2013年初中毕业班综合数学测试及答案201369

合集下载

2013年初中毕业生中考数学试卷及答案

2013年初中毕业生中考数学试卷及答案

2013年初中毕业生中考数学试卷本试卷共5页,分二部分,共25小题,满分150分。

考试用时120分钟。

注意事项:1、答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;同时填写考场试室号、座位号,再用2B铅笔把对应这两号码的标号涂黑。

2、选择题答案用2B铅笔填涂;将答题卡上选择题答题区中对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;答案不能答在试卷上。

3、非选择题答案必须用黑色字迹的钢笔或签字笔写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔、圆珠笔和涂改液。

不按以上要求作答的答案无效。

4、考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。

第一部分选择题(共30分)一、选择题:1、比0大的数是()A -1 B12C 0D 12、图1所示的几何体的主视图是()(A)(B) (C) (D)正面3、在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格4、计算:()23m n的结果是( )A 6m nB 62m nC 52m nD 32m n5、为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( ) A 全面调查,26 B 全面调查,24 C 抽样调查,26 D 全面调查,246、已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A 1032x y y x +=⎧⎨=+⎩B 1032x y y x +=⎧⎨=-⎩C 1032x y x y +=⎧⎨=+⎩D 1032x y x y +=⎧⎨=-⎩7、实数a 在数轴上的位置如图4所示,则 2.5a -=( )图42.5aA 2.5a -B 2.5a -C 2.5a +D 2.5a -- 8、若代数式1xx -有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且9、若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断10、如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A 23B 22 C114 D 554图5ADBC第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11.点P 在线段AB 的垂直平分线上,P A =7,则PB =______________ .12.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ .13.分解因式:=+xy x 2_______________.14.一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 15.如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .16.如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分9分) 解方程:09102=+-x x .18.(本小题满分9分)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.CODAB图819.(本小题满分10分)先化简,再求值:yx y y x x ---22,其中.321,321-=+=y xC'图6ACB O A'B'A O 图7yx( 6, 0 )P已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法);(2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE .21.(本小题满分12分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1) 求样本数据中为A 级的频率;(2) 试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数; (3) 从样本数据为C 级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.22.(本小题满分12分)如图10, 在东西方向的海岸线MN 上有A 、B 两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东58°方向,船P 在船B 的北偏西35°方向,AP 的距离为30海里.(1) 求船P 到海岸线MN 的距离(精确到0.1海里);(2) 若船A 、船B 分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处.AD图9BCPB A图10北东N M如图11,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(2,2),反比例函数ky x=(x >0,k ≠0)的图像经过线段BC 的中点D .(1)求k 的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D 重合),过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围。

2013年吉林省中考数学试卷含答案-答案在前

2013年吉林省中考数学试卷含答案-答案在前

吉林省2013年初中毕业生学业考试数学答案解析一、单选选择题 1.【答案】B【解析】211-+=-,故选B .【提示】符号不相同的异号加减,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值,所以211-+=-.【考点】有理数的加法 2.【答案】C【解析】213x ->,移项得231x >+,合并同类项得24x >,∴不等式的解集是2x >,故选C . 【提示】移项合并同类项得到24x >,不等式的两边同除以2即可求出答案. 【考点】解一元一次不等式,不等式的性质 3.【答案】A【解析】从正面看易得第一层有2个正方形,第二层有3个正方形,故选A .【提示】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中. 【考点】简单组合体的三视图 4.【答案】D【解析】6 6.47<<,∴她投出的铅球落在区域④,故选D .【提示】根据小丽的铅球成绩为6.4m ,得出其所在的范围,即可得出答案. 【考点】近似数和有效数字 5.【答案】B【解析】把这组数据从小到大排列为:20,22,22,24,25,26,27,最中间的数是24,则中位数是24,故选B .【提示】根据中位数的定义把这组数据从小到大排列,找出最中间的数即可. 【考点】中位数,折线统计图 6.【答案】A【解析】抛物线22()y x h k =--+的顶点坐标为(,)h k ,由图可知,抛物线的顶点坐标在第一象限,0h ∴>,0k >,故选A .【提示】根据抛物线所的顶点坐标在x 轴的上方即可得出结论. 【考点】二次函数图象与系数的关系【解析】Rt ABC △40得到Rt 1(180702︒-∠=︒,AC B ''∠90C '=︒-∠,故答案为20.【提示】根据旋转的性质可得40=︒,然后根据等腰三角形两底角相等求出再利用直角三角形两锐角互余,列式计算即可得解.【解析】点,以,交【解析】OC AB ⊥90,5cm OA =22AO OC -由垂径定理得:AB 即可,如6cm ,故答案为【提示】根据勾股定理求出,根据垂径定理求出,举出即可.,BC b =,,故答案为3a ,就有A C '=【解析】如图所示:62 18.【答案】(1)部分画法如图所示:(2)部分画法如图所示:(2)根据题意得:无所谓的人数是20030%60⨯=(人),反对的人数是20010%20⨯=(人),补图如下:)CDE△是等腰直角三角形,90,CD∴,90ACB∠=,∴∠BCD DCE=∠BCE,在和BCE△中ACACDCD=⎧⎪∠⎨⎪=⎩BCE≌△;)3AC BC==90,由勾股定理得:,又DB AB=ACD BCE△≌△62,故答案为【提示】(1)求出推出两三角形全等即可;(2)根据全等得出,代入求出即可.【考点】全等三角形的判定与性质,等腰直角三角形21.【答案】90,13BCG∠,BG,6.9 6.9tan130.23CG=≈90,22ACG=,tan ACG∠,30tan2230AG∴=⨯≈⨯12 6.9+(米),所以教学楼的高度约米.90,43AFB ∠,tan AFB ∠430.93AB≈90,32AEB ∠,tan ABAEB EB∠=,∴tan320.62AB EB ≈,EF EB =100.93=,解得18.619AB =≈(米),所以教学楼的高度约19米. BGC △中,根据tan CG =即可得出CG 的长,同理,AG 的长,根据即可得出结论.)点,反比例函数,点12OD PD mn =,A 点11322QOC OC BC ==⨯与点A 关于y 轴对称,求出)n ,点P 在反比例函数上,求出S )AB BAE ∠=15F ∠=︒又在ABC △又AB)在直角时,F,P22)D1111,MQ BC⊥,QBM∠=,34MQ=3≤x<4时,重叠部分图形为平行四边形,如图3(7)4PN PD x x=-4411211PN PD代入求出即可;②当≤≤时,重叠部分图形为矩形,根据图形得出x7)O∥轴,90CD x23AB CD =12AOB S AB PO =△,12S CD PQ =△CQD ,122132AOBCQDAB POS S CD PQ ∴==△△(2)当AOB △为等腰直角三角形时,如图3244m m ∴=0m >,2∴,OP ∴∴AOB S =△∴CQD S =△∴CQD S -△0m >,∴∴AOB S =△∴CQD S =△∴CQD S -△AE y ∥轴,∴E 点的横坐标为∴1(9y =-∴49y m =23529m m =21548m m =827=.【考点】二次函数综合题数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前吉林省2013年初中毕业生学业考试数 学数学试卷共6页,包括六道大题,共26道小题.本卷满分120分.考试时间为120分钟.考试结束后,将本试题和答题卡一并交回. 一、单选选择题(每小题2分,共12分) 1.计算21-+的结果是( ) A .1 B .1-C .3D .3- 2.不等式213x ->的解集是( )A .1x >B .x <1C .x >2D .x <23.用6个完全相同的小正方体组合成如图所示的立方体图形,它的主视图为 ( )4.如图所示,体育课上,小丽的铅球成绩为6.4m ,她投出的铅球落在( )A .区域①B .区域②C .区域③D .区域④5.端午节期间,某市一周每天最高气温(单位:℃)情况如图所示,则这组表示最高气温数据的中位数是( )A .22B .24C .25D .27 6.如图,在平面直角坐标系中,抛物线所表示的函数解析式为22()y x h k =--+,则下列结论正确的是( )A .0,0h k >>B .0,0h k <>C .0,0h k <<D .0,0h k ><二、填空题(每小题3分,共24分)7.= .8.若23a b -=,则245a b --= .9.若将方程2+67x x =化为2()16x m +=,则m = . 10.分式方程231x x =+的解为x = . 11.如图,将Rt ABC △绕点A 逆时针旋转40︒,得到Rt AB C ''△,点C '恰好落在斜边AB 上,连接BB ',则BB C ∠''= 度.12.如图,在平面直角坐标系中,点,A B 的坐标分别为6,0),(0,8)(-.以点A 为圆心,以AB 长为半径画弧,交x 轴正半轴于点C ,则点C 的坐标为 .13.如图,AB 是O 的弦,OC AB ⊥于点C ,连接OA OB ,.点P 是半径OB 上任意一点,连接AP .若5cm 3cm OA OC ==,,则AP 的长度可能是 cm (写出一个符合条件的数值即可)14.如图,在矩形纸片ABCD 中,AB 的长度为,a BC 的长度为b ,其中23b a b <<.将此矩形纸片按下列顺序折叠,则C D ''的长度为 (用含有a b 、的代数式表示).三、解答题(每小题5分,共20分)15.先化简,再求值:2221b a b a b+-+其中3,1a b ==.16.在一个不透明的箱子中装有3个小球,分别标有字母,,A B C .这3个小球除所标字母外,其它都相同.从箱子中随机地摸出一个小球,然后放回;再随机地摸出一个小球.请你用画树形图(或列表)的方法,求两次摸出的小球所标字母不同的概率ABCD毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)17.吉林人参是保健佳品.某特产商店销售甲、乙两种保健人参,甲种人参每棵100元,乙种人参每棵70元王叔叔用1200元在此特产商店购买这两种人参共15棵.求王叔叔购买每种人参的棵数.18.图①、图②都是44⨯的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在每个网格中标注了5个格点.按下列要求画图:(1)在图①中以格点为顶点画一个等腰三角形,使其内部已标注的格点只有3个; (2)在图②中以格点为顶点画一个正方形,使其内部已标注的格点只有3个,且边长为无理数.四、解答题(每小题7分,共28分)19.“今天你光盘了吗?”这是国家倡导“厉行节约,反对浪费”以来的时尚流行语.某校团委随机抽取了部分学生,对他们进行了关于“光盘行动”所持态度的调查,并根据调查收集的数据绘制了如下两幅不完整的统计图:根据上述信息解答下列问题: (1)抽取的学生人数为 人; (2)将两幅统计图补充完整;(3)请你估计该校1200名学生中对“光盘行动”持赞成态度的人数.20.如图,在ABC △中,90,ACB AC BC ︒∠==,延长AB 至点D ,使DB AB =,连接CD ,以CD 为直角边作等腰三角形CDE ,其中90DCE ︒∠=,连接BE . (1)求证:B ACD CE ≌△△;(2)若3cm AC =,则BE = cm .21.某校数学课题学习小组在“测量教学楼高度”的活动中,设计了以下两种方案:请你选择其中一种..方法,求教学楼的高度(结果保留整数). 22.如图,在平面直角坐标系中,点(3,4)A -关于y 轴的对称点为点B ,连接AB ,反比例函数(0)ky x x=>的图象经过点B ,过点B 作BC x ⊥轴于点C ,点P 是该反比例函数图象上任意一点,过点P 作PD x ⊥轴于点D ,点OP 是线段AB 上任意一点,连接OQ CQ 、.(1)求k 的值;(2)判断QOC △与POD △的面积是否相等,并说明理由.一二6.9m ,22,CD ACG ︒=∠=13BCG ︒=10m ,32,AEB AFB ︒=∠=∠sin220.37,220.93,cos ︒︒≈≈tan220.40sin1.,3022︒︒≈≈0.53,cos320.85︒︒≈≈数学试卷 第5页(共6页) 数学试卷 第6页(共6页)五、解答题(每小题8分,共16分)23.如图,在ABC △中,AB BC =.以AB 为直径作圆O 交AC 于点D ,点E 为O 上一点,连接ED 并延长与BC 的延长线交于点F .连接,,60AE BE BAE ︒∠=,15F ︒∠=,解答下列问题.(1)求证:直线FB 是O 的切线; (2)若cm BE =,则AC = cm .24.甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车步行前往,乙骑电动车按原路返回.乙取到相机后(在学校取相机所用时间忽略不计),骑电动车追甲.在距乡镇13.5千米处追上甲并同车前往乡镇.若电动车速度始终不变.设甲与学校相距y 甲(千米),乙与学校相离y 乙(千米),甲离开学校的时间为x (分钟).y 甲、y 乙与x 之间的函数图象如图所示,结合图象解答下列问题:(1)电动车的速度为 千米/分钟; (2)甲步行所用的时间为 分钟; (3)求乙返回到学校时,甲与学校相距多远.六、解答题(每小题10分,共20分)25.如图,在Rt ABC △中,90,6cm ,8cm ACB AC BC ︒∠===.点D E F 、、分别是边AB BC AC 、、的中点,连接DE DF 、,动点,P Q 分别从点A B 、同时出发,运动速度均为1cm/s ,点P 沿 A F D →→的方向运动到点D 停止;点Q 沿 B C →的方向运动,当点P 停止运动时,点Q 也停止运动.在运动过程中,过点Q 作BC 的垂线交AB 于点M ,以点,,P M Q 为顶点作平行四边形PMQN .设平行四边形边形PMQN 与矩形FDEC 重叠部分的面积为2(cm )y (这里规定线段是面积为0有几何图形),点P 运动的时间为(s)x .(1)当点P 运动到点F 时,CQ = cm ;(2)在点P 从点F 运动到点D 的过程中,某一时刻,点P 落在MQ 上,求此时BQ 的长度;(3)当点P 在线段FD 上运动时,求y 与x 之间的函数关系式.26.如图①,在平面直角坐标系中,点2(0,)(0)P m m >在y 轴正半轴上,过点P 作平行于x 轴的直线,分别交抛物线211:4y C x =于点A B 、,交抛物线221:9y C x =于点C D 、.原点O 关于直线AB 的对称点为点Q ,分别连接,,OA OB QC 和QD . 猜想与证明 填表:由上表猜想:对任意(0)m m >均有CD= .请证明你的猜想. 探究与应用 (1)利用上面的结论,可得AOB △与CQD △面积的比值为 ;(2)当AOB △和CQD △中有一个是等腰直角三角形时,求CQD △与AOB △面积之差;联想与拓展 如图②过点A作y轴的平行线交抛物线2C 于点E ,过点D 作y 轴的平行线交抛物线1C 于点F .在y 轴上任取一点M ,连接MA ME MD 、、和MF ,则MAE △与MDF △面积的比值为 .-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________。

