新人教A版新教材学高中数学必修第一册函数的概念与性质函数的基本性质奇偶性奇偶性的应用讲义

合集下载

高一上册数学课本人教版新课标a

高一上册数学课本人教版新课标a

高一上册数学课本人教版新课标a高一上册数学课本人教版新课标A版是针对高一学生设计的教材,它遵循新课程标准,旨在培养学生的数学思维和解决问题的能力。

这本教材涵盖了高中数学的基础知识和核心概念,为学生提供了丰富的学习资源和练习题目。

在这本教材中,学生将学习到包括但不限于以下内容:1. 集合与简易逻辑:这部分内容帮助学生理解集合的概念,包括集合的表示、运算以及逻辑运算符的使用。

2. 函数:函数是高中数学的核心概念之一,学生将学习到函数的定义、性质、图像以及函数的单调性、奇偶性等。

3. 指数与对数:这部分内容涉及指数函数、对数函数的性质和图像,以及它们在实际问题中的应用。

4. 三角函数:学生将学习到正弦、余弦和正切函数的定义、性质和图像,以及它们在解决实际问题中的重要性。

5. 解析几何:解析几何部分包括直线、圆的方程和性质,以及它们在坐标系中的表示方法。

6. 数列:数列是数学中的一个重要概念,学生将学习到数列的定义、通项公式以及数列的求和问题。

7. 概率与统计:这部分内容涉及概率的基本概念、统计数据的收集和分析,以及如何使用统计方法来解决实际问题。

教材中的每一章节都配有适量的例题和习题,旨在帮助学生巩固所学知识,并提高解题能力。

此外,教材还提供了一些探究性问题和实践活动,鼓励学生进行自主学习和深入思考。

为了适应不同学生的学习需求,这本教材还提供了一些辅助学习材料,如教学视频、在线练习和互动讨论平台,以促进学生的全面发展。

总之,高一上册数学课本人教版新课标A版是一本全面、系统的教材,它不仅为学生提供了数学知识的学习,还注重培养学生的数学思维和实践能力,为学生未来的学习和生活打下坚实的基础。

3.2.2函数的奇偶性【新教材】人教A版高中数学必修第一册课件

3.2.2函数的奇偶性【新教材】人教A版高中数学必修第一册课件

y
f(x)
O
x
y
g(x)
O
x
3.2.2函数的奇偶性【新教材】人教A 版() 高中数 学必修 第一册 课件
第16页,共22页。
3.2.2函数的奇偶性【新教材】人教A 版() 高中数 学必修 第一册 课件
例6、判断下列函数的奇偶性:
(1) f ( x) x4
(2) f ( x) x5
1
1
(3) f ( x) x x
(4)
y f(x)=5
x
(5)
3.2.2函数的奇偶性【新教材】人教A 版() 高中数 学必修 第一册 课件
(6)
(7)
(8)
第15页,共22页。
y f(x)=0 x
(9)
3.2.2函数的奇偶性【新教材】人教A 版() 高中数 学必修 第一册 课件
P85 1.已知f(x)是偶函数,g(x)是奇函数,试将下图补充完整.
4
3 2
g(x) 1 x
1
12 345
函数
g(x) 1 x
的定义域为{x|x≠0},
o
x
–1
–2
–3
它关于原点对称,
–4
–5
且 g(x) 1 1 g(x)

g
(
x)
1
xx
是奇函数.
x
3.2.2函数的奇偶性【新教材】人教A 版() 高中数 学必修 第一册 课件
第12页,共22页。
3.2.2函数的奇偶性【新教材】人教A 版() 高中数 学必修 第一册 课件
y
4
3
f (x) x
2
–3 –2 –1
1 123
o

3.2函数的基本性质(单调性、最值、奇偶性)(新课改2019新版人教A版高中数学必修第一册)

3.2函数的基本性质(单调性、最值、奇偶性)(新课改2019新版人教A版高中数学必修第一册)

6
3.2函数的基本性质
• 2.单调性
• (3)判断单调性:借助图形;定义.
• (4)证明单调性:定义法.
(5)步骤:
若 若① ② ③fff计(((xxxx算1111,)))xf2(xfff1((()Dxxx,222
且)f与(xx012比),较x2将;:其分解为若干可以直接确定符号的式子; ) 0,则f (x)在D上单调递增; ) 0,则f (x)在D上单调递减.
当k 0时, f ( 所以函数y
x1 ) kx
bf在(xR2 )上单0即调f递(x1增) ,f即(x函2 ).数y
kx
b是增函数.
当k 0时, f ( 所以函数y
x1 ) kx
bf在(xR2 )上单0即调f递(x1减) ,f即(x函2 ).数y
kx
b是减函数.
9
3.2函数的基本性质
• 2.单调性
11
3.2函数的基本性质
函数的最值与单调性密切相联.
• 3.最值
• (1)定义 一般地,设函数y f (x)的定义域为I,
若存在实数M 满足: 则①称xM是I,y 都 有f (fx)(的x)最 M大;值②. x0 I,使得f (x) M .
y
y=x²
O
x
若存在实数M 满足:
y
①x I,都有f (x) M;②x0 I,使得f (x) M . 则称M 是y f (x)的最小值. 函数y f (x)在闭区间[a,b]上单调递增或递减,
x
2取1 得最大值,在x
6处取得最小值.
O
由f (2) 2 2, f (6) 2 0.4. 所以该函2数1的最大值为26,最1 小值为0.4.
x

高中数学人教A版必修一 函数的奇偶性 (2)

高中数学人教A版必修一 函数的奇偶性 (2)
–1
–2 –3
x g(x) = x2 + 1
讲授新课
关于奇偶函数的几点说明:
1.如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性,函数的奇偶性是 函数的整体性质;
2.奇偶函数必须满足两个条件:(1)定义域必须关于原点对称; (2)满足f(-x)=f(x)【偶】或者f(-x)=-f(x)【奇】。
课本P85 练习 1,2,3
延伸拓展
伍 延伸拓展
1.思考辨析
[答案]
(1)函数 f(x)=x2,x∈[0,+∞)是偶函数.( ) (1)× (2)×
(2)对于函数 y=f(x),若存在 x,使 f(-x)=-f(x), (3)× (4)×
则函数 y=f(x)一定是奇函数.( )
(3)不存在既是奇函数,又是偶函数的函数.( )
2.奇函数
一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=-f(x),那么
f(x)就叫做奇函数.
例如.函数f(x)
x3, g(x)
x 都是奇函数,他们的图像如下所示: x2 1
y
y
3
3
2
2
1
1
–3 –2 –1 O 1 2 3 x
–1 –2 –3
f(x) = x3
–3 –2 –1 O 1 2 3 x
O1 2 3 4 x
–1
Hale Waihona Puke –22 g(x) = x2 + 1
【问题2】:(1) 这两个函数图象又有什么共同特征吗?
(2) 相应的两个函数值对应表是如何体现这些特征的?
y
3 2
f(-1)=-1,f(1)=1
y
3

人教新课标a版高中数学必修一

人教新课标a版高中数学必修一

人教新课标a版高中数学必修一
人教新课标A版高中数学必修一的内容涵盖了高中数学的基础知识和核心概念,旨在为学生打下坚实的数学基础。

以下是该课程的主要学习内容:
1. 集合与简易逻辑:包括集合的概念、表示方法、集合之间的关系以及基本的逻辑运算。

2. 函数的概念与性质:介绍函数的定义、表示方法、函数的基本性质如单调性、奇偶性以及函数的图像。

3. 指数函数与对数函数:包括指数函数和对数函数的定义、性质、图像以及它们在实际问题中的应用。

4. 三角函数:涉及三角函数的定义、图像、性质以及三角恒等变换。

5. 平面向量:包括向量的概念、表示方法、向量的数量积和向量积、以及向量在几何中的应用。

6. 数列:数列的概念、通项公式、求和公式以及数列在数学和其他学科中的应用。

7. 不等式:不等式的概念、性质、解法以及不等式在数学问题中的应用。

8. 解析几何:包括直线和圆的方程、直线与圆的位置关系、以及解析几何在解决几何问题中的应用。

9. 立体几何:涉及空间几何体的概念、性质、表面积和体积的计算,以及空间几何体的直观图绘制。

10. 概率与统计初步:包括随机事件的概率、概率的计算方法、统计初步知识如数据的收集、整理和描述。

每个部分都配有相应的例题和练习题,帮助学生理解和巩固知识点。

通过学习这些内容,学生能够掌握高中数学的基础知识,为后续的数学学习打下坚实的基础。

新人教版高中数学必修第一册3.2.2函数的奇偶性(课件)

新人教版高中数学必修第一册3.2.2函数的奇偶性(课件)

奇(偶)函数的性质及应用
【拓展】(2)奇偶函数的运算性质及符合函数的奇偶性: 设 , 的定义域分别是A和B,在公共定义域上有:










【注】上表中不考虑

中需

.










的情况;
【1】已知 是偶函数, 是奇函数,将下面的图像补充完整.
【解】根据奇偶函数的对称性,分别将偶函数沿着y轴作对称; 把奇函数沿着原点作中心对称,答案见图上.
【解】(1)首先判断定义域为R,关于y轴对称,再判断:
所以此函数是偶函数;
【解】(2)首先判断定义域为R,关于y轴对称,再判断: 所以此函数是奇函数;
【解】(3)首先判断定义域为
,关于y轴对称,再判断:
判断函数奇 偶性,首先 要看定义域.
【解】(3)首先判断定义域为
所以此函数是奇函数; ,关于y轴对称,再判断: 所以此函数是偶函数.
“ THANKS ”
【2】几何法,函数的图像关于y轴对称,那么函数就是偶函数
要证明某个函数不是偶函数,只需要列举出一个反例x0,证明f(-x0)≠f(x0)即可
偶函数 偶函数
图像关于y轴对称
本资料分享自高中数学 同步资源千人教师QQ群 483122854 本群专注同 代数特步入征资与源分收享集 期待你的加
几何特征
定义中,
函数奇偶性的判断
利用定义判断函数奇偶性的方法: 【1】一看定义域:奇函数和偶函数的定义域一定关于y轴对称,如果一个函数的定
义域关于y轴对称,那么它才有可能是奇函数或者偶函数,否则就没有探究下 去的必要.

