回溯法实验报告

合集下载

回溯法实验(图的m着色问题)

回溯法实验(图的m着色问题)

算法分析与设计实验报告第六次附加实验cout<<endl;}elsefor(int i=1;i<=m;i++){x[t]=i;if(ok(t)) Backtrack(t+1);//回溯,继续寻找下一层x[t]=0;//回到最初状态,使x[1]继续尝试其他填色的可能解}}测试结果当输入图如下时:结果如下:12435只要输入边即可当输入的图如下时:结果如下:附录:完整代码(回溯法)//图的m着色问题回溯法求解#include<iostream>using namespace std;class Color{friend void mColoring(int,int,int **);private:bool ok(int k);void Backtrack(int t);int n, //图的顶点个数m, //可用颜色数**a, //图的邻接矩阵*x; //当前解long sum; //当前已找到的可m着色的方案数};bool Color::ok(int k) //检查颜色可用性{for(int j=1;j<=n;j++)if((a[k][j]==1)&&(x[j]==x[k])) //两个点之间有约束且颜色相同return false;return true;}void Color::Backtrack(int t){if(t>n) //到达叶子节点{sum++; //可行解+1cout<<"着色: ";for(int i=1;i<=n;i++) //输出可行解方案cout<<x[i]<<" ";cout<<endl;}elsefor(int i=1;i<=m;i++){x[t]=i;if(ok(t)) Backtrack(t+1);//回溯,继续寻找下一层x[t]=0;//回到最初状态,使x[1]继续尝试其他填色的可能解 }}void mColoring(int n,int m,int **a){Color X;//初始化XX.n=n;X.m=m;X.a=a;X.sum=0;int *p=new int[n+1];for(int i=0;i<=n;i++)p[i]=0;X.x=p;cout<<"顶点: ";for(int i=1;i<=n;i++) //用于输出结果cout<<i<<" " ;cout<<endl;X.Backtrack(1); //从顶点1开始回溯delete []p;cout<<"解法个数:"<<X.sum<<endl;}int main(){int n;int m;cout<<"please input number of node:";cin>>n;cout<<"please input number of color:";cin>>m;int **a=new int*[n+1];for(int i=0;i<=n;i++)a[i]=new int[n+1];for(int i=0;i<=n;i++) //利用抽象图实现图的邻接矩阵for(int j=0;j<=n;j++)a[i][j]=0;int edge;cout<<"please input adjacent edge number:";cin>>edge;int v,w;cout<<"please inout adjacent edge:"<<endl; //只要输入边即可for(int i=0;i<edge;i++){cin>>v>>w; //由于是无向图,所以对应的邻接矩阵对应的边都有,即v->m,m->v都有边a[v][w]=1;a[w][v]=1;}mColoring(n,m,a);system("pause");return 0;}。

回溯法实验(n皇后问题)(迭代法)

回溯法实验(n皇后问题)(迭代法)

算法分析与设计实验报告第三次附加实验附录:完整代码(回溯法)//回溯算法递归回溯n皇后问题#include<iostream>#include<time.h>#include<iomanip>#include"math.h"using namespace std;class Queen{friend int nQueen(int); //定义友元函数,可以访问私有数据private:bool Place(int k); //判断该位置是否可用的函数void Backtrack(int t); //定义回溯函数int n; //皇后个数int *x; //当前解long sum; //当前已找到的可行方案数};int main(){int m,n;for(int i=1;i<=1;i++){cout<<"请输入皇后的个数:"; //输入皇后个数cin>>n;cout<<"皇后问题的解为:"<<endl;clock_t start,end,over; //计算程序运行时间的算法start=clock();end=clock();over=end-start;start=clock();m=nQueen(n); //调用求解的函数cout<<n<<"皇后问题共有";cout<<m<<"个不同的解!"<<endl; //输出结果end=clock();printf("The time is %6.3f",(double)(end-start-over)/CLK_TCK); //显示运行时间cout<<endl;}system("pause");return 0;}bool Queen::Place(int k)//传入行号{for(int j=1;j<k;j++){if((abs(k-j)==abs(x[j]-x[k]))||(x[j]==x[k]))//如果两个在同一斜线或者在同一列上,说明冲突,该位置不可用{return false;}}return true;}void Queen::Backtrack(int t){if(t>n){sum++;/*for(int i=1;i<=n;i++) //输出皇后排列的解{cout<<x[i]<<" ";}cout<<endl;*/}else{//回溯探索第i行的每一列是否有元素满足要求for(int i=1;i<=n;i++){x[t]=i;if(Place(t)){Backtrack(t+1);}}}}int nQueen(int n){Queen X; //定义Queen类的对象X//初始化XX.n=n;X.sum=0;int *p=new int[n+1]; //动态分配for(int i=0;i<=n;i++) //初始化数组{p[i]=0;}X.x=p;X.Backtrack(1);delete[] p;return X.sum;//输出解的个数}完整代码(回溯法)//回溯算法迭代回溯n皇后问题#include<iostream>#include<time.h>#include<iomanip>#include"math.h"using namespace std;class Queen{friend int nQueen(int); //定义友元函数private:bool Place(int k); //定义位置是否可用的判断函数void Backtrack(void); //定义回溯函数int n; // 皇后个数int *x; // 当前解long sum; // 当前已找到的可行方案数};int main(){int n,m;for(int i=1;i<=1;i++){cout<<"请输入皇后的个数:";cin>>n;cout<<n<<"皇后问题的解为:"<<endl;clock_t start,end,over; //计算程序运行时间的算法start=clock();end=clock();over=end-start;start=clock();m=nQueen(n); //调用求解皇后问题的函数cout<<n<<"皇后问题共有";cout<<m<<"个不同的解!"<<endl;end=clock();printf("The time is %6.3f",(double)(end-start-over)/CLK_TCK); //显示运行时间cout<<endl;}system("pause");return 0;}bool Queen::Place(int k){for (int j=1;j<k;j++){if ((abs(k-j)==abs(x[j]-x[k]))||(x[j]==x[k])) //如果两个皇后在同一斜线或者在同一列上,说明冲突,该位置不可用{return false;}}return true;}void Queen::Backtrack() //迭代法实现回溯函数{x[1] = 0;int k = 1;while(k>0){x[k] += 1; //先将皇后放在第一列的位置上while((x[k]<=n)&&!(Place(k))) //寻找能够放置皇后的位置{x[k] += 1;}if(x[k]<=n) //找到位置{if(k == n) //如果寻找结束输出结果{/*for (int i=1;i<=n;i++){cout<<x[i]<<" ";}cout<<endl; */sum++;}else//没有结束则找下一行{k++;x[k]=0;}}else//没有找到合适的位置则回溯{ k--; }}}int nQueen(int n){Queen X; //定义Queen类的对象X//初始化XX.n=n;X.sum=0;int *p=new int[n+1];for(int i=0;i<=n;i++){p[i]=0;}X.x=p;X.Backtrack();delete []p;return X.sum; //返回不同解的个数}。

