第六章——简单的超静定问题
材料力学 简单的超静定问题
FN 3 l 3 E 3 A3
FN1
FN3
a a A
A1 FN2
l3
FN 3l3 E 3 A3
(3)
(4)补充方程:由几何方程和物理方程得:
F N 1l1 E1 A1
2
cos a
(5)联解(1)、(2)、(3)式,得:
FN 1 FN 2 E1 A1 F cos a 2 E1 A1 cos a E 3 A3
第六章
简单的超静定问题
1
第六章
§6-1
§6-2
简单的超静定问题
超静定问题及其解法
拉压超静定问题
§6-3 §6-4
扭转超静定问题 简单超静定梁
2
§6-1
超静定问题及其解法
1.单纯依靠静力平衡方程能够确定全部未知力(支反 力、内力)的问题,称为静定问题。 相应的结构称为静定结构。
2.单纯依靠静力平衡方程不能确定全部未知力(支反 力、内力)的问题,称为超静定问题。 相应的结构称为超静定结构。
3
F N3 A3 9F 14 A [ ]
F
[F ]
14 9
14 9
[ ] A
[ ] A
11
[例6-2-4]木制短柱的四角用四个40404的等边角钢 加固,角钢和木材的许用应力分别为[]1=160MPa和 []2=12MPa,弹性模量分别为E1=200GPa 和 E2 =10GPa;求许可载荷P。 解:(1)以压头为研究对象, 设每 个角钢受力为FN1,木柱受力为FN2.
14
B
1
D
C
3 2
(2) 几何方程
l1 ( l 3 ) cos a
7第六章简单的超静定问题
E3 A3
FN 1
FN 2
2COS
F E3 A3
EACOS
2
解超静定问题的步骤
(1)列 静力平衡方程 确定超静定次数; (2)根椐变形相容条件建立变形几何方程。变形几何方程的
个数与超静定次数相等; (3)将 物理方程 (胡克定律)代入变形几何方程得补充方程; (4)联立补充方程与静力平衡方程求解。
第六章
简单的超静定问题
• 超静定问题及其解法 • 拉压超静定问题 • 扭转超静定问题 • 简单超静定梁
§6—1 超静定问题及其解法
1,静定问题 约束反力或杆件的内力可以用静力平衡方程求出,这种情 况称作静定问题。
2,超静定问题
只凭静力平衡方程已不能解出全部未知力,这种情况称做超 静定问题。
F
A
C
2
3
1
A
B
C
P 40
80
FN1
FN2
80
FN3
P
几何方程
2 l2 l1 l3
物理方程
l1
F N1l1 EA
l 2
F N2l2 EA
l3
F N3l3 EA
2
3
1
A
B
C
l1
P l2
l3
4080807575补充方程
2 F N 2 l2 F N1l1 F N 3 l3 EA EA EA
2
3
1
A
B
2
A
F
B
D
C
3 1
2
A
FN1
FN3
FN2
αα
A
F
F
解:列静力平衡方程
F N1 F N2
材料力学(I)第六章(配孙训方版)
4. 将补充方程与平衡方程联立求解得:
FN1 FN2
eEA l
1
1 2
EA
,
E3 A3
FN3
eE3 A3 l
1
1 E3 A3
2EA
所得结果为正,说明原先假定杆1,2的装配内力为拉
力和杆3的装配内力为压力是正确的。
载Me和“多余”未知力偶矩MB,如图b;它应满足的位移 相容条件为
BMe
BM B
注:这里指的是两个扭转角的绝对值相等。
33
材料力学Ⅰ电子教案
第六章 简单的超静定问题
3. 根据位移相容条件利用物理关系得补充方程:
Mea M Bl GI p GI p
由此求得“多余”未知力,亦即约束力偶矩MB为
材料力学Ⅰ电子教案
第六章 简单的超静定问题
在基本静定系上加
B
C
D
上原有荷载及“多
1
2
余”未知力
FN3
并使“多余”约束
A
A
处满足变形(位移)
ΔA'
相容条件
A'
ΔA
A
F
FN3
相当系统 (equivalent system)
6
材料力学Ⅰ电子教案
第六章 简单的超静定问题
B 1
C 2
FN3
第六章 简单的超静定问题
求算FN3需利用位移(变形)相容条件 (图a)
AA AA e
列出补充方程
FN3l3 E3 A3
FN3l1
2 E1 A1cos2
6-简单超静定问题
