概率统计考试试卷及答案
(完整word版)《概率论与数理统计》期末考试试题及解答
一、填空题(每小题3分,共15分)1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________。
答案:0.3解:3.0)(=+B A B A P即)(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+=所以1.0)(=AB P9.0)(1)()(=-==AB P AB P B A P 。
2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______.答案:161-e解答:λλλλλ---==+==+==≤e X P e eX P X P X P 2)2(,)1()0()1(2由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故161)3(-==e X P3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为=)(y f Y _________。
答案:04,()()0,.Y Y X y f y F y f <<'===⎩其它解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=-因为~(0,2)X U,所以(0X F =,即()Y X F y F = 故04,()()0,.Y Y Xyf y F y f<<'===⎩其它另解在(0,2)上函数2y x=严格单调,反函数为()h y=所以04,()0,.Y Xyf y f<<==⎩其它4.设随机变量YX,相互独立,且均服从参数为λ的指数分布,2)1(-=>eXP,则=λ_________,}1),{min(≤YXP=_________。
概率论与数理统计期末考试试题及参考答案
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
《概率统计》试题及答案
西南石油大学《概率论与数理统计》考试题及答案 一、填空题(每小题3分,共30分) 1、“事件,,A B C 中至少有一个不发生”这一事件可以表示为 . 2、设()0.7,()0.3P A P AB ==,则()P A B =________________.3、袋中有6个白球,5个红球,从中任取3个,恰好抽到2个红球的概率 .4、设随机变量X 的分布律为(),(1,2,,8),8aP X k k ===则a =_________. 5、设随机变量X 在(2,8)内服从均匀分布,则(24)P X -≤<= .6、设随机变量X 的分布律为,则2Y X =的分布律是 .7、设随机变量X 服从参数为λ的泊松分布,且已知,X X E 1)]2)(1[(=-- 则=λ .8、设129,,,X X X 是来自正态总体(2,9)N -的样本,X 是样本均植,则X 服从的分布是 .二、(本题12分)甲乙两家企业生产同一种产品.甲企业生产的60件产品中有12件是次品,乙企业生产的50件产品中有10件次品.两家企业生产的产品混合在一起存放,现从中任取1件进行检验.求:(1)求取出的产品为次品的概率;(2)若取出的一件产品为次品,问这件产品是乙企业生产的概率. 三、(本题12分)设随机变量X 的概率密度为,03()2,3420,kx x x f x x ≤<⎧⎪⎪=-≤≤⎨⎪⎪⎩其它 (1)确定常数k ; (2)求X 的分布函数()F x ; (3)求712P X ⎧⎫<≤⎨⎬⎩⎭.四、(本题12分)设二维随机向量(,)X Y 的联合分布律为试求: (1) a 的值; (2)X 与Y 的边缘分布律; (3)X 与Y 是否独立为什么 五、(本题12分) 设随机变量X 的概率密度为(),01,2,12,0,.x x f x x x ≤<⎧⎪=-≤≤⎨⎪⎩其他 求()(),E X D X一、填空题(每小题3分,共30分) 1、ABC 或AB C 2、0.6 3、2156311C C C 或411或0.3636 4、1 5、136、2014131555kX p 7、1 8、(2,1)N -二、解 设12,A A 分别表示取出的产品为甲企业和乙企业生产,B 表示取出的零件为次品,则由已知有 1212606505121101(),(),(|),(|)1101111011605505P A P A P B A P B A ======== .................. 2分 (1)由全概率公式得112261511()()(|)()(|)1151155P B P A P B A P A P B A =+=⨯+⨯= ............................................ 7分 (2)由贝叶斯公式得22251()()5115()1()115P A P B A P A B P B ⨯=== ................................................................................. 12分三、(本题12分)解 (1)由概率密度的性质知 故16k =. ..................................................................................................................................................... 3分 (2)当0x ≤时,()()0xF x f t dt -∞==⎰;当03x <<时, 2011()()612xxF x f t dt tdt x -∞===⎰⎰; 当34x ≤<时, 320311()()223624x x t F x f t dt tdt dt x x -∞⎛⎫==+-=-+- ⎪⎝⎭⎰⎰⎰;当4x ≥时, 34031()()2162x t F x f t dt tdt dt -∞⎛⎫==+-= ⎪⎝⎭⎰⎰⎰;故X 的分布函数为220,01,0312()123,3441,4x x x F x x x x x ≤⎧⎪⎪<<⎪=⎨⎪-+-≤<⎪⎪≥⎩.......................................................................................... 