回溯法(马周游问题)——实验报告

回溯法(马周游问题)——实验报告

华南师范大学本科生实验报告姓名_黎国庄_学号20062101247院系_计算机学院专业_计算机科学与技术年级2006级班级_2班_小组实验任务分工_独立完成实验时间2008 年_6_月 3 _日实验名称回溯法的应用指导老师及职称陈卫东老师华南师范大学教务处编印实验课程:算法分析与设计实验名称:回溯法的应用(综设型实验)第一部分实验内容1.实验目标(1)熟悉使用回溯法求解问题的基本思路。

(2)掌握回溯算法的程序实现方法。

(3)理解回溯算法的特点。

2. 实验任务(1)从所给定的题目中选择一题,使用回溯法求解之。

(2)用文字来描述你的算法思路,包括解空间、限界函数、算法主要步骤等。

(3)在Windows环境下使用C/C++语言编程实现算法。

(4)记录运行结果,包括输入数据,问题解答及运行时间。

(5)分析算法最坏情况下时间复杂度和空间复杂度。

(6)谈谈实验后的感想,包括关于该问题或类似问题的求解算法的建议。

3. 实验设备及环境PC;C/C++等编程语言。

4. 实验主要步骤(1)根据实验目标,明确实验的具体任务;(2)设计求解问题的回溯算法,并编写程序实现算法;(3)设计实验数据并运行程序、记录运行的结果;(4)分析算法时空性能;(5)实验后的心得体会。

第二部分问题及算法1.问题描述给出一个8×8的棋盘,一个放在棋盘某个位置上的马(规定马的走法为走“日”)是否可以恰好访问每个方格一次,并回到起始位置上?2. 回溯法的一般思路对于马所在其中一格时,它可以走的位置有以下8种情况:⑧①⑦②马⑥③⑤④所以对于每一个马所在的格子里,马可以走对应的8个方向。

用满8叉树,每一个子树对应马可跳的方向当要走下一子树(跳下一格)时,该子树可走(还没有走过并且在棋盘里边),即沿该方向走下去,当不可以走,即回溯到上一步,选择另一方向往下走;当该子树的8个子棋都遍历完了(即8个方向都走过了),则回溯到它父亲那里。

重复一直做下去,到棋盘每个格子都走过一遍,而且回到出发点或者找不到路径即结束。

回溯法的实验报告

回溯法的实验报告

一、实验目的1. 理解回溯法的概念和原理;2. 掌握回溯法的基本算法设计思想;3. 通过实例验证回溯法的正确性和效率;4. 深入了解回溯法在实际问题中的应用。

二、实验内容1. 实验一:八皇后问题2. 实验二:0/1背包问题3. 实验三:数独游戏三、实验原理回溯法是一种在解空间树中搜索问题解的方法。

其基本思想是:从问题的起始状态开始,通过尝试增加约束条件,逐步增加问题的解的候选集,当候选集为空时,表示当前路径无解,则回溯到上一个状态,尝试其他的约束条件。

通过这种方法,可以找到问题的所有解,或者找到最优解。

四、实验步骤与过程1. 实验一:八皇后问题(1)问题描述:在一个8x8的国际象棋棋盘上,放置8个皇后,使得任意两个皇后都不在同一行、同一列和同一斜线上。

(2)算法设计:- 定义一个数组,用于表示棋盘上皇后的位置;- 从第一行开始,尝试将皇后放置在第一行的每一列;- 检查当前放置的皇后是否与之前的皇后冲突;- 如果没有冲突,继续将皇后放置在下一行;- 如果冲突,回溯到上一行,尝试下一列;- 重复上述步骤,直到所有皇后都放置完毕。

(3)代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn Truedef solve_n_queens(board, row):if row == len(board):return Truefor col in range(len(board)):if is_valid(board, row, col):board[row] = colif solve_n_queens(board, row + 1):return Trueboard[row] = -1return Falsedef print_board(board):for row in board:print(' '.join(['Q' if col == row else '.' for col in range(len(board))]))board = [-1] 8if solve_n_queens(board, 0):print_board(board)2. 实验二:0/1背包问题(1)问题描述:给定一个背包容量为W,n件物品,每件物品的重量为w[i],价值为v[i],求在不超过背包容量的前提下,如何选取物品,使得总价值最大。

回朔法实验报告

回朔法实验报告

一、实验目的1. 理解回溯法的基本原理和适用场景。

2. 掌握回溯法在解决实际问题中的应用。

3. 通过实验,提高编程能力和算法设计能力。

二、实验背景回溯法是一种在计算机科学中广泛应用的算法设计方法。

它通过尝试所有可能的解,在满足约束条件的前提下,逐步排除不满足条件的解,从而找到问题的最优解。

回溯法适用于解决组合优化问题,如0-1背包问题、迷宫问题、图的着色问题等。

三、实验内容本次实验以0-1背包问题为例,采用回溯法进行求解。

1. 实验环境:Windows操作系统,Python 3.7以上版本。

2. 实验工具:Python编程语言。

3. 实验步骤:(1)定义背包容量和物品重量、价值列表。

(2)定义回溯法函数,用于遍历所有可能的解。

(3)在回溯法函数中,判断当前解是否满足背包容量约束。

(4)若满足约束,则计算当前解的价值,并更新最大价值。

(5)若不满足约束,则回溯至前一步,尝试下一个解。

(6)输出最优解及其价值。

四、实验结果与分析1. 实验结果本次实验中,背包容量为10,物品重量和价值列表如下:```物品编号重量价值1 2 62 3 43 4 54 5 75 6 8```通过回溯法求解,得到最优解为:选择物品1、3、4,总价值为22。

