长为24m的篱笆,围成中 间隔有二道篱笆的长方形花圃,设花圃的AB=xm,面积为Sm2。
225 36
∵-
7 2<0
∴当
x=
15 14
≈1.07 时,S 最大=
225 36
≈4.02
即当 x≈1.07m 时,S 最大≈4.02m2,此时窗户通过的光线最多。
2014.12
3.11二次函数的应用 最大面积1
二次函数的应用(最大面积1)学习目标:能够运用二次函数的知识解决最大面积问题,进一步感受数学模型思想和数学的应用价值。
交流预习:如图在Rt △ABC 中,AC=4, BC=3, DE ∥AB,分别与AC 、BC 相交于D 、E, CH ⊥AB 于点H,交DE 于点F 、G 为AB 上任意一点,设CF=x ,△DEG 的面积为y ,限定DE 在△ABC 的内部平行移动.⑴求x 的取值范围.⑵求函数y 与自变量x 的函数关系式.⑶当DE 取何值时,△DEG 的面积最大?求出最大值.典型例题 如图,在Rt △ABC 的内部做一个内接矩形DEFG ,AC=30m ,AB=40m ,设矩形DEFG 的面积为y ㎡,当EF 取何值时,y 的值最大?最大值为多少?巩固练习:1. 如图:在△ABC 中,BC=4,AB=3 2,∠B=45°,M 、N 分别为AB ,AC 边上的点,且MN ∥ BC ,设MN 为x ,△MNC 的面积为y 。
(1)试求y 与x 之间的函数关系式,并写出x 的取值范;(2)试问MN 处在什么位置时,△MNC 的面积最大?并求出最大值;(3)当△MNC 的面积为98时,试问MN 的值。
2、要在底边BC=160, 高AD=120的△ABC铁皮余料上截取一个矩形EFGH, 使点H 在AB上,点G在AC上,点E、F在BC上,设矩形EFGH的长HG=x,宽HE=y,(1)试确定y与x之间的函数表达式.(2)当x为何值时,矩形EFGH的面积S最大?拓展延伸、如图在矩形ABCD中,AB=12cm,BC=6cm,点P沿BA从点B开始向点A以2cm/秒的速度移动;点Q沿CB边从点C开始向点B以1cm/秒的速度移动,如果P、Q同时出发,用t秒表示移动时间(0≤t≤6)那么(1)当t=2秒时,请你猜想下△QPB是个什么特殊三角形,并证明你的结论;(2)求:四边形PBQD的面积s与时间t的关系式。
二次函数的应用-——最大面积问题教学设计
二次函数的应用-——最大面积问题教学设计《二次函数的应用——面积最大问题》教学设计二次函数的应用——面积最大问题。
所用教材是山东教育出版社材九年级上册第三章第六节二次函数的应用,本节共需四课时,面积最大是第一节。
下面我将从教材内容的分析、教学目标、重点、难点的确定、教学方法的选择、教学过程的设计和教学效果预测几方面对本节课进行说明。
一、教学内容的分析1、地位与作用:二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。
新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对于面积问题学生易于理解和接受,故而在这儿作专题讲座,为求解最大利润等问题奠定基础。
目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关的应用问题。
此部分内容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。
2、课时安排教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最大、利润最大、运动中的二次函数、综合应用四课时,本节是第一课时。
3.学情及学法分析学生由简单的二次函数y=x2学习开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y =a(x-h)2+k,y=ax2+bx+c,学生已经掌握了二次函数的三种表示方式和图像的性质。
对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
二次函数的实际应用——面积最大(小)值问题
二次函数的实际应用——面积最大(小)值问题[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--⨯=+-=⋅-=[例2]某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y 与x 之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x 取何值时,花园的面积最大,最大面积是多少?解:)240(x x y -=)20(22x x --=200)10(22+--=x∵152400≤-<x∴205.12<≤x∵二次函数的顶点不在自变量x 的范围内,而当205.12<≤x 内,y 随x 的增大而减小,∴当5.12=x 时,5.187200)105.12(22max =+--=y (平方米)答:当5.12=x 米时花园的面积最大,最大面积是187.5平方米.[例3]如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?比较(1)(2)的结果,你能得到什么结论?解:(1)∵长为x 米,则宽为350x -米,设面积为S 平方米. )50(313502x x x x S --=-⋅= 3625)25(312+--=x ∴当25=x 时,3625max =S (平方米) 即:鸡场的长度为25米时,面积最大.(2) 中间有n 道篱笆,则宽为250+-n x 米,设面积为S 平方米. 则:)50(212502x x n n x x S -+-=+-⋅= 2625)25(212++-+-=n x n ∴当25=x 时,2625max +=n S (平方米) 由(1)(2)可知,无论中间有几道篱笆墙,要使面积最大,长都是25米.即:使面积最大的x 值与中间有多少道隔墙无关.。