9分(3) 77151411(1)22161248P X F F ⎧⎫⎛⎫<≤=-=-=⎨⎬ ⎪⎩⎭⎝⎭....................................................................... 12分四、解 (1)由分布律的性质知故0.3a = .................................................................................................................................................... 4分(2)(,)X Y 分别关于X 和Y 的边缘分布律为0120.40.30.3X p ........................................................................................................................ 6分120.40.6Y p .................................................................................................................................. 8分(3)由于{}0,10.1P X Y ===,{}{}010.40.40.16P X P Y ===⨯=,故所以X 与Y 不相互独立. ............................................................................................................................ 12分 五、(本题12分) 设随机变量X 的概率密度为 求()(),E X D X . 解 2131223201011()()d d (2)d 1.33x E X xf x x x x x x x x x +∞-∞⎡⎤⎡⎤==+-=+-=⎢⎥⎢⎥⎣⎦⎣⎦⎰⎰⎰................................ 6分122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰................................................................... 9分 221()()[()].6D XE X E X =-= ........................................................................................................ 12分一、填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。
江西师范大学大一公共课专业概率统计考试试卷及参考答案4
江西师范大学概率统计考试试卷及参考答案4一、单项选择题(5’)1.如图所示:答案:D2.如图所示:答案:A3.如图所示:答案:B4.如图所示:答案:A5.如图所示:答案:B6.设事件A和B为两个随机事件,且已知AP=BAP,则()⋃PB=()(=,7.08.0)),5.0(P AB可能为()。
A.0B.0.4C.0.2D.1/4答案:B7.从0、1、2···9这10个数字中,任意选出三个不同的数字,则3个数字中不含0和5的概率为()。
A.0B .1C .157D . 158答案:C8.在1-9的整数中可重复地随机取6个数字组成一个六位数,则六个数中不含奇数的概率为()。
A .0B .6694C .1D .94答案:B9.设A ,B 为任意两个事件,且0)(,>⊂B P B A ,则下列选项必然成立的是()。
A .)()(B A P A P <B .)()(B A P A P ≤C . )()(B A P A P >D . )()(B A P A P ≥ 答案:B 10. 如图所示:答案:B11. 如图所示:答案:A12. 如图所示:答案:B13. 在假设检验中,一般情况下()错误。
A、只犯第一类B、只犯第二类C、既可能犯第一类也可能犯第二类D、不犯第一类也不犯第二类答案:C14. 下列说法正确的是()。
A、如果被择假设是正确的,但作出的决策是拒绝被择假设,则犯了弃真错误B、如果被择假设是错误的,但作出的决策是接受被择假设,则犯了采伪错误C、如果零假设是正确的,但作出的决策是接受被择假设,则犯了弃真错误D、如果零假设是错误的,但作出的决策是接受被择假设,则犯了采伪错误答案:C15. 检验的显著性水平是()。
A、第一类错误概率B、第一类错误概率的上界C、第二类错误概率D、第二类错误概率的上界答案:B16. 如图所示:答案:C17.如图所示:答案:B18. 假设检验时,若增大样本容量,则犯两类错误的概率()。
概率统计试题及答案
概率论与数理统计复习试卷一、填空题(本题共10小题,每小题2分,共20分)1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P .2. 设随机变量X 的分布律为1234020104Xp ..a .b c+-,则常数c b a ,,应满足的条件为 .3. 已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率{}P X a ,Y b >>= .4. 设随机变量)2,2(~-U X ,Y 表示作独立重复m 次试验中事件)0(>X 发生的次数,则=)(Y E ,=)(Y D .5.设12n X ,X ,,X 是从正态总体),(~2σμN X 中抽取的样本,则概率()202221201037176i i P .X X.σσ=⎧⎫≤-≤=⎨⎬⎩⎭∑ .6、设n X X X ,,,21 为正态总体),(2σμN (2σ未知)的一个样本,则μ的置信度为1α-的单侧置信区间的下限为7、设θ∧是参数θ的估计,若θ∧满足________________,则称θ∧是θ的无偏估计。
