第七章二元一次方程组全章测试题

合集下载

人教版七年级数学下第七章《二元一次方程组》单元试题

人教版七年级数学下第七章《二元一次方程组》单元试题

第七章《二元一次方程组》单元测试1.解下列方程组:543(1).32x y x y -=⎧⎨-=⎩ 1323(2).334a ba b ⎧+=⎪⎪⎨⎪-=⎪⎩2.方程2x-y=9 在正整数范围内的解有___个。

3.在方程 (a 2-4)x 2+(2-3a)x+(a+1)y+3a=0 中,若此方程为二元一次方程,则a 的值为_______4.方程组⎩⎨⎧⨯=+=+m y x my x 60%10%60%3060的解是___5.若方程组⎩⎨⎧=-=+13y x y x 与方程组⎩⎨⎧=-=-32y nx my x 同解,则 m=______ 6.当m=____时,方程组⎪⎩⎪⎨⎧=+=-21132my x y x 有一组解。

7.己知t 满足方程组⎩⎨⎧=--=xt y tx 23532,则x 和y 之间满足的关系是_______ 8.解方程组:⎩⎨⎧=+-=⎪⎩⎪⎨⎧=+=+=+21327:2:1::)2(303327)1(x y x z y x z x z y y x9.己知x , y , z 满足方程组⎩⎨⎧=-+=+-054702z y x z y x ,求 x : y : z 的值。

10.己知⎩⎨⎧=-+=--0720634z y x z y x ,求22222275632z y x z y x ++++的值。

11.m , n 为何值时,5223252y x y x n n m nm 的--是同类项。

12.解方程组:⎪⎩⎪⎨⎧=++=++=++18)(12)(6)(z y x z z y x y z y x x13.方程组⎩⎨⎧=+=-⎩⎨⎧=--=+23343953171y x y x by ax by ax 与 有相同的解,求a , b 的值。

14.求满足方程组:⎩⎨⎧=--=--020314042y x m y x 中的y 的值是x 值的3倍的m 的值,并求x ,y 的值。

15.a 为何值时,方程组⎩⎨⎧-=+=-1872253a y x ay x 的解x ,y 的值互为相反数,并求它的值。

北师大版八年级上册数学第七章二元一次方程组练习题(带解析)

北师大版八年级上册数学第七章二元一次方程组练习题(带解析)