中考数学狙击重难点系列专题----二次函数的实际应用之面积最大值问题(含答案)
面积最大值问题1. 如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B (4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.(1)求这个二次函数的解析式;(2)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC 的最大面积.2. 如图,已知抛物线y=ax2+c过点(﹣2,2),(4,5),过定点F(0,2)的直线l:y=kx+2与抛物线交于A、B两点,点B在点A的右侧,过点B作x 轴的垂线,垂足为C.(1)求抛物线的解析式;(2)若k=1,在直线l下方的抛物线上是否存在点Q,使得△QBF的面积最大?若存在,求出点Q的坐标及△QBF的最大面积;若不存在,请说明理由.3. 如图,二次函数y=ax 2+2x+c 的图象与x 轴交于点A (﹣1,0)和点B ,与y 轴交于点C (0,3).(1)求该二次函数的表达式;(2)过点A 的直线AD ∥BC 且交抛物线于另一点D ,求直线AD 的函数表达式;(3)在(2)的条件下,请解答问题: 动点M 以每秒1个单位的速度沿线段AD 从点A 向点D 运动,同时,动点N 以每秒个单位的速度沿线段DB 从点D 向点B 运动,问:在运动过程中,当运动时间t 为何值时,△DMN 的面积最大,并求出这个最大值.4. 如图,在平面直角坐标系中,二次函数y=﹣x 2+bx+c 的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(﹣4,0).(1)求该二次函数的表达式及点C 的坐标; (2)点D 的坐标为(0,4),点F 为该二次函数在第一象限内图象上的动点,连接CD 、CF ,以CD 、CF 为邻边作平行四边形CDEF ,设平行四边形CDEF 的面积为S .求S 的最大值;5. 如图,已知二次函数y=ax2+ x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+ x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.6.如图,在平面直角坐标系中,直线AB和抛物线交于点A(﹣4,0),B(0,4),且点B是抛物线的顶点.(1)求直线AB和抛物线的解析式.(2)点P是直线上方抛物线上的一点,求当△PAB面积最大时点P的坐标.7.如图,抛物线y=x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A、B,且B点的坐标为(2,0).(1)求抛物线的解析式;(2)若点P是AB上的一个动点,过点P作PE∥AC交BC于点E,连接CP,求△PCE面积最大时P点的坐标;8.如图,在平面直角坐标系中,已知点A,B,C的坐标分别为(﹣1,0),(5,0),(0,2).(1)求过A,B,C三点的抛物线解析式;(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S;①求S与t的函数关系式;②当t是多少时,△PBF的面积最大,最大面积是多少?9.如图,曲线y1抛物线的一部分,且表达式为:y 1=(x2﹣2x﹣3)(x≤3)曲线y2与曲线y1关于直线x=3对称.(1)求A、B、C三点的坐标和曲线y2的表达式;(2)过点D作CD∥x轴交曲线y1于点D,连接AD,在曲线y2上有一点M,使得四边形ACDM为筝形(如果一个四边形的一条对角线被另一条对角线垂直平分,这样的四边形为筝形),请求出点M的横坐标;(3)设直线CM与x轴交于点N,试问在线段MN下方的曲线y2上是否存在一点P,使△PMN的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.10.如图,二次函数y=x2-4x+3的图象与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,抛物线的对称轴与x轴交于点D.、(备用图)(1)求点A,点B和点D的坐标;(2)若动点M从点A出发,以每秒1个单位长度的速度沿AB向点B运动,同时另一个动点N从点D出发,以每秒2个单位长度的速度在抛物线的对称轴上运动,当点M到达点B时,点M,N同时停止运动,问点M,N运动到何处时,∆MNB的面积最大,试求出最大面积.11.如图,二次函数的图象与x轴相交于点A(﹣3,0)、B(﹣1,0),与y 轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx﹣4k(k≠0)的图象过点P交x轴于点Q.(1)求该二次函数的解析式;(2)当点P的坐标为(﹣4,m)时,求证:∠OPC=∠AQC;(3)点M,N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M,N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.