FN 1l FN 3l cos EA cos EA FN 1 FN 3 cos 2
5、求解方程组得
FN 1 FN 2
F cos 2 1 2 cos 3
FN 3
F 1 2 cos 3
目 录
二、装配应力
构件的加工误差是难以避免的。对静定结构,加工误 差只是引起结构几何形状的微小变化,而不会在构件内引 起应力。但对静不定结构,加工误差就要在构件内引起应 力。这种由于装配而引起的应力称为装配应力。 装配应力是结构构件在载荷作用之前已具有的应力, 因而是一种初应力。
超静定结构中才有温度应力。
目 录
解题思路: 平衡方程:RA = RB 变形几何关系: 物理关系:
(t 时)
lT lF
lT l t
RB L
RB l lF EA
EA Lt
补充方程:
联立求解: RA RB EAt
EAt t Et A
目 录
一静定问题及超静定问题三基本静定系或相当系统是一个静定结构该结构上作用有荷载和多余约束力61超静定问题及其解法61超静定问题及其解法二多余约束及多余约束力在静定结构的基础上增加的约束
第六章
简单的超静定问题
§6–1 概述
§6–2 §6–3 §6–4 拉压超静定问题 扭转超静定问题 简单超静定梁
目的与要求:
M
max
WZ
32 M
d
max 3
76.4MPa
目 录
例题
结构如图示,设梁AB和CD的弯曲刚度EIz相同. 拉杆BC的拉压刚度EA为已知,求拉杆BC的轴力.
a
C
将杆CB移除,则AB,CD均为静定结构, 杆CB的未知轴力FN作用在AB,CD梁上。为1 D 次超静定。
第六章简单的超静定问题
第六章简单的超静定问题知识要点1.超静定问题的概念(1)静定问题结构或结构的约束反力或内力均能通过静力学平衡方程求解的问题。
(2)超静定问题结构或构件的约束反力或内力不能仅凭静力学平衡方程全部求解的问题。
(3)超静定次数未知力(约束反力或内力)数超过独立的静力平衡方程书的数目。
(4)多余约束力超静定问题中,多余维持静力平衡所必需的约束(支座或杆件)。
(5)多余未知力与多余(支座或杆件)相应的支座反力或内力。
(6)基本静定系在求解静定结构时,解除多余约束,并代之以多余未知力,从而得到一个作用有荷载和多余未知力的静定结构,称之为原超静定结构的基本体静定系。
2.静不定问题的解题步骤(1) 静力平衡条件——利用静力学平衡条件,列出平衡方程。
(2) 变形相容条件——根据结构或杆间变形后应保持连续的变形相容条件,作出位移图,由位移图的几何关系列出变形间的关系方程。
(3) 物理关系——应用胡克定律列出力与变形间的关系方程。
(4) 将物理关系代入变形相容条件,得补充方程 。
补充方程和静力平衡方程,二者方程数之和正好等于未知数的个数,联立平衡方程和补充方程,求解全部未知数。
习题详解6-1 试作题6-1图(a )所示等直杆的轴力图。
解 解除题6-1图(a )所示等直杆的约束,代之以约束反力,作受力图,如题6-1图(b )所示。
由静力学平衡条件,03,0=-+=∑F F F FB A Y和变形协调条件0=∆+∆+∆DB CD AC 并将()EAa F EA a F F EA a F B DB A CD A AC -=∆-=∆=∆,22,代入式②,可得 联立式①,③,解得45,47F F F F B A == 轴力如图6-1图(c )所示6-2 题6-2图(a )所示支架承受荷载F=10 kN,1,2,3各杆由同一材料制成,其横截面面积分别为232221200,150,100mm A mm A mm A ===。
试求各杆的轴力。
《材料力学》第6章 简单超静定问题 习题解
第六章 简单超静定问题 习题解[习题6-1] 试作图示等直杆的轴力图解:把B 支座去掉,代之以约束反力B R (↓)。
设2F 作用点为C , F 作用点为D ,则:B BD R N = F R N B CD += F R N B AC 3+=变形谐调条件为:0=∆l02=⋅+⋅+⋅EA aN EA a N EA a N BD CD AC 02=++BD CD AC N N N03)(2=++++F R F R R B B B45FR B -=(实际方向与假设方向相反,即:↑) 故:45FN BD-= 445F F F N CD -=+-=47345FF F N AC=+-= 轴力图如图所示。