8、设E (X )=-1,D (X )=4,则由切比雪夫不等式估计概率:P {-4<X<2}≥_______________.9、设随机变量X 服从二项分布()2.0,100B ,应用中心极限定理可以得到{}≈≥30X P (已知()9938.05.2=Φ)。
10、设样本,,,,21n X X X 取自正态总体()2,,0Nμσσ>X ______________。
二、单项选择题(本题共10小题,每小题2分,共20分)注意:在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写下面的表格内.............。
错选、多选或未选均无分。
1、如果 1)()(>+B P A P ,则 事件A 与B 必定( ))(A 独立;)(B 不独立;)(C 相容;)(D 不相容.2、已知人的血型为 O 、A 、B 、AB 的概率分别是0.4; 0.3;0.2;0.1。
概率论与数理统计试题库及答案(考试必做)
概率论与数理统计<概率论>试题一、填空题1.设 A 、B 、C 是三个随机事件。
试用 A 、B 、C 分别表示事件1)A 、B 、C 至少有一个发生2)A 、B 、C 中恰有一个发生3)A 、B 、C 不多于一个发生2.设 A 、B 为随机事件, P (A)=0.5,P(B)=0.6,P(B A)=0.8。
则P(B )A =3.若事件A 和事件B 相互独立, P()=,A αP(B)=0.3,P(A B)=0.7,则α=4. 将C,C,E,E,I,N,S 等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE 的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X 分布律为{}5(1/2)(1,2,)kP X k A k ===⋅⋅⋅则A=______________ 7. 已知随机变量X 的密度为()f x =⎩⎨⎧<<+其它,010,x b ax ,且{1/2}5/8P x >=,则a =________ b =________8. 设X ~2(2,)N σ,且{24}0.3P x <<=,则{0}P x <= _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为8081,则该射手的命中率为_________10.若随机变量ξ在(1,6)上服从均匀分布,则方程x 2+ξx+1=0有实根的概率是11.设3{0,0}7P X Y ≥≥=,4{0}{0}7P X P Y ≥=≥=,则{max{,}0}P X Y ≥= 12.用(,X Y )的联合分布函数F (x,y )表示P{a b,c}X Y ≤≤<=13.用(,X Y )的联合分布函数F (x,y )表示P{X a,b}Y <<=14.设平面区域D 由y = x , y = 0 和 x = 2 所围成,二维随机变量(x,y)在区域D 上服从均匀分布,则(x,y )关于X 的边缘概率密度在x = 1 处的值为 。
概率统计试题及答案(本科完整版)
填空题(每题2分,共20分)A1、记三事件为A ,B,C . 则用A ,B ,C 及其运算关系可将事件,“A ,B ,C 中只有一个发生”表示为 .A3、已知P(A)=0.3,P (B )=0.5,当A ,B 相互独立时,06505P(A B )_.__,P(B |A )_.__⋃==。
A4、一袋中有9个红球1个白球,现有10名同学依次从袋中摸出一球(不放回),则第6位同学摸出白球的概率为 1/10 。
A5、若随机变量X 在区间 (,)a b 上服从均匀分布,则对a c b <<以及任意的正数0e >,必有概率{}P c x c e <<+ =⎧+<⎪⎪-⎨-⎪+>⎪-⎩e,c e b b a b c ,c e b b aA6、设X 服从正态分布2(,)N μσ,则~23X Y -= N ( 3-2μ , 4σ2 ) .A7、设1128363X B EX DX ~n,p ),n __,p __==(且=,=,则 A8、袋中装有5只球,编号为1,2,3,4,5,在袋中同时取出3只,以X 表示取出3只球中的最大号码。
则X 的数学期望=)(X E 4.5 。
A9、设随机变量(,)X Y 的分布律为则条件概率 ===}2|3{Y X P 2/5 .A10、设121,,X X 来自正态总体)1 ,0(N , 2129285241⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=∑∑∑===i i i i i i X X X Y ,当常数k =1/4 时,kY 服从2χ分布。
A 二、计算题(每小题10分,共70分)A1、三台机器因故障要人看管的概率分别为0.1,0.2,0.15,求: (1)没有一台机器要看管的概率(2)至少有一台机器不要看管的概率 (3)至多一台机器要看管的概率解:以A j 表示“第j 台机器需要人看管”,j =1,2,3,则:P ( A 1 ) = 0.1 , P ( A 2 ) = 0.2 , P ( A 3 ) = 0.15 ,由各台机器间的相互独立性可得()()()()()123123109080850612P A A A P A P A P A ....=⋅⋅=⨯⨯=ABC ABC ABC()()()12312321101020150997P A A A P A A A ....⋃⋃=-=-⨯⨯= ()()()()()()1231231231231231231231233010808509020850908015090808500680153010806120941P A A A A A A A A A A A A P A A A P A A A P A A A P A A A .................=+++=⨯⨯+⨯⨯+⨯⨯+⨯⨯=+++=A2、甲袋中有n 只白球、m 只红球;乙袋中有N 只白球、M 只红球。