连接AN,当△AMN的面积最大时,求t的值;12.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B 两点,点A在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;13.已知在平面直角坐标系xOy中,O为坐标原点,二次函数y=x2+bx的图象经过点A(﹣1,4),交x轴于点B(a,0).(1)求a与b的值;(2)如图1,点M为抛物线上的一个动点,且在直线AB下方,试求出△ABM 面积的最大值及此时点M的坐标;14.如图,抛物线y=-x 2+bx+c与x轴交于A、B两点,与y轴交于点C,已知经过B、C两点的直线的表达式为y=-x+3.(1)求抛物线的函数表达式;(2)点P(m,0)是线段OB上的一个动点,过点P作y轴的平行线,交直线BC 于D,交抛物线于E,EF∥x轴,交直线BC于F,DG∥x轴,FG∥y轴,DG与FG交于点G.设四边形DEFG的面积为S,当m为何值时S最大,最大值是多少?15.如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M 从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;16.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;。
二次函数的应用——最大面积问题教学设计
二次函数的应用——最大面积问题的教学设计一、学情分析:众所周知,二次函数与解析几何是初中数学的两个难点,而在中考中往往都是将二者融合形成综合性问题,当然也是学生一直感觉头疼的一个问题。
新课程标准指出,学生对有关的数学内容进行探索、实践和思考的过程就是数学学习的过程,也是学生获得数学活动经验的过程。
将时间还给学生、以学生为主体是每一节课的追求。
通过学生自主学习在反比例函数中求三角形时所用到的方法分享,对其中分割法中的竖直高乘以水平宽的一半进行着重分析,探究其基本原理,从而用此通法解决二次函数中三角形最大面积问题,当然重点分析此发的同时也鼓励一题多解、多解归一。
二、教学目标1、借助反比例函数中三角形面积的几种计算方法总结得出通法:“水平宽乘以竖直高的一半”。
2、通过自主学习小组合作讨论,从特殊的图形出发、层层深入让学生在探索过程中体会“水平宽乘以竖直高的一半”这一方法。
从而从本质理解“水平宽乘以竖直高的一半”。
3、运用“水平宽乘以竖直高的一半”表示出二次函数中基本三角形的面积结合二次函数的最值思想求出三角形面积的最值问题。
三、教学重难点:教学重点:运用“水平宽乘以竖直高的一半”表示出二次函数中基本三角形的面积结合二次函数的最值思想求出三角形面积的最值问题教学难点:从特殊的图形出发、层层深入让学生在探索过程中体会“水平宽乘以竖直高的一半”这一方法。
从而从本质理解“水平宽乘以竖直高的一半”。
四、教学设计【自主学习】学生课前自主完成、并在上课时小组讨论、交流并与大家分享。
的图象都引例:如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=mx经过点A(2,﹣2).(1)分别求这两个函数的表达式;(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.方法提炼:补:补成矩形减去三个直角三角形。
补:延长CA与y轴交于点D,用三角形BCD面积减去三角形BAD面积。
二次函数应用几何图形的最大面积问题教学课件
求解极值点
通过求导数并令其为0,找到函 数的极值点。
确定最大面积
根据极值点和单调性,确定几 何图形的最大面积对应的点。
05
练习题与答案解析
练习题
01
02
03
题目1
一个矩形ABCD的面积为 12,其中AB=2,求BC的 最大值。
题目2
一个直角三角形ABC的面 积为6,其中∠C=90°, AC=3,求BC的最大值。
详细描述
首先设定三角形的底和高为二次函数 的变量,然后根据二次函数的性质, 找到使面积最大的底和高的值。
利用二次函数求圆形面积的最大值
总结词
通过设定圆的半径为二次函数的变量 ,利用二次函数的性质求圆的最大面 积。
详细描述
首先设定圆的半径为二次函数的变量 ,然后根据二次函数的性质,找到使 面积最大的半径的值。
02
几何图形可以由二次函数图像与x 轴、y轴的交点确定,进而形成三 角形、矩形、平行四边形等。
二次函数的最值与几何图形面积的关系
二次函数的最值出现在顶点处,此时 对应的x值为函数的零点或对称轴。
几何图形面积的最大值或最小值出现 在二次函数最值处,可以通过求导数 或配方法找到最值点。Βιβλιοθήκη 02常见几何图形面积公式
题目3
一个等腰三角形ABC的面 积为10,其中AB=AC, ∠B=45°,求BC的最大值 。
答案解析
解析1
设BC=x,则矩形的面积可以表 示为2x=12,解得x=6。由于AB 已经给定为2,所以BC的最大值
为6。
解析2
设BC=x,则直角三角形的面积 可以表示为1/2×3x=6,解得 x=4。由于AC已经给定为3,所
二次函数的应用《图形面积的最大值》
h= 30t - 5t 2
20
O 1 2 34 5 6
t/s
小球运动的时间是 3s 时,小球最高.小球运动中的 最大高度是 45 m.