2. 实验分析(1)回溯法能够有效地解决0-1背包问题,通过遍历所有可能的解,找到最优解。

(2)实验结果表明,回溯法在解决组合优化问题时具有较高的效率。

(3)在实验过程中,需要合理设计回溯法函数,以提高算法的效率。

五、实验总结通过本次实验,我们了解了回溯法的基本原理和适用场景,掌握了回溯法在解决实际问题中的应用。

在实验过程中,我们提高了编程能力和算法设计能力,为今后解决类似问题奠定了基础。

在今后的学习和工作中,我们将继续深入研究回溯法及其应用,以期为解决实际问题提供更多思路和方法。

算法分析与设计实验报告--回溯法

算法分析与设计实验报告--回溯法

算法分析与设计实验报告--回溯法实验目的:通过本次实验,掌握回溯法的基本原理和应用,能够设计出回溯法算法解决实际问题。

实验内容:1.回溯法概述回溯法全称“试探回溯法”,又称“逐步退化法”。

它是一种通过不断试图寻找问题的解,直到找到解或者穷尽所有可能的解空间技术。

回溯法的基本思路是从问题的某一个初始状态开始,搜索可行解步骤,一旦发现不满足求解条件的解就回溯到上一步,重新进行搜索,直到找到解或者所有可能的解空间已经搜索完毕。

2.回溯法的基本应用回溯法可用于求解许多 NP 问题,如 0/1 背包问题、八皇后问题、旅行商问题等。

它通常分为两种类型:一种是通过枚举所有可能的解空间来寻找解;另一种则是通过剪枝操作将搜索空间减少到若干种情况,大大减少了搜索时间。

3.回溯法的解题思路(1)问题分析:首先需要对问题进行分析,确定可行解空间和搜索策略;(2)状态表示:将问题的每一种状况表示成一个状态;(3)搜索策略:确定解空间的搜索顺序;(4)搜索过程:通过逐步试探,不断扩大搜索范围,更新当前状态;(5)终止条件:在搜索过程中,如果找到了满足要求的解,或者所有的可行解空间都已搜索完毕,就结束搜索。

4.八皇后问题八皇后问题是指在一个 8x8 的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。

通过回溯法可以求解出所有的可能解。

实验过程:回溯法的实现关键在于搜索空间的剪枝,避免搜索无用的解;因此,对于八皇后问题,需要建立一个二维数组来存放棋盘状态,以及一个一维数组来存放每行放置的皇后位置。

从第一行开始搜索,按照列的顺序依次判断当前的空位是否可以放置皇后,如果可以,则在相应的位置标记皇后,并递归到下一行;如果不能,则回溯到上一行,重新搜索。

当搜索到第八行时,获取一组解并返回。

代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn True实验结果:当 n=4 时,求得的所有可行解如下:```[[1, 3, 0, 2],[2, 0, 3, 1]]```本次实验通过实现回溯法求解八皇后问题,掌握了回溯法的基本原理和应用,并对回溯法的核心思想进行了深入理解。

算法实验报告:回溯法(C语言)

算法实验报告:回溯法(C语言)

实验报告
(2015/ 2016学年第一学期)
课程名称算法设计与分析
实验名称回溯法
实验时间2016年5月5日指导单位计算机软件学院
指导教师费宁
学生姓名罗熊班级学号B14050123
学院(系)自动化专业自动化
实验报告
NQUEENS(0);
printf("%d", sum);
system("pause");
return 0;
}:
实验结果:
四、实验小结
回溯法以深度优先次序生成状态空间树中的结点,并使用剪纸函数减少实际生成的结点数,回溯法是一种广泛适用的算法设计技术。

是要问题的解是元组形式,可用状态空间树描述,并采用判定函数识别答案结点,就能采用回溯法求解。

回溯法使用约束函数剪去不含可行解的分枝。

当使用回溯法求最优化问题时,需要设计界限函数用于剪去分枝。

五、指导教师评语
成绩批阅人日期。

回溯法求哈密尔顿回路试验报告

回溯法求哈密尔顿回路试验报告

回溯法求哈密尔顿回路2014211053谭富林一.实验目的和算法分析试验目的:通过回溯的方法找出图的一般哈密顿尔回路,并且能够输出结果。

算法分析:回溯法是一个既带有系统性又带有跳跃性的的搜索算法。

它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。

算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。

如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。

否则,进入该子树,继续按深度优先的策略进行搜索。

回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。

而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。

这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题。

哈密顿回路是从某顶点开始,经过图全部顶点一次回到起点的回路。

二.实验内容1.编写实现算法:给定n点,m条变,找出所有哈密尔顿回路。

2.将输出数据显示在控制台窗体中。

3.对实验结果进行分析。

三.实验开发工具操作系统:windows8开发工具:Microsoft visual studio 2010开发语言:C++四.实验操作程序的思路:程序的实现:#include<stdio.h>#include<process.h>#include<math.h>//全局变量声明int m=1; //用于标志哈密尔顿回路的总个数int n; //int x[128];int graph[128][128];void nextvalue(int k){int j;while(1){x[k]=(x[k]+1)%(n+1);if(x[k]==0) return;if(graph[x[k-1]][x[k]]){for(j=1;j<=k-1;j++){if(x[j]==x[k]) break;}if(j==k){if(k<n||(k==n&&graph[x[n]][1]))return;}}}}void print(int x[],int n){int i=1;printf("回路%d:",m);for(;i<=n;i++)printf("%d ",x[i]);printf("\n");m++;}void hamiltonian(int k){while(1){nextvalue(k);if(x[k]==0) return;if(k==n)print(x,n);elsehamiltonian(k+1);}}void main(){int i,j,e,a,b;printf("***********哈密顿回路递归回溯算法***********\n");printf("********************************************\n");printf("请先创建一个n结点的连通图graph[n][n]\n");printf("请输入顶点n的值:");scanf_s("%d",&n);printf("图中一共有几条边?请输入以便我们创建图:");scanf_s("%d",&e);for(i=1;i<=n;i++)for(j=1;j<=n;j++)graph[i][j]=0;for(i=1;i<=e;i++){printf("\n创建第%d条边:\n",i);printf("构成此边的一个顶点号(1~%d):",n);scanf_s("%d",&a);printf("另一个顶点号(1~%d):",n);scanf_s("%d",&b);graph[a][b]=graph[b][a]=1;}x[1]=1;for(i=2;i<=n;i++)x[i]=0;printf("\n以下为所求hamiltonian回路的所有解\n");hamiltonian(2);}五.实验结果以及分析有哈密尔顿回路连通图:运行结果:无哈密尔顿回路连通图:六.总结通过本次课程设计,本人对算法设计与分析基础有了更深的认识,基本掌握了回溯法求解一般哈密尔顿回路的算法思路以及编程原理,提高了程序开发的能力,让能切实体会到算法在编程过程中的指导作用。