2020-2021学年数学新教材人教A版必修第一册 3.2 函数的基本性质 教案 (2)

2020-2021学年数学新教材人教A版必修第一册 3.2 函数的基本性质 教案 (2)

3.2.2奇偶性第1课时奇偶性的概念学习目标 1.了解函数奇偶性的定义.2.掌握函数奇偶性的判断和证明方法.3.会应用奇、偶函数图象的对称性解决简单问题.知识点一函数奇偶性的几何特征一般地,图象关于y轴对称的函数称为偶函数,图象关于原点对称的函数称为奇函数.知识点二函数奇偶性的定义1.偶函数:函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=f(x),那么函数f(x)就叫做偶函数.2.奇函数:函数f(x)的定义域为I,如果∀x∈I,都有-x∈I,且f(-x)=-f(x),那么函数f(x)就叫做奇函数.知识点三奇(偶)函数的定义域特征奇(偶)函数的定义域关于原点对称.1.奇、偶函数的定义域都关于原点对称.(√)2.函数f(x)=x2+|x|的图象关于原点对称.(×)3.对于定义在R上的函数f(x),若f(-1)=f(1),则函数f(x)一定是偶函数.(×)4.不存在既是奇函数又是偶函数的函数.(×)一、函数奇偶性的判断例1判断下列函数的奇偶性.(1)f(x)=1 x;(2)f(x)=x2(x2+2);(3)f(x)=xx-1;(4)f(x)=x2-1+1-x2.解 (1)f (x )=1x 的定义域为(-∞,0)∪(0,+∞),∵f (-x )=1-x =-1x =-f (x ),∴f (x )=1x是奇函数.(2)f (x )=x 2(x 2+2)的定义域为R . ∵f (-x )=f (x ),∴f (x )=x 2(x 2+2)是偶函数. (3)f (x )=xx -1的定义域为(-∞,1)∪(1,+∞), ∵定义域不关于原点对称,∴f (x )=xx -1既不是奇函数,也不是偶函数.(4)f (x )=x 2-1+1-x 2的定义域为{-1,1}. ∵f (-x )=f (x )=-f (x )=0,∴f (x )=x 2-1+1-x 2既为奇函数,又为偶函数. 反思感悟 判断函数奇偶性的方法 (1)定义法:①定义域关于原点对称; ②确定f (-x )与f (x )的关系. (2)图象法.跟踪训练1 判断下列函数的奇偶性. (1)f (x )=x ; (2)f (x )=1-x 2x;(3)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解 (1)函数f (x )的定义域为[0,+∞),不关于原点对称,所以f (x )=x 是非奇非偶函数. (2)f (x )的定义域为[-1,0)∪(0,1],关于原点对称. f (-x )=1-x 2-x =-f (x ),所以f (x )为奇函数.(3)f (x )的定义域为(-∞,0)∪(0,+∞),关于原点对称, 当x >0时,-x <0,则f (-x )=(-x )2-(-x )=x 2+x =f (x );当x<0时,-x>0,则f(-x)=(-x)2+(-x)=x2-x=f(x),所以f(x)是偶函数.二、奇、偶函数图象的应用例2定义在R上的奇函数f(x)在[0,+∞)上的图象如图所示.(1)画出f(x)的图象;(2)解不等式xf(x)>0.考点函数图象的对称性题点中心对称问题解(1)先描出(1,1),(2,0)关于原点的对称点(-1,-1),(-2,0),连线可得f(x)的图象如图.(2)xf(x)>0即图象上横坐标、纵坐标同号.结合图象可知,xf(x)>0的解集是(-2,0)∪(0,2).延伸探究把本例中的“奇函数”改为“偶函数”,重做该题.解(1)f(x)的图象如图所示:(2)xf(x)>0的解集是(-∞,-2)∪(0,2).反思感悟可以用奇(偶)函数图象关于原点(y轴)对称这一特性去画图,求值,解不等式等.跟踪训练2已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f(x)<0的x的取值集合.考点 函数图象的对称性 题点 中心对称问题解 (1)如图,在[0,5]上的图象上选取5个关键点O ,A ,B ,C ,D .分别描出它们关于原点的对称点O ′,A ′,B ′,C ′,D ′, 再用光滑曲线连接即得.(2)由(1)图可知,当且仅当x ∈(-2,0)∪(2,5)时,f (x )<0. ∴使f (x )<0的x 的取值集合为{x |-2<x <0或2<x <5}. 三、利用函数的奇偶性求参数值例3 (1)若函数f (x )=ax 2+bx +3a +b 是偶函数,定义域为[a -1,2a ],则a =________,b =________. 答案 13解析 因为偶函数的定义域关于原点对称, 所以a -1=-2a ,解得a =13.又函数f (x )=13x 2+bx +b +1为二次函数,结合偶函数图象的特点,易得b =0.(2)已知函数f (x )=ax 2+2x 是奇函数,则实数a =________. 答案 0解析 由奇函数定义有f (-x )+f (x )=0,得a (-x )2+2(-x )+ax 2+2x =2ax 2=0,故a =0. 反思感悟 利用奇偶性求参数的常见类型(1)定义域含参数:奇偶函数f (x )的定义域为[a ,b ],根据定义域关于原点对称,利用a +b =0求参数.(2)解析式含参数:根据f (-x )=-f (x )或f (-x )=f (x )列式,比较系数利用待定系数法求解. 跟踪训练3 (1)若函数f (x )=x 2-|x +a |为偶函数,则实数a =________. 答案 0解析 方法一 显然x ∈R ,由已知得f (-x )=(-x )2-|-x +a |=x 2-|x -a |.又f (x )为偶函数,所以f (x )=f (-x ),即x 2-|x +a |=x 2-|x -a |, 即|x +a |=|x -a |. 又x ∈R ,所以a =0.方法二 由题意知f (-1)=f (1),则|a -1|=|a +1|,解得a =0.(2)已知函数f (x )是奇函数,当x ∈(-∞,0)时,f (x )=x 2+mx .若f (2)=-3,则m 的值为________. 答案 12解析 ∵f (-2)=-f (2)=3, ∴f (-2)=(-2)2-2m =3, ∴m =12.1.下列函数是偶函数的是( ) A .y =x B .y =2x 2-3 C .y =x D .y =x 2,x ∈(-1,1]答案 B2.函数f (x )=1x -x 的图象关于( )A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称 答案 C解析 ∵f (x )=1x -x 是奇函数,∴f (x )=1x-x 的图象关于原点对称.3.下列图象表示的函数具有奇偶性的是( )考点 函数的奇偶性概念 题点 函数奇偶性概念的理解 答案 B4.f (x )=x 2+|x |( )A .是偶函数,在(-∞,+∞)上是增函数B .是偶函数,在(-∞,+∞)上是减函数C .不是偶函数,在(-∞,+∞)上是增函数D .是偶函数,且在(0,+∞)上是增函数考点 单调性与奇偶性的综合应用 题点 判断函数的单调性、奇偶性 答案 D5.若已知函数f(x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝⎛⎭⎫12=25,则函数f (x )的解析式为________. 答案 f (x )=x1+x 2解析 ∵f (x )=ax +b1+x 2是定义在(-1,1)上的奇函数,∴f (0)=0,∴f (0)=a ×0+b1+02=0,∴b =0.即f (x )=ax1+x 2,又f ⎝⎛⎭⎫12=25,∴a21+⎝⎛⎭⎫122=25. ∴a =1,∴函数f (x )=x 1+x 2.1.知识清单: (1)函数奇偶性的概念. (2)奇函数、偶函数的图象特征. 2.方法归纳:特值法、数形结合法.3.常见误区:忽略函数的定义域的对称性,只有定义域关于原点对称,才可能具有奇偶性.1.下列函数中奇函数的个数为( ) ①f (x )=x 3; ②f (x )=x 5; ③f (x )=x +1x;④f (x )=1x2.A .1B .2C .3D .4 答案 C2.已知f (x )是定义在R 上的奇函数,f (-3)=2,则下列各点中一定在函数f (x )的图象上的是( )A .(3,-2)B .(3,2)C .(-3,-2)D .(2,-3) 答案 A解析 f (-3)=2即点(-3,2)在奇函数的图象上, ∴(-3,2)关于原点的对称点(3,-2)必在f (x )的图象上.3.设f (x )是定义在R 上的一个函数,则函数F (x )=f (x )-f (-x )在R 上一定( ) A .是奇函数 B .是偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数 答案 A解析 F (-x )=f (-x )-f (x )=-[f (x )-f (-x )]=-F (x ). ∴F (x )为奇函数4.若f (x )=3x 3+5x +a -1为奇函数,则a 的值为( ) A .0 B .-1 C .1 D .2 答案 C解析 ∵f (x )为R 上的奇函数, ∴f (0)=0得a =1.5.如图,给出奇函数y =f (x )的局部图象,则f (-2)+f (-1)的值为( )A .-2B .2C .1D .0答案 A解析 f (-2)+f (-1)=-f (2)-f (1) =-32-12=-2.6.若f (x )=(x +a )(x -4)为偶函数,则实数a =________. 答案 4解析 f (x )=x 2+(a -4)x -4a 是偶函数,∴a =4.7.已知y =f (x )是奇函数,当x <0时,f (x )=x 2+ax ,且f (3)=6,则a 的值为________. 答案 5解析 因为f (x )是奇函数, 所以f (-3)=-f (3)=-6,所以(-3)2+a(-3)=-6,解得a=5.8.若f(x)为R上的奇函数,给出下列四个说法:①f(x)+f(-x)=0;②f(x)-f(-x)=2f(x);③f(x)·f(-x)<0;④f(x)f(-x)=-1.其中一定正确的为________.(填序号)答案①②解析∵f(x)在R上为奇函数,∴f(-x)=-f(x).∴f(x)+f(-x)=f(x)-f(x)=0,故①正确.f(x)-f(-x)=f(x)+f(x)=2f(x),故②正确.当x=0时,f(x)·f(-x)=0,故③不正确.当x=0时,f(x)f(-x)分母为0,无意义,故④不正确.9.判断下列函数的奇偶性:(1)f(x)=x3+x5;(2)f(x)=|x+1|+|x-1|;(3)f(x)=2x2+2x x+1.考点函数的奇偶性判定与证明题点判断简单函数的奇偶性解(1)函数的定义域为R.∵f(-x)=(-x)3+(-x)5=-(x3+x5)=-f(x),∴f(x)是奇函数.(2)f(x)的定义域是R.∵f(-x)=|-x+1|+|-x-1|=|x-1|+|x+1|=f(x),∴f(x)是偶函数.(3)函数f(x)的定义域是(-∞,-1)∪(-1,+∞),不关于原点对称,∴f(x)是非奇非偶函数.10.(1)如图①,给出奇函数y=f(x)的局部图象,试作出y轴右侧的图象并求出f(3)的值.(2)如图②,给出偶函数y=f(x)的局部图象,试作出y轴右侧的图象并比较f(1)与f(3)的大小.解(1)由奇函数的性质可作出它在y轴右侧的图象,图③为补充后的图象.易知f(3)=-2.(2)由偶函数的性质可作出它在y 轴右侧的图象,图④为补充后的图象,易知f (1)>f (3).11.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是( ) A .y =x 3 B .y =|x |+1 C .y =-x 2+1 D .y =-2x答案 B解析 对于函数y =|x |+1,f (-x )=|-x |+1=|x |+1=f (x ), 所以y =|x |+1是偶函数,当x >0时,y =x +1, 所以在(0,+∞)上单调递增.另外,函数y =x 3不是偶函数,y =-x 2+1在(0,+∞)上单调递减,y =-2x 不是偶函数.故选B.12.设函数f (x )和g (x )分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .f (x )+|g (x )|是偶函数 B .f (x )-|g (x )|是奇函数 C .|f (x )|+g (x )是偶函数 D .|f (x )|-g (x )是奇函数 考点 函数的奇偶性判定与证明 题点 判断抽象函数的奇偶性 答案 A解析 由f (x )是偶函数,可得f (-x )=f (x ), 由g (x )是奇函数可得g (-x )=-g (x ), 故|g (x )|为偶函数, ∴f (x )+|g (x )|为偶函数.13.函数f (x )=4-x 22-|x +2|的定义域为________,为______函数(填“奇”或“偶”).答案 [-2,0)∪(0,2] 奇解析 依题意有⎩⎪⎨⎪⎧4-x 2≥0,2-|x +2|≠0,解得-2≤x ≤2且x ≠0, ∴f (x )的定义域为[-2,0)∪(0,2].∵f (x )=4-x 22-|x +2|=4-x 2-x =-4-x 2x ,定义域关于原点对称,∴f (-x )=4-x 2x =-f (x ),∴f (x )为奇函数.14.函数f (x )=ax 3+bx +cx +5满足f (-3)=2,则f (3)的值为________.答案 8解析 设g (x )=f (x )-5=ax 3+bx +cx (x ≠0),∵g (-x )=-ax 3-bx -cx =-g (x ),∴g (x )是奇函数,∴g (3)=-g (-3)=-[f (-3)-5] =-f (-3)+5=-2+5=3, 又g (3)=f (3)-5=3, ∴f (3)=8.15.已知函数f (x )=x 2+x +1x 2+1,若f (a )=23,则f (-a )=________.考点 函数图象的对称性 题点 中心对称问题 答案 43解析 根据题意,f (x )=x 2+x +1x 2+1=1+x x 2+1,而h (x )=xx 2+1是奇函数,故f (-a )=1+h (-a )=1-h (a )=2-[1+h (a )]=2-f (a )=2-23=43.16.设函数f (x )=ax 2+1bx +c 是奇函数(a ,b ,c ∈Z ),且f (1)=2,f (2)<3,求a ,b ,c 的值.解 由条件知f (-x )+f (x )=0, ∴ax 2+1bx +c +ax 2+1c -bx =0,∴c =0. 又f (1)=2,∴a +1=2b .∵f (2)<3,∴4a +12b <3,∴4a +1a +1<3,解得-1<a <2,∴a =0或1.∴b =12或1,由于b ∈Z , ∴a =1,b =1,c =0.。

