人教版初二数学培优竞赛讲炼教程:三角形总复习

合集下载

数学八年级上册培优第01讲 三角形

数学八年级上册培优第01讲  三角形

知识导图第一讲:三角形概述教学内容本讲内容涉及三角形角度计算的知识点,在人教版课本第十一章中学习,在本系列教材初二第1册第一节中已学习过.专题1 三角形角度转换基本图形的应用专题2 三角形角平分线基本模型专题3 三角形内、外角度转换专题4 角度转换基本模型与平面直角坐标系综合应用专题讲解专题1:角形角度转换基本图形的应用【例1】如图所示,已知∠C=54°,∠E=30°,∠BDF=130°,求∠A的度数.AECFB D(2012,江岸区期末)【解析】【归纳总结】①题型特征: ②方法与技巧:练1.1:如图,在△ABC 中,AD 平分∠BAC ,P 为线段AD 上的一个动点,PE ⊥AD 交直线BC 于点E . (1)若∠B =35°,∠ACB =85°,求∠E 的度数;(2)当P 点在线段AD 上运动时,猜想∠E 与∠B 、∠ACB 的数量关系,写出结论无需证明.BC AD P练1.2:如图,已知∠CGE =120°,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.αBCGEAFD练1.3:如图,求:∠A +∠B +∠C +∠D +∠E +∠F = 度.A CD EF B PI专题2:三角形角平分线的基本模型【例2】如图,△ABC 中,∠A =50°,点P 是∠ABC 与∠ACB 平分线的交点.AC B PAC BDEP AC B FP图1 图2 图3(1)求∠P 的度数;(2)猜想∠P 与∠A 有怎样的大小关系?(3)若点P 是∠CBD 与∠BCE 平分线的交点,∠P 与∠A 又有怎样的大小关系? (4)若点P 是∠ABC 与∠ACF 平分线的交点,∠P 与∠A 又有怎样的大小关系? 【解析】【归纳总结】①题型特征: ②方法与技巧:练2.1:如图,BE 是∠ABD 的角平分线,CF 是∠ACD 的角平分线,BE 与CF 交于点G ,∠BDC =140°,∠BGC =110°,求∠A 的度数.D BA CGEF练2.2:(1)如图1,有一块直角三角板XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .△ABC 中,∠A =30°,则∠ABC +∠ACB = ,∠XBC +∠XCB = .B X ZYAC图1(2)如图2,改变直角三角板XYZ 的位置,使三角板XYZ 的两条直角边XY 、XZ 仍然分别经过B 、C ,那么∠ABX +∠ACX 的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX +∠ACX 的大小.B X ZYAC图2练2.3:(1)如图1,求证:∠CDB =∠A +∠B +∠C .C ABD图1(2)如图2,∠ACD 的平分线与∠ABD 的平分线交于点E .试问∠A ,∠CEB 和∠CDB 有何数量关系?为什么?C ABD E图2(3)如图3,若∠ACE=13∠ACD,∠ABE=13∠ABD,猜想∠A,∠CEB和∠CDB之间的数量关系为.(写出结论,不必证明)E CD 图3【变式】已知△ABC中,∠BAC=100°.B AOBAO1O图1 图2 图3(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2,…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.(2014,光谷实验10月月考)专题3:三角形内、外角度的转换【例3】将△ABC沿EF折叠,使点C落在点C′处.(1)如图1,试问∠1,∠2与∠C之间有何关系?为什么?(2)若点C′在△ABC的外部,如图2所示,试问∠1,∠2与∠C之间又有何关系?为什么?21AC FBEC'21ACFBE C'图1 图2(2014,江汉区期末)【解析】【归纳总结】①题型特征: ②方法与技巧:练3.1:如图,△ABC 中,∠ABC =∠ACB ,D 为BC 边上一点,E 为直线AC 上一点,且∠ADE =∠AED ; (1)求证:∠BAD =2∠CDE ;BACDE(2)如图,若D 在BC 的反向延长线上,其他条件不变,则(1)中的结论是否仍然成立?证明你的结论.BACDE【例4】如图,BP 是∠ABC 的平分线,DP 是∠CDA 的平分线,BP 与DP 交于P ,右∠A =40°,∠C =76°,求∠P 的大小.ABDCP【解析】【归纳总结】①题型特征: ②方法与技巧:练3.2:如图,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD ,AB 分别相交于M ,N .