实验五_回溯法

实验五_回溯法

算法分析与设计实验报告学号姓名班级上课地点教师上课时间实验五回溯法1. 实验目的1.1掌握回溯法的设计思想;1.2 掌握解空间树的构造方法,以及在求解过程中如何存储求解路径;1.3 学会利用回溯法解决实际问题。

2. 实验环境2.1 Eclipse2.2 Window XP3. 实验内容3.1 旅行商问题:给定一个n顶点网络(有向或无向),要求找出一个包含所有n个顶点的具有最小耗费的环路。

输入:顶点个数、邻接矩阵;输出:最小耗费、旅行的环路。

3.2 n后问题:nXn棋盘上放置n个皇后使得每个皇后互不受攻击,即任二皇后不能位于同行同列和同一斜线上。

输入:皇后的个数,输出:所有可能的方案以及总的方案数。

4. 教师批改意见成绩签字:日期:实验报告细表1旅行商问题1.1 算法设计思想回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。

这个开始结点就成为一个活结点,同时也成为当前的扩展结点。

在当前的扩展结点处,搜索向纵深方向移至一个新结点。

这个新结点就成为一个新的活结点,并成为当前扩展结点。

如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。

此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。

回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。

1.2 程序源码package lvxingshang;import java.util.Scanner;public class Bttsp {static int n; // 图G的顶点数static int[] x; // 当前解static int[] bestx; // 当前最优解static float bestc; // 当前最优值static float cc; // 当前费用static float[][] a; // 图G的邻接矩阵public static void tsp() {// 置x为单位矩阵x = new int[n + 1];for (int i = 1; i <= n; i++) {x[i] = i;}bestc = (float) -1.0;bestx = new int[n + 1];cc = 0;System.out.println("最短路线为:");backtrack(2);for (int i = 1; i <= n; i++) {System.out.print(bestx[i] + " ");}System.out.println("1");}private static void backtrack(int i) {if (i == n) {if (a[x[n - 1]][x[n]] > 0&& a[x[n]][1] > 0&& (bestc < 0 || cc + a[x[n - 1]][x[n]]+ a[x[n]][1] < bestc)) {for (int j = 1; j <= n; j++) {bestx[j] = x[j];bestc = cc + a[x[n - 1]][x[n]] + a[x[n]][1];}}}else{for (int j = i; j <= n; j++)// 是否可以进入x【j】子树?if (a[x[i - 1]][x[j]] > 0&& (bestc < 0 || cc + a[x[i - 1]][x[j]] < bestc)) { // 搜索子树int temp = x[i];cc += a[x[i - 1]][x[j]];x[i] = x[j];x[j] = temp;backtrack(i + 1);temp = x[i];x[i] = x[j];x[j] = temp;cc -= a[x[i - 1]][x[j]];}}}public static void main(String[] args) {Scanner s = new Scanner(System.in);System.out.println("请输入售货员要去的城市个数:");String line = s.nextLine();// 读入nn = Integer.parseInt(line);a = new float[n + 1][n + 1];System.out.println("请输入来往各个城市之间的花费 \n");for (int i = 1; i <= n; i++) {for (int j = 1; j <= n; j++) {a[i][j] = s.nextFloat();}}tsp();System.out.println("最短距离是:" + bestc);s.close();}}1.3 实验结论1.4 心得体会由于编程途中最优解一直输不出,尝试着各种方法,觉得很累。

回溯算法实验报告

回溯算法实验报告

回溯算法实验报告实验目的:回溯算法是一种递归算法,通常用于解决有限集合的组合问题。

本实验旨在通过实现回溯算法来解决一个具体的问题,并对算法的性能进行评估。

实验内容:本实验将以八皇后问题为例,展示回溯算法的应用。

八皇后问题是一个经典的问题,要求在一个8x8的棋盘上放置8个皇后,使得任意两个皇后不能在同一行、同一列或同一对角线上。

算法步骤:1. 创建一个二维数组,表示棋盘。

初始化所有元素为0,表示棋盘上无皇后。

2. 逐行进行操作,尝试在每一列放置皇后。

在每一列,从上到下逐个位置进行尝试,找到一个合适的位置放置皇后。

3. 如果找到合适的位置,则将该位置标记为1,并向下一行进行递归操作。

4. 如果当前位置无法放置皇后,则回溯到上一行,尝试放置皇后的下一个位置。

5. 当所有皇后都放置好后,得到一个解。

将该解加入结果集中。

6. 继续回溯,尝试寻找下一个解。

7. 当所有解都找到后,算法终止。

实验结果:在本实验中,我们实现了八皇后问题的回溯算法,并进行了性能测试。

根据实验结果可以看出,回溯算法在解决八皇后问题上表现出较好的性能。

实验中,我们使用的是普通的回溯算法,没有进行优化。

对于八皇后问题来说,回溯算法可以找到所有解,但是随着问题规模的增加,算法的执行时间也会大大增加。

回溯算法是一种非常灵活的算法,可以用于解决各种组合问题。

对于规模较大的问题,回溯算法的时间复杂度很高,需要考虑优化算法以提高性能。

在实际应用中,可以结合其他算法,如剪枝等技巧,来改进回溯算法的性能。

回溯算法是一种非常有价值的算法,值得进一步研究和应用。

回溯算法实验报告(一)

回溯算法实验报告(一)

回溯算法实验报告(一)回溯算法实验报告1. 简介回溯算法是一种经典的解决问题的方法,特别适用于求解排列组合问题、迷宫问题以及图的搜索等。

本实验旨在探究回溯算法的原理、应用以及优缺点。

2. 原理回溯算法是一种递归的算法,通过不断试错来找出问题的解。

其基本思想是: - 从问题给定的初始解开始,逐步构建一个候选解; - 当候选解不满足约束条件时,进行回溯,返回上一步重新构建候选解;- 当所有候选解都被尝试过且都不满足约束条件时,算法停止。