新教材 人教A版高中数学必修第一册 第三章 函数概念与性质 知识点考点汇总及解题方法规律提炼

新教材 人教A版高中数学必修第一册 第三章 函数概念与性质 知识点考点汇总及解题方法规律提炼

第三章函数概念与性质3.1.1.1函数的概念 (1)3.1.1.2函数概念的应用 (6)3.1.2.1函数的表示法 (10)3.1.2.2分段函数 (14)3.2.1.1函数的单调性 (21)3.2.1.2函数的最大(小)值 (25)3.2.2.1函数奇偶性的概念 (30)3.2.2.2函数奇偶性的应用 (35)3.3幂函数 (37)3.4函数的应用(一) (41)3.1.1.1函数的概念要点整理1.函数的概念(1)函数的定义设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B 为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域函数y=f(x)中,x叫做自变量,x的取值范围A叫做函数的定义域,与x 的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)对应关系f:除解析式、图象表格外,还有其他表示对应关系的方法,引进符号f统一表示对应关系.温馨提示:(1)当A,B为非空数集时,符号“f:A→B”表示A到B的一个函数.(2)集合A中的数具有任意性,集合B中的数具有唯一性.(3)符号“f”它表示对应关系,在不同的函数中f的具体含义不一样.2.区间概念(a,b为实数,且a<b)3.其他区间的表示题型一函数关系的判断【典例1】(1)判断下列对应是不是从集合A到集合B的函数.①A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;②A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;③A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;④A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.(2)设M={x|-2≤x≤2},N={y|0≤y≤2},函数y=f(x)的定义域为M,值域为N,对于下列四个图象,不可作为函数y=f(x)的图象的是( )[思路导引] 在“非空数集”A中“任取x”,在对应关系“f”作用下,B中“有唯一”的“数f(x)”与之“对应”,称f:A→B为集合A到集合B的一个函数.[解析](1)①对于A中的元素0,在f的作用下得0,但0不属于B,即A 中的元素0在B中没有元素与之对应,所以不是函数.②对于A中的元素±1,在f的作用下与B中的1对应,A中的元素±2,在f的作用下与B中的4对应,所以满足A中的任一元素与B中唯一元素对应,是“多对一”的对应,故是函数.③对于A中的任一元素,在对应关系f的作用下,B中都有唯一的元素与之对应,如±1对应1,±2对应4,所以是函数.④集合A不是数集,故不是函数.(2)由函数定义可知,任意作一条直线x=a,则与函数的图象至多有一个交点,结合选项可知C中图象不表示y是x的函数.[答案](1)见解析(2)C(1)判断对应关系是否为函数的2个条件①A、B必须是非空数集.②A中任意一元素在B中有且只有一个元素与之对应.(2)根据图形判断对应是否为函数的方法①任取一条垂直于x轴的直线l.②在定义域内平行移动直线l.③若l与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.题型二用区间表示数集【典例2】把下列数集用区间表示,并在数轴上表示出来.(1){x|x≥3};(2){x|x<-5};(3){x|-4≤x<2或3<x≤5}.[思路导引] 用区间表示数集的关键是确定开、闭区间,含“或”的数集用符号“∪”连接区间.[解](1){x|x≥3}用区间表示为[3,+∞),用数轴表示如图.(2){x|x<-5}用区间表示为(-∞,-5),用数轴表示如图.(3){x|-4≤x<2或3<x≤5}用区间表示为[-4,2)∪(3,5],用数轴表示如图.应用区间时的3个注意点(1)区间是数集,区间的左端点小于右端点.(2)在用区间表示集合时,开和闭不能混淆.(3)用数轴表示区间时,用实心点表示包括在区间内的端点,用空心圈表示不包括在区间内的端点.[针对训练]3.已知全集U=R,A={x|-1<x≤5},则∁U A用区间表示为__________________.[解析]∁U A={x|x≤-1或x>5}=(-∞,-1]∪(5,+∞).[答案](-∞,-1]∪(5,+∞)4.用区间表示不等式{x|x2-x-6≥0}的解集为______________________.[解析]不等式x2-x-6=(x-3)(x+2)≥0,解得x≥3或x≤-2,所以不等式的解集为{x|x≤-2或x≥3}=(-∞,-2]∪[3,+∞).[答案](-∞,-2]∪[3,+∞)题型三求函数的定义域【典例3】求下列函数的定义域.(1)y=2+3x-2;(2)y=(x-1)0+2x+1;(3)y =3-x ·x -1; (4)y =(x +1)2x +1--x 2-x +6.[思路导引] 函数定义域即是使自变量x 有意义的取值范围.[解] (1)当且仅当x -2≠0,即x ≠2时,函数y =2+3x -2有意义,所以这个函数的定义域为{x |x ≠2}.(2)函数有意义,当且仅当⎩⎪⎨⎪⎧x -1≠0,2x +1≥0,x +1≠0,解得x >-1,且x ≠1,所以这个函数的定义域为{x |x >-1且x ≠1}.(3)函数有意义,当且仅当⎩⎨⎧3-x ≥0,x -1≥0,解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}.(4)要使函数有意义,自变量x 的取值必须满足⎩⎨⎧x +1≠0,-x 2-x +6≥0,即⎩⎨⎧x ≠-1,x 2+x -6≤0,即⎩⎨⎧x ≠-1,(x +3)(x -2)≤0,解得-3≤x ≤2且x ≠-1,即函数定义域为{x |-3≤x ≤2且x ≠-1}.[变式] (1)将本例(3)中“y =3-x ·x -1”改为“y =(3-x )(x -1)”,则其定义域是什么?(2)将本例(3)中“y =3-x ·x -1”改为“y =3-xx -1”,则其定义域是什么?[解] (1)要使函数有意义,只需(3-x )(x -1)≥0,解得1≤x ≤3,即定义域为{x |1≤x ≤3}.(2)要使函数有意义,则⎩⎨⎧3-x ≥0,x -1>0,解得1<x ≤3,即定义域为{x |1<x ≤3}.求函数定义域的几种类型(1)若f(x)是整式,则函数的定义域是R.(2)若f(x)是分式,则应考虑使分母不为零.(3)若f(x)是偶次根式,则被开方数大于或等于零.(4)若f(x)是由几个式子构成的,则函数的定义域是几个部分定义域的交集.(5)若f(x)是实际问题的解析式,则应符合实际问题,使实际问题有意义.3.1.1.2函数概念的应用要点整理1.常见函数的定义域和值域2.函数的三要素由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域.3.相同函数值域是由定义域和对应关系决定的,如果两个函数的定义域和对应关系相同,我们就称这两个函数是同一函数.两个函数如果仅对应关系相同,但定义域不同,则它们不是相同的函数.题型一同一函数的判断【典例1】下列各组式子是否表示同一函数?为什么?(1)f(x)=|x|,φ(t)=t2;(2)y=x2,y=(x)2;(3)y=1+x·1-x,u=1-v2;(4)y=(3-x)2,y=x-3.[思路导引] 两个函数表示同一函数的关键条件是定义域相同,对应关系一致.[解](1)f(x)与φ(t)的定义域相同,又φ(t)=t2=|t|,即f(x)与φ(t)的对应关系也相同,∴f(x)与φ(t)是同一函数.(2)y=x2的定义域为R,y=(x)2的定义域为{x|x≥0},两者定义域不同,故y=x2与y=(x)2不是同一函数.(3)y=1+x·1-x的定义域为{x|-1≤x≤1},u=1-v2的定义域为{v|-1≤v≤1},即两者定义域相同.又∵y=1+x·1-x=1-x2,∴两函数的对应关系也相同.故y=1+x·1-x与u=1-v2是同一函数.(4)∵y=(3-x)2=|x-3|与y=x-3的定义域相同,但对应关系不同,∴y=(3-x)2与y=x-3不是同一函数.判断两个函数为同一函数的方法判断两个函数是否为同一函数,要先求定义域,若定义域不同,则不是同一函数;若定义域相同,再化简函数的解析式,看对应关系是否相同.题型二求函数值和值域【典例2】(1)已知f(x)=11+x(x∈R,且x≠-1),g(x)=x2+2(x∈R).①求f(2)、g(2)的值;②求f[g(3)]的值.(2)求下列函数的值域:①y=x+1,x∈{1,2,3,4,5};②y=x2-2x+3,x∈[0,3);③y =2x +1x -3; ④y =2x -x -1.[思路导引] (1)代入法求值;(2)结合解析式的特征选择适当的方法求值域. [解] (1)①∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6. ②g (3)=32+2=11, ∴f [g (3)]=f (11)=11+11=112. (2)①(观察法)∵x ∈{1,2,3,4,5},分别代入求值,可得函数的值域为{2,3,4,5,6}.②(配方法)y =x 2-2x +3=(x -1)2+2, 由x ∈[0,3),可得函数的值域为[2,6). ③(分离常数法)y =2x +1x -3=2(x -3)+7x -3=2+7x -3, 显然7x -3≠0,∴y ≠2. 故函数的值域为(-∞,2)∪(2,+∞). ④(换元法)设x -1=t , 则t ≥0,且x =t 2+1.∴y =2(t 2+1)-t =2t 2-t +2=2⎝ ⎛⎭⎪⎫t -142+158.∵t ≥0,∴y ≥158. 故函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.(1)函数求值的方法①已知f (x )的表达式时,只需用a 替换表达式中的x 即得f (a )的值. ②求f [g (a )]的值应遵循由里往外的原则. (2)求函数值域常用的4种方法①观察法:对于一些比较简单的函数,其值域可通过观察得到;②配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法求其值域;③分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;④换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax +b +cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法.题型三求抽象函数的定义域【典例3】 已知函数f (x )的定义域为[1,3],求函数f (2x +1)的定义域. [思路导引] 定义域是x 的取值范围,f (x )中的x 与f (2x +1)中的2x +1是相对应的.[解] 因为函数f (x )的定义域为[1,3],即x ∈[1,3],函数f (2x +1)中2x +1的范围与函数f (x )中x 的范围相同,所以2x +1∈[1,3],所以x ∈[0,1],即函数f (2x +1)的定义域是[0,1].[变式] (1)若将本例条件改为“函数f (2x +1)的定义域为[1,3]”,求函数f (x )的定义域.(2)若将本例条件改为“函数f (1-x )的定义域为[1,3]”,其他不变,如何求解?[解] (1)因为x ∈[1,3],所以2x +1∈[3,7],即函数f (x )的定义域是[3,7]. (2)因为函数f (1-x )的定义域为[1,3], 所以x ∈[1,3],所以1-x ∈[-2,0], 所以函数f (x )的定义域为[-2,0]. 由2x +1∈[-2,0],得x ∈⎣⎢⎡⎦⎥⎤-32,-12,所以f (2x +1)的定义域为⎣⎢⎡⎦⎥⎤-32,-12.两类抽象函数的定义域的求法(1)已知f(x)的定义域,求f[g(x)]的定义域:若f(x)的定义域为[a,b],则f[g(x)]中a≤g(x)≤b,从中解得x的取值集合即为f[g(x)]的定义域.(2)已知f[g(x)]的定义域,求f(x)的定义域:若f[g(x)]的定义域为[a,b],即a≤x≤b,求得g(x)的取值范围,g(x)的值域即为f(x)的定义域.3.1.2.1函数的表示法要点整理温馨提示:列表法、图象法和解析法是从三个不同的角度刻画自变量与函数值的对应关系,同一个函数可以用不同的方法表示.题型一函数的表示法【典例1】某商场新进了10台彩电,每台售价3000元,试求售出台数x 与收款数y之间的函数关系,分别用列表法、图象法、解析法表示出来.[思路导引] 把自变量与函数值的对应关系分别用表格、图象和数学表达式加以刻画.[解]①列表法③解析法:y=3000x,x∈{1,2,3,…,10}.理解函数的表示法的3个关注点(1)列表法、图象法、解析法均是函数的表示法,无论用哪种方式表示函数,都必须满足函数的概念.(2)判断所给图象、表格、解析式是否表示函数的关键在于是否满足函数的定义.