2013年初中毕业生毕业升学考试数学试卷

2013年初中毕业生毕业升学考试数学试卷

A B C D2013年初中毕业生毕业升学考试数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,请将正确答案的代号填入题后的括号内,每小题3分,共24分)1.5-的绝对值是 ( ) A .5- B .5±C .51D .5 2.据测算,我国每天因土地沙漠化造成的经济损失约为5.1亿元,一年的经济损失约为05475000000元,用科学记数法表示这个数为 ( )A .1110475.5⨯元 B .1010475.5⨯元 C .11105475.0⨯元 D .8105475⨯元 3.如图,下列水平放置的几何体中,主视图是三角形的是 ( )4.下列图形中,既是轴对称图形,又是中心对称图形的是 ( )A B C D5.某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元),55,50,25,30,50,20,50这组数据的众数和中位数分别是( )A .50元,20元B .50元,40元 C.50元,50元 D .55元,50元 6.不等式组⎩⎨⎧+>-+xx x 2125)5(2的解集在数轴上表示正确的是 ( )7.炎炎夏日,甲安装队为A 小区安装60台空调,乙安装队为B 小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是 ( )≥6B C DA第13题图第16题图A.25060-=x x B.x x 50260=- C .25060+=x x D .xx 50260=+ 8.如图1,在矩形ABCD 中,动点E 从点B 出发,沿B AD C 方向运动至点C 处停止,设点E 运动的路程为x,△BCE 的面积为y ,如果y 关于x 的函数图象如图2所示,则当7=x 时,点E 应运动到( )A .点C 处B .点D 处C .点B 处D .点A 处二、填空题(每小题3分,共24分)9.函数5-=x y 中,自变量x 的取值范围是 . 10.=-+-- 60cos 2)21()2013(10π .11.甲、乙、丙三人进行射击测试,每人10次射击成绩的平均数均是9.1环,方差分别为56.02=甲s ,45.02=乙s ,61.02=丙s ,则三人中射击成绩最稳定的是 .12.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠D =65,则∠AEC = . 13.二次函数c bx x y ++-=2的图象如图所示,则一次函数c bx y +=的图象不经过第 象限.14.一个圆锥形零件,高为8cm ,底面圆的直径为12cm ,则此圆锥的侧面积是 2cm .15.已知双曲线x y 3=和xky =的部分图象如图所示,点C 是y 轴正半轴上一点,过点C 作AB ∥x 轴分别交两个图象于点B A 、.若CB =CA 2,则k = .16.按如图方式作正方形和等腰直角三角形.若第一个正方形的边长AB =1,第一个正方形与第一个等腰直角三角形的面积和为1S , 第二个正方形与第二个等腰直角三角形的面积和为2S ,……,则 第n 个正方形与第n 个等腰直角三角形的面积和n S = .三、解答题(17、18、19小题,每小题8分,共24分)第15题图 第8题图1第8题图2第12题图 D A C B FE17.先化简,再求值:122)13154(22+-+÷---+x x x x x x ,其中3=x . 18.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC 的三个顶点都在格点上(每个小方格的顶点叫做格点). (1)画出△ABC 向下平移3个单位后的△111C B A ;(2)画出△ABC 绕点O 顺时针旋转90后的△222C B A ,并求出点A 旋转到2A 所经过的路线长.(结果保留π)19.如图,△ABC 中,AC AB =,AD 是△ABC 一个外角的平分线,且∠BAC =∠ACD . (1)求证:△ABC ≌△CDA ;(2)若∠ACB =60,求证:四边形ABCD 是菱形.第18题图 DA CBFE四、解答题(20小题10分,21小题10分,共20分)20.某中学为了解全校学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选. 同时把调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整). 请根据图中提供的信息解答下列问题: (1)在这次调查中,一共抽取了多少名学生? (2)通过计算补全条形统计图;(3)在扇形统计图中, “公交车”部分所对应的圆心角是多少度?(4)若全校有1600名学生,估计该校乘坐私家车上学的学生约有多少名?21.小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下..的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛. (1)用列表法或画树状图法,求小丽参赛的概率. (2)你认为这个游戏公平吗?请说明理由.其他其他家车交车行 行车282420161284第20题图五、解答题(22小题8分,23小题10分,共18分)22.如图,某人在山坡坡脚C 处测得一座建筑物顶点A 的仰角为60,沿山坡向上走到P 处再测得该建筑物顶点A 的仰角为45.已知BC =90米,且B 、C 、D 在同一条直线上,山坡坡度为21(即21tan =∠PCD ). (1)求该建筑物的高度(即AB 的长).(2)求此人所在位置点P 的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)23.如图,点C 是以AB 为直径的⊙O 上的一点,AD 与过点C 的切线互相垂直.D (1)求证:AC 平分BAD ∠;(2)若10,1==AC CD ,求⊙O 的半径长.第22题图六、解答题(本题满分12分)24.为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=802+-x.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?25.如图1,△ABC为等腰直角三角形,90=∠ACB,F是AC边上的一个动点(点F与A、C 不重合),以CF为一边在等腰直角三角形外作正方形,CDEF连接BF、AD.(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;②将图1中的正方形,CDEF绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形. 图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图.2.证明你的判断.(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,90=∠ACB,正方形CDEF改为矩形CDEF,如图4,且4=AC,3=BC,=CD34,1=CF,BF交AC于点H,交AD于点O,连接BD、AF,求22AFBD+的值.评卷人七、解答题(本题满分14分)AB EFH OC26.如图,抛物线与x 轴交于A ()0,1 、)03(,B 两点,与y 轴交于点C (),3,0设抛物线的顶点为D . (1)求该抛物线的解析式与顶点D 的坐标.(2)试判断△BCD 的形状,并说明理由.(3)探究坐标轴上是否存在点P ,使得以C A P 、、为顶点的三角形与△BCD 相似? 若存在,请直接写出点P八、解答题(本题满分14分)2013年初中毕业生毕业升学考试数学试卷答案说明:1.此答案仅供参考,阅卷之前请做答案。

2013年福州市初中毕业班质量检查数学答案

2013年福州市初中毕业班质量检查数学答案

2013年福州市初中毕业班质量检查数学试卷参考答案16.(每题7分,共14分)(1)解:原式11201388=-+⨯……3分120131=-+ ……4分 2011=- ……7分(2)另解:∵221a a +=- ∴2210a a ++=∴2(1)0a +=∴1a =- ……3分原式2(1)(11)(12)(12)=⨯-⨯-+--+⨯-- 3= ……7分(2)解:原式22224a a a =+-+……3分 224a a =++ ……4分 ∵221a a +=-∴原式143=-+= ……7分17.(每小题8分,共16分)(1)证明:∵D 、E 、F 分别是ABC △三边的中点∴D E12AC ,EF 12A B …………2分 ∴四边形ADEF为平行四边形 …………4分又∵A C A B =∴DE EF = …………6分 ∴四边形ADEF 为菱形 …………8分(2)解:设江水的流速为x 千米/时,依题意,得 …………1分100602020x x=+- ………………4分解得5x = ………………6分经检验:5x =是原方程的解 …………7分 答:江水的流速为5千米/时 …………8分//=//=18.(10分)(1)4……1分 (红2,黄1) ……2分 (黄2,红1) ……3分(2)不放回………5分(3)乙游戏规则摸到颜色相同的小球的可能性更大理由:在甲游戏规则中,从树形图看出,所有可能出现的结果共有12种,这些结果出现的可能性相同,而颜色相同的两个小球共有4种…………6分∴P(颜色相同)41==123…………7分在乙游戏规则中,从列表看出,所有可能出现的结果共有16种,这些结果出现的可能性相同,而颜色相同的两个小球共有8种……………8分∴P(颜色相同)81==162…………………9分∵1132<∴乙游戏规则摸到颜色相同的小球的可能性更大……………10分19.(12分)(1)12……3分(2)标出点D……5分连接CD……7分(3)解:连接BD …………8分∵90BED∠=o,1BE DE==∴45EBD EDB∠=∠=o,BD===9分由(1)可知2BF AF==,且90BFA∠=o∴45ABF BAF∠=∠=o,AB===10分∴454590ABD ABF FBD∠=∠+∠=+=o o o……11分∴1tan2B DB A DA B∠===……12分20.(12分)解:(1)过点E 作EG y ⊥轴于点G ∵点E 的坐标为(11) , ∴1E G = 在R t C EG △中,1sin 2EG EC G C E∠==∴30ECG ∠=o ………………1分 ∵30OFC ∠=o ,90FOC ∠=o∴18060OCF FOC OFC ∠=-∠-∠=o ∴90FCE OCF ECG ∠=∠+∠=o即C F C E ⊥∴直线C F 是E 的切线………………3分 (2)过点E 作EH x ⊥轴于点H ∵点E 的坐标为(11) ,∴1EG EH ==………………4分 在R t C EG △与R t BEH △中 C E BE EG EH=⎧⎨=⎩∴R t C EG △≌R t BEH △(HL )∴C G BH = ………………6分 ∵,EH AB EG C D ⊥⊥∴2AB BH =,2C D C G =∴A B C D = ………………7分 (3)连接O E在R t C EG △中,C G ==∴1OC = ………………8分同理1OB = ………………9分 ∵O G EG =,90OGE ∠=o ∴45EOG OEG ∠=∠=o 又∵30OCE ∠=o∴180105OEC EOG OCE ∠=-∠-∠=o o 同理105OEB ∠=o ………………10分∴210OEB OEC ∠+∠=o∴2210211)123602S ⨯π⨯=-⨯⨯⨯阴影713π=-………………12分(1)证明:∵M F AC ⊥∴90MFC ∠=o …………1分 ∵//M N A C∴180MFC FMN ∠+∠=o∴90FMN ∠=o …………2分 ∵90C ∠=o∴四边形MFCN 是矩形 …………3分(若先证明四边形MFCN 是平行四边形,得2分,再证明它是矩形,得3分) (2)解:当运动时间为t 秒时,A D t =∵F 为DE 的中点,2DE = ∴112D F EF DE === ∴1,8(1)7AF t FC t t=+=-+=-∵四边形MFCN 是矩形∴7M N FC t ==- …………4分 又∵,90AC BC C =∠=o∴45A ∠=o∴在R t AM F △中,1M F AF t ==+ …………5分 ∴1122M DE M N E S S S D E M F M N M F =+=⋅+⋅△△291112(1)(7)(1)42222t t t t t =⨯⋅++-⋅+=-++ …………6分∵22925114(4)2222S t t t =-++=--+∴当4t =时,S 有最大值 …………7分(若面积S 用梯形面积公式求不扣分) (3)解:∵//M N A C∴N M E D EM ∠=∠ …………8分 ①当N M E △∽D E M △时∴N M EM D E M E= …………9分∴712t -=解得5t = (10)分②当EM N △∽D E M △时,∴N M EM EMD E= …………11分∴2EM NM DE =⋅在R t M EF △中,22221(1)M E EF M F t =+=++ ∴21(1)2(7)t t ++=-解得122,6t t ==-(不合题意,舍去)综上所述,当t 为2秒或5秒时,以E 、M 、N 为顶点的三角形 与D E M △相似 ……12分AD F ECNM B解:(1)由题意,得116402a b c a b c c ++=⎧⎪++=⎨⎪=⎩ …………1分解得12522a b c ⎧=⎪⎪=-⎨⎪=⎪⎩…………3分∴这个抛物线的解析式为251222y x x =-+ …………4分(2)解法一:如图1,设BC 的垂直平分线D E 交BC 于M ,交x 轴于N ,连接C N , 过点M 作M F x ⊥轴于F∴B M F △∽BC O △∴12M F B F B M C OB OB C===∵(4,0),(0,2)B C ∴2,4C O B O ==∴1,2M F B F ==∴(2,1)M (5)∵M N 是BC 的垂直平分线∴C N BN =设O N x =,则4C N BN x ==- 在R t O C N △中,222CN OC ON =+ ∴222(4)2x x -=+ 解得32x =∴3(,0)2N ……………………………………6分设直线D E 的解析式为y kx b =+,依题意,得 2132k b k b +=⎧⎪⎨+=⎪⎩ 解得{23k b ==-∴直线D E 的解析式为23y x =- ………………8分 解法二:如图2,设BC 的垂直平分线D E 交BC 于M ,交x 于N ,连接C N ,过点C 作//C F x 轴交D E 于F ∵M N 是BC 的垂直平分线∴C N BN =,C M BM =设O N x =,则4C N BN x ==- 在R t O C N △中,222CN OC ON =+ ∴222(4)2x x -=+ 解得32x =∴3(,0)2N (5)分∴35422BN =-=∵//C F x 轴∴C FM BN M ∠=∠ ∵C M F BM N ∠=∠ ∴C M F △≌BM N △ ∴C F BN =∴5(,2)2F ………………………………………………6分设直线D E 的解析式为y kx b =+,依题意,得522302k b k b ⎧+=⎪⎨+=⎪⎩ 解得{23k b ==-∴直线D E 的解析式为23y x =- …………8分(3)由(1)得抛物线解析式为251222y x x =-+∴它的对称轴为直线52x =①如图3,设直线D E 交抛物线对称轴于点G ,则点G 以G 为圆心,G A 长为半径画圆交对称轴于点1P , 则1CP B CAB ∠=∠ …………9分52GA =∴点1P 的坐标为51(,22- …………10分②如图4,由(2)得52B N =∴BN BG =∴G 、N 关于直线BC 对称 …………11分∴以N 为圆心,N B 长为半径的N 与G 关于直线BC 对称 …………12分 N 交抛物线对称轴于点2P ,则2CP B CAB ∠=∠ …………13分设对称轴与x 轴交于点H ,则53122N H =-=∴2HP ==∴点2P 的坐标为5(2综上所述,当P 点的坐标为51(,)22-或5(2时,C PB C AB ∠=∠………14分。

