材料力学 简单的超静定问题

合集下载

材料力学-力法求解超静定结构

材料力学-力法求解超静定结构
3 优化结构设计
力法求解超静定结构时,可以根据计算结果优化结构设计,提高结构的强度和稳定性。
结论与总结
力法是求解超静定结构的有效方法,通过合理应用材料力学基础和力法的原理,我们能够准确求解反力分布并 分析结构的应力情况。
样例分析
结构:桥梁
使用力法求解桥梁上的悬臂梁,计算主梁的支座反 力和悬臂梁的应力分布。
结构:楼房
将力法应用于楼房结构,确定楼板的支座反力并分 析楼梯的受力情况。
实用提示和技巧
1 标定自由度
在应用力法时,正确标定结构的自由度是成功求解反力的重要步骤。
2 验证计算结果
对计算得到的反力进行验证,确保结果的准确性,避免错误的设计决策。
材料力学-力法求解超静 定结构
超静定结构的定义
超静定结构是指具有不止一个不可靠支持反力的结构。它们挑战了传统的结构分析方法,需要使用力法进行求 解。
材料力学基础
材料力学研究材料的受力和变形规律,包括弹性力学、塑性力学和损伤力学。 这些基础理论为力法求解超静定结构提供了必要的工具。
力法的原理
力法是一种基于平衡原理和支座反力法则的结构分析方法。它通过对超静定结构施加虚位移,建立受力平衡方 程,求解未知反力。
超静定结构应用力法求解的步骤
1
确定结构类型
了解结构是否为超静定结构,并确定不
计算反力
2
可靠支持反力的个数。
根据力法原理,建立并求解受力平衡方
程,计算未知反力。
3
验证平衡
通过检查受力平衡方程是否满足等式的
确定应力分布
4
要求,验证计算的反力是否正确。
பைடு நூலகம்
根据已知反力和结构的几何特性,计算 并绘制应力分布图。

材料力学——6简单的超静定问题

材料力学——6简单的超静定问题

M
(x)
X
1
x
X1x, P(x
x l ), 2
l 2
x
l 2
B
l 0
M
(x)M EI
( x)dx
0
如果B处支撑为弹簧 (弹簧系数K) ?
例 P
A
l
l
2
2
BA
P
B
l
l
2
2
X1

M
(x)
X1
x
X1x, P(x
x l ), 2
l 2
x
静定基
l 2
x
B
l 0
M (x)M EI
(x)dx
X1 K
求解 线性方程
未知力
以一例说明解法
q
12 3
X1 X2 X3
• 静定基(含未知数)
1 0, 2 0, 3 0
• 位移协调条件
建立方程的过程
以1为例说明
X1 X2 X3
1
M (x)M1(x) dx EI
(M X1 M X2 M X3 M q )M1(x) dx EI
M X1M1 dx M X2 M1(x) dx M X3 M1(x) dx M qM1(x) dx
A
P0 =1 B
M (x) x
解: 协调条件——D截面转
角为零
A
静定基
D
/2
0
M
( )M
EI
()Rd
0
DX
P 2
二、装配应力
1、静定问题无装配应力
B
C
2、静不定问题存在装配应力
1
2
A
下图,3号杆的尺寸误差为,

材料力学(I)第六章

材料力学(I)第六章
N2 y N1 N2 N3
(2) 几何方程
L2
( L3 ) cos L1
材料力学(Ⅰ)电子教案
简单的超静定问题
15
(3)、物理方程及补充方程:
FN 1L1 FN 3 L3 ( ) cos E1 A1 E3 A3
(4) 、解平衡方程和补充方程,得:
FN1 FN 2
E1 A1 cos2 L3 1 2 cos3 E1 A1 / E3 A3
FN 1L FN 3 L 得: cos E1 A1 cos E3 A3
5)联立①、④求解:
FN ! F