(3)函数的三种表示法互相兼容或补充,许多函数是可以用三种方法表示的,但在实际操作中,仍以解析法为主.题型二函数的图象【典例2】作出下列函数的图象并求出其值域.(1)y=2x,x∈[2,+∞);(2)y=x2+2x,x∈[-2,2].[思路导引] 通过“列表→描点→连线”作出函数图象,借助图象求出函数值域.[解](1)列表:画图象,当x∈[2,+∞)时,图象是反比例函数y=2x的一部分(图1),观察图象可知其值域为(0,1].(2)列表:(图2).由图可得函数的值域是[-1,8].描点法作函数图象的3个关注点(1)画函数图象时首先关注函数的定义域,即在定义域内作图. (2)图象是实线或实点,定义域外的部分有时可用虚线来衬托整个图象. (3)要标出某些关键点,例如图象的顶点、端点、与坐标轴的交点等.要分清这些关键点是实心点还是空心点.题型三函数解析式的求法【典例3】 (1)已知f (x )是二次函数,且满足f (0)=1,f (x +1)-f (x )=2x ,求f (x )的解析式;(2)已知函数f (x +1)=x +2x +1,求f (x )的解析式; (3)已知函数f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,求f (x )的解析式.[思路导引] 求函数解析式,就是寻找函数三要素中的对应关系,即在已知自变量和函数值的条件下求对应关系的表达式.[解] (1)设f (x )=ax 2+bx +c (a ≠0), ∵f (0)=1,∴c =1.∴f (x +1)-f (x )=a (x +1)2+b (x +1)+c -(ax 2+bx +c )=2ax +a +b . 又f (x +1)-f (x )=2x ,∴⎩⎨⎧2a =2,a +b =0.∴⎩⎨⎧a =1,b =-1.∴f (x )=x 2-x +1.(2)解法一:∵f (x +1)=x +2x +1=(x +1)2, ∴f (x )=x 2.又x +1≥1,∴f (x )=x 2(x ≥1). 解法二:令t =x +1,则x =(t -1)2. 由于x ≥0,所以t ≥1.代入原式有f (t )=(t -1)2+2(t -1)+1=t 2, 所以f (x )=x 2(x ≥1). (3)∵2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,①∴将x 用1x替换,得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x ,②联立①②得⎩⎪⎨⎪⎧2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ,2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x ,解得f (x )=2x -1x(x ≠0),即f (x )的解析式是f (x )=2x -1x(x ≠0).[变式] (1)若将本例(2)中条件“f (x +1)=x +2x +1”变为“f ⎝ ⎛⎭⎪⎫1x +1=1x2-1”,则f (x )的解析式是什么?(2)若将本例(3)中条件“2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x ”变为“f (x )-2f (-x )=9x +2”,则f (x )的解析式是什么?[解] (1)f ⎝ ⎛⎭⎪⎫1x +1=⎝ ⎛⎭⎪⎫1x +12-2⎝ ⎛⎭⎪⎫1x +1,所以f (x )=x 2-2x .因为1x ≠0,所以1x+1≠1,所以f (x )=x 2-2x (x ≠1).(2)由条件知,f (-x )-2f (x )=-9x +2, 则⎩⎨⎧f (x )-2f (-x )=9x +2,f (-x )-2f (x )=-9x +2,解得f (x )=3x -2.求函数解析式的3种常用方法(1)待定系数法:若已知函数的类型,可用待定系数法求解,即由函数类型设出函数解析式,再根据条件列方程(组),通过解方程(组)求出待定系数,进而求出函数解析式.如典例3(1).(2)换元法(有时可用“配凑法”):已知函数f [g (x )]的解析式求f (x )的解析式,可用换元法(或“配凑法”),即令g (x )=t ,反解出x ,然后代入f [g (x )]中求出f (t ),从而求出f (x ).如典例3(2).(3)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).如典例3(3).3.1.2.2分段函数要点整理1.分段函数就是在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应关系的函数.2.分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的并集;各段函数的定义域的交集是空集.温馨提示:(1)分段函数虽然由几部分构成,但它仍是一个函数而不是几个函数.(2)分段函数的“段”可以是等长的,也可以是不等长的.如y =⎩⎨⎧1,-2≤x ≤0,x ,0<x ≤3,其“段”是不等长的.(3)分段函数的图象要分段来画. 题型一分段函数求值【典例1】已知函数f (x )=⎩⎪⎨⎪⎧1+1x,x >1,x 2+1,-1≤x ≤1,2x +3,x <-1.(1)求f (f (f (-2)))的值; (2)若f (a )=32,求a .[思路导引] 根据自变量取值范围代入对应解析式求值. [解] (1)∵-2<-1,∴f (-2)=2×(-2)+3=-1, ∴f [f (-2)]=f (-1)=2, ∴f (f (f (-2)))=f (2)=1+12=32.(2)当a >1时,f (a )=1+1a =32,∴a =2>1;当-1≤a ≤1时,f (a )=a 2+1=32,∴a =±22∈[-1,1]; 当a <-1时,f (a )=2a +3=32,∴a =-34>-1(舍去).综上,a =2或a =±22.(1)分段函数求值,一定要注意所给自变量的值所在的范围,代入相应的解析式求解.对于含有多层“f ”的问题,要按照“由内到外”的顺序,逐层处理.(2)已知函数值,求自变量的值时,要先将“f ”脱掉,转化为关于自变量的方程求解.题型二分段函数的图象【典例2】 (1)作出下列分段函数的图象:①y =⎩⎨⎧1x ,0<x <1,x ,x ≥1;②y =|x +1|.(2)如图所示,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由B (起点)向点A (终点)运动.设点P 运动路程为x ,△ABP 的面积为y ,求:①y 与x 之间的函数关系式; ②画出y =f (x )的图象.[思路导引] (1)利用描点法分段作图;(2)先依据x 的变化范围求出关系式. [解] (1)①函数图象如图1所示.②y =|x +1|=⎩⎨⎧-x -1,x <-1,x +1,x ≥-1,其图象如图2所示.(2)①y =⎩⎨⎧2x ,0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12.②分段函数图象的画法(1)作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可.(2)对含有绝对值的函数,要作出其图象,首先应根据绝对值的意义去掉绝对值符号,将函数转化为分段函数,然后分段作出函数图象.题型三分段函数的综合问题【典例3】 已知函数f (x )=|x -3|-|x +1|. (1)求f (x )的值域; (2)解不等式:f (x )>0;(3)若直线y =a 与f (x )的图象无交点,求实数a 的取值范围. [思路导引] 去掉绝对值符号,化简f (x ),再分段求解. [解] 若x ≤-1,则x -3<0,x +1≤0,f (x )=-(x -3)+(x +1)=4; 若-1<x ≤3,则x -3≤0,x +1>0,f (x )=-(x -3)-(x +1)=-2x +2; 若x >3,则x -3>0,x +1>0,f (x )=(x -3)-(x +1)=-4.∴f (x )=⎩⎨⎧4,x ≤-1,-2x +2,-1<x ≤3,-4,x >3.(1)-1<x ≤3时,-4≤-2x +2<4.∴f (x )的值域为[-4,4)∪{4}∪{-4}=[-4,4]. (2)f (x )>0,即⎩⎨⎧x ≤-1,4>0,①或⎩⎨⎧-1<x ≤3,-2x +2>0,②或⎩⎨⎧x >3,-4>0,③解①得x ≤-1,解②得-1<x <1,解③得x ∈∅.所以f (x )>0的解集为(-∞,-1]∪(-1,1)∪∅=(-∞,1). (3)f (x )的图象如图:由图可知,当a ∈(-∞,-4)∪(4,+∞)时,直线y =a 与f (x )的图象无交点.[变式] 若a ∈R ,试探究方程f (x )=a 解的个数.[解] 由例3(3)知y =f (x )的图象,作出直线y =a ,可以看出:当a =±4时,y =a 与y =f (x )有无数个交点;当-4<a <4时,y =a 与y =f (x )有且仅有一个交点;当a <-4或a >4时,y =a 与y =f (x )没有交点.综上可知:当a =±4时,方程f (x )=a 有无数个解. 当-4<a <4时,方程f (x )=a 有一个解. 当a <-4或a >4时,方程f (x )=a 无解.研究分段函数要牢牢抓住的2个要点(1)分段研究.在每一段上研究函数.(2)合并表达.因为分段函数无论分成多少段,仍是一个函数,对外是一个整体.题型四分段函数在实际问题中的应用【典例4】 某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15~20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y (℃)随时间x (h)变化的函数图象,其中AB 段是恒温阶段,BC 段是双曲线y =k x的一部分,请根据图中信息解答下列问题:(1)求y 与x 的函数关系式;(2)大棚内的温度为18℃时是否适宜该品种蔬菜的生长?(3)恒温系统在一天内保持大棚里的适宜新品种蔬菜的生长温度有多少小时?[思路导引] 利用待定系数法求出x 在每一段上的解析式,再分段研究. [解] (1)设线段AD 的解析式为y =mx +n (m ≠0), 将点A (2,20),D (0,10)代入, 得⎩⎨⎧2m +n =20n =10,解得⎩⎨⎧m =5n =10,∴线段AD 的解析式为y =5x +10(0≤x ≤2). ∵双曲线y =k x经过B (12,20), ∴20=k 12,解得k =240,∴BC 段的解析式为y =240x(12≤x ≤24).综上所述,y 与x 的函数解析式为: y =⎩⎪⎨⎪⎧5x +10(0≤x ≤2)20(2<x <12)240x (12≤x ≤24).(2)当x =18时,y =24018=403,由于403<15,∴大棚内的温度为18℃时不适宜该品种蔬菜的生长. (3)令y =15,当0≤x ≤2时,解5x +10=15,得x =1, 当12≤x ≤24时,解240x=15,得x =16.由于16-1=15(小时),∴恒温系统在一天内保持大棚里的适宜新品种蔬菜的生长温度有15小时.对于应用题,要在分析题意基础上,弄清变量之间的关系,然后选择适当形式加以表示;若根据图象求解析式,则要分段用待定系数法求出,最后用分段函数表示,分段函数要特别地把握准定义域的各个“分点”.3.2.1.1函数的单调性要点整理1.函数的单调性温馨提示:定义中的x1,x2有以下3个特征(1)任意性,即“任意取x1,x2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x1<x2;(3)属于同一个单调区间.2.函数的单调区间如果函数y=f(x)在区间D上单调递增或单调递减,那么就说函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.温馨提示:(1)函数的单调性是对定义域内某个区间而言的,它是函数的一个局部性质.(2)函数f(x)在定义域的某个区间D上单调,不一定在定义域上单调.如f(x)=x2等.(3)并非所有的函数都具有单调性,如f (x )= ⎩⎨⎧1,x 是偶数0,x 是奇数,它的定义域是N ,但不具有单调性.题型一函数单调性的判断与证明【典例1】 证明函数f (x )=x +4x在(-∞,-2)上是增函数.[思路导引] 设出∀x 1<x 2<-2,判定f (x 1)与f (x 2)的大小关系. [证明] ∀x 1,x 2∈(-∞,-2),且x 1<x 2, 则f (x 1)-f (x 2)=x 1+4x 1-x 2-4x 2=(x 1-x 2)+4(x 2-x 1)x 1x 2=(x 1-x 2)(x 1x 2-4)x 1x 2.∵x 1<x 2<-2,∴x 1-x 2<0,x 1x 2>4,x 1x 2-4>0.∴f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2).∴函数f (x )=x +4x在(-∞,-2)上是增函数.证明或判断函数单调性的方法步骤题型二求函数的单调区间【典例2】 求下列函数的单调区间: (1)f (x )=1x -1; (2)f (x )=|x 2-3x +2|.