北师⼤版⼋年级上册数学第七章⼆元⼀次⽅程组练习题(带解析)北师⼤版⼋年级上册数学第七章⼆元⼀次⽅程组练习题(带解析)考试范围:xxx ;考试时间:100分钟;命题⼈:xxx1. 答题前填写好⾃⼰的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释⼀、单选题(注释)1、甲⼄两地相距360千⽶,⼀轮船往返于甲、⼄两地之间,顺⽔⾏船⽤18⼩时,逆⽔⾏船⽤24⼩时,若设船在静⽔中的速度为x 千⽶/时,⽔流速度为y 千⽶/时,则下列⽅程组中正确的是() A .B .C .D .2、已知有含盐20%与含盐5%的盐⽔,若配制含盐14%的盐⽔200千克,设需含盐20%的盐⽔x 千克,含盐5%的盐⽔y 千克,则下列⽅程组中正确的是() A .B .C .D .3、如果⼀个两位数的⼗位数字与个位数字之和为6,那么这样的两位数的个数是() A .3 B .6 C .5 D .44、已知x b+5y 3a 和-3x 2a y 2-4b是同类项,那么a,b 的值是()5、如果5x3m-2n-2y n-m+11=0是⼆元⼀次⽅程,则()A.m=1,n=2 B.m=2,n=1 C.m=-1,n=2 D.m=3,n=46、⽤加减法解⽅程组时,要使两个⽅程中同⼀未知数的系数相等或相反,有以下四种变形的结果:①②③④其中变形正确的是()A.①②B.③④C.①③D.②④7、⽤代⼊法解⽅程组使得代⼊后化简⽐较容易的变形是()A.由①得x=B.由①得y=C.由②得x=D.由②得y=2x-58、四名学⽣解⼆元⼀次⽅程组提出四种不同的解法,其中解法不正确的是()A.由①得x=,代⼊②B.由①得y=,代⼊②C.由②得y=-,代⼊①D.由②得x=3+2y,代⼊①9、已知⽅程mx+(m+1)y=4m-1是关于x,y的⼆元⼀次⽅程,则m的取值范围是()A.m≠0B.m≠-1 C.m≠0且m≠1D.m≠0且m≠-110、⼆元⼀次⽅程3a+b=9在正整数范围内的解的个数是()A.0 B.1 C.2 D.3更多功能介绍/doc/be631667312b3169a451a4e8.html /zt/11、如图,10块相同的长⽅形墙砖拼成⼀个矩形,设长⽅形墙砖的长和宽分别为x厘⽶和y厘⽶,则依题意列⽅程组正确的是A .B .C .D .12、某车间有56名⼯⼈,每⼈每天能⽣产螺栓16个或螺母24个,设有x 名⼯⼈⽣产螺栓,y 名⼯⼈⽣产螺母,每天⽣产的螺栓和螺母按1:2配套,下⾯所列⽅程组正确的是() A .B .C .D .13、已知⽅程组中x ,y 的互为相反数,则m 的值为()A .2B .﹣2C .0D .414、下列⽅程是⼆元⼀次⽅程的是() A .B .C .3x ﹣8y=11D .7x+2=15、关于x 、y 的⼆元⼀次⽅程组的解满⾜不等式>0,则的取值范围是() A .<-1 B .<1 C .>-1 D .>116、⽅程组的解是()A .B .C .D .由于疏忽,表格中捐款40元和50元的⼈数忘记填写了,若设捐款40元的有x 名同学,捐款50元的有y 名同学,根据题意,可得⽅程组()A. B.C. D.18、将⽅程中的x的系数化为整数,则下列结果正确的是()A.B.C.D.19、雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、⼄两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6⼈,⼄种帐篷每顶安置4⼈,共安置8000⼈.设该企业捐助甲种帐篷x顶、⼄种帐篷y顶,那么下⾯列出的⽅程组中正确的是A.B.C.D.20、若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy的值是()A.14 B.-4 C.-12 D.12分卷II分卷II 注释⼆、填空题(注释)21、⽅程组的解是.22、在⽅程组中,若x >0,y <0,则m 的取值范围是.23、已知⽅程组的解为,则2a ﹣3b 的值为.24、若(x+y+4)2+|3x ﹣y|=0,则x= ,y= .25、已知⼆元⼀次⽅程2x+3y+1=0,⽤含x 的代数式表⽰y ,则y= .26、请写出⼀个以x ,y 为未知数的⼆元⼀次⽅程组,要求满⾜下列条件:①由两个⼆元⼀次⽅程组成;②⽅程组的解为,这样的⽅程组是.27、⼀次数学测试,满分为100分.测试分数出来后,同桌的李华和吴珊同学把他俩的分数进⾏计算,李华说:我俩分数的和是160分,吴珊说:我俩分数的差是60分.那么对于下列两个命题:①俩⼈的说法都是正确的,②⾄少有⼀⼈说错了.真命题是(填写序号).28、请写出⼀个以x ,y 为未知数的⼆元⼀次⽅程组,且同时满⾜下列两个条件:①由两个⼆元⼀次⽅程组成;②⽅程组的解为,这样的⽅程组可以是____________.按此规律,第n 个⽅程组为___________,它的解为___________(n 为正整数).30、⽅程组的解是_____________.三、计算题(注释)31、解⽅程组:.32、解⽅程组:(1)(2)33、解⽅程组:(1)(2)34、解⽅程组:35、若是⼆元⼀次⽅程ax -by=8和ax+2by=-4的公共解,求2a -b 的值.36、解下列⽅程:(1).(2)(3)(4)37、解⽅程组38、解⽅程组(5分)(1)39、解下列⼆元⼀次⽅程组(1) (2)40、(1)计算:(2)解⽅程组:四、解答题(注释)41、端午节期间,某校“慈善⼩组”筹集到1240元善款,全部⽤于购买⽔果和粽⼦,然后到福利院送给⽼⼈,决定购买⼤枣粽⼦和普通粽⼦共20盒,剩下的钱⽤于购买⽔果,要求购买⽔果的钱数不少于180元但不超过240元.已知⼤枣粽⼦⽐普通粽⼦每盒贵15元,若⽤300元恰好可以买到2盒⼤枣粽⼦和4盒普通粽⼦.(1)请求出两种⼝味的粽⼦每盒的价格;(2)设买⼤枣粽⼦x 盒,买⽔果共⽤了w 元.①请求出w 关于x 的函数关系式;②求出购买两种粽⼦的可能⽅案,并说明哪⼀种⽅案使购买⽔果的钱数最多.42、某农户原有15头⼤⽜和5头⼩⽜,每天约⽤饲料325kg ;两周后,由于经济效益好,该农户决定扩⼤养⽜规模,⼜购进了10头⼤⽜和5头⼩⽜,这时每天约⽤饲料550kg .问每头⼤⽜和每头⼩⽜1天各需多少饲料? 43、某种仪器由1种A 部件和1个B 部件配套构成.每个⼯⼈每天可以加⼯A 部件1000个或者加⼯B 部件600个,现有⼯⼈16名,应怎样安排⼈⼒,才能使每天⽣产的A 部件和B 部件配套?44、某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资⾦为⽼师购买纪念品,其余资⾦⽤于在毕业晚会上给50位同学每⼈购买⼀件⽂化衫或⼀本相册作为纪念.已知每件⽂化衫⽐每本相册贵9元,⽤200元恰好可以买到2件⽂件衫和5本相册.(1)求每件⽂化衫和每本相册的价格分别为多少元?(2)有⼏种购买⽂化衫和相册的⽅案?哪种⽅案⽤于购买⽼师纪念品的资⾦更充⾜?45、解⽅程(组)(1)(2).46、某学校初⼆级甲、⼄两班共有学⽣150⼈,他们的期末考试数学平均分为64.4分,若甲班学⽣平均分为72分,⼄班学⽣平均分为57分,那么甲、⼄两班各有学⽣多少⼈?47、⼀辆汽车从A地驶往B地,前路段为普通公路,其余路段为⾼速公路.已知汽车在普通公路上⾏驶的速度为60km/h,在⾼速公路上⾏驶的速度为100km/h,汽车从A 地到B地⼀共⾏驶了2.2h.请你根据以上信息,就该汽车⾏驶的“路程”或“时间”,提出⼀个⽤⼆元⼀次⽅程组解决的问题,并写出解答过程.48、解⽅程组.49、⼩⽂在甲、⼄两家超市发现他看中的篮球的单价相同,书包单价也相同,⼀个篮球和三个书包的总费⽤是400元.两个篮球和⼀个书包的总费⽤也是400元.(1)求⼩⽂看中的篮球和书包单价各是多少元?(2)某⼀天⼩⽂上街,恰好赶上商家促销,超市甲所有商品打九折销售,超市⼄全场购物满100元返30元购物券(不⾜100元不返券,购物券全场通⽤),如果他只能在同⼀家超市购买他看中的篮球和书包各⼀个,应选择哪⼀家超市购买更省钱?50、解⽅程组:试卷答案1.【解析】试题分析:根据等量关系:顺⽔⾏船⽤18⼩时,逆⽔⾏船⽤24⼩时,即可列出⽅程组. 由题意可列⽅程组为,故选A.考点:本题考查的是根据实际问题列⽅程组点评:解题关键是要读懂题⽬的意思,根据题⽬给出的条件,找出合适的等量关系,列出⽅程组.2.【解析】试题分析:根据等量关系:盐⽔总质量为200千克,配制前后的含盐量相同,即可列出⽅程组.由题意可列⽅程组为,故选C.考点:本题考查的是根据实际问题列⽅程组点评:解题关键是要读懂题⽬的意思,根据题⽬给出的条件,找出合适的等量关系,列出⽅程组.3.【解析】试题分析:可以设两位数的个位数为x,⼗位为y,根据两数之和为6,且xy为整数,分别讨论两未知数的取值即可.注意不要漏解.设两位数的个位数为x,⼗位为y,根据题意得:x+y=6,∵xy都是整数,∴当x=0时,y=6,两位数为60;当x=1时,y=5,两位数为51;当x=2时,y=4,两位数为42;当x=3时,y=3,两位数为33;当x=4时,y=2,两位数为24;当x=5时,y=1,两位数为15;则此两位数可以为:60、51、42、33、24、15,共6个,故选B.考点:本题考查了⼆元⼀次⽅程的应⽤点评:解题的关键在于根据未知数的整数性质讨论未知数的具体值,注意不要漏掉两位数的个位数可以为0的情况.4.【解析】试题分析:根据同类项的定义即可得到关于a、b的⽅程组,解出即可.由题意得,解得,故选D.考点:本题考查的是同类项点评:解答本题的关键是熟记同类项的定义:所含有的字母相同,并且相同字母的指数也相同的项叫同类项.5.【解析】试题分析:根据⼆元⼀次⽅程的定义即可得到关于m、n的⽅程组,解出即可.由题意得,解得,故选D.考点:本题考查的是⼆元⼀次⽅程的定义点评:解答本题的关键是熟练掌握⼆元⼀次⽅程必须符合以下三个条件:(1)⽅程中只含有2个未知数;(2)含未知数项的最⾼次数为⼀次;(3)⽅程是整式⽅程.注意:π是⼀个数.6.【解析】试题分析:根据等式的基本性质把⽅程组中的每个⽅程分别变形,注意不能漏乘项.(1)第⼀个⽅程右边的1漏乘了3,第⼆个⽅程右边的8漏乘了2,故变形不正确;(2)第⼀个⽅程右边的1漏乘了2,第⼆个⽅程右边的8漏乘了3,故变形不正确;(3)是利⽤等式的性质把x的系数化为了互为相反数的数,变形正确;(4)是利⽤等式的性质把y的系数化为了互为相反数的数,变形正确.故选B.考点:本题考查的是解⼆元⼀次⽅程组点评:解答本题的关键是注意⽅程组中,两个⽅程中同⼀未知数的系数相等或互为相反数时,直接运⽤加减法求解.7.【解析】试题分析:⽤代⼊法解⽅程组的第⼀步:尽量⽤其中⼀个未知数表⽰系数较简便的另⼀个未知数.A、B、C、D四个答案都是正确的,但“化简⽐较容易的”只有D.故选D.考点:本题考查的是代⼊法解⼆元⼀次⽅程组点评:解答本题的关键是注意在⽤其中⼀个未知数表⽰另⼀个未知数时,尽量避免出现分数.8.【解析】试题分析:此题中四位同学均利⽤了代⼊法求⽅程组的解,需对四个答案进⾏逐⼀分析求解.A、B、D均符合等式的性质,不符合题意;C、应该由②得y=,故错误,符合题意.考点:本题考查的是代⼊法解⼆元⼀次⽅程组点评:解答本题的关键是熟练掌握代⼊法解⼆元⼀次⽅程组,同时注意⽅程在进⾏合理变形时要根据等式的性质.9.【解析】试题分析:根据⼆元⼀次⽅程的定义即可得到结果.由题意得m≠0且m+1≠0,解得m≠0且m≠-1,故选D.考点:本题考查的是⼆元⼀次⽅程的定义点评:解答本题的关键是熟练掌握⼆元⼀次⽅程必须符合以下三个条件:(1)⽅程中只含有2个未知数;(2)含未知数项的最⾼次数为⼀次;(3)⽅程是整式⽅程.注意:π是⼀个数.10.【解析】试题分析:根据题意,⼆元⼀次⽅程3a+b=9的解为正整数,分类讨论、解答出即可.根据题意,a ,b 为正整数,∴当a=1时,b=9-3=6,当a=2时,b=9-6=3,当a=3时,b=0,不符合题意,所以,⽅程在正整数范围内的解的个数是2个故选C.考点:本题主要考查了解⼆元⼀次⽅程点评:采⽤“给⼀个,求⼀个”的⽅法,即先给出其中⼀个未知数的值,再依次求出另⼀个的对应值. 11.【解析】试题分析:根据图⽰可得:长⽅形的长可以表⽰为x+2y ,长⼜是75厘⽶,故x+2y=75,长⽅形的宽可以表⽰为2x ,或x+3y ,故2x=3y+x ,整理得x=3y ,联⽴两个⽅程得。