典例精析 例1 用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变 化而变化.当l是多少时,场地的面积S最大?
问题1 矩形面积公式是什么? 问题2 如何用l表示另一边?
设垂直于墙的边长为x m,
60-2x
问题3 面积S的函数关系式是什么?
S=x(60-2x)=-2x2+60x.
问题4 如何求自变量x的取值范围?墙长32m对此题有什么作用?
0<60-2x≤32,即14≤x<30.
问题5 如何求最值最?值在顶点处,即当x=15m时,S=450m2.
变式2 如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜园,墙长18m,这个 矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
知识要点
二次函数解决几何面积最值问题的方法 1.求出函数解析式和自变量的取值范围; 2.配方变形,或利用公式求它的最大值或最小值, 3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取 值范围内.
典例精析
例2 用某建筑物的窗户如图所示,它的上半部分是半圆,下半部分是矩形, 制造窗框的材料总长(图中所有黑线的长度和)为15m.当x等于多少时,窗户 通过的光线最多?(结果精确到0.01m)此时,窗户的面积是多少?(结果精 确到0.01m2)
当 x b 时,
2a
二次函数 y = ax 2 + bx + c 有最小(大)
值
y
4ac b2 .
4a
讲授新课
求二次函数的最大(或最小)值
典例精析 例1 写出下列抛物线的最值. (1)y=x2-4x-5;
二次函数的应用——面积最大问题》说课稿—获奖说课稿
二次函数的应用——面积最大问题》说课稿—获奖说课稿22.过程与方法:培养学生利用所学知识构建数学模型,解决实际问题的能力,掌握建模思想,熟练掌握最值问题的解法。
23.情感态度与价值观:通过实际问题的应用,让学生感受到数学在生活中的实际应用价值,培养学生对数学的兴趣和热爱。
本节课的重点是最值问题的解法和建模思想的培养,难点是对实际问题的分析和建模思想的掌握。
三、教学方法的选择本节课采用“引导发现、归纳总结、启发式教学”等多种教学方法,其中引导发现法是本节课的核心教学方法,通过引导学生发现实际问题中的规律和模式,培养学生独立思考和解决问题的能力;归纳总结法是巩固知识的有效方法,通过对学生已有的知识进行梳理和总结,加深对知识的理解和记忆;启发式教学法则是在教学中采用启发式问题,激发学生的思考和求知欲,提高学生的研究兴趣和积极性。
四、教学过程的设计本节课的教学过程分为四个环节:导入、讲授、练、归纳总结。
导入环节通过引入实际问题,激发学生的兴趣和求知欲,让学生认识到最值问题的实际应用价值;讲授环节通过具体例子和图像分析,讲解最值问题的解法和建模思想;练环节则通过多种形式的练,巩固学生的知识和技能;归纳总结环节则对本节课的知识点进行总结和梳理,加深对知识的理解和记忆。
五、教学效果预测通过本节课的教学,学生将能够掌握最值问题的解法和建模思想,能够熟练应用所学知识解决实际问题,同时也能够感受到数学在生活中的实际应用价值,培养学生对数学的兴趣和热爱,为学生今后的研究打下坚实的理论和思想方法基础。
2、___要在一块长为20米、宽为15米的空地上建一个长方形花园,他想让花园的面积最大,你能帮他算一下最大面积是多少吗?3、某公司生产一种产品,销售价格为每个10元,生产成本为每个5元,每天能生产1000个,你能帮助他们算一下每天的最大利润是多少吗?设计思路]通过这三个问题,引导学生发现实际问题中的最值问题,从而引出二次函数的最值问题。
二次函数应用-几何图形的最大面积问题精品PPT课件
Q1cm/秒B
∴ 当P、Q同时运动2秒后ΔPBQ的面积y最大 最大面积是C,AD⊥BC, BC=160cm ,AD=120cm,
(1)设矩形EFGH的长HG=y,宽HE=x,确定y与x的函 数关系式;
(2)当x为何值时,矩形EFGH的面积S最大?