[思路导引] (1)先求出函数的定义域,再利用定义求解;(2)作出函数y =x 2-3x +2的图象,再将x 轴下方的图象翻折到x 轴上方,结合图象写出f (x )的单调区间.[解] (1)函数f (x )=1x -1的定义域为(-∞,1)∪(1,+∞), ∀x 1,x 2∈(-∞,1),且x 1<x 2,则f (x 1)-f (x 2)=1x 1-1-1x 2-1=x 2-x 1(x 1-1)(x 2-1). 因为x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).所以函数f (x )在(-∞,1)上单调递减,同理函数f (x )在(1,+∞)上单调递减.综上,函数f (x )的单调递减区间是(-∞,1),(1,+∞). (2)f (x )=|x 2-3x +2|=⎩⎨⎧x 2-3x +2,x ≤1或x ≥2,-(x 2-3x +2),1<x <2.作出函数的图象,如图所示. 根据图象,可知,单调递增区间是⎣⎢⎡⎦⎥⎤1,32和[2,+∞);单调递减区间是(-∞,1]和⎣⎢⎡⎦⎥⎤32,2.(1)求函数单调区间的2种方法①定义法:即先求出定义域,再利用定义法进行判断求解. ②图象法:即先画出图象,根据图象求单调区间. (2)求函数单调区间的注意点一个函数出现两个或两个以上的单调区间时,不能用“∪”连接两个单调区间,而要用“和”或“,”连接.题型三函数单调性的应用【典例3】 (1)已知函数f (x )=x 2-2(1-a )x +2在[4,+∞)上是增函数,求实数a 的取值范围.(2)已知y =f (x )在定义域(-∞,+∞)上是减函数,且f (1-a )<f (2a -1),求a 的取值范围.[思路导引] 二次函数的单调性由开口方向及对称轴确定,与函数值有关的不等式问题依据单调性转化为自变量的不等关系.[解] (1)∵f (x )=x 2-2(1-a )x +2=[x -(1-a )]2+2-(1-a )2, ∴f (x )的增区间是[1-a ,+∞). 又∵已知f (x )在[4,+∞)上是增函数, ∴1-a ≤4,即a ≥-3.∴所求实数a 的取值范围是[-3,+∞).(2)∵f (x )在R 上是减函数,且f (1-a )<f (2a -1), ∴1-a >2a -1,得a <23,∴a 的取值范围是⎝⎛⎭⎪⎫-∞,23.[变式] (1)若本例(1)条件改为“函数f (x )=x 2-2(1-a )x +2的单调递增区间为[4,+∞)”,其他条件不变,如何求解?(2)若本例(2)中“定义域(-∞,+∞)”改为“定义域(-1,1)”,其他条件不变,如何求解?[解] (1)∵f (x )=x 2-2(1-a )x +2=[x -(1-a )]2+2-(1-a )2, ∴f (x )的递增区间为[1-a ,+∞). ∴1-a =4,得a =-3. (2)由题意可知⎩⎨⎧-1<1-a <1,-1<2a -1<1.解得0<a <1.①又f (x )在(-1,1)上是减函数,且f (1-a )<f (2a -1), ∴1-a >2a -1,即a <23.②由①②可知,0<a <23,即所求a 的取值范围是⎝ ⎛⎭⎪⎫0,23.函数单调性的3个应用要点(1)二次函数的单调性由于只与对称轴及开口方向有关,因此处理起来较容易,只需结合图象即可获解.(2)已知函数的单调性求参数的取值范围的方法是:视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,通过与已知单调区间比较,求参数的取值范围.(3)需注意若一函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.3.2.1.2函数的最大(小)值要点整理 1.最大值(1)定义:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: ①∀x ∈I ,都有f (x )≤M ; ②∃x 0∈I ,使得f (x 0)=M .那么,称M 是函数y =f (x )的最大值.(2)几何意义:函数y =f (x )的最大值是图象最高点的纵坐标. 2.最小值(1)定义:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足: ①∀x ∈I ,都有f (x )≥M ; ②∃x 0∈I ,使得f (x 0)=M .那么,称M 是函数y =f (x )的最小值.(2)几何意义:函数y =f (x )的最小值是图象最低点的纵坐标.温馨提示:(1)最大(小)值必须是一个函数值,是值域中的一个元素. (2)并不是每一个函数都有最值,如函数y =1x,既没有最大值,也没有最小值.(3)最值是函数的整体性质,即在函数的整个定义域内研究其最值. 题型一图象法求函数的最大(小)值【典例1】(1)已知函数f (x )=⎩⎨⎧x 2,-1≤x ≤1,1x ,x >1.求f (x )的最大值、最小值;(2)画出函数f (x )=⎩⎨⎧-2x,x ∈(-∞,0),x 2+2x -1,x ∈[0,+∞)的图象,并写出函数的单调区间,函数的最小值.[思路导引] 作出函数f (x )的图象,结合图象求解. [解] (1)作出函数f (x )的图象(如图1).由图象可知,当x =±1时,f (x )取最大值为f (±1)=1;当x =0时,f (x )取最小值f (0)=0,故f (x )的最大值为1,最小值为0.(2)f(x)的图象如图2所示,f(x)的单调递增区间是(-∞,0)和[0,+∞),函数的最小值为f(0)=-1.图象法求最大(小)值的步骤题型二利用单调性求函数的最大(小)值【典例2】已知函数f(x)=x+1 x .(1)证明:f(x)在(1,+∞)内是增函数;(2)求f(x)在[2,4]上的最值.[解](1)证明:设∀x1,x2∈(1,+∞),且x1<x2.则f(x1)-f(x2)=x1+1x1-x 2-1x2=(x1-x2)·⎝⎛⎭⎪⎫1-1x1x2=(x1-x2)(x1x2-1)x1x2.∵x2>x1>1,∴x1-x2<0,又∵x1x2>1,∴x1x2-1>0,故(x1-x2)·(x1x2-1)x1x2<0,即f(x1)<f(x2),所以f(x)在(1,+∞)内是增函数.∴当x∈[2,4]时,f(2)≤f(x)≤f(4).又f(2)=2+12=52,f(4)=4+14=174,∴f(x)在[2,4]上的最大值为174,最小值为52.函数的最值与单调性的关系(1)如果函数y=f(x)在区间(a,b]上是增函数,在区间[b,c)上是减函数,则函数y=f(x),x∈(a,c)在x=b处有最大值f(b).(2)如果函数y=f(x)在区间(a,b]上是减函数,在区间[b,c)上是增函数,则函数y=f(x),x∈(a,c)在x=b处有最小值f(b).(3)如果函数y=f(x)在区间[a,b]上是增(减)函数,则在区间[a,b]的左、右端点处分别取得最小(大)值、最大(小)值.题型三求二次函数的最大(小)值【典例3】(1)已知函数f(x)=3x2-12x+5,x∈[0,3],求函数的最大值和最小值.(2)求二次函数f(x)=x2-2ax+2在[2,4]上的最小值.[思路导引] 找出f(x)的对称轴,分析对称轴与给定区间的关系,结合单调性求最值.[解] (1)函数f(x)=3x2-12x+5=3(x-2)2-7,函数f(x)=3(x-2)2-7的图象如图所示,由图可知,函数f(x)在[0,2)上递减,在[2,3]上递增,并且f(0)=5,f(2)=-7,f(3)=-4,所以在[0,3]上,f(x)max=f(0)=5,f(x)min =f(2)=-7.(2)∵函数图象的对称轴是x=a,∴f (x )min =f (2)=6-4a .当a >4时,f (x )在[2,4]上是减函数, ∴f (x )min =f (4)=18-8a .当2≤a ≤4时,f (x )min =f (a )=2-a 2.∴f (x )min=⎩⎨⎧6-4a ,a <2,2-a 2,2≤a ≤4,18-8a ,a >4.[变式] 本例(2)条件变为,若f (x )=x 2-2ax +2,当x ∈[2,4]时,f (x )≤a 恒成立,求实数a 的取值范围.[解] 在[2,4]内,f (x )≤a 恒成立, 即a ≥x 2-2ax +2在[2,4]内恒成立, 即a ≥f (x )max ,x ∈[2,4]. 又f (x )max =⎩⎨⎧18-8a ,a ≤3,6-4a ,a >3.①当a ≤3时,a ≥18-8a ,解得a ≥2,此时有2≤a ≤3. ②当a >3时,a ≥6-4a ,解得a ≥65,此时有a >3.综上有实数a 的取值范围是[2,+∞).求解二次函数最值问题的顺序(1)确定对称轴与抛物线的开口方向、作图. (2)在图象上标出定义域的位置. (3)观察单调性写出最值.题型四实际应用中的最值【典例4】 某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R (x )=⎩⎨⎧400x -12x 2,0≤x ≤400,80000,x >400.其中x 是仪器的月产量.(1)将利润表示为关于月产量的函数f (x );(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收益=总成本+利润)[思路导引] 先将利润表示成关于x 的函数,再利用函数的单调性求最值. [解] (1)月产量为x 台,则总成本为(20000+100x )元,从而f (x )=⎩⎨⎧-12x 2+300x -20000,0≤x ≤400,60000-100x ,x >400.(2)当0≤x ≤400时,f (x )=-12(x -300)2+25000,当x =300时,f (x )max =25000;当x >400时,f (x )=60000-100x 是减函数,f (x )<60000-100×400=20000<25000.∴当x =300时,f (x )max =25000.即每月生产300台仪器时公司所获利润最大,最大利润为25000元.求解函数最大(小)值的实际问题应注意的2点(1)解实际应用题要弄清题意,从实际出发,引入数学符号,建立数学模型,列出函数关系式,分析函数的性质,从而解决问题,要注意自变量的取值范围.(2)实际应用问题中,最大利润、用料最省等问题常转化为求函数最值来解决.3.2.2.1函数奇偶性的概念要点整理 函数的奇偶性温馨提示:(1)奇偶性是函数的整体性质,所以判断函数的奇偶性应先明确它的定义域(对照函数的单调性是函数的局部性质,以加深理解).(2)奇偶函数的定义域关于原点对称,反之,若定义域不关于原点对称,则这个函数一定不具有奇偶性.题型一函数奇偶性的判断【典例1】 判断下列函数的奇偶性: (1)f (x )=2-|x |;(2)f (x )=x 2-1+1-x 2; (3)f (x )=x x -1;(4)f (x )=⎩⎨⎧2x +1,x >0,-2x +1,x <0.[思路导引] 借助奇函数、偶函数的定义判断. [解] (1)∵函数f (x )的定义域为R ,关于原点对称, 又f (-x )=2-|-x |=2-|x |=f (x ), ∴f (x )为偶函数.(2)∵函数f (x )的定义域为{-1,1},关于原点对称,且f (x )=0,又∵f (-x )=-f (x ),f (-x )=f (x ),∴f (x )既是奇函数又是偶函数.(3)∵函数f (x )的定义域为{x |x ≠1},不关于原点对称,∴f(x)是非奇非偶函数.(4)f(x)的定义域是(-∞,0)∪(0,+∞),关于原点对称.当x>0时,-x<0,f(-x)=1-(-2x)=1+2x=f(x);当x<0时,-x>0,f(-x)=1+(-2x)=1-2x=f(x).综上可知,对于x∈(-∞,0)∪(0,+∞),都有f(-x)=f(x),f(x)为偶函数.判断函数奇偶性的2种方法(1)定义法(2)图象法题型二奇函数、偶函数的图象【典例2】已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象.(2)写出使f(x)<0的x的取值集合.[思路导引] 根据奇函数图象特征作出函数图象,再求解.[解] (1)因为函数f(x)是奇函数,所以y=f(x)在[-5,5]上的图象关于原点对称.由y=f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示.(2)由图象知,使f(x)<0的x的取值集合为(-2,0)∪(2,5).[变式] 若将本例中的“奇函数”改为“偶函数”,试画出在区间[-5,0]上的图象.[解] 因为函数f(x)是偶函数,所以y=f(x)在[-5,5]上的图象关于y轴对称.由y=f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示.巧用奇、偶函数的图象求解问题(1)依据:奇函数⇔图象关于原点对称,偶函数⇔图象关于y轴对称.(2)求解:根据奇、偶函数图象的对称性可以解决诸如求函数值或画出奇偶函数图象的问题.题型三利用函数的奇偶性求值【典例3】(1)若函数f(x)=ax2+bx+3a+b是偶函数,定义域为[a-1,2a],则a=________,b=________;。