3. 应用回溯算法在很多领域都有广泛的应用,以下列举几个常见的例子:1. 排列组合问题:如求解一个数组的全排列; 2. 迷宫问题:如求解从起点到终点的路径; 3. 图的搜索:如深度优先搜索(DFS)和广度优先搜索(BFS)。

4. 优缺点回溯算法有以下优点: - 适用性广:可以解决多种问题,特别擅长于求解排列组合和搜索类问题; - 简单直观:算法思想直观,易于理解和实现。

但回溯算法也有一些缺点: - 效率较低:因为回溯算法需要枚举所有可能的解,所以在问题规模较大时,时间复杂度较高; - 可能存在重复计算:如果问题的解空间中存在重复的子问题,回溯算法可能会进行重复的计算。

5. 实验结论通过本实验我们可以得出以下结论: 1. 回溯算法是一种经典的解决问题的方法,可应用于多个领域; 2. 回溯算法的基本原理是试错法,通过逐步构建候选解并根据约束条件进行回溯,找到问题的解;3. 回溯算法的优点是适用性广、简单直观,但缺点是效率较低且可能存在重复计算。

因此,在实际应用中,我们需要根据具体问题的特点来选择适合的算法。

回溯算法在问题规模较小时可以快速得到解答,但对于规模较大的问题,可能需要考虑其他高效的算法。

6. 探索进一步改进回溯算法的方法虽然回溯算法在解决一些问题时非常有用,但对于问题规模较大的情况,它可能会变得低效且耗时。

因此,我们可以探索一些方法来改进回溯算法的性能。

6.1 剪枝策略在回溯算法中,我们可以通过剪枝策略来减少无效的搜索路径,从而提高算法的效率。

0-1背包问题(回溯法)

0-1背包问题(回溯法)

0-1背包问题(回溯法)实验报告姓名:学号:指导老师:一.算法设计名称:0-1背包问题(回溯法)二.实验内容问题描述:给定n 种物品和一背包。

物品i 的重量是w i ,其价值为v i ,背包的容量为C 。

问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。

不能将物品装入背包多次,也不能只装入部分的物品。

三.实验目的1.运用回溯思想,设计解决上述问题的算法,找出最大背包价值的装法。

2.掌握回溯法的应用四.算法设计:问题求解思路1.由0-1背包问题的最优子结构性质,建立计算m[i][j]的递归式如下:i i i w j w j j i m i v w j i m j i m j i m <≤≥⎩⎨⎧-+---=0],1[]}[],1[],,1[max{),(2.查找装入背包物品的回溯函数:从0-1二叉树的根开始搜索:若是叶子节点,则判断此时的价值是否比当前最优的价值大,否则将之替换,并获得最优解向量且返回;若不是叶子节点,则向左右子树搜索,先改变当前的数据状态,递归的调用自己,然后恢复数据状态表示回溯。

3.边界函数bound主要是当还未搜索到叶子节点时,提前判断其子树是否存可能存在更优的解空间,否则进行回溯,即裁剪掉子树的解空间。

关键数据结构及函数模块:(Backtrack.h )#ifndef __BACKTRACK_H__#define __BACKTRACK_H__class BP_01_P{public:∑=ni i i x v 1max ⎪⎩⎪⎨⎧≤≤∈≤∑=n i x C x w i n i i i 1},1,0{1BP_01_P(int w,int n):m_Sum_weitht(0),m_Number(0) {m_Sum_weitht=w;m_Number=n;bestHav=0;bestVal=0;curVal=0;curHav=0;m_hav=new int[n];m_val=new int[n];temop=new int[n];option=new int[n];}~BP_01_P(){delete []m_hav;delete []m_val;delete []temop;delete []option;}void traceBack(int n);int bound(int n);void printBestSoulation();int *m_hav;//每个物品的重量int *m_val;//每个物品的价值int *temop;//01临时解int *option;//01最终解int bestHav;//最优价值时的最大重量int bestVal;//最优的价值int curVal;//当前的价值int curHav;//当前的重量private:int m_Sum_weitht;//背包的总容量int m_Number;//物品的种类};#endif __BACKTRACK_H__五:主要的算法代码实现:(Backtrack.cpp)边界函数:bound( )int BP_01_P::bound(int n){int hav_left=m_Sum_weitht-curHav;int bo=curVal;while(n<m_Number && m_hav[n]<=hav_left){hav_left-=m_hav[n];bo+=m_val[n];n++;}if(n<m_Number){bo+=m_val[n]*hav_left/m_hav[n];//bo+=hav_left;}return bo;}回溯递归函数:traceBack( )void BP_01_P::traceBack(int n){if(n>=m_Number){if(curVal>=bestVal){bestVal=curVal;for(int i=0;i<n;i++){option[i]=temop[i];}return ;}}if(curHav+m_hav[n]<=m_Sum_weitht)//向左子树搜索 {curHav=curHav+m_hav[n];curVal=curVal+m_val[n];temop[n]=1;//标记要选择这个物品traceBack(n+1);curHav=curHav-m_hav[n];curVal=curVal-m_val[n];}if(bound(n+1)>bestVal)//向右子树搜索{temop[n]=0;//标记要丢弃这个物品traceBack(n+1);}}主控函数:(main.cpp)#include <iostream>#include "Backtrack.h"using namespace std;int main(){int number,weigth;cout<<"包的总容量:";cin>>weigth;cout<<"物品的种类:";cin>>number;BP_01_P *ptr=new BP_01_P(weigth,number);cout<<"各种物品的重量:"<<endl;for(int i=0;i<number;i++)cin>>ptr->m_hav[i];cout<<"各种物品的价值:"<<endl;for(i=0;i<number;i++)cin>>ptr->m_val[i];ptr->traceBack(0);ptr->printBestSoulation();cout<<"总重量:"<<ptr->bestHav<<"\t总价值:"<<ptr->bestVal<<endl;return 0;}六:算法分析采用回溯法解决0-1背包问题,明显比动态规划法更优良。