七年级数学第七章二元一次方程组单元测试

七年级数学第七章二元一次方程组单元测试

七年级数学第七章二元一次方程组测试题(时间120分钟,满分150分)一、选择题(每小题4分,共48分)1.在下列方程5x -1y =0,3x+2y =0,2x+xy=1,3x+y -2x=0,x 2-x+1=0中,二元一次方程的个数是( )A.1个B.2个C.3个D.4个2.下列说法中,正确的是( )A.二元一次方程3x-2y=5的解为有限个B.方程3x+2y=7的解x ,y 为正整数的有无数对C.方程组⎩⎨⎧=+=-00y x y x 的解为0 D.方程组中各个方程的公共解叫做这个方程组的解 3.已知⎩⎨⎧==12y x 是关于x ,y 的二元一次方程3=-y kx 的解,那么k 的值为( )A.2B.-3C.1D.-14.如果方程组 ⎩⎨⎧=+=+162y x y x ★的解为⎩⎨⎧==※y x 6那么被“★”和“※”遮住的两个数分别为( )A.10和4B.4和10C.3和10D.10和35.已知关于x 、y 的方程组⎩⎨⎧-=-=+ay x a y x 214522,且1023=-y x ,则a的值为( )A.﹣4B.4C.3D.26.利用加减消元法解方程组,下列做法正确的是( )A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(﹣5)+②×27.若|3x ﹣2y ﹣1|+=0,则x ,y 的值为( )A .B .C .D .8.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图1所示,则第三束气球的价格为( )A. 19B. 18C. 16D. 159.如图:宽为50cm的长方形图案是由10个完全相同的小长方形拼成,则一个小长方形的面积为()。

第七章二元一次方程组单元测试及答案

第七章二元一次方程组单元测试及答案

第七章二元一次方程组单元测试及答案第七章二元一次方程组单元测试(一)一、选择题:1.下列方程中,是二元一次方程的是()A.3x-2y=4z B.6xy+9=0 C.1x+4y=6 D.4x=24y-2.下列方程组中,是二元一次方程组的是()A.228 423119(23754624)x yx y a b xB C Dx y b c y x x y+= +=-=??=+=-==-=3.二元一次方程5a-11b=21 ()A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...B C Dy y y y==-==-===-=-5.若│x-2│+(3y+2)2=0,则的值是()A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=+=的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,?则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C D+=+=+=+==-=+=+=+二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x 为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-=是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy==为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-==--=是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)?有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x -y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,?使它与已知方程所组成的方程组的解为41 xy==.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,?问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;?若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y-=的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=-=的解?24.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?二元一次方程组练习1、下列方程组中,不是二元一次方程组的是( ) A. 123x y =??+=? B.12x y x y +=??-=? C. 10x y xy -=??=? D. 21x y =??-=? 2、若关于x 的二元一次方程kx+3y=5有一组解是21x y =??=?,则k 的值是( )A. 1B. -1C. 0D. 2 3、已知x,y 的值:①22x y =??=? ②32x y =??=? ③32x y =-??=-? ④66x y =??=?其中是二元一次方程2x-y=4的解的是( )A 、①B 、②C 、③D 、④ 4、二元一次方程x+2y=12在正整数解有( )组. A. 3 B. 4C. 5D. 无数5、在二元一次方程3x - 2y =4中,当x =6时,y =_______6、写出二元一次方程3x-4=y 的两个解______________________。