高中数学(人教A版)必修一课件:1.3函数的基本性质

高中数学(人教A版)必修一课件:1.3函数的基本性质

(3) f (x)=x+1;
(4) f (x)=x2,x∈[-1, 3];
(5) f (x)=0.
例1 判断下列函数的奇偶性;
(1) f (x)=x+x3+x5;
(奇函数)
(2) f (x)=x2+1;
(偶函数)
(3) f (x)=x+1;
(4) f (x)=x2,x∈[-1, 3];
(5) f (x)=0.
练习
2. 判断下列论断是否正确
(1)如果一个函数的定义域关于坐标原点
对称,则这个函数关于原点对称且这
个函数为奇函数;
(错)
(2)如果一个函数为偶函数,则它的定义
域关于坐标原点对称.
(对)
(3)如果一个函数定义域关于坐标原点对
称,则这个函数为偶函数; (错)
(4)如果一个函数的图象关于y轴对称,则
这个函数为偶函数.
例1 判断下列函数的奇偶性; (1) f (x)=x+x3+x5; (2) f (x)=x2+1; (3) f (x)=x+1; (4) f (x)=x2,x∈[-1, 3]; (5) f (x)=0.
例1 判断下列函数的奇偶性;
(1) f (x)=x+x3+x5;
(奇函数)
(2) f (x)=x2+1;
强调定义中“任意”二字,说明函 数的奇偶性在定义域上的一个整体性质, 它不同于函数的单调性 .
问题2:-x与x在几何上有何关系?具有 奇偶性的函数的定义域有何特征?
问题2:-x与x在几何上有何关系?具有 奇偶性的函数的定义域有何特征?
奇函数与偶函数的定义域的特征是 关于原点对称.
问题3:结合函数f (x)=x3的图象回答以 下问题: (1)对于任意一个奇函数f (x),图象上的 点P (x,f (x))关于原点对称点P'的坐标 是什么?点P'是否也在函数f (x)的图象 上?由此可得到怎样的结论. (2)如果一个函数的图象是以坐标原点为 对称中心的中心对称图形,能否判断它 的奇偶性?