E 3 A3 2 co s E1 A1 co s2
FN 3
F E1 A1 1 2 co s3 E A
材料力学(Ⅰ)电子教案
简单的超静定问题
[例2-19]刚性梁AD由1、2、3杆悬挂,已知三杆材料 相同,许用应力为[σ ],材料的弹性模量为 E,杆长 均为l,横截面面积均为A,试求各杆内力。
5
1.比较变形法 把超静定问题转化为静定问题解,但 必须满足原结构的变形约束条件。
[例2-16] 杆上段为铜,下段为钢杆,
E1 A1
A
1
上段长 1 , 截面积A1 , 弹性模量E1 下段长 2 , 截面积A2 , 弹性模量E2
杆的两端为固支,求两段的轴力。
C
E 2 A2
F
FB
B
2
(1)选取基本静定结构(静定基如图),B 解: 端解除多余约束,代之以约束反力RB

2E1 A1 cos3 FN 3 3 L3 1 2 cos E1 A1 / E3 A3

例2-22
材料力学(Ⅰ)电子教案

材料力学

材料力学

5 Pa RD a RD a 6 EI 3EI 3EI
如何得到?
A D
P
B
自行完成
C D
RD
例题 6
图示结构AB梁的抗弯刚度为EI,CD杆的抗拉刚度为EA,
已知P、L、a。求CD杆所受的拉力。
D
a
A
C
L
2
L
B
2
P
解:变形协调条件为 wC lCD
D
a
C
FC
A
( P FC ) L wC 48EI FC L lCD EA
温度应力:
FB E t A
6 1 12 . 5 10 碳素钢线胀系数为 C0
温度应力:超静定结构中,由于温度变化,使构
件膨胀或收缩而产生的附加应力。
不容忽视!!!
路、桥、建筑物中的伸缩缝 高温管道间隔一定距离弯一个伸缩节
例题 11
图示阶梯形杆上端固定,下端与支座距离=1mm, 材料的弹性模量E=210GPa,上下两段杆的横截 面面积分别为600平方毫米和300平方毫米。试 作杆的轴力图。
C
A
FA
B
L2
FC
FA FB FC qL 0
L2
M
A
0
FB
变形协调方程
L qL2 FC FB L 0 2 2
3 FB qL 16
FA 3 qL 16
C q C FC 0
7.5kNm
5qL4 FC L3 5 0 FC qL 8 384 EI Z 48EI Z
由于超静定结构能有效降低结构的内力及变形,在 工程上(如桥梁等)应用非常广泛。
●超静定问题的解法:

材料力学第5版(孙训方编)

材料力学第5版(孙训方编)

FAy
F
(b)
5. 将上述二个补充方程与由平衡条件ΣMA=0所得平衡方程
FN1a FN3
1 2
a
FN
2
(2a)
F
(3a)
0
联立求解得
FN3
3 2F 110 2
,FN1
2FN3
6 2F 110 2
,FN2
4FN3
12 2F 110 2
17
第六章 简单的超静定问题
Ⅱ. 装配应力和温度应力 (1) 装配应力
所以这仍然是一次超静定问题。
23
第六章 简单的超静定问题
2. 变形相容条件(图c)为 l1 l3 e
这里的l3是指杆3在装配后的缩短值,不带负号。 3. 利用物理关系得补充方程:
FN1l FN3l e EA E3 A3
24
第六章 简单的超静定问题
4. 将补充方程与平衡方程联立求解得:
FN1 FN2
MA
Me
MB
Me
Mea l
M eb l
34
第六章 简单的超静定问题 (a)
4. 杆的AC段横截面上的扭矩为
TAC
M A
M eb l
从而有
C
TAC a GI p
M eab lGI p
35
第六章 简单的超静定问题
例题6-6 由半径为a的铜杆和外半径为b的钢管经紧 配合而成的组合杆,受扭转力偶矩Me作用,如图a。试求 铜杆和钢管横截面上的扭矩Ta和Tb,并绘出它们横截面上 切应力沿半径的变化情况。
而杆1和杆2中的装配内力利用图b中右侧的图可知为
FN1
FN 2
FN3
2 c os
2

《材料力学》第6章 简单超静定问题 习题解

《材料力学》第6章 简单超静定问题 习题解

轴力图01234-5-4-3-2-101234567N(F/4)x(a)第六章 简单超静定问题 习题解[习题6-1] 试作图示等直杆的轴力图解:把B 支座去掉,代之以约束反力B R (↓)。