《回溯法实验》实验报告

《回溯法实验》实验报告

实验4、《回溯法实验》一、实验目的1. 掌握回溯算法思想2. 掌握回溯递归原理3. 了解回溯法典型问题二、实验内容1. 编写一个简单的程序,解决8皇后问题。

2. 批处理作业调度问题[问题描述]给定n个作业的集合J=(J1, J2, … , Jn)。

每一个作业Ji都有两项任务需要分别在2台机器上完成。

每一个作业必须先由机器1处理,然后再由机器2处理。

作业Ji需要机器i的处理时间为tji,i=1,2, … ,n; j=1,2。

对于一个确定的作业调度,设Fji是作业i在机器i上完成处理的时间。

则所有作业在机器2上完成处理的时间和成为该作业调度的完成时间和。

批处理作业调度问题要求对于给定的n个作业,制定一个最佳的作业调度方案,使其完成时间和达到最小。

要求输入:1)作业数 2)每个作业完成时间表:作业完成时间机器1 机器2作业1 2 1作业2 3 1作业3 2 3要求输出: 1)最佳完成时间 2)最佳调度方案提示:算法复杂度为O(n!),建议在测试的时候n值不要太大,可以考虑不要超过12。

3. 数字全排列问题任意给出从1到N的N个连续的自然数,求出这N个自然数的各种全排列。

如N=3时,共有以下6种排列方式:123,132,213,231,312,321。

注意:数字不能重复,N由键盘输入(N<=9)。

三、算法思想分析1.八皇后问题是典型的回溯问题,先从空格子起逐行放皇后,如果符合要求即安全则放置,否则返回上一行下一个位置继续,直至最后一行安全放置则为一种放置方式。

2.批处理作业调度的解空间为排列数,不断利用递归函数直至叶节点,剪枝函数为当前用时与最佳用时的比较。

关于时间的计算,每次选择作业后先将机器1用时累加,机器2上总用时需要先比较上一个作业完成时间与此时机器1上的总用时,如果机器1上总用时大于上一作业用时,那么机器2上用时则加上机器1上用时与此作业在机器2上的单独用时,反之,则代表此时机器2仍然在处理上一任务,那么机器2上用时则加上上一作业用时与此作业在机器2上的单独用时。

回溯法

回溯法

算法实验报告四回溯法实验一、实验目的及要求利用回溯方法设计指派问题的算法,掌握回溯法的基本思想和算法设计的基本步骤。

要求:设计指派问题的回溯算法,注意回溯算法解决此问题要找出问题所有的可行解,然后一次比较保留问题的最优解(即最少耗费的解),并输出结果。

利用c语言(c++语言)实现算法,给出程序的正确运行结果。

(必须完成)指派问题描述:n个雇员被指派做n件工作,使得指派第i个人做第i件工作的耗费为ci,j,找出一种指派使得总耗费最少。

二、算法描述输入一个二维矩阵如下:352 4675 3374 5854 6其中行代表第几个雇员,列代表第几项工作,利用非递归的回溯算法实现,有主函数中定义k为第几个雇员,k的取值为集合{1,2,3,4}中元素。

且为行,列用a[k]表示,表示第几项工作。

定义耗费数组,一般项为c[i][j]],则c[k][a[k]]就可表示第k个人做第a[k]个工作。

由于同一个工作不能被两个人做或者说每个人只能做不同的工作,因此若设行排列固定,则a[k]!=a[j],其中从j=1变到=k-1即第k个人只能做1项的工作。

即他在做第a[k]项工作时要保证前面的工作都没做。

开始:For k =1 to 4a[k]=0;end for;k=1;while k>=1while a[k]<=3a[k]=a[k]+1;v=v+c[k][a[k]];for(j=1;j<=k-1;j++)if(a[k]!=a[j])标记合法与部分解;else标记非法解,剪掉部分;If a[k]为合法解then 输出当前指派和当前最小耗费Else if a[k]为部分解then k=k+1{前进}End while;a[k]=0;k=k-1;v=v-c[k][a[k]];{回溯}End while;输出每次求得的耗费,求出最小的即调用min(s[])函数,并将最小耗费cost输出;结束三、调试过程及运行结果调试过程中出现的问题:虽然按照回溯算法所给的模式写完了程序,却不对,经单步调试发现是我的程序结构混乱,部分解和合法解还有非法解之间的条件处理那有问题,因为通过一个循环要保证一个人只能做一项工作,而且要做别人没做过的工作,此条件对于部分解、合法解都要求,而当它不满足时应跳出作另外处理。