新人教A版新教材学高中数学必修第一册第三章函数概念与性质奇偶性函数奇偶性的概念教案

新人教A版新教材学高中数学必修第一册第三章函数概念与性质奇偶性函数奇偶性的概念教案

考点学习目标核心素养函数奇偶性的判断结合具体函数,了解函数奇偶性的含义,掌握判断函数奇偶性的方法数学抽象,逻辑推理奇、偶函数的图象了解函数奇偶性与函数图象对称性之间的关系直观想象奇、偶函数的应用会利用函数的奇偶性解决简单问题数学运算问题导学预习教材P82—P84,并思考以下问题:1.奇函数与偶函数的定义是什么?2.奇、偶函数的定义域有什么特点?3.奇、偶函数的图象有什么特征?1.偶函数(1)定义:一般地,设函数f(x)的定义域为I,如果∀x∈I,都有—x∈I,且f(—x)=f(x),那么函数f(x)就叫做偶函数.(2)图象特征:图象关于y轴对称.2.奇函数(1)定义:一般地,设函数f(x)的定义域为I,如果∀x∈I,都有—x∈I,且f(—x)=—f(x),那么函数f(x)就叫做奇函数.(2)图象特征:图象关于原点对称.■名师点拨(1)奇、偶函数定义域的特点由于f(x)和f(—x)须同时有意义,所以奇、偶函数的定义域关于原点对称.(2)奇、偶函数的对应关系的特点1奇函数有f(—x)=—f(x)⇔f(—x)+f(x)=0⇔错误!=—1(f(x)≠0);2偶函数有f(—x)=f(x)⇔f(—x)—f(x)=0⇔错误!=1(f(x)≠0).(3)函数奇偶性的三个关注点1若奇函数在原点处有定义,则必有f(0)=0.有时可以用这个结论来否定一个函数为奇函数;2既是奇函数又是偶函数的函数只有一种类型,即f(x)=0,x∈I,其中定义域I是关于原点对称的非空集合;3函数根据奇偶性可分为奇函数、偶函数、既奇又偶函数、非奇非偶函数.判断正误(正确的打“√”,错误的打“×”)(1)奇、偶函数的定义域都关于原点对称.()(2)函数f(x)=x2的图象关于原点对称.()(3)对于定义在R上的函数f(x),若f(—1)=—f(1),则函数f(x)一定是奇函数.()(4)若f(x)是定义在R上的奇函数,则f(—x)+f(x)=0.()答案:(1)√(2)×(3)×(4)√下列函数为奇函数的是()A.y=|x|B.y=3—xC.y=错误!D.y=—x2+14解析:选C.A、D两项,函数均为偶函数,B项中函数为非奇非偶函数,而C项中函数为奇函数,故选C.若函数y=f(x),x∈[—2,a]是偶函数,则a的值为()A.—2B.2C.0D.不能确定解析:选B.因为偶函数的定义域关于原点对称,所以—2+a=0,所以a=2.下列图象表示的函数是奇函数的是________,是偶函数的是________.(填序号)解析:13关于y轴对称是偶函数,24关于原点对称是奇函数.答案:2413若f(x)是定义在R上的奇函数,f(3)=2,则f(—3)=________,f(0)=________.解析:因为f(x)是定义在R上的奇函数,所以f(—3)=—f(3)=—2,f(0)=0.答案:—20函数奇偶性的判断判断下列函数的奇偶性:(1)f(x)=|x+1|—|x—1|;(2)f(x)=错误!+错误!;(3)f(x)=错误!;(4)f(x)=错误!【解】(1)因为x∈R,所以—x∈R,又因为f(—x)=|—x+1|—|—x—1|=|x—1|—|x+1|=—(|x+1|—|x—1|)=—f(x),所以f(x)为奇函数.(2)因为函数f(x)的定义域为{—1,1},关于原点对称,且f(x)=0,所以f(—x)=—f(x),f(—x)=f(x),所以f(x)既是奇函数又是偶函数.(3)f(x)的定义域为[—1,0)∪(0,1].即有—1≤x≤1且x≠0,则—1≤—x≤1,且—x≠0,又因为f(—x)=错误!=—错误!=—f(x).所以f(x)为奇函数.(4)f(x)的定义域是(—∞,0)∪(0,+∞),关于原点对称.当x>0时,—x<0,f(—x)=1—(—x)=1+x=f(x);当x<0时,—x>0,f(—x)=1+(—x)=1—x=f(x).综上可知,对于x∈(—∞,0)∪(0,+∞),都有f(—x)=f(x),所以f(x)为偶函数.错误!判断函数奇偶性的两种方法(1)定义法(2)图象法[注意] 对于分段函数奇偶性的判断,应分段讨论,要注意根据x的范围取相应的函数解析式.1.给定四个函数:1y=x3+错误!;2y=错误!(x>0);3y=x3+1;4y=错误!.其中是奇函数的有()A.1个B.2个C.3个D.4个解析:选B.1函数的定义域为R,f(x)=x3+错误!,f(—x)=—(x3+错误!)=—f(x),则函数f(x)是奇函数;2函数的定义域关于原点不对称,则函数f(x)为非奇非偶函数;3函数的定义域为R,f(0)=0+1=1≠0,则函数f(x)为非奇非偶函数;4函数的定义域为(—∞,0)∪(0,+∞),f(—x)=错误!=—错误!=—f(x),则函数f(x)是奇函数.2.如果f(x)是定义在R上的奇函数,那么下列函数中,一定为偶函数的是()A.y=x+f(x)B.y=xf(x)C.y=x2+f(x)D.y=x2f(x)解析:选B.因为f(x)是奇函数,所以f(—x)=—f(x).对于A,g(—x)=—x+f(—x)=—x—f(x)=—g(x),所以y=x+f(x)是奇函数.对于B,g(—x)=—xf(—x)=xf(x)=g(x),所以y=xf(x)是偶函数.对于C,g(—x)=(—x)2+f(—x)=x2—f(x),所以y=x2+f(x)为非奇非偶函数.对于D,g(—x)=(—x)2f(—x)=—x2f(x)=—g(x),所以y=x2f(x)是奇函数.奇、偶函数的图象已知函数y=f(x)是定义在R上的偶函数,且当x≤0时,f(x)=x2+2x.现已画出函数f (x)在y轴左侧的图象,如图所示.(1)请补出完整函数y=f(x)的图象;(2)根据图象写出函数y=f(x)的递增区间;(3)根据图象写出使f(x)<0的x的取值集合.【解】(1)由题意作出函数图象如图:(2)据图可知,单调递增区间为(—1,0),(1,+∞).(3)据图可知,使f(x)<0的x的取值集合为(—2,0)∪(0,2).1.(变问法)本例条件下,y取何值时,有四个不同的x值与之对应?解:结合图象可知,满足条件的y的取值范围是(—1,0).2.(变条件)若将本例中的“偶函数”改为“奇函数”,其他条件不变,如何解答本题?解:(1)由题意作出函数图象如图所示:(2)据图可知,单调递增区间为(—1,1).(3)据图可知,使f(x)<0的x的取值集合为(—2,0)∪(2,+∞).错误!巧用奇偶性作函数图象的步骤(1)确定函数的奇偶性.(2)作出函数在[0,+∞)(或(—∞,0])上对应的图象.(3)根据奇(偶)函数关于原点(y轴)对称得出在(—∞,0](或[0,+∞))上对应的函数图象.[注意] 作对称图象时,可以先从点的对称出发,点(x0,y0)关于原点的对称点为(—x0,—y0),关于y轴的对称点为(—x0,y0).已知函数y=f(x)是偶函数,且图象与x轴有四个交点,则方程f(x)=0的所有实根之和是()A.4B.2C.1D.0解析:选D.因为f(x)是偶函数,且图象与x轴有四个交点,所以这四个交点每组两个关于y轴一定是对称的,故所有实根之和为0.利用函数的奇偶性求参数(1)若函数f(x)=ax2+bx+3a+b是偶函数,且定义域为[a—1,2a],则a=________,b=________.(2)若已知函数f(x)=错误!是定义在(—1,1)上的奇函数,且f错误!=错误!,求函数f(x)的解析式.【解】(1)因为偶函数的定义域关于原点对称,所以a—1=—2a,解得a=错误!.又函数f(x)=错误!x2+bx+b+1为二次函数,结合偶函数图象的特点,易得b=0.故填错误!和0.(2)因为f(x)是定义在(—1,1)上的奇函数,所以f(0)=0,即错误!=0,所以b=0.又因为f错误!=错误!=错误!,所以a=1,所以f(x)=错误!.错误!利用奇偶性求参数的常见类型及策略(1)定义域含参数:奇、偶函数f(x)的定义域为[a,b],根据定义域关于原点对称,利用a+b =0求参数.(2)解析式含参数:根据f(—x)=—f(x)或f(—x)=f(x)列式,比较系数即可求解.1.若f(x)=(ax+1)(x—a)为偶函数,且函数y=f(x)在x∈(0,+∞)上单调递增,则实数a的值为()A.±1B.—1C.1D.0解析:选C.因为f(x)=(ax+1)(x—a)=ax2+(1—a2)x—a为偶函数,所以1—a2=0.所以a=±1.当a=1时,f(x)=x2—1,在(0,+∞)上单调递增,满足条件;当a=—1时,f(x)=—x 2+1,在(0,+∞)上单调递减,不满足.2.已知函数f(x)=错误!是奇函数,则a=________.解析:因为f(x)为奇函数,所以f(—1)+f(1)=0,即(a—1)+(—1+1)=0,故a=1.答案:11.下列函数是偶函数的是()A.y=xB.y=2x2—3C.y=错误!D.y=x2,x∈(—1,1]解析:选B.对于A,定义域为R,f(—x)=—x=—f(x),是奇函数;对于B,定义域为R,满足f(x)=f(—x),是偶函数;对于C和D,定义域不关于原点对称,则不是偶函数.2.函数f(x)=错误!—x的图象关于()A.y轴对称B.直线y=—x对称C.坐标原点对称D.直线y=x对称解析:选C.函数f(x)=错误!—x是奇函数,其图象关于坐标原点对称.3.已知函数f(x)为R上的奇函数,且当x>0时,f(x)=x2+错误!,则f(—1)=________.解析:当x>0时,f(x)=x2+错误!,所以f(1)=1+1=2.又f(x)为奇函数,所以f(—1)=—2.答案:—24.根据题中函数的奇偶性及所给部分图象,作出函数在y轴另一侧的图象,并解决问题:(1)如图1是奇函数y=f(x)的部分图象,求f(—4)·f(—2);(2)如图2是偶函数y=f(x)的部分图象,比较f(1)与f(3)的大小.解:(1)作出函数在y轴另一侧的图象,如图所示,观察图象可知f(—4)=—f(4)=—2,f(—2)=—f(2)=—1,所以f(—4)·f(—2)=(—2)×(—1)=2.(2)作出函数在y轴另一侧的图象,如图所示.观察图象可知f(1)=f(—1),f(3)=f(—3),f(—1)<f(—3),所以f(1)<f(3).[A 基础达标]1.下列函数为奇函数的是()A.y=x2+2B.y=x,x∈(0,1]C.y=x3+x D.y=x3+1解析:选C.对于A,f(—x)=(—x)2+2=x2+2=f(x),即f(x)为偶函数;对于B,定义域不关于原点对称,故f(x)既不是奇函数也不是偶函数;对于C,定义域为R,且f(—x)=(—x)3+(—x)=—(x3+x)=—f(x),故f(x)为奇函数;对于D,f(—x)=—x3+1≠f(x)且f(—x)≠—f(x),故f(x)既不是奇函数,也不是偶函数.2.若函数f(x)=(m—1)x2+(m—2)x+(m2—7m+12)为偶函数,则m的值是()A.1B.2C.3D.4解析:选B.因为函数f(x)=(m—1)x2+(m—2)x+(m2—7m+12)为偶函数,所以f(—x)=f(x),即(m—1)x2+(m—2)x+(m2—7m+12)=(m—1)x2+(—m+2)x+(m2—7m +12),即m—2=—m+2,解得m=2.3.设f(x)是定义在R上的一个函数,则函数F(x)=f(x)—f(—x)在R上一定()A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数解析:选A.F(—x)=f(—x)—f(x)=—[f(x)—f(—x)]=—F(x),符合奇函数的定义.4.如图,给出奇函数y=f(x)的局部图象,则f(—2)+f(—1)的值为()A.—2B.2C.1D.0解析:选A.由题图知f(1)=错误!,f(2)=错误!,又f(x)为奇函数,所以f(—2)+f(—1)=—f(2)—f(1)=—错误!—错误!=—2.故选A.5.如果函数y=错误!是奇函数,则f(x)=________.解析:设x<0,则—x>0,所以2×(—x)—3=—2x—3.又原函数为奇函数,所以f(x)=—(—2x—3)=2x+3.答案:2x+36.已知函数f(x)=ax3+bx+错误!+5,满足f(—3)=2,则f(3)的值为________.解析:因为f(x)=ax3+bx+错误!+5,所以f(—x)=—ax3—bx—错误!+5,即f(x)+f(—x)=10.所以f(—3)+f(3)=10,又f(—3)=2,所以f(3)=8.答案:87.判断下列函数的奇偶性:(1)f(x)=3,x∈R;(2)f(x)=5x4—4x2+7,x∈[—3,3];(3)f(x)=错误!解:(1)因为f(—x)=3=f(x),所以函数f(x)是偶函数.(2)因为x∈[—3,3],f(—x)=5(—x)4—4(—x)2+7=5x4—4x2+7=f(x),所以函数f(x)是偶函数.(3)当x>0时,f(x)=1—x2,此时—x<0,所以f(—x)=(—x)2—1=x2—1,所以f(—x)=—f(x);当x<0时,f(x)=x2—1,此时—x>0,f(—x)=1—(—x)2=1—x2,所以f(—x)=—f(x);当x=0时,f(—0)=—f(0)=0.综上,对x∈R,总有f(—x)=—f(x),所以函数f(x)为R上的奇函数.8.定义在R上的奇函数f(x)在[0,+∞)上的图象如图所示.(1)补全f(x)的图象;(2)解不等式xf(x)>0.解:(1)描出点(1,1),(2,0)关于原点的对称点(—1,—1),(—2,0),则可得f(x)的图象如图所示.(2)结合函数f(x)的图象,可知不等式xf(x)>0的解集是(—2,0)∪(0,2).[B 能力提升]9.设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是()A.f(x)g(x)是偶函数B.|f(x)|g(x)是奇函数C.f(x)|g(x)|是奇函数D.|f(x)g(x)|是奇函数解析:选C.依题意得对任意x∈R,都有f(—x)=—f(x),g(—x)=g(x),因此,f(—x)·g (—x)=—f(x)·g(x)=—[f(x)·g(x)],f(x)g(x)是奇函数,A错;|f(—x)|·g(—x)=|—f (x)|·g(x)=|f(x)|·g(x),|f(x)|·g(x)是偶函数,B错;f(—x)·|g(—x)|=—f(x)·|g(x)|=—[f(x)|g(x)|],f(x)·|g(x)|是奇函数,C正确;|f(—x)·g(—x)|=|—f(x)g(x)|=|f (x)g(x)|,|f(x)g(x)|是偶函数,D错.故选C.10.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)—g(x)=x3+x2+1,则f(1)+g(1)=()A.—3B.—1C.1D.3解析:选C.因为f(x)—g(x)=x3+x2+1,所以f(—x)—g(—x)=—x3+x2+1,又由题意可知f(—x)=f(x),g(—x)=—g(x),所以f(x)+g(x)=—x3+x2+1,则f(1)+g(1)=1,故选C.11.已知奇函数f(x)=错误!(1)求实数m的值,并画出y=f(x)的图象;(2)若函数f(x)在区间[—1,a—2]上单调递增,试确定a的取值范围.解:(1)当x<0时,—x>0,f(—x)=—(—x)2+2(—x)=—x2—2x.又f(x)为奇函数,所以f(—x)=—f(x)=—x2—2x,所以f(x)=x2+2x,所以m=2.y=f(x)的图象如图所示.(2)由(1)知f(x)=错误!由图象可知,f(x)在[—1,1]上单调递增,要使f(x)在[—1,a—2]上单调递增,只需错误!解得1<a≤3.12.设f(x)是定义在R上的奇函数,且对任意a、b∈R,当a+b≠0时,都有错误!>0.(1)若a>b,试比较f(a)与f(b)的大小关系;(2)若f(1+m)+f(3—2m)≥0,求实数m的取值范围.解:(1)因为a>b,所以a—b>0,由题意得错误!>0,所以f(a)+f(—b)>0.又f(x)是定义在R上的奇函数,所以f(—b)=—f(b),所以f(a)—f(b)>0,即f(a)>f(b).(2)由(1)知f(x)为R上的单调递增函数,因为f(1+m)+f(3—2m)≥0,所以f(1+m)≥—f(3—2m),即f(1+m)≥f(2m—3),所以1+m≥2m—3,所以m≤4.所以实数m的取值范围为(—∞,4].[C 拓展探究]13.已知f(x)是定义在R上的函数,设g(x)=错误!,h(x)=错误!.(1)试判断g(x)与h(x)的奇偶性;(2)试判断g(x),h(x)与f(x)的关系;(3)由此你能猜想出什么样的结论?解:(1)因为g(—x)=错误!=g(x),h(—x)=错误!=—h(x),所以g(x)是偶函数,h (x)是奇函数.(2)g(x)+h(x)=错误!+错误!=f(x).(3)如果一个函数的定义域关于原点对称,那么这个函数就一定可以表示为一个奇函数与一个偶函数的和.。

人教高中数学必修一A版《函数的基本性质》函数的概念与性质说课复习(第4课时函数奇偶性的应用)