设2F 作用点为C ,F 作用点为D ,则:B BD R N =F R N B CD +=F R N B AC 3+=变形谐调条件为:0=∆l02=⋅+⋅+⋅EAa N EA a N EA a N BD CD AC 02=++BD CD AC N N N03)(2=++++F R F R R B B B45F R B -=(实际方向与假设方向相反,即:↑) 故:45F N BD-= 445F F F N CD-=+-= 47345F F F N AC=+-= 轴力图如图所示。

[习题6-2] 图示支架承受荷载kN F 10=,1,2,3各杆由同一种材料制成,其横截面面积分别为21100mm A =,22150mm A =,23200mm A =。

试求各杆的轴力。

解:以节点A 为研究对象,其受力图如图所示。

∑=0X030cos 30cos 01032=-+-N N N0332132=-+-N N N0332132=+-N N N (1)∑=0Y030sin 30sin 0103=-+F N N2013=+N N (2)变形谐调条件:设A 节点的水平位移为x δ,竖向位移为y δ,则由变形协调图(b )可知:00130cos 30sin x y l δδ+=∆x l δ=∆200330cos 30sin x y l δδ-=∆03130cos 2x l l δ=∆-∆2313l l l ∆=∆-∆设l l l ==31,则l l 232= 223311233EA l N EA l N EA l N ⋅⋅=- 22331123A N A N A N =- 15023200100231⨯=-N N N23122N N N =-21322N N N -= (3)(1)、(2)、(3)联立解得:kN N 45.81=;kN N 68.22=;kN N 54.111=(方向如图所示,为压力,故应写作:kN N 54.111-=)。

孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-简单的超静定问题(圣才出品)

孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-简单的超静定问题(圣才出品)
图 6-2-4 (2)补充方程 作铰 A 的位移图,由几何关系可得变形协调方程: Δl1/sin30°=2Δl2/tan30°+Δl3/sin30°③ 其中,由胡克定律可得物理关系:
8 / 42
圣才电子书 十万种考研考证电子书、题库视频学习平台

Δl1=FN1l1/EA1=FN1l/(EA1cos30°) Δl2=FN2l2/EA2=FN2l/(EA2) Δl3=FN3l3/EA3=FN3l/(EA3cos30°) 代入式③可得补充方程: FN1l/(EA1sin30°·cos30°)=2FN2l/(EA2tan30°)+FN3l/(EA3sin30°·cos30°)④ (3)求解 联立式①②④,可得各杆轴力:FN1=8.45kN,FN2=2.68kN,FN3=11.55kN。
9 / 42
圣才电子书 十万种考研考证电子书、题库视频学习平台

MB = 0
FN2 Leabharlann 2 2a+
FN4
2 2
a
+
FN3
2a − F ( 2 a + e) = 0 2

根据结构的对称性可得 FN2=FN4③
(2)补充方程
如刚性板的位移图所示,根据几何关系可得:Δl1+Δl3=2Δl2④
由结构对称可知 Δl2=Δl4,其中,由胡克定律可得各杆伸长量:
Δl1=FN1l/EA,Δl2=FN2l/EA,Δl3=FN3l/EA
代入式④,整理可得补充方程:FN1+FN3=2FN2⑤
(3)求解
联立式①②③⑤,解得各杆轴力:
FN1
=
(1 4