2023年春学期华师版七年级数学下册第七章《一次方程组》综合测评卷附答案解析

2023年春学期华师版七年级数学下册第七章《一次方程组》综合测评卷附答案解析

2023年春学期七年级数学下册第七章《一次方程组》综合测评卷一、单选题(每小题4分,共48分)1.下列方程中,是二元一次方程的是()A.xy =1B.x +1y=2C.y =3x -1D.x +y +z =12.下列方程组中,表示二元一次方程组的是()A.3{5x y z x +=+=B.5{1x y x y+==C.3{5x y xy +==D.11{122x y y x =++=3.下列各组数中,是二元一次方程52x y -=的一个解的是()A.31x y =⎧⎨=⎩B.13x y =⎧⎨=⎩C.20x y =⎧⎨=⎩D.02x y =⎧⎨=⎩4.将方程2x -3y -4=0变形为用含有y 的式子表示x ,正确的是()A.2x =3y +4B.x =32y +2C.3y =2x -4D.y =243x -5.方程01ax y x by +=⎧⎨+=⎩的解是11x y =⎧⎨=-⎩,则a ,b 为()A.01a b =⎧⎨=⎩B.10a b =⎧⎨=⎩C.11a b =⎧⎨=⎩D.00a b =⎧⎨=⎩6.已知e ,f 满足方程组32,26,e f f e -=⎧⎨-=⎩则2e +f 的值为()A.2B.4C.6D.87.已知23x y --+(2x+y+11)2=0,则()A.21x y =⎧⎨=⎩B.03x y =⎧⎨=-⎩C.15x y =-⎧⎨=-⎩D.27x y =-⎧⎨=-⎩8.已知关于x ,y 的方程组2342x y ax by -=⎧⎨+=⎩,与3564x y bx ay -=⎧⎨+=-⎩,有相同的解,则a ,b 的值为()A.21a b =-⎧⎨=⎩B.12a b =⎧⎨=-⎩C.12a b =⎧⎨=⎩D.12a b =-⎧⎨=-⎩9.若方程组()213431kx k y x y ⎧+-=⎨+=⎩,的解x 和y 互为相反数,则k 的值为()A.2B.-2C.3D.-310.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a,b 对应的密文为a+2b,2a-b,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是()A.3,-1B.1,-3C.-3,1D.-1,311.若方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解是()A.8.31.2x y =⎧⎨=⎩B.10.32.2x y =⎧⎨=⎩C. 6.32.2x y =⎧⎨=⎩D.10.30.2x y =⎧⎨=⎩12.端午节前夕,某超市用1680元购进A ,B 两种商品共60,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件、B 型商品y 件,依题意列方程组正确的是()A.6036241680x y x y +=⎧⎨+=⎩B.6024361680x y x y +=⎧⎨+=⎩C.3624601680x y x y +=⎧⎨+=⎩D.2436601680x y x y +=⎧⎨+=⎩二、填空题(每小题4分,共16分)13.若mx 3m -2n -nym +2n =1是关于x ,y 的二元一次方程,则mn=____________14.关于x ,y 的二元一次方程组23,1ax by ax by +=⎧⎨-=⎩的解为1,1x y =⎧⎨=-⎩,则2a b -的值为______15.一桶油,连桶共8kg,用去一半以后,连桶的质量为4.5kg.问原来有油多少千克?若设油的质量为x kg,桶的质量为y kg,则根据题意可列方程组为______.16.已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是6{8x y ==,则方程组111222345{345a x b y c a x b y c +=+=的解是_________.三、解答题(6个小题,共56分)17.用适当的方法解下列方程组.(1)21437x y x y =-⎧⎨+=⎩;(2)3222328x y x y +=⎧⎨+=⎩.18.为预防新冠肺炎病毒,市面上95KN 等防护型口罩出现热销.已知3个A 型口罩和2个B 型口罩共需31元;6个A 型口罩和5个B 型口罩共需70元.(1)求一个A 型口罩和一个B 型口罩的售价各是多少元?(2)小红打算用160元(全部用完)购买A 型,B 型两种口罩(要求两种型号的口罩均购买),正好赶上药店对口罩价格进行调整,其中A 型口罩售价上涨40%,B 型口罩按原价出售,则小红有多少种不同的购买方案?请设计出来.19.某超市代理销售,A B 两种鲜牛奶,这两种鲜奶的成本价和销售价如表格所示,它们的保质期为一天,当天未售出的鲜奶必须全部销毁.该超市某天用1320元购进,A B 两种鲜奶共200瓶,卖出180瓶,当天共获得570元的利润.价格类别成本价(元/瓶)销售价(元/瓶)A 种鲜奶58B 种鲜奶914(1)求该超市这一天购进,A B 种鲜奶各多少瓶;(2)小明列出方程180(85)(149)570m n m n +=⎧⎨-+-=⎩来解决另一个问题,你认为小明要解决的问题可能是什么?小明所列的方程组解决这个问题能得出正确的答案吗?若可以,请求结果;若不可以,请列出正确的方程或方程组,不必求解.20.某文具店有甲,乙两种水笔,它们的单价分别为a 元/支,b 元/支,若购买甲种水笔5支,乙种水笔2支,共花费25元,购买甲种水笔3支,乙种水笔4支,共花费29元.(1)求a 和b 的值;(2)甲种水笔涨价m 元/支(02m <<),乙种水笔单价不变,小明花了40元购买了两种水笔10支,那么购买甲种水笔多少支?(用含m 的代数式表示).21.玲玲家准备装修一套新住房,若甲、乙两个装饰公司合作,需6周完成,共需装修费为5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,共需装修费4.8万元,玲玲的爸爸妈妈商量后决定只选一个公司单独完成.(1)设甲公司的每周工作效率为m,乙公司每周的工作效率为n,则可列出方程为.(2)如果从节约时间的角度考虑应选哪家公司?(3)如果从节的开支的角度考虑呢?请说明理由.22.小林在某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A,B的数量和费用如表所示:购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物651140第二次购物371110第三次购物981062(1)在这三次购物中,第_____________次购物打了折扣;(2)求出商品A,B的标价;(3)若商品A,B的折扣相同,问商店是打几折出售这两种商品的?参考答案:1.C【详解】根据二元一次方程的定义:只含有两个未知数,并且未知数最高次数是2的整式方程,故选C. 2.D【详解】A、有三个未知数,故不是二元一次方程组;B、有两个未知数,第二个方程不是整式方程,故不是二元一次方程组;C、有两个未知数,第二个方程的次数是2次,故不是二元一次方程组;D、有两个未知数,方程的次数是1次,所以是二元一次方程组,故选D.3.B【详解】解:A、把31xy=⎧⎨=⎩代入方程得:左边=15-1=14,右边=2,∵左边≠右边,∴不是方程的解;B、把13xy=⎧⎨=⎩代入方程得:左边=5-3=2,右边=2,∵左边=右边,∴是方程的解;C、把2xy=⎧⎨=⎩代入方程得:左边=10-0=10,右边=2,∵左边≠右边,∴不是方程的解;D、把2xy=⎧⎨=⎩代入方程得:左边=0-2=-2,右边=2,∵左边≠右边,∴不是方程的解;故选:B.4.B【详解】2x-3y-4=0,2x=4+3y,x=32y+2,故选B. 5.B【详解】解:由题意得:1011a b -=⎧⎨-=⎩,解得:10a b =⎧⎨=⎩.