[习题6-2] 图示支架承受荷载kN F 10=,1,2,3各杆由同一种材料制成,其横截面面积分别为21100mm A =,22150mm A =,23200mm A =。
试求各杆的轴力。
解:以节点A 为研究对象,其受力图如图所示。
∑=0X030cos 30cos 01032=-+-N N N0332132=-+-N N N 0332132=+-N N N (1)∑=0Y030sin 30sin 0103=-+F N N2013=+N N (2)变形谐调条件:设A 节点的水平位移为x δ,竖向位移为y δ,则由变形协调图(b )可知:00130cos 30sin x y l δδ+=∆x l δ=∆200330cos 30sin x y l δδ-=∆03130cos 2x l l δ=∆-∆2313l l l ∆=∆-∆设l l l ==31,则l l 232=223311233EA l N EA lN EA l N ⋅⋅=- 22331123A N A N A N =- 15023200100231⨯=-N N N23122N N N =-21322N N N -= (3)(1)、(2)、(3)联立解得:kN N 45.81=;kN N 68.22=;kN N 54.111=(方向如图所示,为压力,故应写作:kN N 54.111-=)。
第六章简单的超静定问题
2 . 1 F 2 8 F 1 2 4 0 1 . 5 1 2 . 5 4 6 . 2 1 2 N 0
L1
F138.52kN
F 2 1.1 2k9 6N
计算1,2杆的正应力
L2
1
F1 A1
33188.0.550M 2m01mP023Na
1 F1
F
2m
列静力平衡方程 MA0
F12F2F
变形协调方程2 m F F L1 1 24 mm F 2 L24m
2m A
L2 2L1
4m
F2
1m 2
L1
F1L1 E1A!
gTL1
F2L2 E2A2
L2tTEFL222LA222(EFt11LA1T! L2gTL1)
B 变形协调方程
a
aF
FN1
FN 2
A
B
C L1
L2
a
aF
2L1L2
2 FN1L FN2L E1A1 E2A2
FN1
2F
14E2A2
E1A1
FN2
4F 4E1A1 E2A2
L
1.8L LDB
2.拉压超静定问题 图示刚性梁AB受均布载荷作用,梁在A端铰支,在B点和C
例题
6.2
作折杆的剪力和弯矩图
14.14
14.14
A
1
14.14
2
14.14
14.14kN
14.14kN
F
14.14
F s ( kN )
M ( kNm )
例题
求图示简单钢架自由端C的水平位移和垂直位移,设EI为 常数
材料力学(I)第六章
(2) 几何方程
L2
( L3 ) cos L1
材料力学(Ⅰ)电子教案
简单的超静定问题
15
(3)、物理方程及补充方程:
FN 1L1 FN 3 L3 ( ) cos E1 A1 E3 A3
(4) 、解平衡方程和补充方程,得:
FN1 FN 2
E1 A1 cos2 L3 1 2 cos3 E1 A1 / E3 A3
FN 1L FN 3 L 得: cos E1 A1 cos E3 A3
5)联立①、④求解:
FN ! F
④
E 3 A3 2 co s E1 A1 co s2
FN 3
F E1 A1 1 2 co s3 E A
材料力学(Ⅰ)电子教案
简单的超静定问题
[例2-19]刚性梁AD由1、2、3杆悬挂,已知三杆材料 相同,许用应力为[σ ],材料的弹性模量为 E,杆长 均为l,横截面面积均为A,试求各杆内力。
5
1.比较变形法 把超静定问题转化为静定问题解,但 必须满足原结构的变形约束条件。
[例2-16] 杆上段为铜,下段为钢杆,
E1 A1
A
1
上段长 1 , 截面积A1 , 弹性模量E1 下段长 2 , 截面积A2 , 弹性模量E2
杆的两端为固支,求两段的轴力。
C
E 2 A2
F
FB
B
2
(1)选取基本静定结构(静定基如图),B 解: 端解除多余约束,代之以约束反力RB
2E1 A1 cos3 FN 3 3 L3 1 2 cos E1 A1 / E3 A3