e )F(压) 2a
FN2
=
FN4
=
F 4

材料力学-简单超静定

材料力学-简单超静定

1
建立力学模型
根据实际情况,选择适当的力学模型来描述系统的行为。
2
应用适当的计算方法
使用强大的计算方法,如有限元分析或解析方法,来解决超静定问题。
3
验证和优化
通过验证和优化计算结果,确保超静定结构的设计合理和可靠性。
简单超静定的应用范围和意义
建筑和桥梁设计
通过应用简单超静定材料 力学理论,可以设计出更 加稳定和安全的建筑和桥 梁结构。
2 材料创新
将超静定理论与热力学、 电磁学等领域相结合, 探索多物理场耦合的复 杂问题。
研究新型材料的超静定 特性,推动材料创新和 应用领域的进步。
3 智能结构设计
结合超静定理论和智能 材料,开发具有适应性 和自修复能力的结构。
简单超静定的相关实例分析和工程应用
实例1:桥梁设计 实例2:机械零件 实例3:材料性能
分析简单超静定桥梁的受力特点和优化设计方 法。
研究简单超静定机械零件的强度和刚度,优化 设计方案。
通过简单超静定力学模型,改进材料的性能和 可靠性。
总结和展望材料力学-简单超静定的未来 研究方向
1 多物理场耦合
材料力学-简单超静定
材料力学-简单超静定为你揭示了材料力学中的重要概念、计算方法和工程应 用。通过分析简单超静定问题,你将深入了解超静定结构的力学特性和解决 步骤。
分析简单超静定问题的背景
1 需求的复杂性
2 对刚体的限制
现实世界中,材料力学 问题往往涉及多种约束 条件和复杂的外力情况。
刚体假设无法适用于所 有情况,因此需要超静 定理论来帮助分析。
机械工程
简单超静定分析对于设计 高精度机械零件和装置具 有重要作用。
材料研究
了解材料力学的超静定现 象有助于开发新型材料和 改进现有材料的性能。

材料力学土木类第六章简单的超静定问题

材料力学土木类第六章简单的超静定问题

B
D
C 解:一次超静定问题
1 32
(1)力:由节点A的平衡条件列 出平衡方程
y
F
N1
F
N3
F
N2
A
F
A F
Fx 0, FN1sinFN2 sin 0
F y 0 ,F N 3 F N 1 co F N 3 s co F s 0
x
l 3
B
D
1 32
A A'
C (2)变形:变由变形协调条件建立补充方程来求
解。
例 梁AC在B、C处分别为固定铰支座和可动铰支座,
梁的 A 端用一钢杆 AD 与梁 AC 铰接。在梁受荷载作
用以前,杆 AD 内没有内力。已知梁和拉杆用同样的
钢材制成,材料的弹性模量为E,梁横截面的惯性矩
为I,拉杆横截面的面积为A,其余尺寸见图。试求钢
例 一平行杆系,三杆的横截面面积、长度和弹性模
量均分别相同,用A、l、E 表示。设AC为一刚性横梁, 试求在荷载F 作用下各杆的轴力
l
解: (1)受力分析--平衡方程
1
2
3
a
a
a
D2 C
A BF
FN1 A
FN2
FN3
B
C
D F
Y 0 , F N 1 F N 2 F N 3 F 0 M D 0 , 1 . 5 F N 1 0 . 5 F N 2 0 . 5 F N 3 0
土建工程中的预应力钢筋混凝土构件,就是利 用装配应力来提高构件承载能力的例子。
(2) 温度应力
静定问题:由于杆能自由变形,由温度所引起的变 形不会在杆中产生内力。
超静定问题:由于有了多余约束,杆由温度变化所 引起的变形受到限制,从而将在杆中产生内力。这 种内力称为温度内力。