2013年上海市初中毕业生统一学业考试数学(含答案)

2013年上海市初中毕业生统一学业考试数学(含答案)
13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图 2 所示,那么报名参加甲组和丙组的人 数之和占所有报名人数的百分比为___________.
y(升)
人数 80
A
3.5
50 40
30
F B
2.5
CE
甲 乙丙 丁 图2
O 图3 D
160
图4
240 x(千米)
14.在⊙中,已知半径长为 3,弦 AB 长为 4,那么圆心到 AB 的距离为___________.
EF ∥ BC , EAB 1430 , AB AE 1.2 米,求当车辆经过时,栏杆 EF 段距离地面的高度(即直线
EF 上任意一点到直线 BC 的距离). (结果精确到 0.1 米,栏杆宽度忽略不计参考数据:sin 37°≈ 0.60,cos 37°≈ 0.80,tan 37°≈ 0.75.)
图5
C
[将下列各题的解答过程,做在答题纸的相应位置上]
19.计算: 8 2 1 0 ( 1)1 . 2
x y 2
20.解方程组:

x
2

xy

2y2

0

21.已知平面直角坐标系 xoy (如图 6),直线 y 1 x b 经 2
过第一、二、三象限,与 y 轴交于点,点(2,1)在这条直线上,
4.数据 0,1,1,3,3,4 的中位线和平均数分别是(

(A) 2 和 2.4 ; (B)2 和 2 ; (C)1 和 2;
(D)3 和 2.
5.如图 1,已知在△ABC 中,点 D、E、F 分别是边 AB、AC、BC 上的点,
A DE
DE∥BC,EF∥AB,且 AD∶DB = 3∶5,那么 CF∶CB 等于( )

2013年广东省中考数学试卷有答案

2013年广东省中考数学试卷有答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页)绝密★启用前广东省2013年初中毕业生学业考试数 学本试卷满分120分,考试时间100分钟.一、选择题(本大题10题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.2的相反数是( ) A .12- B .12C .2-D .2 2.下列几何体中,俯视图为四边形的是( )A .B .C .D .3.据报道,2013年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为 ( )A .120.12610⨯元B .121.2610⨯元C .111.2610⨯元D .1112.610⨯元 4.已知实数a 、b ,若a b >,则下列结论正确的是 ( )A .55a b --<B .22a b ++<C .33a b< D .33a b >5.数据1、2、5、3、5、3、3的中位数是 ( ) A .1 B .2 C .3 D .56.如题6图,AC DF ∥,AB EF ∥,点D 、E 分别在AB 、AC 上,若250∠=︒,则1∠的大小是 ( ) A .30︒ B .40︒ C .50︒ D .60︒7.下列等式正确的是 ( ) A .3(1)1-= B .0(4)1-= C .236(2)(2)2-⨯-=-D .422(5)(5)5-÷-=-8.不等式5125x x -+>的解集在数轴上表示正确的是( )ABCD9.下列图形中,不是..轴对称图形的是( )A .B .C .D . 10.已知120k k <<,则是函数11y k x =-和2k y x=的图象大致是( )A .B .C .D .二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.分解因式:29x -= .12.若实数a 、b满足|2|0a +,则2a b= .13.一个六边形的内角和是 .14.在Rt ABC △中,90ABC ∠=︒,3AB =,4BC =,则sin A = .15.如题15图,将一张直角三角板纸片ABC 沿中位线DE 剪开后,在平面上将BDE △绕着CB 的中点D 逆时针旋转180︒,点E 到了点E '位置,则四边形ACE E '的形状是 .16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是 (结果保留π). 三、解答题(一)(本大题3小题,每小题5分,共15分)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共18页) 数学试卷 第4页(共18页)17.解方程组1,28.x y x y =+⎧⎨+=⎩①②18.从三个代数式:①222a ab b -+,②33a b -,③22a b -中任意选择两个代数式构造成分式,然后进行化简,并求当6a =,3b =时该分式的值.19.如题19图,已知□ABCD . (1)作图:延长BC ,并在BC 的延长线上截取线段CE ,使得CE BC =(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE ,交CD 于点F ,求证:AFD EFC △≌△.四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表.(1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.21.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率; (2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.如题22图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF ,使得另一边EF 过原矩形的顶点C .(1)设Rt CBD △的面积为1S ,Rt BFC △的面积为2S ,Rt DCE △的面积为3S ,则1S23S S +(用“>”、“=”、“<”填空); (2)写出题22图中的三对相似三角形,并选择其中一对进行证明.五、解答题(三)(本大题3小题,每小题9分,共27分)23.已知二次函数2221y x mx m =-+-.(1)当二次函数的图象经过坐标原点()0,0O 时,求二次函数的解析式;(2)如题23图,当2m =时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P ,使得PC PD +最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,O 是Rt ABC △的外接圆,90ABC ∠=,弦BD BA =,12AB =,5BC =,BE DC ⊥交DC 的延长线于点E . (1)求证:BCA BAD ∠=∠; (2)求DE 的长;(3)求证:BE 是O 的切线.25.有一副直角三角板,在三角板ABC 中,90BAC ∠=,6AB AC ==,在三角板DEF 中,90FDE ∠=︒,4DF =,DE =将这副直角三角板按如题25图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC ,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如题25图(2),当三角板DEF 运动到点D 与点A 重合时,设EF 与BC 交于点M ,则EMC ∠= 度;(2)如题25图(3),在三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长; (3)在三角板DEF 运动过程中,设BF x =,两块三角板重叠部分面积为y ,求y 与x的函数解析式,并求出对应的x 取值范围.数学试卷 第5页(共18页) 数学试卷 第6页(共18页)广东省2013年初中毕业生学业考试数学答案解析一、选择题 1.【答案】C【解析】2的相反数是2-,故选:C . 【提示】根据相反数的概念解答即可. 【考点】相反数 2.【答案】D【解析】A .五棱柱的俯视图是五边形,故此选项错误; B .三棱锥的俯视图是,故此选项错误;C .球的俯视图是圆,故此选项错误;D .正方体俯视图是正方形,故此选项正确; 故选:D .【提示】俯视图是从物体上面看,所得到的图形. 【考点】简单几何体的三视图 3.【答案】B【解析】121260000000000 1.2610=⨯. 故选B【提示】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的数学试卷 第7页(共18页) 数学试卷 第8页(共18页)8.【答案】A【解析】移项得,5251x x ->+,合并同类项得,36x >,系数化为1得,2x >,在数轴上表示为:【解析】(1)如图所示:数学试卷第9页(共18页)数学试卷第10页(共18页)数学试卷 第11页(共18页) 数学试卷 第12页(共18页)【解析】(1)36%50÷=人,则篮球的人数为5020%10⨯=人,则补全条形统计图如下:数学试卷第13页(共18页)数学试卷第14页(共18页)∴BE是Oe的切线.(Ⅰ)当02x≤≤时,如答图1所示:2623x<≤-数学试卷第15页(共18页)数学试卷第16页(共18页)数学试卷 第17页(共18页) 数学试卷 第18页(共18页)6236x -<≤。

【精校】2013年江西省初中毕业暨中等学校招生考试数学(含答案)

【精校】2013年江西省初中毕业暨中等学校招生考试数学(含答案)

机密★2013年6月19日江西省2013年初中毕业暨中等学校招生考试数学试题说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(共6小题,每小题3分,满分18分)说明:1.本卷共有七个大题,24个小题,全卷满分120分,考试时间120分钟。