在图中,(1)若∠D =40°,∠B =36°,试求∠P 的度数;(2)—般性结论:若∠D 的度数为x ,∠B 的度数为y ,则∠P 的度数为 .ABDCMP N【例5】如图,△ABC 中,∠B >∠C ,AD 是BC 边上的高,AE 是∠BAC 的平分线.求证:∠DAE =12(∠B -∠C ).BCAD E【解析】【归纳总结】①题型特征:②方法与技巧:练3.3:如图(1),△ABC中,AD是角平分线,AE⊥BC于点E.(1)若∠C=80°,∠B=50°,求∠DAE的度数.(2)若∠C>∠B,试说明∠DAE=12(∠C-∠B).(3)如图(2)若将点A在AD上移动到A′处,A′E⊥BC于点E.此时∠DAE变成∠DA′E,(2)中的结论还正确吗?为什么?BACD E BACDA'E图1 图2专题4:角度的综合和实际应用【例6】上午8时,一条船从海岛A出发,以15海里每小时的速度向正北航行,10时到达海岛B处,从A,B望灯塔C,测得∠NAC=43°,∠NBC=86°,则海岛B与灯塔C相距海里.BCAN【解析】【归纳总结】①题型特征:②方法与技巧:练4.1:(1)如图,B处在A处的南偏西65°方向,C处在A处的南偏东15°方向,C处在B处的北偏东85°方向,则∠ACB 的度数是( ).ACB北南A .80°B .75°C .85°D .70° (2)如图,C 岛在A 岛的北偏东50°方向,B 岛在A 岛的北偏东80°方向,C 岛在B 岛的北偏西40°方向,从C 岛看A ,B 两岛的视角∠ACB 是多少度?【原题40°,个人认为改为80°更适合.】D ABC E北北(2014,光谷实验10月月考)【例7】如图,△ABC 中,AD 是高,AE ,BF 是角平分线,BF 交AE ,AD 于点G ,H ,∠C >∠ABC ,下列结论:①∠AGB =90°+12∠C ; ②∠C -∠ABC =2∠EAD ; ③∠BFC +∠AEC =180°;④∠AGB +∠BHD -∠EAD =180°, 其中正确的有( ). BACE D GHFA .1个B .2个C .3个D .4个 【解析】【归纳总结】①题型特征: ②方法与技巧:练4.2:如图,在Rt △ABC 中,∠ACB =90°,∠CAB =20°,∠ACB 的平分线与外角∠ABD 的平分线交于点E ,连接AE ,则∠AEC 的度数为( ).C DA EA.10°B.30°C.35°D.45°(青山,13-14期中考试)专题5:角度转换基本模型与平面直角坐标系综合应用【例8】如图1,△AOB与△COD是两个可以完全重合的直角三角形,其中A,B,C,D四点均在坐标轴上.(1)如果B(0,一3),S△COD=9,请写出点A,C,D的坐标;(2)如图2,∠ADC的平分线DE所在直线与∠OAB的平分线交于F,求∠F的度数;(3)如图3,M是线段AD上任意一点(不同于点A,D),作MN⊥x轴交AF于点N,作∠ADE与∠ANM 的平分线交于点P,在(2)的条件下,能否求出∠P的度数?说出你的理由,若能求出,请写出解答过程;若不能,请说明理由.图1 图2 图3(2013,江岸区期末)【解析】(1)∵△COD与△AOB完全重合,∴OB=OD,OC=OA;∵B(0,一3),∴OB=3,则OD=3,∴D(3,0);∵S△COD=9=12·OD·OC,∴OC=6,∴C(0,6),A(6,0).(2)∵DE平分∠ADC,AF平分∠OAB,∴设∠CDE=∠EDA=x,∠DAF=∠BAF=y;∵x=y+∠F,而∠OAB=∠OCD=2y,∴2x=2y+90°,∴x=y+45°,∴∠F=45°.(3)∵DP平分∠EDA,PN平分∠MNA,∴设∠EDP=∠PDA=x,∠MNP=∠PNA=y,则∠P=90°-x-y;而∠F+180°-2x+180°-2y+90°=360°,∴2x+2y=90°+45°=135°,∴x+y=67.5°,∴∠P=90°-67.5°=22.5°.【归纳总结】①题型特征:②方法与技巧:练5.1:如图1,在平面直角坐标系中,A(0,1),B(4,1),C为x轴正半轴上一点,且AC平分∠OAB.(1)求证:∠OAC=∠OCA;图1(2)如图2,若分别作∠AOC的三等分线及∠OCA的外角的三等分线交于点P,即满足∠POC=13∠AOC,∠PCE=13∠ACE,求∠P的大小;图2(3)如图3,若射线OP,CP满足∠POC=1n∠AOC,∠PCE=1n∠ACE,猜想∠OPC的大小,并证明你的结论(用含n的式子表示).图3 (2013,江岸区期末)分级检测 A 级1.画△ABC 的BC 边上的高AD ,下列画法中正确的是( ).ACDA BC DD A BCABCDA B C D2.如果在△ABC 中,∠A =70°-∠B ,则∠C 等于( ). A .35° B .70° C .110° D .140°3.多边形内角和是1080°,则这个多边形的边数为( ). A .6 B .7 C .8 D .94.