概率统计习题集(含答案)
第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P AB P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B = B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -= B .()A B B A -⊃C .()A B B A -⊂D .()A B B A -=8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。
概率论与数理统计考试试卷(附答案)
概率论与数理统计考试试卷(附答案)一、选择题(共6小题,每小题5分,满分30分) 1. 事件表达式B A -的意思是 ( ) (A) 事件A 与事件B 同时发生 (B) 事件A 发生但事件B 不发生 (C) 事件B 发生但事件A 不发生(D) 事件A 与事件B 至少有一件发生2. 假设事件A 与事件B 互为对立,则事件A B ( ) (A) 是不可能事件 (B) 是可能事件 (C) 发生的概率为1(D) 是必然事件3. 已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) (A) 自由度为1的χ2分布 (B) 自由度为2的χ2分布 (C) 自由度为1的F 分布(D) 自由度为2的F 分布4. 已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( )(A) X +Y ~P (4) (B) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D) X +Y ~N (0,3)5. 样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) (A) X 1+X 2+X 3是μ的无偏估计(B)1233X X X ++是μ的无偏估计(C) 22X 是σ2的无偏估计(D) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计6. 随机变量X 服从在区间(2,5)上的均匀分布,则X 的方差D (X )的值为( ) (A) 0.25(B) 3.5(C) 0.75(D) 0.5二、填空题(共6小题,每小题5分,满分30分。
把答案填在题中横线上) 1. 已知P (A )=0.6, P (B |A )=0.3, 则P (AB )= __________2. 三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为__________3. 一个袋内有5个红球,3个白球,2个黑球,任取3个球恰为一红、一白、一黑的概率为_____4. 已知连续型随机变量,01,~()2,12,0,.x x X f x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它 则P {X ≤1.5}=_______.5. 假设X ~B (5, 0.5)(二项分布), Y ~N (2, 36), 则E (2X +Y )=__________6. 一种动物的体重X 是一随机变量,设E (X )=33, D (X )=4,10个这种动物的平均体重记作Y ,则D (Y )=_____________________ _______三、有两个口袋,甲袋中盛有两个白球,一个黑球,乙袋中盛有一个白球,两个黑球。
概率论与数理统计试卷及参考答案
概率论与数理统计 试卷及其答案一、填空题(每空4分,共20分)1、设随机变量ξ的密度函数为2(0,1)()0ax x x φ⎧∈=⎨⎩其它,则常数a =3 。
2、设总体2(,)XN μσ,其中μ与2σ均未知,12,,,n X X X 是来自总体X 的一个样本,2σ的矩估计为211()i ni i X X n ==-∑ 。
3、已知随机变量X 的概率分布为{},1,2,3,4,5,15kP X k k ===则1()15P X E X ⎧⎫<=⎨⎬⎩⎭___ 0.4___。
4、设随机变量~(0,4)X U ,则(34)P X <<= 0.25 。
5、某厂产品中一等品的合格率为90%,二等品合格率80%,现将二者以1:2的比例混合,则混合后产品的合格率为 5/6 。
二、计算题(第1、2、3题每题8分,第4题16分,第5题16分,共56分)1、一批灯泡共20只,其中5只是次品,其余为正品。
做不放回抽取,每次取一只,求第三次才取到次品的概率。
解:设i A 表示第i 次取到次品,i=1,2,3,B 表示第三次才取到次品, 则123121312()()()()()1514535201918228P B P A A A P A P A A P A A A ===⨯⨯=2、设X 服从参数为λ的指数分布,其概率密度函数为0()00xe xf x x λλ-⎧≥=⎨<⎩,求λ的极大似然估计。
解:由题知似然函数为:11()(0)i niii x i nx ni i L eex λλλλλ==-=-=∑=∏=≥对数似然函数为:1ln ()ln i ni i L n x λλλ===-∑由1ln ()0i ni i d L n x d λλλ===-=∑,得:*11i nii nxxλ====∑ 因为ln ()L λ的二阶导数总是负值,故*1Xλ=3、设随机变量X 与Y 相互独立,概率密度分别为:,0()0,0x X e x f x x -⎧>=⎨≤⎩,1,01()0,Y y f y <<⎧=⎨⎩其他, 求随机变量Z X Y =+的概率密度解:()()()Z X Y f z f x f z x dx +∞-∞=-⎰1,01,10,0z x z x ze dy z e dy z z ---⎧<<⎪⎪=≥⎨⎪≤⎪⎩⎰⎰ 11,01,10,0z z z e z e e z z ---⎧-<<⎪=-≥⎨⎪≤⎩4、 设随机变量X 的密度函数为,01,()2,12,0,x x f x x x <≤⎧⎪=-<≤⎨⎪⎩其它.求(),()E X D X 。