故选B6.D【详解】3226e f f e -=⎧⎨-=⎩①②,①+②得,2e +f =8,故选:D.7.D【详解】由题意得:2302110x y x y --=⎧⎨++=⎩,解得:27x y =-⎧⎨=-⎩,故选D.8.B【详解】关于x ,y 的方程组2342x y ax by -=⎧⎨+=⎩与3564x y bx ay -=⎧⎨+=-⎩,有相同的解,所以234356x y x y -=⎧⎨-=⎩,解得20x y =⎧⎨=⎩,将20x y =⎧⎨=⎩代入24ax by bx ay +=⎧⎨+=-⎩可得2224a b =⎧⎨=-⎩,解得12a b =⎧⎨=-⎩,故选B.9.A【详解】由题意可得4310x y x y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,把11x y =⎧⎨=-⎩代入方程2kx+(k-1)y=3得2k-(k-1)=3,解得k=2;故选A.10.A【详解】由题意得:2127a b a b +=⎧⎨-=⎩,解得:31a b =⎧⎨=-⎩,故选A.11.C【详解】由题意知,28.31 1.2x y +=⎧⎨-=⎩,解得, 6.32.2x y =⎧⎨=⎩,故选:C.12.B【详解】解:设购买A 型商品x 件、B 型商品y 件,依题意列方程组:6024361680x y x y +=⎧⎨+=⎩故选B.13.2【详解】因为mx 3m -2n -nym +2n =1是关于x ,y 的二元一次方程,所以可得:32121m n m n -=⎧⎨+=⎩,解得:12 14m n ⎧=⎪⎪⎨⎪=⎪⎩,所以2mn=,故答案为:2.14.2【详解】解:由题意,得231a b a b -⎧⎨+⎩=①=②,解得4313a b ⎧=⎪⎪⎨⎪=-⎪⎩,2a b -=41233⎛⎫-⨯- ⎪⎝⎭=2,故答案为:2.15.814.52x y x y +=⎧⎪⎨+=⎪⎩【详解】油的质量为x kg,桶的质量为y kg,由题意得81 4.52x y x y +=⎧⎪⎨+=⎪⎩故答案为81 4.52x y x y +=⎧⎪⎨+=⎪⎩.16.1010x y =⎧⎨=⎩【详解】试题分析:根据题意,把方程组的解6{8x y ==代入111222{a x b y c a x b y c +=+=,可得11122268{68a b c a b c +=+=①②,把①和②分别乘以5可得11122230405{30405a b c a b c +=+=,和所求方程组111222345{345a x b y c a x b y c +=+=比较,可知1112223104105{3104105a b c a b c ⨯+⨯=⨯+⨯=,因此方程组的解为10{10x y ==.17.(1)11x y =⎧⎨=⎩;(2)1016x y =-⎧⎨=⎩【详解】(1)21,437,x y x y =-⎧⎨+=⎩①②将①代入②,()42137y y -+=,解得,1y =,把1y =代入①得,1x =,∴原方程组的解为11x y =⎧⎨=⎩.(2)322,2328,x y x y +=⎧⎨+=⎩①②,32⨯-⨯②①,得,580y =,解得,16y =.将16y =代入①:3322x +=解得,10x =-,∴原方程组的解为1016x y =-⎧⎨=⎩.18.(1)一个A 型口罩的售价为5元,一个B 型口罩的售价为8元(2)小红有2种不同的购买方案,方案1:购买8个A 型口罩,13个B 型口罩;方案2:购买16个A 型口罩,6个B 型口罩【详解】(1)设一个A 型口罩的售价为x 元,一个B 型口罩的售价为y 元,依题意,得:32316570x y x y +=⎧⎨+=⎩,解得:58x y =⎧⎨=⎩,答:一个A 型口罩的售价为5元,一个B 型口罩的售价为8元;(2)解:设购买A 型口罩m 个,B 型口罩n 个,根据题意,得5(140%)8160m n ++=,即78160m n +=,∴满足条件的m ,n 有:8m =,13n =或16m =,6n =,∴小红有2种购买方案:第一种方案:A 型口罩购买8个,B 型口罩购买13个;第二种方案:A 型口罩购买16个,B 型口罩购买6个;19.(1)该超市这一天购进A 种鲜奶120瓶,购买B 种鲜奶80瓶.(2)要解决的问题是A 种鲜奶与B 种鲜奶各销售了多少瓶?小明所列的方程组不能解决这个问题,其中利润的计算是错误的,正确的方程组是:1808141320570m n m n +=⎧⎨+=+⎩.【详解】(1)解:设该超市这一天购进A 种鲜奶x 瓶,购买B 种鲜奶()200x -瓶,则()592001320x x +-=,解得:120x =,则80200=-x ,答:该超市这一天购进A 种鲜奶120瓶,购买B 种鲜奶80瓶.(2)小明列出方程180(85)(149)570m n m n +=⎧⎨-+-=⎩要解决的问题是A 种鲜奶与B 种鲜奶各销售了多少瓶?小明所列的方程组不能解决这个问题,其中利润的计算是错误的,设A 种鲜奶卖出m 瓶,卖出B 种鲜奶n 瓶,则正确的方程组是:1808141320570m n m n +=⎧⎨+=+⎩.20.(1)a 的值为3,b 的值为5;(2)购买甲102m-支【详解】(1)依题意有52253429a b a b +=⎧⎨+=⎩,解得35a b =⎧⎨=⎩.故a 的值为3,b 的值为5;(2)设购买甲种水笔x 支,则购买乙种糖果()10x -支,依题意有:()()351040m x x ++-=,解得:102x m=-;故购买甲102m -支.21.(1)16m n +=;(2)时间上考虑选择甲公司;(3)从节约开支上考虑选择乙公司【详解】(1)解:设工作总量为1,设甲公司的每周工作效率为m ,乙公司每周的工作效率为n ,则16m n +=,故答案为:16m n +=.(2)解:设工作总量为1,设甲公司的每周工作效率为m ,乙公司每周的工作效率为n ,根据题意得,16491m n m n ⎧+=⎪⎨⎪+=⎩;解得:110115m n ⎧=⎪⎪⎨⎪=⎪⎩∵111015>∴甲公司的效率高,所以从时间上考虑选择甲公司.(3)解:设甲公司每周费用为a 万元,乙公司每周费用为b 万元,根据题意得:66 5.249 4.8a b a b +=⎧⎨+=⎩;解得:35415a b ⎧=⎪⎪⎨⎪=⎪⎩∴公司共需33010655⨯==万元,乙公司共需415415⨯=万元,4万元<6万元,∴从节约开支上考虑选择乙公司.22.(1)三;(2)商品A 的标价为90元,商品B 的标价为120元;(3)商店是打6折出售这两种商品的【详解】(1)解:由表中数据可知,第三次购买商品数量比第一次、第二次都多,但总费用却比第一次、第二次低,从而确定第三次购物打了折扣,故答案为:三;(2)解:设商品A 的标价为x 元,商品B 的标价为y 元,则651140371110x y x y +=⎧⎨+=⎩①②,②2⨯-①得91080y =,解得120y =,将120y =代入①得到90x =,答:商品A 的标价为90元,商品B 的标价为120元;(3)解:设商店是打m 折出售这两种商品,则()9908120·106210m⨯+⨯=,解得6m =,答:若商品A ,B 的折扣相同,问商店是打6折出售这两种商品的.。