最 值。
2。有取值范围的在端点或顶点处取最值。
自学教材20页 “动脑筋”
例1:如图,在一面靠墙的空地上用长为24米 的篱笆,围成中间隔有两道篱笆的长方形花 圃,设花圃的宽AB为x米,面积为S平方米。 (1)求S与x的函数关系式及自变量的取值范围。
(2)当x取何值时所围成的花圃面积最大,
最大值是多少?
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
(四)课堂小结
1. 对于面积最值问题应该设图形一边长为自 变量,所求面积为函数建立二次函数的模型, 利用二次函数有关知识求得最值,要注意函数 的自变量的取值范围。
2. 用函数知识求解实际问题,需要把实际问 题转化为数学问题再建立函数模型求解,解要 符合实际题意,要注意数与形结合。
1.在一幅长60 cm,宽40 cm的矩形风景画的四周 镶一条金色纸边,制成一幅矩形挂图,如图所示, 如果要使整个挂图的面积是y cm2,设金色纸边 的宽度为x cm,那么y关于x的函数是( ) A.y=(60+2x)(40+2x)
(一)思前想后
1.二次函数y=ax2+bx+c(a≠0)的顶点坐标、 对称轴和最值
2.(1)求函数y=x2+2x-3的最值。 (2)求函数y=x2+2x-3 (0≤x ≤ 3)
二次函数的实际应用——面积最大(小)值问题
二次函数的实际应用——面积最大(小)值问题教学目标在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。
求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.教学重点与难点 能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数知识求出实际问题中的最值,发展解决问题的能力。
教学过程设计一 复习引入前几节课我们结合实际问题讨论了二次函数,看到了二次函数在解决实际问题中的一些应用,下面我们进一步用二次函数讨论一些实际问题。
二 探究新知[例1]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -= x x 3442+-= 4289)417(42+--=x ∵104340≤-<x∴2176<≤x ∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内,而当2176<≤x 内,S 随x 的增大而减小, ∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大. 巩固练习在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?三 小结拓展本节课我们学习了二次函数的应用,在初中阶段的应用题中如果遇到求最大值问题,极有可能运用二次函数的最大值知识,而列函数式是解题的关键。
初中数学专题复习-二次函数的实际应用面积最值问题
二次函数的实际应用——面积最大(小)值问题知识要点:在生活实践中,人们经常面对带有“最”字的问题,如在一定的方案中,花费最少、消耗最低、面积最大、产值最高、获利最多等;解数学题时,我们也常常碰到求某个变量的最大值或最小值之类的问题,这就是我们要讨论的最值问题。
求最值的问题的方法归纳起来有以下几点:1.运用配方法求最值;2.构造一元二次方程,在方程有解的条件下,利用判别式求最值;3.建立函数模型求最值;4.利用基本不等式或不等分析法求最值.[例1]:在矩形ABCD 中,AB=6cm ,BC=12cm ,点P 从点A 出发,沿AB 边向点B 以1cm /s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm /s 的速度移动,如果P 、Q 两点同时出发,分别到达B 、C 两点后就停止移动.(1)运动第t 秒时,△PBQ 的面积y(cm²)是多少?(2)此时五边形APQCD 的面积是S(cm²),写出S 与t 的函数关系式,并指出自变量的取值范围.(3)t 为何值时s 最小,最小值时多少?答案:6336333607266126262621)1(2222有最小值等于时;当)()()()()()(S t t S t t t t t S t t t t y =∴+-=<<+-=+--⨯=+-=⋅-=Θ[例2]:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?解:设花圃的宽为x 米,面积为S 平方米则长为:x x 4342432-=+-(米)则:)434(x x S -=2 x x 3442+-= 4289)417(42+--=x ∵104340≤-<x∴2176<≤x ∵6417<,∴S 与x 的二次函数的顶点不在自变量x 的范围内, 而当2176<≤x 内,S 随x 的增大而减小, ∴当6=x 时,604289)4176(42max =+--=S (平方米) 答:可设计成宽6米,长10米的矩形花圃,这样的花圃面积最大.[例3]:已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.