概率论与数理统计期末考试试卷答案
概率论与数理统计期末考试试卷答案一、选择题(每题5分,共25分)1. 下列事件中,不可能事件是()A. 抛掷一枚硬币,正面朝上B. 抛掷一枚硬币,正面和反面同时朝上C. 抛掷一枚骰子,出现7点D. 抛掷一枚骰子,出现1点答案:C2. 设A、B为两个事件,若P(A-B)=0,则下列选项正确的是()A. P(A) = P(B)B. P(A) ≤ P(B)C. P(A) ≥ P(B)D. P(A) = 0答案:B3. 设随机变量X服从二项分布B(n, p),则下列结论正确的是()A. 当n增加时,X的期望值增加B. 当p增加时,X的期望值增加C. 当n增加时,X的方差增加D. 当p增加时,X的方差减少答案:B4. 设X~N(μ, σ^2),下列选项中错误的是()A. X的期望值E(X) = μB. X的方差D(X) = σ^2C. X的概率密度函数关于X = μ对称D. 当σ增大时,X的概率密度函数的峰值减小答案:D5. 在假设检验中,显著性水平α表示()A. 原假设为真的情况下,接受原假设的概率B. 原假设为假的情况下,接受原假设的概率C. 原假设为真的情况下,拒绝原假设的概率D. 原假设为假的情况下,拒绝原假设的概率答案:C二、填空题(每题5分,共25分)6. 设A、B为两个事件,P(A) = 0.5,P(B) = 0.6,P(A∩B) = 0.3,则P(A-B) = _______。
答案:0.27. 设随机变量X服从泊松分布,已知P(X=1) = 0.2,P(X=2) = 0.3,则λ = _______。
答案:1.58. 设随机变量X~N(μ, σ^2),若P(X<10) = 0.2,P(X<15) = 0.8,则μ = _______。
答案:12.59. 在假设检验中,若原假设H0为μ=10,备择假设H1为μ≠10,显著性水平α=0.05,则接受原假设的临界值是_______。
答案:9.5或10.510. 设X、Y为两个随机变量,若X与Y相互独立,则下列选项正确的是()A. E(XY) = E(X)E(Y)B. D(X+Y) = D(X) + D(Y)C. D(XY) = D(X)D(Y)D. 上述选项都正确答案:D三、解答题(每题25分,共100分)11. 设某班有50名学生,其中有20名男生,30名女生。
《概率统计》期末考试题(有答案)
《概率论》期末 A 卷考试题一 填空题(每小题 2分,共20 分)1.甲、乙两人同时向一目标射击,已知甲命中的概率为0.7,乙命中的概率为0。
8,则目标被击中的概率为( ).2.设()0.3,()0.6P A P AB ==,则()P AB =( ).3.设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x a x x F ,则=a ( ),()6P X π>=( ).4.设随机变量X 服从参数为2=λ的泊松分布,则=-)1(2X E ( )。
5.若随机变量X的概率密度为236()x X p x -=,则(2)D X -=( )6.设Y X 与相互独立同服从区间 (1,6)上的均匀分布,=≥)3),(max(Y X P ( )。
7.设二维随机变量(X ,Y )的联合分布律为X Y 1 2 •i p0 a 121 61 131b 则 ( ), ( ).a b ==8.设二维随机变量(X ,Y )的联合密度函数为⎩⎨⎧>>=--其它00,0),(2y x ae y x f yx ,则=a ( )9.若随机变量X 与Y 满足关系23X Y =-,则X 与Y 的相关系数XY ρ=( )。
10。
设二维随机变量)0,4,3,2,1(~),(N Y X ,则=-)52(Y X D ( ).二.选择题(每小题 2分,共10 分)1.设当事件C B 和同时发生时事件A 也发生,则有( )。
)()()(1)()()()(1)()()()()()()(C B P A P d C P B P A P c C P B P A P b BC P A P a =-+≤-+≥=2.假设事件B A 和满足1)|(=B A P ,则( ). (a ) B 是必然事件 (b )0)(=-A B P (c) B A ⊂ (d ) 0)|(=B A P 3.下列函数不是随机变量密度函数的是( ).(a )sin 0()20 x x p x π⎧<<⎪=⎨⎪⎩,,其它 (b ) ⎩⎨⎧<<=其它0102)(x x x p(c) sin 0()0 x x p x π<<⎧=⎨⎩,,其它 (d) ⎩⎨⎧<<=其它103)(2x x x p4.设随机变量X 服从参数为2=λ的泊松分布,则概率==)(EX X P ( ).112211()()2 () ()222a eb ec ede ---- 5.若二维随机变量(X ,Y )在区域{(,)/01,01}D x y x y =<<<<内服从均匀分布,则1()2P X Y X ≥>=( )。
概率统计考试试卷及答案
概率统计考试试卷及答案一、 填空题(每小题4分,共20分)1. 设)(~λP X ,且)()(21===X P X P ,则_________)(==3X P .2. 设随机变量X 的分布函数)(,)(+∞<<-∞+=-x eA x F x1,则___=A3. 已知,)|(,)|(,)(213141===B A P A B P A P 则_____)(=⋃B A P 4. 已知随机变量),,(~10U X 则随机变量X Y ln 2-=的密度函数___)(=y f Y5. 设随机变量X 与Y 相互独立,且,2σ==DY DX 则____)(=-Y X D 42 二、 计算下列各题(每小题8分,共40分)1. 设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>=-000x x e x f x ,,)( 已知Y=2X ,求E(Y ), D(Y ).2. 两封信随机地投入标号为I ,II,III ,IV 的四个邮筒,求第二个邮筒恰好投入1封信的概率.3. 设X,Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y的概率密度为⎪⎩⎪⎨⎧≤>=-000212y y e y f yY ,,)( 求含有a 的二次方程022=++Y Xa a 有实根的概率。