材料力学超静定问题

材料力学超静定问题

材料力学超静定问题
材料力学是研究物质内部受力和变形的学科,其中超静定问题是力学中的一个
重要分支。

超静定问题是指在结构中由于支座的限制,导致结构处于超静定状态,无法通过静力学方法进行完全确定。

在实际工程中,超静定问题的解决对于结构的设计和分析具有重要意义。

超静定问题的解决方法有很多种,其中较为常用的是引入位移法和能量法。


移法是通过引入未知的位移量来解决超静定问题,通过位移的约束条件和力的平衡条件来求解结构的内力和位移。

而能量法则是通过能量的原理来解决超静定问题,通过构造适当的能量函数,利用能量的最小原理来求解结构的内力和位移。

在实际工程中,超静定问题的解决需要结合具体的结构和受力情况来进行分析。

通常可以通过建立结构的受力模型,确定支座的约束条件,引入适当的未知量,建立相应的方程组,利用位移法或能量法来求解结构的内力和位移。

在进行计算时,需要考虑结构的受力平衡和位移连续性等条件,确保所得到的解是合理的。

除了位移法和能量法外,还可以利用有限元方法来求解超静定问题。

有限元方
法是一种数值计算方法,通过将结构福利分割成有限个单元,建立相应的数学模型,利用数值计算的方法来求解结构的内力和位移。

有限元方法具有较高的计算精度和适用范围,可以有效地求解复杂结构的超静定问题。

总的来说,超静定问题的解决是结构力学中的一个重要课题,对于工程实践具
有重要意义。

在实际工程中,需要根据具体的结构和受力情况,选择合适的方法来进行分析和求解。

通过合理的建模和计算,可以有效地解决超静定问题,为工程设计和分析提供可靠的依据。

材料力学第五版课件 主编 刘鸿文 第六章 简单的超静定问题

材料力学第五版课件 主编 刘鸿文 第六章 简单的超静定问题

例题: 试判断下图结构是静定的还是超静定的?若是超静定, 则为几次超静定?
B
DE
A

C
FP
(a)静定。 未知内力数:3 平衡方程数:3
B
D
A
C
F
P
(b)超静定。 未知力数:5 平衡方程数:3 静不定次数=2
(c)静不定。
未知内力数:3
平衡方程数:2
FP
静不定次数=1
静不定问题的解法: (1)建立静力平衡方程; (2)由变形协调条件建立变形协调方程; (3)应用物理关系,代入变形协调方程,得到补充方程;
基本静定基的选取:
(1)解除B支座的约束,以约束反力
代替,即选择一端固定一端自由
的悬臂梁作为基本静定基。
(2)解除A端阻止转动的约束,以 约束反力代替,即选择两端简支 的梁作为基本静定基。
基本静定基选取可遵循的原则:
(1) 基本静定基必须能维持静力平衡,且为几何不变系统; (2) 基本静定基要便于计算,即要有利于建立变形协调条
E3 A3
F FN3 = 1+ 2E1 A1 cos3 a
E3 A3
(拉力) (拉力)
温度应力和装配应力
一、温度应力
在超静定结构中,由于温度变化引起的变形受到约束的限制, 因此在杆内将产生内力和应力,称为温度应力和热应力。
杆件的变形 ——
由温度变化引起的变形 温度内力引起的弹性变形
例:阶梯钢杆的上下两端在T1=5℃时被固 定,上下两段的面积为
=-
[13EI
32(1+
24
I Al
2
)
]
M
M
A
C
B D
l

材料力学--简单的超静定问题

材料力学--简单的超静定问题
故为一次超静定问题。
Mx 0, M A Me MB 0
2. 变形几何方程为:
AB 0
24
MA
MB
(a)
3. 根据位移相容条件利用物理关系得补充方程:
AB

M Bb GI p

(M B Me )a GI p

0
MB

Mea l
另一约束力偶矩MA可由平衡方程求得为
MA

A
A
2EA a
C
C
RA 解: 放 松B端,加支反力RA、RB
则,RA RB F 0 (1) 变形协调条件 : l总 0
F 2a
B EA
F
lAC
lCB

F RB a
2EA

RB 2a
EA

0
(2)
B
由(1)、(2)式得
RB
RB

F 5
,
RA
4F 5
14
B
D
C (2) 几何方程
1
3
aa
2
AA1 0

A
A0
l1 ( l3 ) cosa
(3) 物理方程及补充方程:
FN1l1 ( FN3l3 ) cosa
E1 A1
E3 A3
l3 A1

(4) 解平衡方程和补充方程,得:
FN1

FN2


l3
1
E1A1 cos2 a 2 cos3 a E1A1 /
(a)
26
Tb Ta
(b)
解: 1. 设铜杆和钢管的横截面上内力矩分别
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l1 F N 1l1 E 1 A1
FN 3 l 3 E 3 A3
FN1
FN3
a a A
A1 FN2
l3
FN 3l3 E 3 A3
(3)
(4)补充方程:由几何方程和物理方程得:
F N 1l1 E1 A1
2