例2-22
材料力学(Ⅰ)电子教案
第六章简单超静定问题
yc = 0
去掉多余约束而成为形式上 去掉多余约束而成为形式上 基本静定基。 的静定结构 — 基本静定基。
q A
l 2
q
C
l 2
B
AA
L/2
C
Rc
B
L/2
静力、几何、物理条件) 解超静定的步骤 —— (静力、几何、物理条件) 用多余约束反力代替多余约束( 静定基,原则:便于计算) 1、用多余约束反力代替多余约束(取静定基,原则:便于计算) 2、在多余约束处根据变形协调条件列出变形的几何方程 3、把物理条件代入几何方程列出力的补充方程求出多余反力 分析—— ω
A
l 2
1)研究对象,AB梁 研究对象 B 解:1)研究对象,AB梁, 受力分析: 受力分析:R A , RB , RC , ql
∑ Y = 0, R A + RB + RC − ql = 0
∑ M A = 0, RB l + 0.5RC l − 0.5ql 2 = 0
q A
RC
B
2)选用静定基,去C支座 选用静定基, 静定基 3)变形协调方程
C 2 δ
1
3 α
α
A
由温度引起杆变形而产生的应力( 1)温度应力:由温度引起杆变形而产生的应力(热应力)。 温度应力 由温度引起杆变形而产生的应力 热应力)。 温度引起的变形量 —
∆L = α∆tL
1、静定问题无温度应力。 静定问题无温度应力。 超静定问题存在温度应力。 2、超静定问题存在温度应力。
F
B 1
D 3 α α A 2
C
超静定结构的特征:内力按照刚度分配
∆l3
∆l2
A2
∆l1
A3
第六章简单超静定问题共68页
Δ1lΔ2lF EN 1A l11 1E1A F1N cl1oαs
l3
FN3l E3 A3
3
2
1
A
Δ1lΔ2lF EN 1A l11 1E1A F1N cl1oαs
l1 l3
A2 A1
由变形协调方程和物理方程,可得到补充方程。
FN1l FN3l cos E1A1cos E3A3
FN3
FN1
E3A3
超静定次数 ——未知力个数与独立平衡方程数 之差 多余约束 —— 保持结构静定多余的约束
B
D
A
F
B
BC
D
A
D
F
A F
二、求解超静定问题的基本方法
方法1:寻找补充方程法(适用于求解拉压超
静定) 因为未知力个数超过了独立的平衡方程数,必须寻 找补充方程。 寻找补充方程的途径: 利用结构的变形条件
结构受力后变形不是任意的,必须满足以下条件:
例题
两端固支的直杆AB,长度为l ,抗拉刚度为EA, 热膨胀系数为α l。
求:温度升高 t 后0c杆内的应力。
A
B
l
解:
本问题为一次超静定 A
静平衡方程
l
Fx 0 FRAFRB
变形协调方程
l lT lF0
FRA A
物理方程
lT l lt
lF
FRAl EA
联解,得: F RA F RB EA l t
FAFBF
变形条件:
FA
BFBF B0A
A
A
A
物理条件:
a
B
F
Fa EA
F
F
F
B FB
FBl EA
[工学]第六章简单的超静定问题
(4) 由静力平衡方程和补充 方程联立解 N1 和 N2
2N2+N1-P=0
N1
P 5
N
2
2P 5
1
a
2a
2
A
C
B
P
N1
N2
P
N
(5) 由强度条件求 Pmax 强度条件为
N1 P 5 [σ ] AA N 2 2P 5 [σ ] AA
由
N2 2P 5 [σ ] AA
求得 P=50KN
1
a
A1A2 装配后 3 杆的伸长 B1B2 装配后杆 1 的缩短 C1C2 装配后 2 杆的缩短
B
D
C
l
1
3
2
A
1
3
2
A
C2 C1
A1 B2
A2
B1
N1 N3 N2 A
N1,N2,N3 为各杆的装配内力
A1 A2
N3l EA
l
B1 B2
C1 C 2
N1 cos EA
1
3
2
B
D
C
l
1
3
2
l 2
B
lT
B
l N B
P2 B
补充方程是:
N l T l EA
温度内力为:
N EA T
温度应力为: σ N E T A
A
l
A
A
P1
B
lT
B
l N B
P2 B
例题:桁架由三根抗拉压刚度均为 EA 的杆在 A 点绞接, 试求由于温度升高 T 而引起的温度应力。材料的线膨胀系 数为。