2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。

一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1.-1的倒数是().A.1 B.-1 C.±1D.02.下列计算正确的是().A.a2+a2=a5 B.(3a-b)2=9a2-b2 C.a6b÷a2=a3b D.(-ab3)2=a2b6 3.下列数据是2013年3月7日6点公布的中国六大城市的空气污染指数情况:则这组数据的中位数和众数分别是().A.164和163 B.105和163 C.105和164 D.163和164 4.如图,直线y=x+a-2与双曲线y=交于A,B两点,则当线段AB的长度取最小值时,a 的值为().A.0 B.1 C.2 D.55.一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则他的左视图可以是().6.若二次涵数y=ax+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M (x0,y0)在x轴下方,则下列判断正确的是().A.a>0 B.b2-4ac≥0C.x1<x0<x2D.a(x0-x1)( x0-x2)<0二、填空题(本大题共8小题,每小题3分,共24分)7.分解因式x2-4= .8.如图△ABC中,∠A=90°点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为.9.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组是.10.如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接 DE和BF,分别取DE、BF 的中点M、N,连接AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为.11.观察下列图形中点的个数,若按其规律再画下去,可以得到第n个图形中所有的个数为(用含n的代数式表示).12.若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个..符合题意的一元二次方程.13.如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.14.平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是.三、(本大题共2小题,每小题5分,共10分)15.解不等式组⎩⎨⎧>-+≥+,33)3(2,12x x x 并将解集在数轴上表示出来.16.如图AB 是半圆的直径,图1中,点C 在半圆外;图2中,点C 在半圆内,请仅用无刻度...的直尺按要求画图. (1)在图1中,画出△ABC 的三条高的交点; (2)在图2中,画出△ABC 中AB 边上的高.四、(本大题共2小题,每小题6分,共12分)17.先化简,再求值:12244222+-÷+-xxx x x x ,在0,1,2,三个数中选一个合适的,代入求值.18.甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件. (1)下列事件是必然事件的是( ). A .乙抽到一件礼物B .乙恰好抽到自己带来的礼物C .乙没有抽到自己带来的礼物D .只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A ),请列出事件A 的所有可能的结果,并求事件A 的概率.五、(本大题共2小题,每小题8分,共16分) 19.如图,在平面直角坐标系中,反比例函数xky(x>0)的图象和矩形ABCD 的第一象限,AD 平行于x 轴,且AB=2,AD=4,点A 的坐标为(2,6) . (1)直接写出B 、C 、D 三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.20.生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml 的矿泉水,会后对所发矿泉水的情况进行统计,大至可分为四种:A .全部喝完;B .喝剩约;C .喝剩约一半;D .开瓶但基本未喝.同学们根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图(2)中D 所在扇形的圆心角是多少度?并补全条形统计图;(计算结果请保留整数).(2)若开瓶不但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升..? (3)据不完全统计,该单位每年约有此类会议60人,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶.?(可使用科学计算器)21.如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB ,如图2所示,量得连杆OA 长为10cm ,雨刮杆AB 长为48cm,∠OAB=120°.若启动一次刮雨器,雨刮杆AB 正好扫到水平线CD 的位置,如图3所示.(1)求雨刮杆AB 旋转的最大角度及O 、B 两点之间的距离;(结果精确到0.01) (2)求雨刮杆AB 扫过的最大面积.(结果保留π的整数倍) (参考数据:sin60°=23,cos60°=,tan60°=3,721≈26.851,可使用科学计算器)22.如图,在平面直角坐标系中,以点O 为圆心,半径为2的圆与y 轴交于点A ,点P (4,2)是⊙O 外一点,连接AP ,直线PB 与⊙O 相切于点B ,交x 轴于点C . (1)证明PA 是⊙O 的切线; (2)求点B 的坐标; (3)求直线AB 的解析式.七、(本大题共2小题,第23题10分,第24 题12分,共22分)23.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是(填序号即可)①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧..作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程;●类比探索:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:.24.已知抛物线y n=-(x-a n)2+a n(n为正整数,且0<a1<a2<…<a n)与x轴的交点为A n-1(b n-1,0)和A n(b n,0),当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.(1)求a1,b1的值及抛物线y2的解析式;(2)抛物线y3的顶点坐标为(,);依此类推第n条抛物线y n的顶点坐标为(,);所有抛物线的顶点坐标满足的函数关系是;(3)探究下列结论:①若用A n-1A n表示第n条抛物线被x轴截得得线段长,直接写出A0A1的值,并求出A n-1A n;②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得得线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.参考答案一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项. 1.B 2.D 3.A 4.C 5.C 6.D 二、填空题(本大题共8小题,每小题3分,共24分) 7.(x+2)(x -2) 8.65° 9.⎩⎨⎧+==+12,34y x y x 10.6 11. (n+1)2 12.x 2-5x+6=013.25° 14. 2,3,4三、(本大题共2小题,每小题5分,共10分) 15.解:由x+2≥1得x≥-1,由2x+6-3x 得x<3,∴不等式组的解集为-1≤x<3. 将解集在数轴上表示为:16.解:在图1中,点P 即为所求;在图2中,CD 即为所求.四、(本大题共2小题,每小题6分,共12分)17.解:原式=xx 2)2(2-·)2(2-x x x +1=12+-xx =. 当x=1时,原式=. 18.解:(1)A(2)依题意可画树状图(下列两种方式均可):(直接列举出6种可能结果也可) 符合题意的只有两种情况: ①乙丙甲②丙甲乙(按左图)或①(甲乙),(乙丙),(丙甲);②(甲丙),(乙甲),(丙乙)(按右图) ∴P (A)= = .五、(本大题共2小题,每小题8分,共16分) 19.解:(1)B (2,4),C (6,4),D (6,6)如图,矩形ABCD 平移后得到矩形A′B′C′D′, 设平移距离为a ,则A′(2,6-a ),C′(6,4-a ) ∵点A′,点C′在y=的图象上, ∴2(6-a)=6(4-a), 解得a=3, ∴点A′(2,3),∴反比例函数的解析式为6y x. 20.解:(1)根据所给扇形统计图可知,喝剩约的人数是总人数的50%,∴25÷50%=50,参加这次会议的总人数为50人, ∵505×360°=360°, ∴D 所在扇形圆心角的度数为36°, 初全条形统计图如右;(2)根据条形统计图可得平均每人浪费矿泉水量约为:(25××500+10×500×+5×500)÷50 =327500÷50≈183毫升; (3)该单位每年参加此类会议的总人数约为24000人~3600人,则浪费矿泉水约为3000×183÷500=1098瓶.六、(本大题共2小题,每小题9分,共18分)21.解:(1)雨刮杆AB 旋转的最大解度为180° .连接OB ,过O 点作AB 的垂线交BA 的延长线于EH 噗,∵∠OAB=120°,∴∠OAE=60°在Rt△OAE 中,∵∠OAE=60°,OA=10, ∴sin∠OAE=OA OE =10OE , ∴OE=53,∴AE=5∴EB=AE+AB=53,在Rt△OEB 中,∵OE=53,EB=53,∴OB=22BE OE =2884=2721≈53.70;(2)∵雨刮杆AB 旋转180°得到CD ,即△OCD 与△OAB 关于点O 中心对称, ∴△BAO≌△OCD,∴S △BAO =S △DCO ,(直接证明全等得到面积相等的也给相应的分值) ∴雨刮杆AB 扫过的最大面积S=π(OB 2-OA 2) =1392π22.解:(1)证明:依题意可知,A (0,2)∵A(0,2),P (4,2),∴AP∥x 轴,∴∠OAP=90°,且点A 在⊙O 上,∴PA 是⊙O 的切线;(2)解法一:连接OP ,OB ,作PE⊥x 轴于点E ,BD⊥x 轴于点D ,∵PB 切⊙O 于点B ,∴∠OBP=90°,即∠OBP=∠PEC又∵OB=PE=2,∠OCB=∠PEC∴△OBC≌△PEC∴OC=PC(或证Rt△OAP≌△OBP,再得到OC=PC 也可)设OC=PC=x ,则有OE=AP=4,CE=OE -OC=4-x ,在Rt△PCE 中,∵PC 2=CE 2+PE 2,∴x 2=(4-x)2+22,解得x=,∴BC=CE=4-=,∵OB·BC=OC·BD,即×2×=××BD,∴BD= ∴OD=22BD OB -=25364-=, 由点B 在第四象限可知B (,56-); 解法二:连接OP ,OB ,作PE⊥x 轴于点E ,BD⊥y 轴于点D ,∵PB 切⊙O 于点B ,∴∠OBP=90°即∠OBP=∠PEC又∵OB=PE=2,∠OCB=∠PEC∴△OBC≌△PEC∴OC=PC(或证Rt△OAP≌△OBP,再得到OC=PC 也可)设OC=PC=x ,则有OE=AP=4,CE=OE -OC=4-x ,在Rt△PCE 中,∵PC 2=CE 2PE 2,∴x 2=(4-x)2+22,解得x=,∴BC=CE=4-=,∵BD∥x 轴,∴∠COB=∠OBD,又∵∠OBC=∠BDO=90°,∴△OBC∽△BDO, ∴BD OB =OD CB =BO OC , 即BD 2=BD 23=225, ∴BD=,OD=,由点B 在第四象限可知B (,56-); (3)设直线AB 的解析式为y=kx+b ,由A (0,2),B (,56-),可得⎪⎩⎪⎨⎧-=+=5658,2b k b ; 解得⎩⎨⎧-==,2,2k b ∴直线AB 的解析式为y=-2x+2.七、(本大题共2小题,第23题10分,第24 题12分,共22分)23.解:●操作发现:①②③④答:MD=ME ,MD⊥ME,先证MD=ME ;如图2,分别取AB ,AC 的中点F ,G ,连接DF ,MF ,MG ,EG ,∵M 是BC 的中点,∴MF∥AC,MF=AC ,又∵EG 是等腰Rt△AEC 斜边上的中线,∴EG⊥AC 且EG=AC ,∴MF=EG,同理可证DF=MG ,∵MF∥AC,∠MFA=∠BAC=180°同事可得∠MGA+∠BAC=180°,∴∠MFA=∠MGA,又∵EG⊥AC,∴∠EGA=90°,同理可得∠DFA=90°,∴∠MFA+∠DFA=∠MGA=∠EGA,即∠DFM=∠MEG,又MF=EG,DF=MG,∴△DFM≌△MGE(SAS),∴MD=ME,再证MD⊥ME;证法一:∵MG∥AB,∴∠MFA+∠FMG=180°,又∵△DFM≌△MGE,∴∠MEG=∠MDF,∴∠MFA+∠FMD+∠DME+∠MDF=180°,其中∠MFA+∠FMD+∠MDF=90°,∴∠DME=90°,即MD⊥ME;证法二:如图2,MD与AB交于点H,∵AB∥MG,∴∠DHA=∠DMG,又∵∠DHA=∠FDM+∠DFH即∠DHA=∠FDM+90°∵∠DMG=∠DME+∠GME,∴∠DME=90°即MD⊥ME;●类比探究答:等腰直角三解形24.解:(1)∵y1=―(x―a1)2+a1与x轴交于点A0(0,0),∴―a12+ a1=0,∴a1=0或1,由已知可知a1>0,∴a1=1,即y1=―(x―1)2+1方法一:令y1=0代入得:―(x―1)2+1=0,∴x1=0,x2=2,∴y1与x轴交于A0(0,0),A1(2,0)∴b1=2,方法二:∵y1=―(x―a1)2+a1与x轴交于点A0(0,0),∴―(b1―1)2+1=0,b1=2或0,b1=0(舍去),∴b1=2,又∴抛物线y2=―(x―a2)2+a2与x轴交于点A1(2,0),∴―(2―a2)2+ a2=0,∴a2=1或4,∵a2> a1,∴a2=1(舍去),∴取a2=4,抛物线y2=―(x―4)2+4.(2)(9,9);(n2,n2)y=x.详解如下:∵抛物线y2=―(x―4)2+4令y2=0代入得:―(x―4)2+4=0,∴x1=2,x2=6,∴y2与x轴交于点A1(2,0),A2(6,0),又∵抛物线y3=―(x―a3)2+a3与x轴交于A2(6,0),∴―(6―a3)2+a3=0∴a3=4或9,∵a3> a3,∴a3=4(舍去),只取a3=9,招物线y3的顶点坐标为(9,9),∵由y1的顶点坐标为(1,1),y2的顶点坐标为(4,4),抛物线y3的的顶点坐标为(9,9),依次类推抛物线y n的顶点坐标为(n2,n2).∵所有抛物线的顶点的横坐标等于纵坐标,∴顶点坐标满足的函数关系式是:y= x;③∵A0(0,0),A1(2,0),∴A0 A1=2,又∵y n=―(x―n2)2+n2,令y n=0,∴―(x―n2)2+n2=0,即x1=n2+n,x2=n2-n,∴A n-1(n2-n,0),A n(n2+n,0),即A n-1 A n=( n2+n)-( n2-n)=2 n②存在,是平行于y=x且过A1(2,0)的直线,其表达式为y=x-2.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

2013年安徽省初中毕业学业考试数学试题及参考答案(电子稿)

2013年安徽省初中毕业学业考试数学试题及参考答案(电子稿)

2013年安徽省初中毕业学业考试数学试题及参考答案(电子稿)1 / 72013年安徽省初中毕业学业考试数学试题本试卷共八大题,计23小题,满分150分,考试时间120分钟。

一、选择题(10×4分=40分)1、―2的倒数是()A 、―21 B 、21 C 、2 D 、―2 2、用科学记数法表示537万正确的是()A 、537×104B 、5.37×105C 、5.37×106D 、0.537×1073、图中所示的几何体为圆台,其主(正)视图正确的是()4、下列运算正确的是()A 、2x+3y=5xyB 、5m 2・m 3=5m 5C 、(a ―b )2=a 2―b 2D 、m 2・m 3=m 65、已知不等式组???≥+-0103x x 其解集在数轴上表示正确的是()6、如图,AB ∥CD ,∠A+∠E=750,则∠C 为()A 、600,B 、650,C 、750,D 、8007、目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元。

设每半年...发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是() A 、438(1+x )2=389 B 、389(1+x )2=438 C 、389(1+2x )=438 D 、438(1+2x )=3898、如图,随机闭合开关K 1、K 2、K 3中的两个,则能让两盏灯泡同时发光的概率为()A 、61B 、31C 、21D 、329、图1所示矩形ABCD 中,BC=x ,CD=y ,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是()A 、当x=3时,EC <EMC >EMC 、当x 增大时,E C ・CF 的值增大。