cos a
(5)联解(1)、(2)、(3)式,得:
FN 1 FN 2 E1 A1 F cos a 2 E1 A1 cos a E 3 A3
第六章
简单的超静定问题
1
第六章
§6-1
§6-2
简单的超静定问题
超静定问题及其解法
拉压超静定问题
§6-3 §6-4
扭转超静定问题 简单超静定梁
2
§6-1
超静定问题及其解法
1.单纯依靠静力平衡方程能够确定全部未知力(支反 力、内力)的问题,称为静定问题。 相应的结构称为静定结构。
2.单纯依靠静力平衡方程不能确定全部未知力(支反 力、内力)的问题,称为超静定问题。 相应的结构称为超静定结构。
3
F N3 A3 9F 14 A [ ]
F
[F ]
14 9
14 9
[ ] A
[ ] A
11
[例6-2-4]木制短柱的四角用四个40404的等边角钢 加固,角钢和木材的许用应力分别为[]1=160MPa和 []2=12MPa,弹性模量分别为E1=200GPa 和 E2 =10GPa;求许可载荷P。 解:(1)以压头为研究对象, 设每 个角钢受力为FN1,木柱受力为FN2.
14
B
1
D
C
3 2
(2) 几何方程
l1 ( l 3 ) cos a
a a A0 A1
A

(3) 物理方程及补充方程:
F N1 l1 E 1 A1 ( F N3 l 3 E 3 A3 ) cos a
A0
l3 A 1
(4) 解平衡方程和补充方程,得:

l1 l2
A
C
F 2a
B
EA
F
B
l AC l CB
F R B a R B 2 a
2 EA EA
0
(2)
由(1)、(2)式得
RB
RB F 5 , RA 4F 5

8
[例6-2-3] 刚性梁AD由1、2、3杆悬挂,已知三杆材 料相同,许用应力为[σ],材料的弹性模量为 E, 杆长均为l,横截面面积均为A,试求结构的许可载荷 [F]。
FR1
A
a
C
F
y
0 : FR 1 FR 2 0
(1)
a
B
(2)几何方程
l lT l F 0
FR2
18
(3) 物理方程
lT 2 a T a ; lF FR 1 a EA 1 FR 2 a EA 2
A
FR1
(4) 补充方程
2Ta FR 1 EA 1 FR 2 EA 2
F N1 F N2