八年级数学八年级数学第七章二元一次方程组同步测试

八年级数学八年级数学第七章二元一次方程组同步测试

八年级上第七章 《二元一次方程组》单元测验(满分100分;时间90分钟)班别 座号 姓名 成绩一、填空题(每小题4分;共24分)1.已知42+=a x ;32+=a y ;如果用x 表示y ;则y = .2.若直线7+=ax y 经过一次函数1234-=-=x y x y 和的交点;则a 的值是 . 3.如果一个二元一次方程的一个解是⎩⎨⎧-==11y x ;请你写出一个符合题意的二元一次 方程 .4.在等式5×口+3×Δ=4的口和Δ处分别填人一个数;使这两个数互为相反数. 5.如果2006200520044321=+-+-+n m n m y x 是二元一次方程;那么32n m +的值是 .6.如图;点A 的坐标可以看成是方程组 的解.二、选择题(每小题3分;共24分)7.根据图1所示的计算程序计算y 的值;若输入2=x ;则输出的y 值是( )A .0B .2-C .2D .4 8.将方程121=+-y x 中含的系数化为整数;下列结果正确的是( ) A .442-=-y x B .442=-y x C .442-=+y x D .442=+y x 9.如果⎩⎨⎧==21y x 是二元一次方程组⎩⎨⎧=+=+21ay bx by ax 的解;那么a ;b 的值是( ) A .⎩⎨⎧=-=01b a B .⎩⎨⎧==01b a C .⎩⎨⎧==10b a D .⎩⎨⎧-==10b a 10.如果二元一次方程组⎩⎨⎧=+=-a y x ay x 3的解是二元一次方程0753=--y x 的一个解;那么a 的值是( )A .3B .5C .7D .911.如果3251b a 与y x x b a ++-141是同类项;则x ;y 的值是( )A .⎩⎨⎧==31y x B .⎩⎨⎧==22y x C .⎩⎨⎧==21y x D .⎩⎨⎧==32y x 12.在等式b kx y +=中;当x=0时;y=1-;当x=1-时;y=0;则这个等式是( ) A .1--=x y B .x y -= C .1+-=x y D .1+=x y 13.如果⎩⎨⎧=+-=-+0532082z y x z y x ;其中xyz ≠0;那么x :y :z=( )A .1:2:3B .2:3:4C .2:3:1D .3:2:1 14.如果方程组⎩⎨⎧=-+=+5)1(21073y a ax y x 的解中的x 与y 的值相等;那么a 的值是( )A .1B .2C .3D .4 三、解答题(52分) (每小题5分;共10分) (1)⎩⎨⎧-==+73825x y y x(2)⎩⎨⎧=-=+423732y x y x16.若方程组⎩⎨⎧=+=-31y x y x 的解满足方程组⎩⎨⎧=+=-84by ax by ax ;求a ;b 的值.(8分)17.为了净化空气;美化环境;我县城兴华小区计划投资1.8万元种玉兰树和松柏树共80棵;已知某苗圃负责种活以上两种树苗的价格分别为:300元/棵;200元/棵;问可种玉兰树和松柏树各多少棵?(8分)18.某水果批发市场香蕉的价格如下表张强两次共购买香蕉50千克;已知第二次购买的数量多于第一次购买的数量;共付出264元;请问张强第一次;第二次分别购买香蕉多少千克?(8分)19. (8分)为保护学生视力;课桌椅的高度都是按一定的关系配套设计的;研究表明:假设课桌的高度y (cm)是椅子的高度x(cm)的一次函数;下表列出两套符合条件的课桌椅的高度:(1)请确定x y 与的函数关系式;(2)现有一把高39cm 的椅子和一张高为的课桌;它们是否配套?为什么?20. (10分)(1)求一次函数的坐标的交点的图象与的图象P l x y l x y 2112122-=-=. (2)求直线1l 与y 轴交点A 的坐标; 求直线2l 与X 轴的交点B 的坐标; (3)求由三点P 、A 、B 围成的三角形的面积.参考答案一、填空题1、x-1;2、-6;3、略;4、2;-2;5、9;6、⎩⎨⎧+--=512x y x y 二、选择题 7~14题分别为DABCCACB三、15、(1){21=-=x y (2){21==x y16、解:解方程组⎩⎨⎧=+=-31y x y x得:{21==x y将{21==x y 分别代入方程组⎩⎨⎧=+=-84by ax by ax 得 {8242=+=-b a b a 解这个方程组得{32==a b所以3=a 、2=b17、解:设可种玉兰树X 棵;松柏树Y 棵;根据题意得;⎩⎨⎧=+=+801800200300y x y x 解这个方程组得{2060==x y所以可种玉兰树20棵;松柏树60棵.18、解:设张强第一次购买了香蕉X 千克; 第二次购买了香蕉Y 千克;由题意可知250 x ; ①当40,200≤≤y x 时;由题意可得;⎩⎨⎧=+=+5026456y x y x 解得{1436==x y②当0<X ≤20;y>40时;由题意可得⎩⎨⎧=+=+5026446y x y x 解得{3218==x y (不合题意;舍去) ③当20<X<25时;则25<Y<30;则张强花的钱数为5X+5Y=5×50=250<264(不合题意;舍去) 所以张强第一次买14千克香蕉;第二次买36千克香蕉. 19.解:(1)设Y=KX+b ;根据题意得{750.402.700.37=+=+b k b k 解得{6.111==k b 所以116.1+=k y(2)不配套;因为:当X=39时;由116.1+=k y ×≠78 所以不配套.20、解:(1)由⎪⎩⎪⎨⎧-=-=22121x y x y 解得:⎪⎩⎪⎨⎧=-=3232x y 所以点P 的坐标为⎪⎭⎫⎝⎛-32,32;(2)当X=0时;由Y=2×0-2=-2;所以点A 坐标是(0;-2).当Y=0时;由0=-21X-1;得X=2;所以点B 坐标是(2;0). (3)如图322322212221=⨯⨯⨯-⨯⨯=∆PAB。