解:设矩形PNDM 的边DN=x ,NP=y ,则矩形PNDM 的面积S=xy (2≤x≤4)易知CN=4-x ,EM=4-y .过点B 作BH ⊥PN 于点H则有△AFB ∽△BHP∴PHBH BF AF =,即3412--=y x , ∴521+-=x y , x x xy S 5212+-==)42(≤≤x , 此二次函数的图象开口向下,对称轴为x=5,∴当x≤5时,函数值y 随x 的增大而增大,对于42≤≤x 来说,当x=4时,12454212=⨯+⨯-=最大S . 【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.[例4]:某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?解:(1) 四边形EFGH 是正方形.图(2)可以看作是由四块图(1)所示地砖绕C 点按顺(逆)时针方向旋转90°后得到的,故CE =CF =CG .∴△CEF 是等腰直角三角形因此四边形EFGH 是正方形.(2)设CE =x , 则BE =0.4-x ,每块地砖的费用为y 元那么:y =x ×30+×0.4×(0.4-x )×20+[0.16-x -×0.4×(0.4-x )×10] )24.02.0(102+-=x x3.2)1.0(102+-=x )4.00(<<x当x =0.1时,y 有最小值,即费用为最省,此时CE =CF =0.1.答:当CE =CF =0.1米时,总费用最省.作业布置:1.(2008浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度=最大h 4.9米 .2.(2008庆阳市)兰州市“安居工程”新建成的一批楼房都是8层高,房子的价格y (元/平方米)随楼层数x (楼)的变化而变化(x =1,2,3,4,5,6,7,8);已知点(x ,y )都在一个二次函数的图像上,(如图所示),则6楼房子的价格为 元/平方米.5 m 12 m AB CD提示:利用对称性,答案:2080.3.如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( D )。
二次函数应用几何图形的最大面积问题课件
对未来学习的思考和展望
深入学习二次函数和几何图形的基础知识,掌握更多解 决实际问题的技巧和方法。
拓展学习领域,了解更多与数学相关的学科知识,如线 性代数、微积分等,为解决更复杂的问题提供支持。
关注数学在实际生活中的应用,了解数学与其他学科的 交叉点,培养跨学科解决问题的能力。
THANKS
的最大面积。
03
几何图形面积的最大值问 题
几何图形面积最大值的求解方法
03
代数法
几何法
参数法
通过代数运算和不等式性质,求出几何图 形面积的最大值。
利用几何图形的性质和特点,通过作图和 观察,求出面积最大值。
引入参数表示几何图形,通过参数的变化 和约束条件,求出面积的最大值。
面积最大值在二次函数中的应用
二次函数应用几何图形的最 大面积问题课件
目录
• 二次函数与几何图形的关系 • 二次函数的最值问题 • 几何图形面积的最大值问题 • 实际应用案例分析 • 总结与思考
01
二次函数与几何图形的关 系
二次函数图像的几何意义
01
二次函数图像是抛物线,其 顶点是函数的极值点。
02
二次函数图像的对称轴是x=h ,顶点的纵坐标是k。
二次函数与几何图形面积最大值问题 紧密相关,通过合理设定函数参数, 可以找到几何图形面积的最大值。
在解决实际问题时,需要综合考虑多 种因素,如几何图形的形状、大小和 位置等,以及二次函数的参数和约束 条件。
二次函数开口方向和顶点位置对几何 图形面积的影响是关键,需要根据实 际情况调整函数表达式,以获得最佳 效果。
01
总结词
02
详细描述
矩形面积最大化
在给定长和宽的条件下,利用二次函数求矩形的最大面积。通过设定 长和宽为二次函数的形式,并利用求导数的方法找到面积的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的应用—面积问题【知识要点】
(1)求出面积与自变量的函数关系y=ax2+bx+c(a≠0)
(2)用配方法用配方法将y=ax2+bx+c化为y=a(x-h)2+k的形式:
y=ax2+bx+c=a(x2+b
a x+c
a
)=a[x2+b
a
x+(b
2a
)
2
+c
a
]=a(x+b
2a
)
2
+4ac−b
2
4a
.
当a>0时,则x=−b
2a 时,y最小值=4ac−b
2
4a
当a<0时,则x=−b
2a 时,y最大值=4ac−b
2
4a
(3)确定自变量的取值范围,检验x=−
b
2a
是否在取值范围内,若不在,则根据函数的
增减性,代入自变量的端点值求出最值
求几何图形的常见方法:
①利用几何图形的面积公式;
②利用三角形的相似(面积比等于相似比的平方);
③利用割补法求几何图形的面积和或差;
【例题解析】
例4、有窗框料12m长,现要制成一个如图所示的窗框,问长宽各为多少米,才能使光照最充足?