D 、当y 增大时,BE ・DF 的值不变。

2013年上海市初中毕业统一学业考试数学试卷及答案

2013年上海市初中毕业统一学业考试数学试卷及答案

初中学业考试(2013)数学试卷 第 页(共4页)2013年上海市初中毕业统一学业考试数学试卷(满分 150分 考试时间 100分钟)一、选择题:(本大题共6题,每题4分,满分24分)1.下列式子中属于最简二次根式的是 ( );;; (D).2.下列关于x 的一元二次方程有实数根的是 ( ) (A)210x +=; (B)210x x ++=; (C)210x x -+=; (D)210x x --=. 3.如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是 ( ) (A)2(1)2y x =-+; (B)2(1)2y x =++; (C)21y x =+;(D)23y x =+. 4.数据0、1、1、3、3、4的中位数和平均数分别是 ( ) (A )2和2.4; (B )2和2; (C )1和2; (D )3和2. 5.如图1,已知在△ABC 中,点D 、E 、F 分别是边AB 、AC 、BC 上的点, DE ∥BC ,EF ∥AB ,且AD:DB=3:5,那么CF:CB 等于 ( ) (A )5:8; (B )3:8; (C )3:5; (D )2:5. 6.在梯形ABCD 中,AD ∥BC ,对角线AC 和BD 交于点O , 下列条件中,能判断梯形ABCD 是等腰梯形的是 ( ) (A )∠BDC=∠BCD ; (B )∠ABC=∠DAB ; (C )∠ADB=∠DAC ; (D )∠AOB=∠BOC .二、填空题:(本大题12题,每题4分,满分48分) 7.因式分解:21________a -=. 8.不等式组10,23x x x->⎧⎨+>⎩的解集是 .9.计算:23b aa b⋅= . 10.计算:2(+3a b b-)=_____ .11.已知函数23()1f x x =+,那么f =_________. 12.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌上,任取一张,那么取到字母e 的概率为____________.图11 CA EDF B初中学业考试(2013)数学试卷 第 页(共4页)13.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图2所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为_____________.乙甲丙丁B ACED F图2 图3 图414.在⊙O 中,已知半径长为3,弦AB 长为4,那么圆心O 到AB 的距离为___________. 15.如图3,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF=CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是_________.(只需写一个,不添加辅助线)16.李老师开车从甲地到相距240千米的乙地,如果邮箱剩余油量y (升)与行驶里程数x (千米)之间是一次函数关系,其图像如图4所示,那么到达乙地时邮箱剩余油量是 升. 17.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”。

2013年福州市初中毕业班考试数学试卷与答案(权威发布)

2013年福州市初中毕业班考试数学试卷与答案(权威发布)

2013年福州市初中毕业会考、高级中等学校招生考试数学试卷(满分150分,考试时间120分钟)一、选择题(共10小题,每小题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.2的倒数是( )A .21B .2C .21- D .-2 2.如图,OA ⊥OB ,若∠1=40°,则∠2的度数是( )A .20°B .40°C .50°D .60°3.2012年12月13日,嫦娥二号成功飞抵距地球约700万公里远的深空,7 000 000用科学计数法表示为( )A .7×105B .7×106C .70×106D .7×1074. 下列立体图形中,俯视图是正方形的是( )5.下列一元二次方程有两个相等实数根的是( )A .032=+xB .022=+x xC .0)1(2=+xD .0)1)(3(=-+x x6.不等式01<+x 的解集在数轴上表示正确的是( )7.下列运算正确的是( )A .32a a a =⋅B .532)(a a = C .b a b a 22)(= D .a a a =÷33 8.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且点A ,点D 在BC 异侧,连结AD ,量一量线段AD 的长,约为( )A . 2.5cmB . 3.0cmC . 3.5cmD . 4.0cm9. 袋中有红球4个,白球若干个,它们只有颜色上的区别。

从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( )A . 3个B . 不足3个C . 4个D . 5个或5个以上10.A ,B 两点在一次函数图象上的位置如图所示,两点的坐标分别为A (a x +,b y +),B (x ,y ),下列结论正确的是( )A . 0>aB . 0<aC . 0=bD . 0<ab二、填空题(共5小题,每小题4分。

2013年陕西中考数学真题卷含答案解析

2013年陕西中考数学真题卷含答案解析

2013年陕西省初中毕业学业考试数学试题(含答案全解全析)(满分120分时间120分钟)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.下列四个数中最小的数是()A.-2B.0C.-13D.52.如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是()3.如图,AB∥CD,∠CED=90°,∠AEC=35°,则∠D的大小为()A.65°B.55°C.45°D.35°4.不等式组{x-12>0,1-2x<3的解集为()A.x>12B.x<-1 C.-1<x<12D.x>-125.我省某市五月份第二周连续七天的空气质量指数分别为:111,96,47,68,70,77,105.则这七天空气质量指数的平均数是()A.71.8B.77C.82D.95.76.如果一个正比例函数的图象经过不同..象限的两点A(2,m)、B(n,3),那么一定有()A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<07.如图,在四边形ABCD中,AB=AD,CB=CD.若连结AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对8.根据下表中一次函数的自变量x与函数y的对应值,可得p的值为()x-201y3p0A.1B.-1C.3D.-39.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连结BM、DN.若四边形MBND是菱形,则AMMD等于()A.38B.23C.35D.4510.已知两点A(-5,y1)、B(3,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点.若y1>y2≥y0,则x0的取值范围是()A.x0>-5B.x0>-1C.-5<x0<-1D.-2<x0<3第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,计18分)11.计算:(-2)3+(√3-1)0=.12.一元二次方程x2-3x=0的根是.13.请从以下两个小题中任选一个....作答,若多选,则按所选的第一题计分.A.在平面直角坐标系中,线段AB的两个端点的坐标分别为A(-2,1)、B(1,3),将线段AB经过平移后得到线段A'B'.若点A的对应点为A'(3,2),则点B的对应点B'的坐标是.B.比较大小:8cos 31° √35.(填“>”“=”或“<”)14.如图,四边形ABCD 的对角线AC 、BD 相交于点O,且BD 平分AC.若BD=8,AC=6,∠BOC= 120°,则四边形ABCD 的面积为 .(结果保留根号)15.如果一个正比例函数的图象与反比例函数y=6x 的图象交于A(x 1,y 1)、B(x 2,y 2)两点,那么(x 2-x 1)(y 2-y 1)的值为 .16.如图,AB 是☉O 的一条弦,点C 是☉O 上一动点,且∠ACB=30°,点E 、F 分别是AC 、BC 的中点,直线EF 与☉O 交于G 、H 两点.若☉O 的半径为7,则GE+FH 的最大值为 .三、解答题(共9小题,计72分.解答应写出过程) 17.(本题满分5分) 解分式方程:2x 2-4+xx -2=1.18.(本题满分6分)如图,∠AOB=90°,OA=OB,直线l 经过点O,分别过A 、B 两点作AC ⊥l 交l 于点C 、BD ⊥l 交l 于点D. 求证:AC=OD.19.(本题满分7分)我省教育厅下发了《在全省中小学幼儿园广泛深入开展节约教育的通知》,通知中要求各学校全面持续开展“光盘行动”.某市教育局督导检查组为了调查学生对“节约教育”内容的了解程度(程度分为:“A—了解很多”“B—了解较多”“C—了解较少”“D—不了解”),对本市一所中学的学生进行了抽样调查.我们将这次调查的结果绘制了以下两幅统计图.根据以上信息,解答下列问题:(1)本次抽样调查了多少名学生?(2)补全两幅统计图;(3)若该中学共有1800名学生,请你估计这所中学的所有学生中,对“节约教育”内容“了解较多”的有多少名?20.(本题满分8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与其影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m.已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m)21.(本题满分8分)“五一节”期间,申老师一家自驾游去了离家170千米的某地.下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?22.(本题满分8分)甲、乙两人用手指玩游戏,规则如下:i)每次游戏时,两人同时随机地各伸出一根手指;ii)两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时,(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.23.(本题满分8分)如图,直线l与☉O相切于点D,过圆心O作EF∥l交☉O于E、F两点,点A是☉O上一点,连结AE、AF,并分别延长交直线l于B、C两点.(1)求证:∠ABC+∠ACB=90°;(2)当☉O的半径R=5,BD=12时,求tan∠ACB的值.24.(本题满分10分)在平面直角坐标系中,一个二次函数的图象经过A(1,0)、B(3,0)两点.(1)写出这个二次函数图象的对称轴;(2)设这个二次函数图象的顶点为D,与y轴交于点C,它的对称轴与x轴交于点E,连结AC、DE和DB.当△AOC与△DEB相似时,求这个二次函数的表达式.[提示:如果一个二次函数的图象与x轴的交点为A(x1,0)、B(x2,0),那么它的表达式可表示为y=a(x-x1)(x-x2)]25.(本题满分12分)问题探究(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M),使它们将正方形ABCD 的面积四等分,并说明理由; 问题解决(3)如图③,在四边形ABCD 中,AB ∥CD,AB+CD=BC,点P 是AD 的中点.如果AB=a,CD=b,且b>a,那么在边BC 上是否存在一点Q,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?若存在,求出BQ 的长;若不存在,说明理由.答案全解全析:1.A -2<-13<0<5,故选A.2.D 物体的俯视图是从物体正上方看到的一个平面图.所以它的俯视图是矩形内含有与上下两边相切的圆(无圆心),故选D.3.B ∵AB∥CD,∴∠AEC=∠C=35°,∵∠CED=90°,∴∠D=90°-∠C=90°-35°=55°,故选B.4.A 由不等式x-12>0,得x>12, 由不等式1-2x<3得x>-1, 所以不等式组的解集为x>12,故选A. 5.C111+96+47+68+70+77+1057=82.故选C.6.D 若k>0,则正比例函数图象经过第一、三象限,因为函数图象经过不同象限的两点,所以m,n 不能同为正数;若k<0,则正比例函数图象经过第二、四象限,因为函数图象经过不同象限的两点,所以m<0,n<0,故选D.7.C △ABO≌△ADO、△ABC≌△ADC,△CBO≌△CDO,共3对.故选C.8.A 设一次函数解析式为y=kx+b,把(-2,3),(1,0)代入y=kx+b 得k=-1,b=1,即y=-x+1,当x=0时,y=-1×0+1=1.故选A.9.C ∵四边形MBND 是菱形,∴MB=MD,设AB=a,则AD=2AB=2a.∴MB=MD=2a -AM,在直角三角形ABM 中,BM 2=AB 2+AM 2,即(2a-AM)2=a 2+AM 2,解得AM=34a,∴MD=54a,所以AM MD =35,故选C.10.B 因为A(-5,y 1),B(3,y 2),且y 1>y 2≥y 0,所以抛物线开口向上.若y 1=y 2,则对称轴方程为x=-1,因为y 1>y 2,所以对称轴在x=-1的右侧,x 0的取值范围为x 0>-1,故选B. 11.答案 -7 解析 原式=-8+1=-7. 12答案 0,3解析 x(x-3)=0,即x=0或x-3=0,所以x 1=0,x 2=3. 13.答案 A.(6,4);B.>解析 A.由平移前后的对应点A(-2,1)和A'(3,2)可知,线段AB 是向右平移5个单位、向上平移1个单位得到线段A'B'的,∴点B'的坐标为(6,4). B.∵cos 31°≈0.857,∴8cos 31°=6.856>6=√36. 又∵√36>√35,∴8cos 31°>√35. 14.答案 12√3解析 ∵∠BOC=120°,∴∠AOB=∠DOC=60°, ∵BD 平分AC,AC=6 ∴OA=OC=3.过点A 作AE⊥BD,过点C 作CF⊥BD, ∴AE=CF=3×sin 60°=3√32, ∴S △ABD =12BD·AE=12×8×3√32=6√3,同理,S △CBD =6√3,∴S 四边形ABCD=S △ABD + S △CBD =12√3.15.答案 24解析 因为点A(x 1,y 1)、B(x 2,y 2)在反比例函数图象上,所以x 1·y 1=6,x 2·y 2=6.根据对称性,当正比例函数和反比例函数相交时,交点关于原点对称,所以x 1=-x 2,y 1=-y 2,所以x 2y 1=-6,x 1y 2=-6,因此(x 2-x 1)(y 2-y 1)=x 2y 2+x 1y 1-(x 1y 2+x 2y 1)=24. 16.答案 10.5解析 连结OA 、OB,根据圆周角定理得∠AOB=2∠ACB=60°,所以△AOB 为等边三角形.因为☉O 的半径为7,所以AB=7.因为E 、F 分别为AC 、BC 的中点,所以EF=12AB=3.5.当GH 为☉O 的直径时,GE+FH 取最大值,所以最大值为14-3.5=10.5. 17.解析 2+x(x+2)=x 2-4,(2分) 2+x 2+2x=x 2-4, x=-3.(4分)经检验,x=-3是原分式方程的根.(5分) 18.证明 ∵∠AOB=90°, ∴∠AOC+∠BOD=90°,(1分) ∵AC⊥l,BD⊥l,∴∠ACO=∠BDO=90°,∴∠A+∠AOC=90°, ∴∠A=∠BOD.(3分) 又∵OA=OB,∴△AOC≌△OBD.(5分)∴AC=OD.(6分)19.解析 (1)抽样调查的学生人数为36÷30%=120(名).(2分) (2)B 的人数为120×45%=54(名), C 的百分比为24120×100%=20%,D 的百分比为6120×100%=5%. 补全两幅统计图如图所示.(5分)(3)对“节约教育”内容“了解较多”的学生人数为1 800×45%=810(名).(7分) 20.解析 设CD 长为x m. ∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA, ∴MA∥CD,BN∥CD. ∴EC=CD=x, △ABN∽△ACD. ∴BN CD =AB AC.(5分) 即1.75x=1.25x -1.75.解得x=6.125≈6.1,∴路灯的高CD 的长约为6.1 m.(8分)21.解析 (1)设OA 段图象的函数表达式为y=kx. ∵当x=1.5时,y=90, ∴1.5k=90. ∴k=60.∴y=60x(0≤x≤1.5). ∴当x=0.5时,y=60×0.5=30.∴出发半小时时,他们离家30千米.(3分) (2)设AB 段图象的函数表达式为y=k'x+b.(4分) ∵A(1.5,90),B(2.5,170)在AB 上, ∴{90=1.5k '+b ,170=2.5k '+b . 解得k'=80,b=-30.∴y=80x -30(1.5≤x≤2.5).(6分) (3)当x=2时,y=80×2-30=130. ∴170-130=40.∴他们出发2小时时,离目的地还有40千米.(8分) (注:本题中对自变量取值范围不作要求)22.解析 设A 、B 、C 、D 、E 分别表示大拇指、食指、中指、无名指、小拇指,列表如下:ABCDEA AA AB AC AD AE B BA BB BC BD BE C CA CB CC CD CE D DA DB DC DD DE EEAEBECEDEE由表可知,共有25种等可能的结果. (1)由表可知,甲伸出小拇指取胜有1种可能, ∴P(甲伸出小拇指取胜)=125.(3分)(2)由表可知,乙取胜有5种可能. ∴P(乙取胜)=525=15.(8分)23.证明 (1)∵EF 是☉O 的直径, ∴∠EAF=90°.∴∠ABC+∠ACB=90°.(3分) (2)连结OD,则OD⊥BD.(4分) 过点E 作EH⊥BC,垂足为点H, ∴EH∥OD.∵EF∥BC,OE=OD,∴四边形EODH 是正方形.(6分) ∴EH=HD=OD=5. 又∵BD=12,∴BH=7. 在Rt△BEH 中,tan∠BEH=BH EH =75,而∠ABC+∠BEH=90°,∠ABC+∠ACB=90°, ∴∠ACB=∠BEH. ∴tan∠ACB=75.(8分)24.解析 (1)二次函数图象的对称轴为直线x=2.(2分) (2)设二次函数的表达式为y=a(x-1)(x-3)(a≠0).(3分) 当x=0时,y=3a;当x=2时,y=-a.∴点C 坐标为(0,3a),顶点D 坐标为(2,-a). ∴OC=|3a|. 又∵A(1,0),E(2,0),∴OA=1,EB=1,DE=|-a|=|a|.(5分)当△AOC 与△DEB 相似时, ①假设∠OCA=∠EBD, 可得AO DE =OCEB ,即1|a |=|3a |1.∴a=√33或a=-√33.(7分)②假设∠OCA=∠EDB,可得AO EB =OCED . ∴11=|3a ||a |.此方程无解.(8分)综上可得,所求二次函数的表达式为y=√33x 2-4√33x+√3或y=-√33x 2+4√33x-√3.(10分)写成y=√33(x-1)(x-3)或y=-√33(x-1)(x-3)也可以 25.解析 (1)如图①所示.(2分)图①(2)如图②,连结AC 、BD 相交于点O,作直线OM 分别交AD 、BC 于P 、Q 两点,过点O 作OM 的垂线分别交AB 、CD 于E 、F 两点,则直线OM 、EF 将正方形ABCD 的面积四等分.(4分)图②理由如下:∵点O 是正方形的对称中心. ∴AP=CQ,EB=DF.在△AOP 和△EOB 中,∵∠AOP=90°-∠AOE,∠BOE=90°-∠AOE, ∴∠AOP=∠BOE.∵OA=OB,∠OAP=∠EBO=45°, ∴△AOP≌△BOE. ∴AP=BE=DF=CQ. ∴AE=BQ=CF=PD.(6分)设点O 到正方形ABCD 一边的距离为d. ∴12(AP+AE)d=12(BE+BQ)d=12(CQ+CF)d=12(PD+DF)d. ∴S 四边形APOE =S 四边形BEOQ =S 四边形CQOF =S 四边形POFD .∴直线EF 、OM 将正方形ABCD 面积四等分.(7分)(3)存在.当BQ=CD=b 时,PQ 将四边形ABCD 面积二等分.(8分) 理由如下:如图③,延长BA 到点E,使AE=b,延长CD 到点F,使DF=a,连结EF.图③∵BE CF,BE=BC=a+b, ∴四边形EBCF 是菱形.连结BF 交AD 于点M,则△MAB≌△MDF. ∴AM=DM. ∴P、M 两点重合.∴P 点是菱形EBCF 对角线的交点.(10分) 在BC 上截取BQ=CD=b,则CQ=AB=a. 设点P 到菱形EBCF 一边的距离为d, 则12(AB+BQ)d=12(CQ+CD)d=12(a+b)d.∴S 四边形ABQP =S 四边形QCDP .∴当BQ=b 时,直线PQ 将四边形ABCD 的面积分成相等的两部分.(12分)。