如图,△ABC 中,∠B =45°,∠C =75°,AD 是BC 边上的高,AE 是∠BAC 的平分线,则∠DAE 的值为( ).BD ACEA .15°B .30°C .45°D .25°5.如果一个三角形的两边长分别是2 cm 和7 cm ,且第三边边长为奇数,则三角形的周长是 cm . 6.(1)在△ABC 中,∠C =60°,∠A =3∠B ,则∠A = ,∠B ;(2)已知一个等腰三角形两内角的度数比为1∶7,则这个等腰三角形的顶角的度数为 ; (3)在△ABC 中,∠A ∶∠B ∶∠C =1∶3∶5,则∠A = ,∠B ,∠C .7.一个多边形的内角和与外角和之比是5∶2,则这个多边形的边数为 .8.如图,△ACD 的外角是∠ =∠ +∠ ,△ABD 的外角是∠ =∠ +∠ .AB CD9.如图,∠ABC =40°,∠ACB =60°,BO ,CO 平分∠ABC 和∠ACB ,DE 过O 点,且DE ∥BC ,则∠BOC = °.BACOD E10.如图,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.A BCD EF11.如图,求∠A +∠B +∠C +∠D +∠E +∠F 的度数.A B EDF HCG IB 级1.(1)在图1中,猜想∠A +∠B +∠C +∠A 1+∠B 1+∠C 1= °; (2)试说明你猜想的理由.(3)如果把图1称为二环三角形,则它的内角和为∠A +∠B +∠C +∠A 1+∠B 1+∠C 1;把图2称为二环四边形,则它的内角和为∠A +∠B +∠C +∠D +∠A 1+∠B 1+∠C 1+∠D 1;把图3称为二环五边形,则它的内角和为∠A +∠B +∠C +∠D +∠E +∠A 1+∠B 1+∠C 1+∠D 1+∠E 1,请你猜一猜,二环n 边形的内角和为 .(只写结果)BCA 1B 1C 1A AB CDA 1B 1C 1D 1A B DE A 1B 1C 1D 1E 1图1 图2 图32.如图1,△ABC 中,∠ABC 的平分线与∠ACB 的外角∠ACD 的平分线交于A 1. (1)分别计算出当∠A 为70°,80°时∠A 1的度数;(2)根据(1)中的计算结果写出∠A 与∠A 1之间的数量关系: (不需证明); (3)∠A 1BC 的平分线与∠A 1CD 的平分线交于A 2,∠A 2BC 与∠A 2CD 的平分线交于A 3,如此继续下去可得A 4,…,A n ,请写出∠A 6与∠A 之间的数量关系: (不需证明); (4)如图2,若E 为BA 延长线上一动点,连EC ,∠AEC 与∠ACE 的平分线交于Q ,求∠Q +∠A 1的度数.BC AD A 1B C A DA 1EQ图1 图2课后反馈1.一个三角形的两个内角分别是55°和65°,不可能是这个三角形外角的是( ). A .115° B .120° C .125° D .130°2.如图,已知∠1=20°,∠2=25°,∠A =35°,则∠BDC 的度数为( ).21DAB A .50°B .80°C .70°D .60°3.下列语句中,正确的是( ). A .三角形的外角大于它的内角 B .三角形的一个外角等于它的两个内角 C .三角形的一个内角小于和它不相邻的外角 D .三角形的外角和为180°4.如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2= .215.如图,∠1+∠2+∠3+∠4=( ).40°3421BC EAD A .100°B .200°C .280°D .300°6.如图,AC ,BD 相交于点O ,BP ,CP 分别平分∠ABD ,∠ACD ,且交于点P . (1)若∠A =70°,∠D =60°,求∠P 的度数; (2)试探索∠P 与∠A ,∠D 间的数量关系; (3)若∠A ∶∠D ∶∠P =2∶4∶x ,求x 的值.AD COPE F B7.如图1,已知在△ABC 中,AE 平分∠BAC ,∠C >∠B ,F 为AE 上一点.且FD ⊥BC 于D . (1)试推导∠EFD 与∠B ,∠C 的大小关系;DBCA E F图1(2)如图2,当点F 在AE 的延长线上时,图1的其余条件都不变,你在(1)中推导的结论是否仍然成立?BCAD FE图2下次课必背1.三角形内角和度数:三角形三个内角的和等于180°.外角性质:三角形的外角等于与它不相邻的两个内角之和. 2.基本图形的结论.3.两内角角平分线夹角与顶角的关系、一内角一外角平分线的夹角与顶角的关两外角平分线夹角与顶角的关系.4.三角形中共一个顶点的角平分线与高线夹角、另两个内角的关系. 5.多边形内角和:n 边形内角和=(n —2)×180°; 外角和:多边形外角和=360°. 6.从一个顶点引出的对角线条数为n -3,所有对角线条数为(3)2n n .。