例5、在梯形ABCD中,AD∥BC,AB=DC=AD=6,∠ABC=60°,点E,F分别在线段AD,DC上(点E与点A,D不重合),且∠BEF=120°,设AE=x,DF=y.
(1)求y与x的函数表达式;
(2)当x为何值时,y有最大值,最大值是多少?
例6、如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(4,0)、(4,3),动点M、N分别从点O、B同时出发,以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动,过点N 作NP⊥BC,交AC于点P,连接MP,当两动点运动了t秒时.
(1)P点的坐标为______(用含t的代数式表示);
(2)记△MPA的面积为S,求S与t的函数关系式(0<t<4);
(3)当t=______秒时,S有最大值,最大值是______;
(4)若点Q在y轴上,当S有最大值且△QAN为等腰三角形时,求直线AQ的解析式.
【课堂练习】
1.如图,已知△ABC 是一等腰三角形铁板余料,其中AB=AC=20cm,BC=24cm.若在△ABC 上截出一矩形零件DEFG,使EF 在BC 上,点D 、G 分别在边AB 、AC 上. 问矩形DEFG 的最大面积是多少?
2.如图,在Rt △ABC 中,∠ACB=90°,AB=10,BC=8,点D 在BC 上运动(不运动至B,C),DE ∥AC,交AB 于E,设BD=x,△ADE 的面积为y.
(1)求y 与x 的函数关系式及自变量x 的取值范围;
(2)x 为何值时,△ADE 的面积最大?最大面积是多少?
3.如图,△ABC 中,∠B=90°,AB=6cm,BC=12cm.点P 从点A 开始,沿AB 边向点B 以每秒1cm 的速度移动;点Q 从点B 开始,沿着BC 边向点C 以每秒2cm 的速度移动.如果P,Q 同时出发,问经过几秒钟△PBQ 的面积最大?最大面积是多少?
F E B
G
D
A E
B
D
A
4.如图所示,是某市一条高速公路上的隧道口在平面直角坐标系上的示意图,隧道的截面由抛物线和长方形构成.长方形的长是16m,宽是6m.抛物线可以用y=-132
x 2
+8表示. (1)现有一大型运货汽车,装载某大型设备后,其宽为4m,车载大型设备的顶部与路面的距离均为7m,它能否安全通过这个隧道?说明理由.
(2)如果该隧道内设双行道,那么这辆运货汽车能否安全通过?
(3)为安全起见,你认为隧道应限高多少比较适宜?为什么?
5.如图,在矩形ABCD 中,AB=6cm,BC=12cm,点P 从点A 出发,沿AB 边向点B 以1cm/s 的速度移动,同时点Q 从点B 出发沿BC 边向点C 以2cm/s 的速度移动,如果P,Q 两点同时出发,分别到达B,C 两点后就停止移动.
(1)设运动开始后第t 秒钟后,五边形APQCD 的面积为Scm 2,写出S 与t 的函数关系式,
B
Q
C
P
A
B x A 1
O B 1C y A
并指出自变量t 的取值范围.
(2)t 为何值时,S 最小?最小值是多少?
6.△ABC 是锐角三角形,BC=6,面积为12,点P 在AB 上,点Q 在AC 上,如图所示, 正方形PQRS(RS 与A 在PQ 的异侧)的边长为x,正方形PQRS 与△ABC 公共部分的面积为y. (1)当RS 落在BC 上时,求x;
(2)当RS 不落在BC 上时,求y 与x 的函数关系式; (3)求公共部分面积的最大值.
7.如图,有一座抛物线形拱桥,抛物线可用y=2
125
x
表示.在正常水位时水面AB 的宽为20m,如果水位上升3m 时,水面CD 的宽是10m.
(1)在正常水位时,有一艘宽8m 、高2.5m 的小船,它能通过这座桥吗?
(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km 的速度开往乙地,当行驶1小时时, 忽然接
B
Q
D
C
P A B
Q S
R
C
P A
到紧急通过:前方连降暴雨,造成水位以每小时0.25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O 时,禁止车辆通行).试问:如果货车按原来的速度行驶,能否安全通过此桥?若能,请说明理由.若不能, 要使货车安全通过此桥,速度应超过每小时多少千米?
B
x
O
D
C y A。