2a
2
A
第6章简单超静定问题
M D 0, 1.5FN1 0.5FN2 0.5FN3 0
变形协调条件: 胡克定理:
2l2 l1 l3
2FN2 FN3 FN1
解法3:
l
1
2
3
a
a
=
a 2
A BD C
F
FN1
F 12
F FN2 3
FN3
7F 12
l
l
1
2
3
a
a
a 2
A BD C
F
+
1
2
3
a
a
a 2
A BD C
Fa/2
超静定结构(静不定结构): 仅凭静力 学平衡方程不能求解全部未知内力 B 或反力的结构。
超静定结构的未知力的数目多于独 立的平衡方程的数目;两者的差值 称为超静定的次数。
FB B
DC
A
B
D
C
1 32
y
aa
F N1
a
FaN3
F N2
FA A
F FC C
FB B
A F
A x
F
•习惯上把维持物体平衡并非必需的约束称为多余
Me =7 kN·m d1=0.6 m
2m
A
B
C
1m
1m
2m
d2
参考答案:
Me =7 kN·md1=0.6 m
2m
A
B
C
1m
1m
2m
d2
MC=FN·d1 (1) l = FNl / EA (2)
T 1 / GIP FNd1 2 / GIP (T M e ) (3)
则变形协调关系为:
l
第六章_简单的超静定问题
第 1 页/共 3 页第六章 容易的超静定问题6-1 一次超静定解除A 端约束,加反力F A 变形协调 0=∆=∆L A 补充方程 0])3()2(2[1=-+-+=∆a F F a F F a F EAL A A A 解得 F F A 47=轴力图: 6-4 一次超静定解除杆2约束,加反力F E 变形协调 EAl F EA lF C C E E C E =∆=∆∆=∆,,2 补充方程 C E F F 2=平衡 F F F M C E A 320=+⇒=∑ 解得 kN F F kN F F C E 30536056====, 从而可得轴力 kN F kN F N N 603021==,应力 MPa AFMPa A F N N 60302211====σσ, 6-9 若杆未碰到支座B ,计算δ>∆L ,则杆必碰到支座B ,一次超静定解除下端支座B ,加反力F B变形协调 δ=∆=∆L B 补充方程 []δ=-++-+-=∆a F F F a F F EAEA a F L B D C B C B )()(221解得 kN aEAF F F D C B 155253=-+=δ (其中a =1.2m ,A =300mm 2)kN F F F F B D C A 85=-+= 轴力图:6-11 一次超静定解除B 端约束,加反力偶M B 变形协调 0=BA ϕ 补充方程 0)(221=-+=p e B p B BA GI aM M GI a M ϕ 解得 e B M M 331=,从而e A M M 3332= 扭矩图:6-14 拉杆EF 与GH 相同,且变形同为C 端位移,故两杆拉力相等 一次超静定第 3 页/共 3 页解除两杆约束,加反力F C 变形协调 ,,2122/EA L F L d LC CA =∆∆=ϕ []L d F M l d F GI C e C p CA )(1111-+-=ϕ (其中L =1m ) 补充方程21114)2(EA F d F M GI d C C e p =- 解得 kN d M F eC 1071==从而AB 段 m kN M T e ⋅==676max 最大切应力 MPa d T W T p 6.3016/31maxmax max ===πτ 6-15(a) 一次超静定解除B 端约束,加反力F B 变形协调 0==∆B B w补充方程 0931433=-=EIa F EI Fa w B B 解得 F F B 2714= 6-16 一次超静定基础梁AB 与CD 间的约束,加互相作使劲F C 变形协调 C B w w =补充方程 23213133)(EI l F EI l F F C C =- 解得 FF C 167135=。
材料力学第五版课件 主编 刘鸿文 第六章 简单的超静定问题
例题: 试判断下图结构是静定的还是超静定的?若是超静定, 则为几次超静定?