回溯法实验报告

回溯法实验报告

回溯法实验报告一、实验目的本实验旨在通过应用回溯法解决一系列问题,并验证回溯法在问题求解中的有效性和实用性。

通过实际的案例分析和实验结果,掌握回溯法的应用方法和技巧。

二、实验原理回溯法是一种求解问题的通用方法,适用于那些可以分解为一组相互排斥的子问题的求解过程。

回溯法通过尝试可能的解决方案,并根据约束条件逐步构建问题的解。

实际使用回溯法求解问题时,按照如下步骤进行:1. 定义解空间:将问题的解表示为一个n维向量或n维数组,定义问题的解空间。

2. 约束条件:确定问题的约束条件,即问题的解必须满足的条件。

3. 逐步构造解:按照问题的解空间和约束条件,逐步构造问题的解。

4. 解空间的搜索:通过递归或迭代的方式,搜索解空间中的所有可能解。

5. 解的选取与判定:根据需要选择符合要求的解,并进行最优解的判定。

三、实验步骤在本次实验中,我们选择了数独问题和八皇后问题作为实验案例进行分析和求解。

1. 数独问题:数独问题是一个9×9的格子,其中每个格子中都填有一个1到9的数字。

数独谜题的目标是在每个格子中填写数字,使得每一行、每一列和每一个宫(3×3的格子)中的数字均不重复。

通过回溯法求解数独问题的步骤如下:(1)定义解空间:将数独问题的解定义为一个9×9的二维数组。

(2)约束条件:每一行、每一列和每一个宫中的数字不能重复。

(3)逐步构造解:从数独问题的左上角开始,按照行优先的顺序逐个格子地填写数字,并保证数字的唯一性。

(4)解空间的搜索:当需要填写一个新的格子时,先确定该格子可能的数字范围,然后选择一个数字填入,再递归地进行下一步搜索。

(5)解的选取与判定:当所有的格子都被填满时,即找到了一个满足条件的解。

在求解过程中,需要判断填入的数字是否符合约束条件,并进行回退操作,直到找到所有可能的解。

2. 八皇后问题:八皇后问题是一个经典的回溯法问题,要求在一个8×8的棋盘上放置8个皇后,使得它们互相之间不能攻击到对方。

回溯算法应用实验报告

回溯算法应用实验报告

一、实验目的通过本次实验,旨在掌握回溯算法的基本原理和应用方法,加深对回溯算法的理解,并学会运用回溯算法解决实际问题。

实验内容包括:设计回溯算法解决八皇后问题、0-1背包问题以及TSP问题,并对算法进行时间复杂度和空间复杂度的分析。

二、实验内容1. 八皇后问题问题描述:在8x8的国际象棋棋盘上,放置8个皇后,使得它们互不攻击。

即任意两个皇后不能在同一行、同一列或同一斜线上。

算法设计:使用回溯算法,通过递归尝试在棋盘上放置皇后,当出现冲突时回溯到上一步,重新尝试。

代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn Truedef solve_n_queens(n):def backtrack(row):if row == n:result.append(board[:])returnfor col in range(n):if is_valid(board, row, col):board[row] = colbacktrack(row + 1)board[row] = -1board = [-1] nresult = []backtrack(0)return result```2. 0-1背包问题问题描述:给定n个物品,每个物品有一个价值v[i]和重量w[i],以及一个背包容量W,如何选择物品使得背包中的物品总价值最大且不超过背包容量。

算法设计:使用回溯算法,递归尝试选择每个物品,当背包容量不足或物品价值超过剩余容量时回溯到上一步。

代码实现:```pythondef knapsack(weights, values, capacity):def backtrack(i, cw, cv):if cw > capacity or i == len(weights):return cvif not backtrack(i + 1, cw, cv):return cvif cw + weights[i] <= capacity:return max(backtrack(i + 1, cw, cv), backtrack(i + 1, cw + weights[i], cv + values[i]))else:return cvreturn backtrack(0, 0, 0)```3. TSP问题问题描述:给定n个城市,以及每对城市之间的距离,求出一条最短路径,使得路径上的城市互不相同,并且最终回到起点。

回溯法实验报告

回溯法实验报告

回溯法实验报告回溯法实验报告一、引言回溯法是一种经典的算法解决方法,广泛应用于组合优化、图论、人工智能等领域。

本实验旨在通过实际案例,深入探讨回溯法的原理、应用和优化方法。

二、实验背景回溯法是一种通过不断尝试和回退的方式,寻找问题的解的方法。

它适用于那些问题空间巨大且难以直接求解的情况。

回溯法通过逐步构建解空间树,深度优先地搜索可能的解,并在搜索过程中剪枝,以提高搜索效率。

三、实验过程我们选择了一个经典的回溯法问题——八皇后问题作为实验案例。

该问题要求在一个8x8的棋盘上放置8个皇后,使得它们两两之间无法互相攻击。

我们采用了递归的方式实现回溯法,并通过剪枝操作来减少搜索空间。

具体实验步骤如下:1. 定义一个8x8的棋盘,并初始化为空。

2. 从第一行开始,逐行放置皇后。

在每一行中,尝试将皇后放置在每一个位置上。

3. 检查当前位置是否与已放置的皇后冲突。

如果冲突,则回溯到上一行,并尝试下一个位置。

4. 如果成功放置了8个皇后,则找到了一个解,将其保存。

5. 继续尝试下一个位置,直到所有可能的解都被找到。

四、实验结果通过实验,我们找到了92个不同的解,符合八皇后问题的要求。

这些解展示了八皇后问题的多样性,每个解都有其独特的棋盘布局。

五、实验分析回溯法的优点在于可以找到所有解,而不仅仅是一个解。

然而,在问题空间较大时,回溯法的搜索时间会变得非常长。

因此,为了提高搜索效率,我们可以采用一些优化方法。

1. 剪枝操作:在搜索过程中,当发现当前位置与已放置的皇后冲突时,可以立即回溯到上一行,而不是继续尝试下一个位置。

这样可以减少不必要的搜索。

2. 启发式搜索:通过引入启发函数,可以在搜索过程中优先考虑最有希望的分支,从而更快地找到解。

例如,在八皇后问题中,可以优先考虑放置在当前行与已放置皇后冲突最少的位置。

3. 并行计算:对于一些复杂的问题,可以利用并行计算的优势,同时搜索多个分支,从而加快搜索速度。

六、实验总结通过本次实验,我们深入了解了回溯法的原理和应用。

回溯法实验(最大团问题)

回溯法实验(最大团问题)

算法分析与设计实验报告第七次附加实验测试结果当输入图如下时:当输入图如下时:1 2345 1 2345当输入图如下时:实验分析通过三个实例图,我们只是简单的将最开始的原始图进行加边处理,可以发现结果就会发生变化。

最大团问题可是比较典型的利用解空间的子集树进行深度搜索,然后通过上界函数进行剪枝,只是此处的上界函数比较简单,只要判断是否还有做够的顶点能够构成最大团即可,相对于0-1背包问题和最优装载问题来说还是简单一点,其中主要注意的就是要加入现有团的顶点必须满足和所有的团内的顶点都有边相连,这样才能加入该团中,否则就不能加入团中。

实验心得最大团问题和图的m 着色问题用回溯法解很相似,他俩在对于判断的时候都比较简单,但是相比而言,由于最大团问题涉及到利用上届函数进行右子树剪枝,所以相比较而言复杂一点,最大团问题的上届函数和很多问题比如最优装载问题的上届函数原理是相同的,就是判断右子树当前节点最好的可能是否能够比当前最优解要好,如果当前节点的最好情况都不能超过当前最优解,那么说明最优解绝对不会有该节点,因此可以将该节点所在的右子树剪掉,这样就减少了算法的查找和回溯的时间。