人教版初二数学培优和竞赛二合一讲炼教程:三角形及其有关概念

人教版初二数学培优和竞赛二合一讲炼教程:三角形及其有关概念

人教版初二数学培优和竞赛二合一讲炼教程3、三角形及其有关概念【知识精读】1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2. 三角形中的几条重要线段:(1)三角形的角平分线(三条角平分线的交点叫做内心)(2)三角形的中线(三条中线的交点叫重心)(3)三角形的高(三条高线的交点叫垂心)3. 三角形的主要性质(1)三角形的任何两边之和大于第三边,任何两边之差小于第三边;(2)三角形的内角之和等于180°(3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和;(4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角;(54. S S ABE ∆⋅ 基础。

5.例1. 锐角三角形ABC 中,∠C =2∠B ,则∠B 的范围是( )A. 1020︒<<︒∠BB. 2030︒<<︒∠BC. 3045︒<<︒∠BD. 4560︒<<︒∠B分析:因为∆ABC 为锐角三角形,所以090︒<<︒∠B又∠C =2∠B ,∴︒<<︒0290∠B∴︒<<︒045∠B又∵∠A 为锐角,()∴=︒-+∠∠∠A B C 180为锐角∴+>︒∠∠B C 90∴>︒390∠B ,即∠B >︒30∴︒<<︒3045∠B ,故选择C 。

例2. 选择题:已知三角形的一个外角等于160°,另两个外角的比为2:3,则这个三角形的形状是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定 分析:由于三角形的外角和等于360°,其中一个角已知,另两个角的比也知道,因此三个外角的度数就可以求出,进而可求出三个内角的度数,从而可判断三角形的形状。

解:∵三角形的一个外角等于160°∴另两个外角的和等于200°设这两个外角的度数为2x ,3x∴+=23200x x解得:x =402803120x x ==,与80°相邻的内角为100°AF BE F EBC FAB ABE //,∠∠,∠∠∴==又∵BE 平分∠ABC ,∴∠EBC =∠ABE∴∠F =∠FAB ,∴AB =BF又∵AB +FB >AF ,即2AB >AF又∵AB AC AC AF ≤∴>12, ∴>∠∠F C ,又∵∠∠F ABC =12∴<∠∠C B 12∴++<<++64()()a b c c a b c 故最小边在周长的16与14之间。

新人教版八年级上册数学培优讲义(全套15讲)

新人教版八年级上册数学培优讲义(全套15讲)