二元一次方程组单元检测题(附参考答案)

二元一次方程组单元检测题(附参考答案)

第七章二元一次方程组单元检测题(附参考答案)(时间90分钟,满分120分)班级____________________ 姓名___________ 学号______一、选择题(每小题3分,共30分)1.在(1)2,3,1,1,(2)(3)(4)1;1;7;7 x x x xy y y y====-=-===-⎧⎧⎧⎧⎨⎨⎨⎨⎩⎩⎩⎩各组数中,是方程2x-y=5的解是() A.(2)(3) B.(1)(3) C.(3)(4) D.(1)(2)(4)2.若x+4y=-15和3x-5y=6有相同的解,则相同的解是().A.33,33...3333 x x x xB C Dy y y y=-===-⎧⎧⎧⎧⎨⎨⎨⎨=-=-==⎩⎩⎩⎩3.若单项式2x2y a+b与﹣x a﹣b y4是同类项,则a,b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 C.a=3,b=﹣1 D.a=﹣3,b=﹣14.已知a,b满足方程组,则a+b的值为()A.﹣4 B.4 C.﹣2 D.25.利用加减消元法解方程组,下列做法正确的是()A.要消去y,可以将①×5+②×2 B.要消去x,可以将①×3+②×(﹣5)C.要消去y,可以将①×5+②×3 D.要消去x,可以将①×(﹣5)+②×26.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.B.C.D.7.笼中有鸡和兔,它们的头共有20个,脚共有56只,笼中鸡的数目x•和兔的数目y分别是().A.8101112...121098 x x x xB C Dy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩8.有一根7米长的钢条,要把它锯成两段,使得每一段的长度都是整数,有()种锯法.A.3 B.4 C.5 D.69.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得0分,一支青年足球队参加15场比赛,负4场,共得29分,则这支球队胜了( )(A)2场 (B)5场 (C)7场 (D)9场10.为推进课改,王老师把班级里40名学生分成若干小组,每小组只能是5人或6人,则有几种分组方案()A.4 B. 3 C.2 D. 111.下列方程:①;②;③;④;⑤;⑥.其中是二元一次方程的是()。