B
DE
A
C
FP
(a)静定。 未知内力数:3 平衡方程数:3
B
D
A
C
F
P
(b)超静定。 未知力数:5 平衡方程数:3 静不定次数=2
(c)静不定。
未知内力数:3
平衡方程数:2
FP
静不定次数=1
静不定问题的解法: (1)建立静力平衡方程; (2)由变形协调条件建立变形协调方程; (3)应用物理关系,代入变形协调方程,得到补充方程;
基本静定基的选取:
(1)解除B支座的约束,以约束反力
代替,即选择一端固定一端自由
的悬臂梁作为基本静定基。
(2)解除A端阻止转动的约束,以 约束反力代替,即选择两端简支 的梁作为基本静定基。
基本静定基选取可遵循的原则:
(1) 基本静定基必须能维持静力平衡,且为几何不变系统; (2) 基本静定基要便于计算,即要有利于建立变形协调条
E3 A3
F FN3 = 1+ 2E1 A1 cos3 a
E3 A3
(拉力) (拉力)
温度应力和装配应力
一、温度应力
在超静定结构中,由于温度变化引起的变形受到约束的限制, 因此在杆内将产生内力和应力,称为温度应力和热应力。
杆件的变形 ——
由温度变化引起的变形 温度内力引起的弹性变形
例:阶梯钢杆的上下两端在T1=5℃时被固 定,上下两段的面积为
=-
[13EI
32(1+
24
I Al
2
)
]
M
M
A
C
B D
l
材料力学--简单的超静定问题
Mx 0, M A Me MB 0
2. 变形几何方程为:
AB 0
24
MA
MB
(a)
3. 根据位移相容条件利用物理关系得补充方程:
AB
M Bb GI p
(M B Me )a GI p
0
MB
Mea l
另一约束力偶矩MA可由平衡方程求得为
MA
A
A
2EA a
C
C
RA 解: 放 松B端,加支反力RA、RB
则,RA RB F 0 (1) 变形协调条件 : l总 0
F 2a
B EA
F
lAC
lCB
F RB a
2EA
RB 2a
EA
0
(2)
B
由(1)、(2)式得
RB
RB
F 5
,
RA
4F 5
14
B
D
C (2) 几何方程
1
3
aa
2
AA1 0
A
A0
l1 ( l3 ) cosa
(3) 物理方程及补充方程:
FN1l1 ( FN3l3 ) cosa
E1 A1
E3 A3
l3 A1
(4) 解平衡方程和补充方程,得:
FN1
FN2
l3
1
E1A1 cos2 a 2 cos3 a E1A1 /
(a)
26
Tb Ta
(b)
解: 1. 设铜杆和钢管的横截面上内力矩分别
简单的超静定问题
32
目录
I、超静定梁旳解法
q MA
A
l
B
q
MB
l
A或 B 0
A A q A M A A M B 0
33
目录
I、超静定梁旳解法
q
q FQc
MC q
A
l
B
C
l/2
M
C
l/2
C
利用对称性 FQc=0
FQc
再利用对称性 c=0
C C qC M C
, l2
l3
FN 2l2 E2 A2
8
目录
§6.2 拉压超静定问题
成果:由平衡方程、几何相容方程、物理 关系联立解出。
N1
1
FP 2E2 A2l1
,
E1 A1l2
E2 A2l1
FN2
FN3
E1 A1l2 1 2E2 A2l1
FP
E1 A1l2
9
目录
例题6-1
木制短柱旳4个角用4个40mm×40mm×4mm旳等边角
4 20 2 4 8.75 125 kN m
目录
例题6-2
B
1
C 2 30
30
3
D
列出变形几何关系,将A点旳位移分
量向各杆投影,得
A
l1 y sin x cos
F