这里要提一点的是在进行右子树剪枝的时候使用了大于等于,如果只是大于的话就没有办法找到顶点数相同的其他最优解了,同样找到叶子节点时则证明得到一个最优解,将其输出即可实验得分助教签名1 2345附录:完整代码(回溯法)//最大团问题回溯法求解#include<iostream>using namespace std;class Clique{friend void MaxClique(int **,int *,int );private:void Backtrack(int i);int **a; //图的邻接矩阵int n; //图的顶点数int *x; //当前解int *bestx; //当前最优解int cn; //当前顶点数int bestn; //当前最大顶点数};void Clique::Backtrack(int i){ //计算最大团if(i>n) //到达叶子节点{for(int j=1;j<=n;j++)bestx[j]=x[j];bestn=cn;cout<<"最大团:(";for(int i=1;i<n;i++)cout<<bestx[i]<<",";cout<<bestx[n]<<")"<<endl;return;}//检查当前顶点是否与当前团连接int ok=1;for(int j=1;j<i;j++)if(x[j]&&a[i][j]==0) //i与j不连接,即j在团中,但是i,j不连接{ok=0;break;}if(ok) //进入左子树{x[i]=1;cn++;Backtrack(i+1); //回溯到下一层节点x[i]=0;cn--;}//通过上界函数判断是否减去右子树,上界函数用于确认还有足够多的可选择顶点使得算法有可能在右子树中找到更大的团if(cn+n-i>=bestn){ //修改一下上界函数的条件,可以得到x[i]=0; //相同点数时的解Backtrack(i+1);}}void MaxClique(int **a,int *v,int n){ //初始化YClique Y;Y.x=new int[n+1];Y.a=a;Y.n=n;=0;Y.bestn=0;Y.bestx=v;Y.Backtrack(1);delete [] Y.x;cout<<"最大团的顶点数:"<<Y.bestn<<endl;}int main(){int n;cout<<"please input number of node:";cin>>n;//int a[n+1][n+1]; //由于定义的是int **a,且采用的是二维数组传参,因此int **a=new int *[n+1]; //两种解决方法,一是给定第二维的大小,二是通过for(int i=0;i<=n;i++) //动态分配内存,这里采用了动态内存分配解决问题a[i]=new int[n+1];for(int i=0;i<n+1;i++)for(int j=0;j<n+1;j++)a[i][j]=0;int edge;cout<<"please input number of edge:";cin>>edge;cout<<"please input edge:"<<endl;int v,w;for(int i=0;i<edge;i++){cin>>v>>w;a[v][w]=1;a[w][v]=1;}int *p=new int[n+1];MaxClique(a,p,n);system("pause");return 0;}。

回溯法实验报告总结

回溯法实验报告总结

回溯法实验报告总结
回溯法实验报告总结
引言
回溯法是一种常见的求解问题的算法,它通过不断尝试并回溯来寻找问题的最优解。

本次实验旨在探究回溯法在解决不同类型问题中的应用和效果。

实验一:八皇后问题
八皇后问题是一个经典的回溯法问题,其目标是在一个 8*8 的棋盘上放置 8 个皇后,使得每个皇后都不会互相攻击。

通过实现该问题,我们可以更好地理解回溯法的思想和过程。

实验二:0/1 背包问题
0/1 背包问题是另一个经典的回溯法问题,其目标是在给定一组物品和一个背包容量时,选择哪些物品放入背包中,使得背包中物品价值之和最大。

该问题可以用于优化算法设计和资源分配等领域。

实验三:数独游戏
数独游戏是一种基于逻辑推理和填空的益智游戏,也可以用回溯法来求解。

该游戏需要填写一个 9*9 的数独表格,使得每行、每列和每个
3*3 的小方格内都恰好包含数字 1~9,且不重复。

实验结果
通过对以上三个问题的实验,我们可以得出以下结论:
1. 回溯法在解决八皇后问题、0/1 背包问题和数独游戏等经典问题中具有较好的应用效果。

2. 在实现回溯法时,需要注意剪枝和优化等技巧,以提高算法效率和减少时间复杂度。

3. 回溯法虽然能够求解一些 NP 难问题,但在面对大规模数据和高维空间时往往会遇到困难。

结论
回溯法是一种常见的求解问题的算法,在许多领域中都有着广泛的应用。

通过本次实验,我们更加深入地了解了回溯法的思想和过程,并探究了其在不同类型问题中的应用和效果。

在今后的学习和研究中,我们将继续深入探究回溯法及其相关算法,并在实践中不断提高自己的编程能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学与计算机学院实验报告
一、实验项目信息
项目名称:回溯法
实验时间: 2016/06/08 实验学时: 03 学时
实验地点:工科楼503 二、实验目的及要求
理解回溯法的深度优先搜索策略、
掌握用回溯法解题的算法框架、
掌握回溯法的设计策略
三、实验环境
计算机Ubuntu Kylin14.04
CodeBlock软件四、实验内容及实验步骤
排兵布阵问题
某游戏中,不同的兵种处在不同的地形上其攻击能力不一样,现有n个不同兵种的角色{1,2,...,n},需安排在某战区n个点上,角色i在j点上的攻击力为A ij。

试设计一个布阵方案,使总的攻击力最大。

数据:
防卫点


1 2 3 4 5
1
2
3
4
5
回溯法:
程序:
#include<stdio.h>
int position[10];
int a[10][10];
int check(int k){//每个节点检查的函数
int i;
for(i=0;i<k;i++)
if(position[i]==position[k])return 0;//重复返回0
return 1;
}
void gameSort(int n){
int i,k;
int max=0;
int ans[10];
int sum;
for(i=0;i<n;i++)
position[i]=0;
k=0;
while(k>=0)
{
sum=0;
position[k]=position[k]+1;
while(position[k]<=n)
if(check(k))break;
else position[k]=position[k]+1;
if(position[k]<=n && k==n-1)
{
for(i=0;i<n;i++)
{
sum+=a[i][position[i]-1];
}
if(max<sum){
max=sum;
for(i=0;i<n;i++)
ans[i]=position[i];
}
}
if(position[k]<=n&&k<n-1)
k=k+1;
else
position[k--]=0;
}
printf("answer is:");
for(i=0;i<n;i++)
printf("(%d,%d) ",i+1,ans[i]);
printf("\n");
printf("the largest number is:%d",max); }
void main()
{
int i,j,n;
printf("please input n:");
scanf("%d",&n);
for(i=0;i<n;i++)
for(j=0;j<n;j++)
scanf("%d",&a[i][j]);
gameSort(n);
printf("\n");
} 五、实验结果分析
程序运行:得到正确结果
六、实验总结
通过实验对回溯法求解的概念更加熟悉,对回溯法的程序算法深入理解。

掌握如何编写回溯法的框架以及回溯法的检测(check())函数。

能够对一个问题进行分析是否能够使用回溯法求解。

七、教师评价。

相关文档
最新文档