l3

E1 A1 cos a
2
1 2 cos a E1 A1 / E 3 A3
3
A
FN3

l3

2 E1 A1 cos a
3
1 2 cos a E1 A1 / E 3 A3
3
15
B 1
D 3 A
l 2
l1
l 3
三、温度应力 C 1、静定问题无温度应力 2 2、静不定问题存在温度应力 [例6-2-6] 如图,1、2号杆的尺寸及 材料都相同,当结构温度由T1变到T2 时,求各杆的温度内力。(各杆的线 膨胀系数分别为αi; △T= T2 -T1) 解: (1)以铰A为研究对象,列平衡方程:
[ ] 2
A2 2 0 . 72
0 .72 P A2 [ ] 2
250 10
2 6
P2
12 10
6
0 . 72
1042 kN
13
取 [ P ] 705 .4 kN
二、装配应力: 杆件尺寸误差引起的应力。
1 静定问题无装配应力。 2 静不定问题存在装配应力。
A1 FN1
FN3
A
FN2
F 0:F F 0: F
x
y
N1
sin FN 2 sin 0
(1)
N1
cos F N 2 cos F N 3 0 (2)
16
(2) 几何方程
l1 l 2 l 3 cos
(3) 物理方程: 杆件变形包括温度引起的变形和外 力引起的变形两部分。
6 1
6 2 3
l
20
1 a
2 b c
3 l
(1) 列静力平衡方程: M 0, F a F ( a b ) F ( a c ) 0
A N2 N3
(1)
A
FN1 A
δ F FN2
B
F 0, F F (2) 几何方程:
y N1
N2
FN 3 F 0
21
F
Δl1 Δl2-δ Δl3
联解(1)-(6)式得:
F N 1 8 kN , F N 2 10 kN , F N 3 22 kN
(4)三杆应力分别为:
FN 1 ' 40 MPa A1
''
'''
FN 2 100 MPa A2
FN 3 73 . 3 MPa A3
22
§6-3 扭转超静定问题
扭转超静定问题,同样是综合运用静力学关系、 物力关系和几何关系三方面来求解。
[例6-3-1] 两端固定的圆截面等直杆AB,在截面C 处受扭转力偶矩Me作用,如图a。已知杆的扭转刚 度为GIp。试求杆两端的约束力偶矩以及C截面的扭 转角。
(a)
23
MA
(a)
MB
解: 1. 以AB为研究对象,有二个未知约束力 偶矩MA, MB,但只有一个独立的静力平衡方程 故为一次超静定问题。
2
1 2 cos E1 A1 / E 3 A3
3 2 3
2 E1 A1 (a 1 a 3 cos ) T cos 1 2 cos E1 A1 / E 3 A3
17
A
a
C
a
B
[例6-2-7] 如图,阶梯钢杆的上下两端在 T1=5℃时被固定,杆的上下两段的面积分别 为 =cm2 、 =cm2 , 当 温 度 升 至 T2 =25℃时,求各杆的温度应力。(线膨胀系 数 a 12 .5 10 6 1 C ;弹性模量E=200GPa) 解:(1)解除约束,代之以约束力。列 静力平衡方程:
5
§6-2
拉压超静定问题
一、拉压超静定问题解法
对拉压超静定问题,可综合运用静力学关系、物 力关系和几何关系(变形几何相容条件)三方面来求 解。
[例6-2-1] 如图三杆用铰链连接,已知:l1=l2=l、 l3; 横截面积A1=A2=A、 A3 ; B D C 弹性模量为:E1=E2=E、E3。 3 2 1 外力沿铅垂方向,求各杆的内力。
M
2.
x
0,
MA Me MB 0
4 FN 1 FN 2
(5)求结构的许可载荷:
角钢面积由型钢表查得: A1=3.086cm2
FN 1 A1
P1
[ ]1
A1 1 0 . 07
0 .07 P A1 [ ]1
3 . 086 10
4
160 10
6
0 . 07
705 . 4 kN
FN 2 A2
3
F
; FN 3
E 3 A3 F
3
2 E1 A1 cos a E 3 A3
7
[例6-2-2] 两端固定直杆受轴向外力 F 作用,截面 尺寸如图所示,求两端反力。
RA
A
C
解: 放松B端,加支反力RA、RB
则 , R A RB F 0 (1)
变形协调条件 : l总 0
2 EA a
li FN i li E i Ai T a i li
(4) 补充方程:
FN1 l1 E1 A1 T a 1l1 (
FN3 l 3 E 3 A3
T a 3 l 3 ) cos
( 3)
(5)联解(1)、(2)、(3)式,得:
F N1 F N2 FN3 E1 A1 (a 1 a 3 cos ) T
C
a
(2)
B
a
(5)联解(1)、(2)式,得:
FR 1 FR 2 33 . 3 kN
FR2
(6) 温度应力
1
FR 1 A1 66 . 7 MPa
2
FRБайду номын сангаас2 A2
33 . 3 MPa
19
[例6-2-8] 如图刚性梁悬挂于3根平行杆上,l=2m, F=40kN,a = 1.5m, b = 1m, c = 0.25m, δ = 0.2mm。1杆由黄铜制成, A1=2cm2, E1=100GPa, a 16 .5 10 1 C 。2杆和3杆由碳钢制成, A2=1cm2, a A3=3cm2, E2=E3=200GPa, a 12 .5 10 1 C 。设温 度升高20℃,试求各杆应力。 解:分析,各杆中即有由外载 1 2 3 荷F引起的应力,也有装配应力, a b 还有温度应力。 c 设三杆最终变形分别为Δ l1、 δ A B Δ l2、 Δ l3 。取刚性梁为研究对 象,受力如图所示。 F
相关文档
最新文档