人教高中数学必修一A版《函数的基本性质》函数的概念与性质说课复习(第4课时函数奇偶性的应用)
栏目 导引
第三章 函数的概念与性质
利用奇偶性求函数解析式的思路 (1)“求谁设谁”,即在哪个区间求解析式,x 就设在哪个区间 内. (2)利用已知区间的解析式代入. (3)利用 f(x)的奇偶性写出-f(x)或 f(-x),从而解出 f(x).
栏目 导引
第三章 函数的概念与性质
1.设 f(x)是偶函数,g(x)是奇函数,且 f(x)+g(x)=x2+2x,求 函数 f(x),g(x)的解析式. 解:因为 f(x)是偶函数,g(x)是奇函数, 所以 f(-x)=f(x),g(-x)=-g(x), 由 f(x)+g(x)=2x+x2.① 用-x 代替 x 得 f(-x)+g(-x)=-2x+(-x)2, 所以 f(x)-g(x)=-2x+x2,② (①+②)÷2,得 f(x)=x2. (①-②)÷2,得 g(x)=2x.
条件 当 x1<x2 时
都有 f(x1)<f(x2)
都有 f(x1)>f(x2)
那么就说函数 f(x)在区间 D 上 那么就说函数 f(x)在区间 D 上
结论
是增函数
是减函数
栏目导航
图示
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
课件
栏目导航
思考 1:增(减)函数定义中的 x1,x2 有什么特征?
栏目 导引
第三章 函数的概念与性质
2.(2019·襄阳检测)已知偶函数 f(x)在区间[0,+∞)上单调递减,
则满足 f(2x-1)>f13的实数 x 的取值范围是(
)
A.13,23

人教A版必修第一册第三章函数的概念与性质3.2函数的基本性质-奇偶性

人教A版必修第一册第三章函数的概念与性质3.2函数的基本性质-奇偶性


f(-x)=-f(x)

f(-x)=f(x)
y
y

-a o

ax
-a o a x


关于原点对称
关于y轴对称
判断
定义域是否关于原点对称.
步骤
f(-x)=-f(x)
f(-x)=f(x)
课堂小结
1.两个定义:对于f(x)定义域内的任意一个x,
如果都有f(-x)=-f(x) f(x)为奇函数
如果都有f(-x)=f(x)
概念强化
1.函数是奇函数或是偶函数称为函数的奇偶性, 函数的奇偶性是函数的整体性质;
2.由函数的奇偶性定义可知,函数具有奇偶 性的一个必要条件是,对于定义域内的任意一个x, 则-x也一定是定义域内的一个自变量(即定义域 关于原点对称).
将下面的函数图象分类
y
y
y
y
y
y
O
x
0
x
0
x
0
x
0
x
0
x
奇函数
即f(-x)=-f(x)
∴f(x)偶函数
∴f(x)奇函数
(3)解:定义域为{x|x≠0} ∵ f(-x)=-x+1/(-x)=-f(x) 即f(-x)=-f(x)
∴f(x)奇函数
(4)解:定义域为{x|x≠0} ∵ f(-x)=1/(-x)2=f(x) 即f(-x)=f(x)
∴f(x)偶函数
y x2 , x [2,1]
f(x)为偶函数
2.两个性质:
一个函数为奇函数
它的图象关于原点对称
一个函数为偶函数
它的图象关于y轴对称
建立概念
视察下图,思考并讨论以下问题:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学习
目标核心素养
1.会根据函数奇偶性求函数值或解析式.2.能利用函数的奇偶性与单调性分析、解决较简单的问题.1.利用奇偶性求函数的解析式,培养逻辑推理素养.
2.借助奇偶性与单调性的应用提升逻辑推理、数学运算素养.
用奇偶性求解析式
【例1】(1)函数f(x)是定义域为R的奇函数,当x>0时,f(x)=—x+1,求f(x)的解析式;
(2)设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=错误!,求函数f(x),g(x)的解析式.
[思路点拨] (1)错误!错误!
错误!错误!错误!错误!错误!错误!错误!
(2)错误!错误!
错误!错误!
错误!错误!错误!
[解] (1)设x<0,则—x>0,
∴f(—x)=—(—x)+1=x+1,
又∵函数f(x)是定义域为R的奇函数,
∴f(—x)=—f(x)=x+1,
∴当x<0时,f(x)=—x—1.
又x=0时,f(0)=0,
所以f(x)=错误!
(2)∵f(x)是偶函数,g(x)是奇函数,
∴f(—x)=f(x),g(—x)=—g(x).
由f(x)+g(x)=错误!,1
用—x代替x得f(—x)+g(—x)=错误!,
∴f(x)—g(x)=错误!,2
(1+2)÷2,得f(x)=错误!;
(1—2)÷2,得g(x)=错误!.
把本例(2)的条件“f(x)是偶函数,g(x)是奇函数”改为“f(x)是奇函数,g(x)是偶函数”,再求f(x),g(x)的解析式.
[解] ∵f(x)是奇函数,g(x)是偶函数,
∴f(—x)=—f(x),g(—x)=g(x),
又f(x)+g(x)=错误!,1
用—x代替上式中的x,得
f(—x)+g(—x)=错误!,
即f(x)—g(x)=错误!.2
联立12得
f(x)=错误!,g(x)=错误!.
利用函数奇偶性求解析式的方法
1“求谁设谁”,既在哪个区间上求解析式,x就应在哪个区间上设.
2要利用已知区间的解析式进行代入.
3利用f x的奇偶性写出—f x或f—x,从而解出f x.
提醒:若函数f x的定义域内含0且为奇函数,则必有f0=0,但若为偶函数,未必有f0
=0.
函数单调性和奇偶性的综合问题
[探究问题]
1.如果奇函数f(x)在区间(a,b)上单调递增,那么f(x)在(—b,—a)上的单调性如何?
如果偶函数f(x)在区间(a,b)上单调递减,那么f(x)在(—b,—a)上的单调性如何?
提示:如果奇函数f(x)在区间(a,b)上单调递增,那么f(x)在(—b,—a)上单调递增;如果偶函数f(x)在区间(a,b)上单调递减,那么f(x)在(—b,—a)上单调递增.2.你能否把上述问题所得出的结论用一句话概括出来?
提示:奇函数在关于原点对称的区间上单调性相同,偶函数在关于原点对称的区间上单调性相反.3.若偶函数f(x)在(—∞,0)上单调递增,那么f(3)和f(—2)的大小关系如何?若f(a)>f (b),你能得到什么结论?
提示:f(—2)>f(3),若f(a)>f(b),则|a|<|b|.
角度一比较大小问题
【例2】函数y=f(x)在[0,2]上单调递增,且函数f(x+2)是偶函数,则下列结论成立的是()A.f(1)<f错误!<f错误!B.f错误!<f(1)<f错误!
C.f错误!<f错误!<f(1)D.f错误!<f(1)<f错误!
[思路点拨] 错误!―→
错误!错误!错误!
B[∵函数f(x+2)是偶函数,
∴函数f(x)的图象关于直线x=2对称,∴f错误!=f错误!,f错误!=f错误!,又f(x)在[0,2]上单调递增,
∴f错误!<f(1)<f错误!,即f错误!<f(1)<f错误!.]
比较大小的求解策略,看自变量是否在同一单调区间上.
1在同一单调区间上,直接利用函数的单调性比较大小;
2不在同一单调区间上,需利用函数的奇偶性把自变量转化到同一单调区间上,然后利用单调性比较大小.
1.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(—2),f(π),f (—3)的大小关系是()
A.f(π)>f(—3)>f(—2)B.f(π)>f(—2)>f(—3)
C.f(π)<f(—3)<f(—2)D.f(π)<f(—2)<f(—3)
A[由偶函数与单调性的关系知,若x∈[0,+∞)时,f(x)是增函数,则x∈(—∞,0)时,f (x)是减函数,故其图象的几何特征是自变量的绝对值越小,则其函数值越小,∵|—2|<|—3|<π,∴f (π)>f(—3)>f(—2),故选A.]
角度二解不等式问题
【例3】已知定义在[—2,2]上的奇函数f(x)在区间[0,2]上是减函数,若f(1—m)<f(m),求实数m的取值范围.
[解] 因为f(x)在区间[—2,2]上为奇函数,且在区间[0,2]上是减函数,所以f(x)在[—2,2]上为减函数.
又f(1—m)<f(m),所以错误!
即错误!解得—1≤m<错误!.
故实数m的取值范围是—1≤m<错误!.
解有关奇函数f x的不等式f a+f b<0,先将f a+f b<0变形为f a<—f b =f—b,再利用f x的单调性去掉“f”,化为关于a,b的不等式.另外,要特别注意函数的定义域.,由于偶函数在关于原点对称的两个区间上的单调性相反,所以我们要利用偶函数的性质f x=
f|x|=f—|x|将f g x中的g x全部化到同一个单调区间内,再利用单调性去掉符号f,使不等式得解.
2.函数f(x)是定义在实数集上的偶函数,且在[0,+∞)上是增函数,f(3)<f(2a+1),则a的取值范围是()
A.a>1B.a<—2
C.a>1或a<—2D.—1<a<2
C[因为函数f(x)在实数集上是偶函数,且f(3)<f(2a+1),所以f(3)<f(|2a+1|),又函数f(x)在[0,+∞)上是增函数,所以3<|2a+1|,解之得a>1或a<—2.故选C.]
1.具有奇偶性的函数的单调性的特点
(1)奇函数在[a,b]和[—b,—a]上具有相同的单调性.
(2)偶函数在[a,b]和[—b,—a]上具有相反的单调性.
2.利用函数奇偶性求函数解析式的关键是利用奇偶函数的关系式f(—x)=—f(x)或f(—x)=f(x),但要注意求给定哪个区间的解析式就设这个区间上的变量为x,然后把x转化为—x(另一个已知区间上的解析式中的变量),通过适当推导,求得所求区间上的解析式.
3.偶函数的一个重要性质:f(|x|)=f(x),它能使自变量化归到[0,+∞)上,避免分类讨论.
1.思考辨析
(1)奇函数f(x)=错误!,当x>0时的解析式与x<0时的解析式相同,所以一般的奇函数在(0,+∞)上的解析式与(—∞,0)上的解析式也相同.()
(2)对于偶函数f(x),恒有f(x)=f(|x|).()
(3)若存在x0使f(1—x0)=f(1+x0),则f(x)关于直线x=1对称.()
(4)若奇函数f(x)在(0,+∞)上有最小值a,则f(x)在(—∞,0)上有最大值—a.()[答案] (1)×(2)√(3)×(4)√
2.已知偶函数在(—∞,0)上单调递增,则()
A.f(1)>f(2)B.f(1)<f(2)
C.f(1)=f(2)D.以上都有可能
A[∵f(x)是偶函数,且在(—∞,0)上单调递增,
∴f(x)在(0,+∞)上单调递减,∴f(1)>f(2),故选A.]
3.定义在R上的偶函数f(x)在[0,+∞)上是增函数,若f(a)<f(b),则一定可得()A.a<bB.a>b
C.|a|<|b| D.0≤a<b或a>b≥0
C[∵f(x)是R上的偶函数,且在[0,+∞)上是增函数,
∴由f(a)<f(b)可得|a|<|b|.]
4.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=x2+x—2,求f(x),g(x)的表达式.
[解] f(—x)+g(—x)=x2—x—2,由f(x)是偶函数,g(x)是奇函数得,f(x)—g(x)=x2—x—2,又f(x)+g(x)=x2+x—2,两式联立得f(x)=x2—2,g(x)=x.。

相关文档
最新文档