【精校】2013年广东省初中毕业生学业考试数学(含答案)

【精校】2013年广东省初中毕业生学业考试数学(含答案)

2013年广东省初中毕业生学业考试数学说明:1. 全卷共4页,考试用时100 分钟.满分为 120 分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2B铅笔把对应号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 2的相反数是A. B. C.-2 D.22.下列几何体中,俯视图为四边形的是3.据报道,2013年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D. 12.6×1011元4.已知实数、,若>,则下列结论正确的是A. B. C. D.5.数据1、2、5、3、5、3、3的中位数是A.1B.2C.3D.521-55-<-ba ba+<+2233ba<ba33>6.如题6图,AC ∥DF,AB ∥EF,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是 A.30° B.40° C.50° D.60°7.下列等式正确的是A. B. C. D. 8.不等式的解集在数轴上表示正确的是9.下列图形中,不是..轴对称图形的是10.已知,则是函数和的图象大致是二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:=________________.12.若实数、满足,则________. 13.一个六边形的内角和是__________.14.在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,则sinA=________.15.如题15图,将一张直角三角板纸片ABC 沿中位线DE 剪开后,在平面上 将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E ′位置,1)1(3=--1)4(0=-6322)2()2(-=-⨯-2245)5()5(-=-÷-5215+>-xx 210k k <<11-=x k y xk y 2=92-x 042=-++b a =ba 2则四边形ACE ′E 的形状是________________.16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________(结果保留). 三、解答题(一)(本大题3小题,每小题5分,共15分)17.解方程组18.从三个代数式:①,②,③中任意选择两个代数式构造成分式,然后进行化简,并求当时该分式的值.19.如题19图,已知□ABCD.(1)作图:延长BC,并在BC 的延长线上截取线段CE,使得CE=BC (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,不连结AE,交CD 于点F,求证:△AFD ≌△EFC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表.(1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.⎩⎨⎧=++=821y x y x 222b ab a +-b a 33-22b a -3,6==b a ① ②21.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率; (2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.如题22图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF,使得另一边EF 过原矩形的顶点C.(1)设Rt △CBD 的面积为S 1, Rt △BFC 的面积为S 2, Rt △DCE 的面积为S 3 , 则S 1______ S 2+ S 3(用“>”、“=”、“<”填空);(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.五、解答题(三)(本大题3小题,每小题9分,共27分)23. 已知二次函数.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式; (2)如题23图,当时,该抛物线与轴交于点C,顶点为D, 求C 、D 两点的坐标;(3)在(2)的条件下,轴上是否存在一点P,使得PC+PD 最短?若P 点 存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O 是Rt △ABC 的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5, BE ⊥DC 交DC 的延长线于点E. (1)求证:∠BCA=∠BAD; (2)求DE 的长;(3)求证:BE 是⊙O 的切线.1222-+-=m mx x y 2=m25.有一副直角三角板,在三角板ABC 中,∠BAC=90°,AB=AC=6,在三角板DEF 中,∠FDE=90°,DF=4,DE=.将这副直角三角板按如题25图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如题25图(2),当三角板DEF 运动到点D 与点A 重合时,设EF 与BC 交于点M, 则∠EMC=______度;(2)如题25图(3),在三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长;(3)在三角板DEF 运动过程中,设BF=,两块三角板重叠部分面积为,求与的函数解析式,并求出对应的取值范围.34FEDCBA参考答案一、C D B D C C B A C A二、11.;12. 1;13. 720°;14.;15.平行四边形;16. 三、17.;18.选取①、②得,当时,原式=(有6种情况).19. (1)如图所示,线段CE 为所求;(2)证明:在□ABCD 中,AD ∥BC,AD=BC.∴∠CEF=∠DAF ∵CE=BC,∴AD=CE,又∵∠CFE=∠DFA,∴△AFD ≌△EFC.20.(1)30%、10、50;图略;(2)276(人). 21.(1)10%;(2)12100×(1+0.1)=13310(元). 22.(1) S 1= S 2+ S 3;(2)△BCF ∽△DBC ∽△CDE; 选△BCF ∽△CDE证明:在矩形ABCD 中,∠BCD=90°且点C 在边EF 上,∴∠BCF+∠DCE=90° 在矩形BDEF 中,∠F=∠E=90°,∴在Rt △BCF 中,∠CBF+∠BCF=90° ∴∠CBF=∠DCE,∴△BCF ∽△CDE.23.(1)m=±1,二次函数关系式为;(2)当m=2时,,∴D(2,-1);当时,,∴C(0,3).(3)存在.连结C 、D 交轴于点P,则点P 为所求,由C(0,3)、D(2,-1)求得直线CD 为)3)(3(-+x x 83π⎩⎨⎧==23y x 3)(3)(332222b a b a b a b a b ab a -=--=-+-3,6==b a 1336=-x x y x x y 2222-=+=或1)2(3422--=+-=x x x y 0=x 3=y 32+-=x yFNMEDC BAGFN MEDCB AF当时,,∴P(,0). 24.(1)∵AB=DB,∴∠BDA=∠BAD,又∵∠BDA=∠BCA,∴∠BCA=∠BAD.(2)在Rt △ABC 中,AC=,易证△ACB ∽△DBE,得, ∴DE=(3)连结OB,则OB=OC,∴∠OBC=∠OCB,∵四边形ABCD 内接于⊙O,∴∠BAC+∠BCD=180°,又∵∠BCE+∠BCD=180°,∴∠BCE=∠BAC,由(1)知∠BCA=∠BAD,∴∠BCE=∠OBC,∴OB ∥DE ∵BE ⊥DE,∴OB ⊥BE,∴BE 是⊙O 的切线.25. 解:(1)15;(2)在Rt △CFA 中,AC=6,∠ACF=∠E=30°,∴FC==6÷ (3)如图(4),设过点M 作MN ⊥AB 于点N,则MN ∥DE,∠NMB=∠B=45°,∴NB=NM,NF=NB-FB=MN-x ∵MN ∥DE ∴△FMN ∽FED,∴,即,∴ ①当时,如图(4) ,设DE 与BC 相交于点G ,则DG=DB=4+x ∴ 即; ②当时,如图(5),即; ③当时, 如图(6) 设AC 与EF 交于点H , ∵AF=6-x ,∠AHF=∠E=30° ∴AH=0=y 23=x 135122222=+=+BC AB ACBDAB DE =13144131212=⨯ο30cos AC3423=FD FNDE MN =434x MN MN -=x MN 233+=20≤≤x x x x MN BF DG DB S S y BMF BGD 23321)4(2121212+⋅⋅-+=⋅⋅-⋅⋅=-=∆844312+++-=x x y 3262-≤<x x x MN BF AC S S y BMFBCA 23321362121212+⋅-⨯=⋅⋅-⋅=-=∆184332++-=x y 4326≤<-x )6(33x AF -=题25图(4)题25图(5)综上所述,当时, 当, 当时,考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