第七章二元一次方程组复习题

第七章二元一次方程组复习题

第七章二元一次方程组复习题1、已知⎩⎨⎧==5,3y x 是方程ax -2y =2的一个解,那么a 的值是 . 2、已知2x -3y =1,用含x 的代数式表示y ,则y = ,当x =0时,y = .3、若40,x y ++=则32x y +=______________.4、正在修建的西塔(西宁——塔尔寺)高速公路上,有一段工程,若甲、乙两个工程队单独完成,甲工程队比乙工程队少用10天;若甲、乙两队合作,12天可以完成.若设甲单独完成这项工程需要x 天.则根据题意,可列方程为________________.5、今年我省荔枝又喜获丰收. 目前市场价格稳定,荔枝种植户普遍获利. 据估计,今年全省荔枝总产量为50 000吨,销售收入为61 000万元. 已知“妃子笑”品种售价为1.5万元/吨,其它品种平均售价为0.8万元/吨,求“妃子笑”和其它品种的荔枝产量各多少吨. 如果设“妃子笑”荔枝产量为x 吨,其它品种荔枝产量为y 吨,那么可列出方程组为 .6、扑克牌游戏小明背对小亮,让小亮按下列四个步骤操作:第一步 分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同; 第二步 从左边一堆拿出两张,放入中间一堆; 第三步 从右边一堆拿出一张,放入中间一堆;第四步 左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数.你认为中间一堆牌现有的张数是 .7、二元一次方程组⎩⎨⎧==+x y y x 2,102的解是( ).(A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.2,4y x8、如图3,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC的度数分别为x 、y ,那么下面可以求出这两个角的度数的方程组是( )A .9015x y x y +=⎧⎨=-⎩ B .90215x y x y +=⎧⎨=-⎩C .90152x y x y +=⎧⎨=-⎩D .290215x x y =⎧⎨=-⎩ADBC图3y°x°9、无论m 为何实数,直线y=2x+m 与y=-x+4的交点不可能在 ( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 10、已知y =kx +b .如果x =4时,y =15;x =7时,y =24,则k = ;b = . 11、用指定的方法解下列方程组:(1) ⎩⎨⎧=+=-524y x y x (代入法) (2) ⎩⎨⎧-=--=-.2354,42y x y x (加减法)12、用作图象的方法解方程组⎩⎨⎧=-=+.52,02y x y x13、甲、乙两种商品原来的单价和为100元.因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.甲、乙两种商品原来的单价各是多少?14、某校有两种类型的学生宿舍30间,大的宿舍每间可住8人,小的宿舍每间可住5人.该校198个住宿生恰好住满这30间宿舍.大、小宿舍各有多少间?15、某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?16、为了保护生态平衡,绿化环境,国家大力鼓励“退耕还林、还草”,其补偿政策如表(一);丹江口库区某农户积极响应我市为配合国家“南水北调”工程提出的“一江春水送北京”的号召,承包了一片山坡地种树种草,所得到国家的补偿如表(二)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组全章测试题
一、耐心填一填,一锤定音(每小题3分,共30分)
1、两个数的和是13,差是5,则这两个数分别为 .
2、方程组⎩⎨⎧==+8
3-732y x y x 的解是 . 3、若3x -y =3x +2y =6,则x =_________,y =_________.
4、若0)623(222=-+++-y x y x ,则________)(2=+y x .
5、在代数式by ax +中,当a =5,b=2时,它的值是7,当a =8,b=5时,它的值
是4,则x =____ ,y =_______.
6、如果⎩⎨⎧==2
1y x 是方程组⎩⎨⎧=-=+n y x m y x 32的解,那么m = , n = .
7、方程组⎩⎨⎧=-=+m
y m x 236中x 与y 的和是9,则m =
8、根据右图中给出的信息,则每件T 恤衫和每瓶
矿泉水的价格分别为______________.
9、若132350m n m n x y +----+=是关于x 、y 的二元一次方程,
则m = , n = .
10、已知方程组⎩⎨⎧-=-=+2
4155by x y ax ,甲由于看错了方程组中的a 得到方程组的解是
⎩⎨⎧-=-=23y x ,乙看错了方程组中的b 得到的方程组的解为⎩⎨⎧==2
5y x ,若按正确的a 、b 计算,则原方程组的解为 .
二、精心选一选,慧眼识金!(每小题3分,共30分)
1、若⎩⎨⎧==2
1y x 是方程3ax y -=的解,则a 的值是( ) A 5 B -5 C 2 D 1
2、二元一次方程420x y +=在正整数范围内的解有 ( )
A 2组
B 3组
C 4组
D 5组
3、在公式vt s s +=0中,当5=t 时,260=s ,当7=t 时,340=s ,则此公式可写成( )
A 4060+=t s
B 6040+=t s
C 4060-=t s
D 2355+=t s
4、如果二元一次方程组⎩
⎨⎧=-=+m y x m y x 9252的解也是二元一次方程3219x y += 的解,那么m 的值是( )
A -1
B 1
C 2
D -2
5、若25m x y 与15n m x y +-是同类项,则2m n -的值为( )
A 1
B -1
C -3
D 以上答案都不对
6、3年前甲的年龄是乙的年龄的21,5年后甲的年龄是乙的年龄的3
2,设甲现年x 岁,乙现年y 岁,可列方程组为( ) A ⎪⎩⎪⎨⎧+=+=-)5(32523y x y x B ⎪⎪⎩⎪⎪⎨⎧=-=-y x x x 32)3(213 C ⎪⎪⎩⎪⎪⎨⎧=+-=-y x y x 325)3(213 D ⎪⎪⎩⎪⎪⎨⎧+=+-=-)5(3
25)3(213y x y x 7、足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分,一个球队踢了14场,负了5场共得19分,那么 这个队胜了( )
A 3场
B 4场
C 5场
D 6场
8、已知关于x 、y 的方程组4+35(1)45
x y kx k y =⎧⎨--=⎩的解互为相反数,则k 的值为( )
A 8
B 9
C 6
D 5
9、足球的表面是有若干黑色五边形和白色六边形组成的,黑白皮块的数目比为
3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少个? 设白皮有x 块,黑皮有y 块,列出的方程组正确的是( )
A ⎩⎨⎧=+=323y x y x
B ⎩⎨⎧=+=3253y x y x
C ⎩⎨⎧=+=3235y x y x
D ⎩
⎨⎧=+=326y x y x 10、某人将甲、乙两种股票卖出,其甲种股票卖价为1200元,盈利0020,其乙种股票卖价为1200元,但亏损0020,该人在交易后的结果是( )
A 赚100元
B 亏损100元
C 不赚不亏
D 无法确定
三、用心做一做,马到成功!(共60分)
1、解下列方程组(每小题6分,共24分)
(1)⎩⎨⎧+==+1
231y x y x
(2)⎩⎨⎧=+=1621-4-y x y x
(3)⎩⎨⎧=+=+743725y x y x (4) ⎩⎨⎧==3
5-4112-3y x y x
2、(8分)现要制作418朵小红花,小明先做了2天,后来小张加入一起做了2天,不但全部完成,还多制作了2朵;而如果小张先做3天,小明再加入一起做3天,那么能多制作32朵. 试计算小明、小张每天能制作的小红花数.
3、(10分)某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅和2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅和1个小餐厅,可供2280名学生就餐.
(1)求1个大餐厅和1个小餐厅分别可供多少名学生就餐?
(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.
4、(8分)阅读下面的文字,并解答下列问题:
解方程组⎩⎨⎧=+-
-=++-12)2(25)2(2)2(3)(y x y x y x y x ,这是一个二元一次方程组,根据该方程组的特点,它可以采用下列特殊解法:
⎩⎨⎧==⎩⎨⎧=+=-====⨯+⎩
⎨⎧=-=+=+=-0
1,12121
,(2)11,77,2)2()1(,)2(12)1(523,2,2y x y x y x n m m m n m n m n y x m y x 解得即得代入把得则原方程组可化为
解:设
问题:(1)上述解题过程中,用到了什么样的数学思想?( )
A 、数形结合思想
B 、整体思想
C 、分类讨论思想
(2)仿照上面的方法解方程组⎪⎪⎩⎪⎪⎨⎧=-++=-++82323327332432y x y x y x y x
5、(10分)一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货
运费,问:菜农应共付运费多少元?。

相关文档
最新文档