4. 假设91X X ,, 是来自总体),(~220N X 的简单随机样本,求系数a,b ,c 使 298762543221)()()(X X X X c X X X b X X a Q ++++++++=服从2χ分布,并求其自由度.5. 某车间生产滚珠,从长期实践知道,滚珠直径X 服从正态分布。
从某天产品里随机抽取6个,测得直径为(单位:毫米)14.6, 15。
1, 14。
9, 14。
8, 15.2, 15.1 若总体方差0602.=σ, 求总体均值μ的置信区间(9610502.,./==ααz )三、(14分)设X,Y 相互独立,其概率密度函数分别为⎩⎨⎧≤≤=其他 ,,)(0101x x f X ,⎪⎩⎪⎨⎧≤>=-000y y e y f y Y ,,)( 求X+Y 的概率密度四、(14分)设⎪⎩⎪⎨⎧≤<-=其它,),()(~0063θθθx x xx f X ,且n X X ,, 1是总体X的简单随机样本,求 (1)θ的矩估计量θ,(2) )(θD五、(12分)据以往经验,某种电器元件的寿命服从均值为100小时的指数分布,现随机地取16只,设它们的寿命是相互独立的,求这16只元件的寿命的总和大于1920小时的概率.(7881080.).(=Φ)普通本科概率统计期末考试试卷答案:一、填空题(每小题4分,共20分)1、243e -;2、 1;3、13;4、/21,020,0y e y y -⎧>⎪⎨⎪≤⎩; 5、220σ二、计算下列各题(每小题8分,共40分) 1、解:2()EY xf x dx +∞-∞=⎰。
《概率论与数理统计》练习题试卷及答案解析
《概率论与数理统计》练习题试卷及答案解析一.单项选择题(每小题2 分,共 20 分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )B A .A 1A 2 B .21A A C .21A A D .21A A 2.则( )DA .121=a B .61=a C .121=a D .41=a 3.设事件A 与B 相互独立,则有( )CA .0)(=AB P B .)()()(B P A P B A P +=C .)()()(B P A P AB P =D .)()(A P A B P =4.设随机变量X 服从正态分布),(2σμN ,则其概率密度函数的最大值为( )D A .0 B .1 C .π21 D .212)2(-πσ5. 设随机变量X 与Y 互相独立, 且X ~),,(211σa N Y ~),,(222σa N 则Y X Z +=仍服从正态分布,且( ) DA . Z ~),(22211σσ+a N B . Z ~),(2121σσa a N +C . Z ~),(222121σσa a N + D . Z ~),(222121σσ++a a N6.设随机变量X 服从[-1,2]上的均匀分布,则X 的概率密度)(x f 为( )AA .⎪⎩⎪⎨⎧≤≤-=.,0;21,31)(其他x x f B .⎩⎨⎧≤≤-=.,0;21,3)(其他x x fC .⎩⎨⎧≤≤-=.,0;21,1)(其他x x fD . ⎪⎩⎪⎨⎧≤≤--=.,0;21,31)(其他x x f7.设,21X X ,3X 是总体~X ()2,σμN 的样本,则μ的无偏估计量是( )AA .3212110351X X X ++ B .321316131X X X ++ C .3211274131X X X ++ D .3211513151X X X ++8.某店有7台电视机,其中2台为次品,今从中随机地抽取3台,设X 为其中次品数,则数学期望EX =( )D A .73 B .74 C .75 D .76 9.设总体X ~N (2,σμ),X 1,X 2,…,X 10为来自总体X 的样本,X 为样本均值,则X ~( )CA .)10(2σμ,N B .)(2σμ,N C .)10(2σμ,N D .)10(2σμ,N 10.在假设检验中,H 0为原假设,H 1为备择假设,则第一类错误是( )BA. H 1成立,拒绝H 0B. H 0成立,拒绝H 0C. H 1成立,拒绝H 1D. H 0成立,拒绝H 1 二.填空题(每空 2 分,共 20 分)1.连续抛一枚均匀硬币4次,则正面至少出现一次的概率为___________.1615 2.设A ,B 为互不相容的两个随机事件,P (A )=0.3,P (B )=0.4,则)(B A P ⋃)=________.0.73.设随机变量X 的概率密度⎪⎩⎪⎨⎧≤≤=,,0;10,A )(2其他x x x f 则常数A=_________.34.设随机变量X 是服从区间(μ,2)上的均匀分布,且1=EX ,则μ= . 1 5.设X 为连续随机变量,c 为一个常数,则P {X =c }=____________.06.设随机变量X 服从二项分布),(p n B ,且,44.1,4.2==DX EX 则二项分布的参数p = . 0.47.10X =E ,4=DX ,若{}04.010≤≥-c X P ,则常数c = . 108.已知E (X )=1,E (Y )=2,E (XY )=3,则X ,Y 的协方差Cov (X ,Y )=_____________.2 9.设二维随机变量(X,Y)的分布律为则P{XY=0}=___________。
《概率论与数理统计》期末复习试卷4套+答案
1、(10分)甲箱中有 个红球, 个黑球,乙箱中有 个黑球, 个红球,先从甲箱中随机地取出一球放入乙箱。混合后,再从乙箱取出一球,
(1)求从乙箱中取出的球是红球的概率;
(2)若已知从乙箱取出的是红球,求从甲箱中取出的是黑球的概率;
2、(8分)设二维随机变量的联合概率密度为:
求关于 的边缘概率密度,并判断 是否相互独立?