l2 x
y
l3 y sin x cos
A x 几何相容关系为 l3 l1 2l2 cos
y
代入物理关系 2FN3l 2FN1l 3FN 2l
3EA3 3EA1 EA2
A
解:设AC杆杆长为l,则AB、AD杆长为
第六章 简单的超静定问题
A
4m
F A
20kN m
ω1 =ω2 B B
A
M A
ω1 B
4m
B
F B ′ F 40kN B
L F 3q 5 P3 q 4 −FL =87 k L . 5N F B B ω1=2 8 − 4 = 8 B 8 IZ 3 IZ 3 E E 2 L L F 15 NP F F =q −F =7 .2 k L3 A FL B P2 2 L ω 2 = BL + + B q2 3 I 3 E E M = IZ −FE= 2 k2 IZ 2 L Z1 5 N m A B 2
EI1 P a A b
P3 a y= 1 3I E1
P P M A A y1 x y2
EI2 x y
(P ) ⋅a ab y = 2 E2 I
P2 a b a y=y +y = ( + ) 1 2 E 3 1 I2 I
(P ) 2 ab x= 2 I2 E
轴向拉压
对称弯曲
扭 转
内力分量 轴力F 轴力FN 应力分布规律 正应力均匀分布
A. 若取支反力 B为多余约束力,则变形协调条件是截面 的挠度 B=0; 若取支反力F 为多余约束力,则变形协调条件是截面B的挠度 的挠度ω B. 若取支承面 1对弹簧底面的作用力 c1为多余约束力,则变形协调条件为 若取支承面C 对弹簧底面的作用力F 为多余约束力, C1面的铅垂线位移 1=0; 面的铅垂线位移∆C C. 若取支承面 1对弹簧底面的作用力 c1为多余约束力,则变形协调条件为 若取支承面C 对弹簧底面的作用力F 为多余约束力, C1面的铅垂线位移 1等于弹簧的变形 面的铅垂线位移∆C 等于弹簧的变形; D. 若取弹簧与梁相互作用力为多余约束力,则变形协调条件为梁在 截面的挠 若取弹簧与梁相互作用力为多余约束力,则变形协调条件为梁在C截面的挠 等于弹簧的变形。 度ωc等于弹簧的变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
未知力个数与平衡方程数之差,称为超静定次数或静不定次数。
求解超静定问题,需要综合考察结构的平衡,变形协调和物理等三个方面。
§6—2 拉压超静定问题
一、静定与超静定问题
章 节
名 称
学时
备注
第六章
简单的超静定问题
1 教学目标:
2 教学内容:
3 重点、难点分析及解决策略
4教学方法:
5 教学进程:
§6—1 超静定问题及其解法
未知力个数等于独立的平衡方程数目,则仅由平衡方程即可解出全部未知力,这类问题称为静定问题,相应的结构称为静定结构。
未知力个数多于独立的平衡方程数目,则仅由平衡方程无法确定全部未知力,这类问题称为超静定问题或静不定问题,相应的结构称为超静定结构或静不定结构。
1、静定问题
杆件的轴力可以用静力平衡条件求出,这种情况称作静定问题。
2、超静定问题
只凭静力平衡方程已不能解出全部未知力,这种情况称做超静定问题。
二、超静定问题求解方法
1、超静定的次数
未知力数超过独立平衡方程数的数目,称作超静定的次数.
n=未知力的个数-独立平衡பைடு நூலகம்程的数目
2、求解超静定问题的步骤
(1)确定静不定次数;列静力平衡方程
(2)根据变形协调条件列变形几何方程
(3)将变形与力之间的关系(胡克定律)代入变形几何方程得补充方程
(4)联立补充方程与静力平衡方程求解