福州市初中质检数学试卷与答案

福州市初中质检数学试卷与答案

2013年福州市初中毕业班质量检查数 学 试 卷(本卷共4页,三大题,共22小题;满分150分,考试时间120分钟) 友情提示:所有答案都必须填涂在答题卡的相应位置上,答在本试卷一律无效.一、选择题(共10小题,每题4分,满分40分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.计算-3+3的结果是A .0B .-6C .9D .-9 2.如图,AB ∥CD ,∠BAC =120°,则∠C 的度数是A .30°B .60°C .70°D .80°3.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为A .3.5×107B .3.5×108C .3.5×109D .3.5×10104.下列学习用具中,不是轴对称图形的是5.已知b <0,关于x 的一元二次方程(x -1)2=b 的根的情况是 A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .有两个实数根6.一个不等式组的解集在数轴上表示如图,则这个不等式组可能是A .⎩⎨⎧x ≥-1x <2B .⎩⎨⎧x ≤-1x >2C .⎩⎨⎧x <-1x ≥2D .⎩⎨⎧x >-1x ≤27.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).随机在大正方形及其内部区域投针,若针扎到小正方形(阴影部分)的概率是19,则大、小两个正方形的边长之比是A .3∶1B .8∶1C .9∶1D .22∶1ABCD第2题图 123412341 2 3 4 0 5 6A BC D-3 -2 -113第7题图8.如图,已知△ABC ,以点B 为圆心,AC 长为半径画弧;以点C 为圆心,AB 长为半径画弧,两弧交于点D ,且A 、D 在BC 同侧,连接AD ,量一量线段AD 的长,约为A .1.0cmB .1.4cmC .1.8cmD .2.2cm9.有一种公益叫“光盘”.所谓“光盘”,就是吃光你盘子中的食物,杜绝“舌尖上的浪费”.某校九年级开展“光盘行动”宣传活动,根据各班级参加该活动的总人次拆线统计图,下列说法正确的是 A .极差是40 B .中位数是58 C .平均数大于58 D .众数是510.已知一个函数中,两个变量x 与y 的部分对应值如下表:A .x 轴B .y 轴C .直线x =1D .直线y =x二、填空题(共5小题,每题4分,满分20分;请将正确答案填在答题卡的相应位置) 11.分解因式:m 2-10m =________________.12.如图,∠A +∠B +∠C +∠D=____________度.13.在一次函数y =kx +2中,若y 随x 的增大而增大,则它的图象不经过第______象限.14.若方程组⎩⎨⎧x +y =73x -5y =-3,则3(x +y)-(3x -5y)的值是__________.15.如图,边长为6的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC ,将线段EC 绕点C 逆时针旋转60°得到FC ,连接DF .则在点E 运动过程中,DF 的最小值是____________.AB第8题图第9题图九年级宣传“光盘行动”ABC D第12题图 ABCDE F第15题图二、解答题(满分90分;请将正确答案及解答过程填在答题卡的相应位置.作图或添轴助线用铅笔画完,再用黑色签字笔描黑) 16.(每小题7分,共14分)(1) 计算:(π+3)0―|―2013|+64×18(2) 已知a 2+2a =-1,求2a(a +1)-(a +2)(a -2)的值.17.(每小题8分,共16分)(1) 如图,在△ABC 中,AB =AC ,点D 、E 、F 分别是△ABC 三边的中点. 求证:四边形ADEF 是菱形.(2) 一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?CABDEF第17(1)题图18.(10分)有一个袋中摸球的游戏.设置了甲、乙两种不同的游戏规则:甲规则:乙规则:(1) 袋中共有小球_______个,在乙规则的表格中①表示_______,②表示_______;(2) 甲的游戏规则是:随机摸出一个小球后______(填“放回”或“不放回”),再随机摸出一个小球; (3) 根据甲、乙两种游戏规则,要摸到颜色相同的小球,哪一种可能性要大,请说明理由.19.(10分)如图,由6个形状、大小完全相同的小矩形组成矩形网格.小矩形的顶点称为这个矩形网格的格点.已知小矩形较短边长为1,△ABC 的顶点都在格点上. (1) 格点E 、F 在BC 边上,BEAF 的值是_________;(2) 按要求画图:找出格点D ,连接CD ,使∠ACD =90°; (3) 在(2)的条件下,连接AD ,求tan ∠BAD 的值.红1红2黄1黄2红2红1黄1黄2黄1红1红2黄2黄2红1红2黄1第一次第二次ABC EF第19题图20.(12分)如图,半径为2的⊙E 交x 轴于A 、B ,交y 轴于点C 、D ,直线CF 交x 轴负半轴于点F ,连接EB 、EC .已知点E 的坐标为(1,1),∠OFC =30°. (1) 求证:直线CF 是⊙E 的切线; (2) 求证:AB =CD ;(3) 求图中阴影部分的面积.21.(12分)如图,Rt △ABC 中,∠C =90°,AC =BC =8,DE =2,线段DE 在AC 边上运动(端点D 从点A 开始),速度为每秒1个单位,当端点E 到达点C 时运动停止.F 为DE 中点,MF ⊥DE 交AB 于点M ,MN ∥AC 交BC 于点N ,连接DM 、ME 、EN .设运动时间为t 秒. (1) 求证:四边形MFCN 是矩形;(2) 设四边形DENM 的面积为S ,求S 关于t 的函数解析式;当S 取最大值时,求t 的值; (3) 在运动过程中,若以E 、M 、N 为顶点的三角形与△DEM 相似,求t 的值.第20题图A BCBCD E MF N 第21题图备用图22.(14分)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(1,0)、B(4,0)两点,与y轴交于C(0,2),连接AC、BC.(1) 求抛物线解析式;(2) BC的垂直平分线交抛物线于D、E两点,求直线DE的解析式;(3) 若点P在抛物线的对称轴上,且∠CPB=∠CAB,求出所有满足条件的P点坐标.2013年福州市初中毕业班质量检查数学试卷参考答案一、选择题(每题4分,满分40分)1.A 2.B 3.B 4.C 5.C 6.D 7.A 8.B 9.C 10.D 二、填空题(每题4分,满分20分)11.m(m -10) 12.360 13.四 14.24 15.1.5 三、解答题16.(每题7分,共14分)(1) 解:原式=1-2013+8×18……3分=1-2013+1 ……4分 =-2011 ……7分(2) 解:原式=2a 2+2a -a 2+4 ……3分= a 2+2a +4 ……4分∵a 2+2a =-1∴原式=-1+4=3 ……7分另解: ∵a 2+2a =-1 ∴a 2+2a +1=0 ∴(a +1)2=0∴a=-1 ……3分原式=2×(-1)×(-1+1)-(-1+2)×(-1-2)=3 ……7分17.(每小题8分,共16分)(1) 证明:∵D、E 、F 分别是△ABC 三边的中点,∴DE ∥=12AC ,EF ∥=12AB , …………2分 ∴四边形ADEF 为平行四边形. …………4分 又∵AC=AB ,∴DE =EF . …………6分 ∴四边形ADEF 为菱形. …………8分(2) 解:设江水的流速为x 千米/时,依题意,得: …………1分10020+x =6020-x, ………………4分 解得:x =5. ………………6分 经检验:x =5是原方程的解. …………7分 答:江水的流速为5千米/时. …………8分 18.(10分)(1) 4 ……1分; (红2,黄1) ……2分; (黄2,红1) ……3分 (2) 不放回 ………5分(3) 乙游戏规则摸到颜色相同的小球的可能性更大.理由:在甲游戏规则中,从树形图看出,所有可能出现的结果共有12种,这些结果出现的可能性相同,而颜色相同的两个小球共有4种. …………6分 ∴P(颜色相同)=412=13. …………7分在乙游戏规则中,从列表看出,所有可能出现的结果共有16种,这些结果出现的可能性相同,而颜色相同的两个小球共有8种. ……………8分∴P(颜色相同) =816=12. ……………9分∵13<12, ∴乙游戏规则摸到颜色相同的小球的可能性更大. ……………10分 19.(12分)(1) 12 ………3分(2) 标出点D , ………5分连接CD . ………7分 (3) 解:连接BD , ………8分∵∠BED =90°,BE =DE =1,∴∠EBD =∠EDB =45°,BD =BE 2+DE 2=12+12=2. ……9分 由(1)可知BF =AF =2,且∠BFA =90°,∴∠ABF =∠BAF =45°,AB =BF 2+AF 2=22+22=22. ……10分 ∴∠ABD =∠ABF +∠FBD =45°+45°=90°. ……11分 ∴tan ∠BAD =BD AB =222=12. ……12分20.(12分)解:(1) 过点E 作EG ⊥y 轴于点G ,∵点E 的坐标为(1,1),∴EG =1. 在Rt △CEG 中,sin ∠ECG =EG CE =12,∴∠ECG =30°. ………………1分 ∵∠OFC =30°,∠FOC =90°,∴∠OCF =180°-∠FOC -∠OFC =60°. ………………2分 ∴∠FCE =∠OCF +∠ECG =90°. 即CF ⊥CE .∴直线CF 是⊙E 的切线. ………………3分 (2) 过点E 作EH ⊥x 轴于点H ,∵点E 的坐标为(1,1),∴EG =EH =1. ………………4分 在Rt △CEG 与Rt △BEH 中,∵⎩⎨⎧CE =BE EG =EH,∴Rt △CEG ≌Rt △BEH . ∴CG =BH . ………………6分 ∵EH ⊥AB ,EG ⊥CD ,∴AB =2BH ,CD =2CG .∴AB =CD . ………………7分 (3) 连接OE ,在Rt △CEG 中,CG =CE 2-EG 2=3,∴OC =3+1. ………………8分 同理:OB =3+1. ………………9分 ∵OG =EG ,∠OGE =90°,∴∠EOG =∠OEG =45°.又∵∠OCE =30°,∴∠OEC =180°-∠EOG -∠OCE =105°. 同理:∠OEB =105°. ………………10分 ∴∠OEB +∠OEC =210°.∴S 阴影=210×π×22360-12×(3+1)×1×2=7π3-3-1. ………………12分21.(12分)(1) 证明:∵MF ⊥AC ,∴∠MFC =90°. …………1分∵MN ∥AC ,∴∠MFC +∠FMN =180°.∴∠FMN =90°. …………2分 ∵∠C =90°,∴四边形MFCN 是矩形. …………3分(若先证明四边形MFCN 是平行四边形,得2分,再证明它是矩形,得3分)(2) 解:当运动时间为t 秒时,AD =t ,∵F 为DE 的中点,DE =2,∴DF =EF =12DE =1.∴AF =t +1,FC =8-(t +1)=7-t .∵四边形MFCN 是矩形,∴MN =FC =7-t . …………4分 又∵AC =BC ,∠C =90°,∴∠A =45°.∴在Rt △AMF 中,MF =AF =t +1, …………5分 ∴S =S △MDE + S △MNE =12DE ·MF +12MN ·MF=12×2(t +1)+ 12(7-t)(t +1)=-12t 2+4t +92 …………6分 ∵S =-12t 2+4t +92=-12(t -4)2+252∴当t =4时,S 有最大值. …………7分 (若面积S 用梯形面积公式求不扣分)(3) 解:∵MN ∥AC ,∴∠NME =∠DEM . …………8分① 当△NME ∽△DEM 时,∴NM DE =EMME. …………9分∴7-t 2=1,解得:t =5. …………10分② 当△EMN ∽△DEM 时,∴NM EM =EMDE. …………11分∴EM 2=NM ·DE .在Rt △MEF 中,ME 2=EF 2+MF 2=1+(t +1)2,∴1+(t +1)2=2(7-t). 解得:t 1=2,t 2=-6(不合题意,舍去)综上所述,当t 为2秒或5秒时,以E 、M 、N 为顶点的三角形与△DEM 相似. ……12分ABCD EMF N22.(14分)解:(1) 由题意,得:⎩⎪⎨⎪⎧a +b +c =116a +4b +c =0c =2…………1分解得:⎩⎪⎨⎪⎧a =12b =-52c =2. …………3分 ∴这个抛物线的解析式为y =12x 2-52x +2. …………4分(2) 解法一:如图1,设BC 的垂直平分线DE 交BC 于M ,交x 轴于N ,连接CN ,过点M 作MF ⊥x 轴于F . ∴△BMF ∽△BCO ,∴MF CO =BF BO =BM BC =12.∵B(4,0),C(0,2), ∴CO =2,BO =4, ∴MF =1,BF =2,∴M(2,1) ………………5分 ∵MN 是BC 的垂直平分线,∴CN =BN , 设ON =x ,则CN =BN =4-x , 在Rt △OCN 中,CN 2=OC 2+ON 2,∴(4-x)2=22+x 2,解得:x =32,∴N(32,0). ………………6分设直线DE 的解析式为y =kx +b ,依题意,得:⎩⎪⎨⎪⎧2k +b =132k +b =0,解得:⎩⎨⎧k =2b =-3. ∴直线DE 的解析式为y =2x -3. ………………8分 解法二:如图2,设BC 的垂直平分线DE 交BC 于M ,交x 轴于N ,连接CN ,过点C 作CF ∥x 轴交DE 于F . ∵MN 是BC 的垂直平分线,∴CN =BN ,CM =BM . 设ON =x ,则CN =BN =4-x , 在Rt △OCN 中,CN 2=OC 2+ON 2,∴(4-x)2=22+x 2,解得:x =32,∴N(32,0). (5)∴BN =4-32=52.∵CF ∥x 轴,∴∠CFM =∠BNM . ∵∠CMF =∠BMN ,图1∴△CMF ≌△BMN .∴CF =BN .∴F(52,2). …………………6分设直线DE 的解析式为y =kx +b ,依题意,得: ⎩⎨⎧52k +b =232k +b =0,解得:⎩⎨⎧k =2b =-3. ∴直线DE 的解析式为y =2x -3. ………………8分(3) 由(1)得抛物线解析式为y =12x 2-52x +2,∴它的对称轴为直线x =52.