7、(8分)设有一种含有特殊润滑油的容器,随机抽取9个容器,测其容器容量的样本均值为10.06升,样本标准差为0.246升,在 水平下,试检验这种容器的平均容量是否为10升?假设容量的分布为正态分布。
( , )
第二套
一、 判断题(2分 5)
1、设 , 是两事件,则 。()
2、若 是离散型随机变量,则随机变量 的取值个数一定为无限个。()
2、(8分)设二维随机变量(X,Y)的联合概率密度为:
求边缘概率密度 ,并判断 与 是否相互独立?
3、(8分)设随机变量 的分布函数为:
求:(1) 的值;
(2) 落在 及 内的概率;
4、(8分)设随机变量 在 服从均匀分布,求 的概率密度;
5、(10分)设 及 为 分布中 的样本的样本均值和样本方差,求 ( )
第一套
一、 判断题(2分 5)
1、设 , 是两事件,则 。()
2、若随机变量 的取值个数为无限个,则 一定是连续型随机变量。()
3、 与 独立,则 。()
4、若 与 不独立,则 。()
5、若 服从二维正态分布, 与 不相关与 与 相互独立等价。()
二、选择题(3分 5)
1、对于任意两个事件 和 ()
5、袋中有5个球(3个新,2个旧),每次取一个,无放回地抽取两次,则第二次取到新球的概率是( )
概率论与数理统计期末考试试题及解答
概率论与数理统计期末考试试题及解答概率论与数理统计》期末试题一、填空题(每小题3分,共15分)1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.9.解:由题意可得P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1-e^(-6)。
解:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ),P(X=2)=λ^2e^(-λ)/2,且P(X≤1)=4P(X=2),可得λ=1,因此P(X=3)=λ^3e^(-λ)/3!=1-e^(-6)。
3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.解:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=P(-y≤X≤y)=F_X(y)-F_X(-y)。
因为X~U(0,2),所以F_X(-y)=0,即F_Y(y)=F_X(y)。
又因为f_Y(y)=F_Y'(y)=f_X(y),所以f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.另解:在(0,2)上函数y=x严格单调,反函数为h(y)=y,所以f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1/2,0<y<2;f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1,2<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-2),则λ=2,P{min(X,Y)≤1}=1-e^(-2)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率统计考试试卷及答案
一、 填空题(每小题4分,共20分)
1. 设)(~λP X ,且)()(21===X P X P ,则_________)(==3X P .
2. 设随机变量X 的分布函数)(,)(+∞<<-∞+=
-x e
A x F x
1,则___=A
3. 已知,)|(,)|(,)(21
31
41
===B A P A B P A P 则_____)(=⋃B A P
4. 已知随机变量),,(~10U X 则随机变量X Y ln 2-=的密度函数___)(=y f Y
5. 设随机变量X 与Y 相互独立,且,2σ==DY DX 则____)(=-Y X D 42 二、 计算下列各题(每小题8分,共40分)
1. 设随机变量X 的概率密度为⎪⎩
⎪⎨⎧≤>=-000
x x e x f x ,,)( 已知Y=2X,求E(Y), D(Y).