① 如图3,设直线DE 交抛物线对称轴于点G ,则点G(52,2),以G 为圆心,GA 长为半径画圆交对称轴于点P 1, 则∠CP 1B =∠CAB . …………9分 GA =(52-1)2+22=52, ∴点P 1的坐标为(52,-12). …………10分② 如图4,由(2)得:BN =52,∴BN =BG ,∴G 、N 关于直线BC 对称. …………11分∴以N 为圆心,NB 长为半径的⊙N 与⊙G 关于直线BC 对称. …………12分 ⊙N 交抛物线对称轴于点P 2,则∠CP 2B =∠CAB . …………13分 设对称轴与x 轴交于点H ,则NH =52-32=1.∴HP 2=(52)2-12=212, ∴点P 2的坐标为(52,212).综上所述,当P 点的坐标为(52,-12)或(52,212)时,∠CPB =∠CAB . ………14分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年初中毕业班综合数学测试注意事项:本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试时间120分钟.1.答卷前,考生务必在答题卡用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名、考号.2.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.3.考生可以使用考试专用计算器,必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题(共30分)一、选择题(本题有10个小题,每小题3分,满分30分.下面每小题给出的四个选项中,只有一个是正确的.)1.实数8的相反数是( * )A .8-B . 8C .8±D .812.已知平面直角坐标系中,点()2,1-P 关于原点对称的点的坐标是( * ) A .()2,1-B .()2,1--C .()2,1-D .()2,13.将二次函数2x y =的图象向上平移2个单位,则平移后的二次函数的解析式是( * ) A .22-=x y B .22+=x y C .()22-=x y D .()22+=x y4.在下列运算中,计算正确的是 ( * ) A .224+a a a =B .623a a a =⋅C .824a a a ÷=D . 236()a a =5. 若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( * ) A .1 B .5 C .5- D .66. 一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( * ) A .美B .丽C .增D .城7.在下图所示的四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( * )A .B .C .D .8.如图,在□ABCD 中,已知cm AB cm AD 6,8==, DE 平分ADC ∠交 BC 边于点E ,则BE 等于( * )A .cm 2B .cm 4C .cm 6D .cm 89.如图,一个圆锥形漏斗的底面半径6cm OB =,高8cm OC =. 则这个圆锥漏斗的侧面积是( * )建 设美 丽增 城(第6题图)ABCD(第8题图)EA .230cmB .230cm πC .260cm πD .2120cm 10.若1x 、2x ()21x x 是方程()()1=--b x a x (其中b a ) 的两个根,则实数1x 、2x 、a 、b 的大小关系是( * )A .b a x x 21B .b x a x 21C .21x b a xD .21x b x a第二部分 非选择题(共120分)二、填空题(本题有6个小题,每小题3分,共18分.) 11.分解因式:=+x x 32*** .12.函数y =x 的取值范围是***. 13.若,2 x 化简()=--222x ***.14.若029=+++-y x y x ,则=+y x ***.15. 如图,直线b a 、被直线c 所截,且a b ∥,如果︒=∠651, 那么=∠2***.16.如图,AB 是⊙O 的直径,点E 为BC 的中点,4=AB ,︒=∠120BED ,则图中阴影部分的面积之和是 *** .(第16题图)三、解答题(本题有9个小题,共102分,解答要求写出文字说明、证明过程或计算步骤.) 17.(本题满分9分) 解不等式组20260x x ->⎧⎨-+>⎩并把解集在数轴上表示出来.18.(本题满分9分)如图,E F 、分别是□ABCD 的对角线AC 上的两点,且CE AF =, 求证:DF BE =.19.(本题满分10分)已知:如图,AB 与⊙O 相切于点C ,OA OB =,⊙O 的直径为4,8AB =.求:(1)OB 的长;BC(第18题图)图1cba21abc(第15题图)(第21题图)(2)sin A 的值.(第19题图)20.(本题满分10分)已知:032≠=b a ,求代数式()b a b a ba 242522-∙--的值. 21.(本题满分12分)增城市某中学综合实践科组为了解学生最喜欢的球类运动,对足球、乒乓球、篮球、排球四个项目进行了调查,并将调查的结果绘制成如下的两幅统计图(说明:每位同学只选一种自己最喜欢的球类),请你根据图中提供的信息解答下列问题:(1)求这次接受调查的学生人数,并补全条形统计图; (2)求扇形统计图中喜欢排球的圆心角度数;(3)若调查到爱好“乒乓球”的5名学生中有3名男生,2名女生,现从这5名学生中任意抽取2名学生,请用列表法或树形图的方法,求出刚好抽到一男一女的概率.22. (本题满分12分)如图,已知反比例函数ky x=与一次函数y x b =+的图象在第一象限相交于 点(1,4)A k -+.(1)求这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象 写出使反比例函数的值大于一次函数的值的x 的取值范围.23. (本题满分12分)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降,今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年(第22题图)销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于8.4万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a 元,要使(2)中所有方案获利相同,a 值应是多少?此时,哪种方案对公司更有利?24.(本题满分14分)已知,在矩形ABCD 中,a AB =,b BC =,动点M 从点A 出发沿边AD 向点D 运动.(1)如图1,当a b 2=,点M 运动到边AD 的中点时,请证明︒=∠90BMC ;(2)如图2,当b >a 2时,点M 在运动的过程中,是否存在︒=∠90BMC ,若存在,请给予证明;若不存在,请说明理由;(3)如图3,当b <a 2时,(2)中的结论是否仍然成立?请说明理由.(第24题图)25.(本题满分14分)如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与y 轴交于点C ,与x 轴交于A B ,两点,点B 的坐标为B (30),,直线3y x =-+恰好经过B C ,两点. (1)写出点C 的坐标;(2)求出抛物线2y x bx c =++的解析式,并写出抛物线的对称轴和点A 的坐标; (3)点P 在抛物线的对称轴上,抛物线顶点为D 且APD ACB ∠=∠,求点P 的坐标.增城市2013年初中毕业班综合测试(第25题图)数学评分标准一、选择题(本题有10个小题,每小题3分,满分30分)二、填空题(本题有6个小题,每小题3分,共18分)三、解答题(本题有9个小题,共102分,解答要求写出文字说明、证明过程或计算步骤.)17.(本题满分9分)解:解不等式02 -x 得2 x ………………………………………………2分解不等式062 +-x 得3 x …………………………………………4分 ∴原不等式组的解集是32 x …………………………………………6分 解集在数轴上正确表示 ………………………………………………9分18.(本题满分9分)证明:∵四边形ABCD 是平行四边形∴BC AD //,BC AD =……………………………4分 ∴BCE DAF ∠=∠ …………………………6分 ∵CE AF =∴ADF ∆≌CBE ∆ ………………………7分 ∴DF BE = ……………………………9分BC18题图19.(本题满分10分)解:(1)∵AB 与⊙O 相切于点C∴AB OC ⊥ (3)分 ∵OA OB =∴4==BC AC (5)分在BOC Rt ∆中,4,2==BC OC 由勾股定理,得OB == ………………………7分(2)在AOC Rt ∆中,∵2,52===OC OB OA∴A sin =OC OA ==………………………10分 20.(本题满分10分) 解:∵032≠=ba ∴0,0,32≠≠=b a a b ………………………3分原式()()()b a b a b a ba 22225-∙-+-=………………………5分ba ba 225+-=………………………7分 ∵0,32≠=a a b ∴原式2142335==+-=a a a a a a ………………………10分 21.(本题满分12分)解:(1)总人数:()人200%2040=÷ ………………2分 补全图略 …………………4分(2)乒乓球占四项球类的百分比是:%30%10020060=⨯ 排球占四项球类的百分比是%10%20%30%401=--- ∴扇形统计图中喜欢排球的圆心角度数︒=︒⨯36360%10 (8)分 (3)列表法或树形图 (10)分总有20种等可能性结果,其中抽到一男一女的情况有12种,所以抽到一男一女的概率为 ()532012==一男一女P …………………………12分 22. (本题满分12分) 解:(1)∵已知反比例函数ky x=经过点(1,4)A k -+, ∴41kk -+=,即4k k -+=………………………1分 ∴2k = ………………………2分∴反比例函数的表达式为2y x= ()2,1A ………3分 ∵一次函数y x b =+的图象经过点()2,1A ………………4分 ∴21b =+∴1b = ………………5分 ∴一次函数的表达式为1y x =+ …………6分(2)由12y x y x =+⎧⎪⎨=⎪⎩………………………7分消去y ,得220x x +-=………………………8分即(2)(1)0x x +-=,∴2x =-或1x =∴1y =-或2y =∴21x y =-⎧⎨=-⎩或12x y =⎧⎨=⎩ ………………………9分∵点B 在第三象限,∴点B 的坐标为B (21)--, ……10分由图象可知,当反比例函数的值大于一次函数的值时,x 的取值范围是2x <-或01x << ……………12分23. (本题满分12分)解:(1)设今年三月份甲种电脑每台售价x 元,根据题意得: (1)分100000800001000x x =+………………………2分 解得:4000x =经检验:4000x =是所列方程的根 ………………………3分答:甲种电脑今年每台售价4000元. ...........................4分 (2)设购进甲种电脑x 台,根据题意得: (5)分4800035003000(15)50000x x +-≤≤ ………………………6分解得610x ≤≤ ………………………7分∴x 的正整数解为6,7,8,9,10,答:共有5种进货方案 ...........................8分 (3)设总获利为W 元,依题意得 (9)分(40003500)(38003000)(15)(300)1200015W x a x a x a=-+---=-+-……………10分当300a =时,(2)中所有方案获利相同. ........................11分 此时,购买甲种电脑6台,乙种电脑9台时对公司更有利. (12)分答:当300a =时,(2)中所有方案获利相同.此时,购买甲种电脑6台,乙种电脑9台时对公司更有利.24.(本题满分14分)(1)证明:∵b=2a ,点M 是AD 的中点………………………1分∴AB=AM=MD=DC=a………………………2分又∵在矩形ABCD 中,∠A=∠D=90°∴∠AMB=∠DMC=45° ………………………3分∴∠BMC=90°………………………4分(2)解:存在 ………………………5分证明:若∠BMC=90°则∠AMB=∠DMC=90° ∵∠AMB+∠ABM=90° ∴∠ABM=∠DMC ∵∠A=∠D=90° ∴△ABM ∽△DMC………………………6分∴=设AM=x ,则xb aa x -=………………………7分 整理得:022=+-a bx x ∵b >2a ,a >0,b >0,∴ 0422a b -=∆∴方程有两个不相等的实数根,且两根均大于零,符合题意……8分∴当b >2a 时,存在∠BMC=90° ………………………9分(3)解:不成立. ………………………10分理由:若∠BMC=90°由(2)可知022=+-a bx x ………………………12分∵b <2a ,a >0,b >0∴0422 a b -=∆ ∴方程没有实数根………………………13分∴当b <2a 时,不存在∠BMC=90°,即(2)中的结论不成立.…………14分25.(本题满分14分)解:(1)(03)C , (2)分(2) 抛物线2y x bx c =++过点B C ,,9303b c c ++=⎧∴⎨=⎩,.…………………………………………4分 解得43b c =-⎧⎨=⎩,. …………………………………………5分 ∴抛物线的解析式为243y x x =-+. …………………6分∴对称轴为2x = ……………………………………7分点(1)A ,0…………………………………………8分(3)由243y x x =-+. 可得(21)(10)D A -,,,.3OB ∴=,3OC =,1OA =,2AB =.可得OBC △是等腰直角三角形.45OBC ∴∠=,CB =9分如图,设抛物线对称轴与x 轴交于点F,112AF AB ∴==. 过点A 作AE BC ⊥于点E .90AEB ∴∠= .可得BE AE ==CE = ………………………………10分11 在AEC △与AFP △中,90AEC AFP ∠=∠= ,ACE APF ∠=∠, AEC AFP ∴△∽△AE CE AF PF∴=,1PF =.AEC AFP ∴△∽△ 解得2PF = ………………………………………………12分 点P 在抛物线的对称轴上,∴点P 的坐标为(22),或(22)-,.……………………………………14分。

相关文档
最新文档