2. 两封信随机地投入标号为I,II,III,IV 的四个邮筒,求第二个邮筒恰好投入1封信的概率。
3. 设X,Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为
⎪⎩
⎪
⎨⎧≤>=-000212y y e y f y
Y ,,)( 求含有a 的二次方程022=++Y Xa a 有实根的概率。
4. 假设91X X ,, 是来自总体
)
,(~220N X 的简单随机样本,求系数a,b,c 使
298762543221)()()(X X X X c X X X b X X a Q ++++++++=服从2χ分布,并求其自由
度。
5. 某车间生产滚珠,从长期实践知道,滚珠直径X 服从正态分布。
从某天产品里随机抽取6个,测得直径为(单位:毫米)14.6, 15.1, 14.9, 14.8, 15.2, 15.1 若总体方差0602.=σ, 求总体均值μ的置信区间(9610502.,./==ααz )
三、(14分)设X,Y 相互独立,其概率密度函数分别为
⎩⎨⎧≤≤=其他 ,,)(0101x x f X ,⎪⎩
⎪⎨⎧≤>=-000
y y e y f y Y ,,)( 求X+Y 的概率密度
四、(14分)设⎪⎩
⎪⎨⎧≤<-=其它,),()(~0063
θ
θθx x x
x f X ,且n X X ,, 1是总体X 的简单随机样本,
求 (1)θ的矩估计量θ
,(2) )(θ
D
五、(12分)据以往经验,某种电器元件的寿命服从均值为100小时的指数分布,现随机地取16只,设它们的寿命是相互独立的,求这16只元件的寿命的总和大于1920小时的概率。
(7881080.).(=Φ)
普通本科概率统计期末考试试卷答案:
一、填空题(每小题4分,共20分)
1、243e -;
2、 1;
3、13;
4、/21,020,
0y e y y -⎧>⎪⎨⎪≤⎩; 5、2
20σ
二、计算下列各题(每小题8分,共40分) 1、解:2()EY xf x dx +∞
-∞
=⎰ 。
2分
22x xe dx +∞
-=
=⎰。
4分
2
2
()()()D Y E Y E Y =-
224()x x e dx E Y +∞
--∞
=
-⎰。
6分
4= 。
8分
2、解:1
23
44
C P ⋅=⋅ 。
4分
3
8
=。
8分 3、解:有题意知,X 的概率密度为 1,01
()0,X x f x <<⎧=⎨
⎩其他。
2分
于是(,)X Y 的联合概率密度为
12
1,01,0
(,)()()20,y X Y e x y f x y f x f y -⎧<<>⎪=⋅=⎨⎪⎩
其他 。
4分
于是原方程有实根的概率即为
2
{440}P X Y -≥2
{}P Y X =≤
(,)G
f x y dxdy =⎰⎰
2
1
1
20
12
x y dx e dy -=⎰⎰。
6分
1(1)0.5)=Φ- 。
8分
4、解:因为91,,X X 为来自于总体X ~N (0,22
)的简单样本,故有
212~(0,22)X X N +⋅,2345~(0,32)X X X N ++⋅,
25678~(0,42)X X X X N +++⋅ 。
2分
于是有
~(0,1)N
~(0,1)N ,
~(0,1)N 。
4分
22
22
~(3)χ++ 。
6分
所以 8a =
,12b =,16
c = 。
8分 5、解:因2
σ已知,统计量取为X ,显然
~(0,1)N 。
2分
由标准分布的上α分位点的定义,有
/21P z αα⎫⎪
<=-⎬⎪⎭
即
/2/21P X z X z ααμα⎧⎫
<<=-⎨⎬⎩
⎭。
4分 于是μ的置信区间为
/2/2(,)X z X z αα-
+
又
/20.05, 1.96,6,z n αασ====1
(14.615.114.914.815.215.1)14.956
X =+++++= 。
6分 所以μ的置信区间 [14.75, 15.15] 。
8分 三、解:因,X Y 相互独立,故
,01,0(,)()()0,y X Y e x y f x y f x f y -⎧≤≤>=⋅=⎨⎩其他。
4分
于是有
(){}(,)Z G
F z P X Y Z f x y dxdy =+≤=⎰⎰ 。
6分 当0z ≤时,()0Z F z =; .。
8分 当01z <<时,0
()1z
z x
y z Z F z dx e dy z e ---==+-⎰
⎰
; 。
10分
当1z ≥时,1
10
()1z x
y z z Z F z dx e dy e e ----==+-⎰⎰
; 。
12分
所以
1,1
()1,010,z z z
Z e e z f z e z ---⎧-≥⎪=-<<⎨⎪⎩其他 。
14分
四、解:(1)因30
6()()()x
E X xf x dx x x dx θθθ
+∞-∞
==⋅-⎰⎰ 。
2分
2
θ=。
4分 所以 11ˆ22n
i i X X n θ===⋅∑ 。
7分 (2)222211
44ˆ()()[()()]n n i i i i i D D X E X E X n n θ===⋅=⋅-∑∑ 。
9分 22230461(())4
x x x dx n θθθθ=⋅--⎰ 。
11分
2
2
5n θ=
n
52
θ 。
14分
五、解:记X 为元件寿命,由题意知:~()X e θ,于是有
()E X θ=,2
()D X θ= 。
2分 又()100E X =,故100θ=。
。
4分 由独立同分布的中心极限定理知:
16
16
16
()
16100(0,1)~
i
i i
X
E X X
N --⋅=
∑∑∑近似地。
6分 于是有 16
1
{
1920}i
i P X
=>∑
16
16100
19201600
}400
i
X
P -⋅-=>
∑ 。
8分
16
1
1600
1{0.8}400
i
i X
P =-=-≤∑ 。
10分
1(0.8)0.2119=-Φ= 。
12分 青年人首先要树雄心,立大志,其次就要决心作一个有用的人才。