第一讲 三角形考点·方法·破译1.了解与三角形有关的线段(边、高、中线、角平分线),会画出任意三角形的高、中线、角平分线. 2.知道三角形两边的和大于第三边,两边之差小于第三边. 3.了解与三角形有关的角(内角、外角) . 4.掌握三角形三内角和等于180°,三角形的一个外角等于与它不相邻的两个内角的和. 5.会用方程的思想解与三角形基本要素相关的问题.6.会从复杂的图形中找到基本图形,从而寻求解决问题的方法.经典·考题·赏析【例1】若的三边分别为4,x ,9,则x 的取值范围是______________,周长l 的取值范围是______________ ;当周长为奇数时,x =______________.【变式题组】1.若△ABC 的三边分别为4,x ,9,且9为最长边,则x 的取值范围是______________,周长l 的取值范围是______________.2.设△ABC 三边为a ,b ,c 的长度均为正整数,且a <b <c ,a +b +c =13,则以a ,b ,c 为边的三角形,共有______________个.3.用9根同样长的火柴棒在桌面上摆一个三角形(不许折断)并全部用完,能摆出不同形状的三角形个数是( ). A .1 B .2 C .3 D .4【例2】已知等腰三角形的一边长为18cm ,周长为58cm ,试求三角形三边的长.【变式题组】1.已知等腰三角形两边长分别为6cm ,12cm ,则这个三角形的周长是( )A .24cmB .30cmC .24cm 或30cmD .18cm2.已知三角形的两边长分别是4cm 和9cm ,则下列长度的四条线段中能作为第三条边的是( )A .13cmB .6cmC .5cmD .4cm3.等腰三角形一腰上的中线把这个等腰三角形的周长分成12和10两部分,则此等腰三角形的腰长为______________. 【例3】如图AD 是△ABC 的中线,DE 是△ADC 的中线,EF 是△DEC 的中线,FG 是△EFC 的中线,若S △GFC=1cm 2,则S △ABC =______________.GFE DBAC1.如图,已知点D 、E 、F 分别是BC 、AD 、BE 的中点,S △ABC =4,则S △EFC =______________.2.如图,点D 是等腰△ABC 底边BC 上任意一点,DE ⊥AB 于E ,DF ⊥AC 于F ,若一腰上的高为4cm ,则DE +DF =______________.3.如图,已知四边形ABCD 是矩形(AD >AB ) ,点E 在BC 上,且AE =AD ,DF ⊥AE 于F ,则DF 与AB的数量关系是______________.【例4】已知,如图,则∠A +∠B +∠C +∠D +∠E =______________.【变式题组】1.如图,则∠A +∠B +∠C +∠D +∠E =______________.2.如图,则∠A +∠B +∠C +∠D +∠E +∠F =______________.3.如图,则∠A +∠B +∠C +∠D +∠E +∠F =______________.【例5】如图,已知∠A =70°,BO 、CO 分别平分∠ABC 、∠ACB .则∠BOC = ______________.(第1题图)FE DBA C(例4题图)BDACE(第3题图)A BCDE FOBA C(第2题图)FEBCAD (第3题图)FDBCA E(第2题图)ABFE D C(第1题图)ABEDC1.如图,∠A =70°,∠B =40°,∠C =20°,则∠BOC =______________.3.如图,∠O =140°,∠P =100°,BP 、CP 分别平分∠ABO 、∠ACO ,则∠A =______________.【例6】如图,已知∠B =35°,∠C =47°,AD ⊥BC ,AE 平分∠BAC ,则∠EAD =______________.【变式题组】 1.(改)如图,已知∠B =39°,∠C =61°,BD ⊥AC ,AE 平分∠BAC ,则∠BFE=__________.2.如图,在△ABC 中,∠ACB =40°,AD 平分∠BAC ,∠ACB 的外角平分线交AD 的延长线于点P ,点F 是BC 上一动点(F 、D 不重合) ,过点F 作EF ⊥BC 交于点E ,下列结论:①∠P +∠DEF 为定值,②∠P -∠DEF 为定值中,有且只有一个答案正确,请你作出判断,并说明理由.*【例7】如图,在平面内将△ABC 绕点A 逆时针旋转至△AB ′C ′,使CC ′∥AB ,若∠BAC =70°,则旋转角α=______________.【变式题组】1.如图,用等腰直角三角形板画∠AOB =45°,并将三角板沿OB 方向平移到如图所示的虚线后绕点M 逆时针方向旋转22°,则三角板的斜边与射线OA 的直角α=______________.(第1题图)OBA C(第3题图)P OBA C(例6题图)E DAB C(第2题图)DE PC AG B F (第1题图)F E DAB C C'B'A BC2.如图,在平面内将△AOB 绕点O 顺时针旋转α角度得到△OA ′B ′,若点A ′在AB 上时,则旋转角α=______________.(∠AOB =90°,∠B =30°)3.如图,△ABE 和△ACD 是△ABC 沿着AB 边,AC 边翻折180°形成的,若∠BAC =130°,则∠α=______________.演练巩固·反馈提高1.如图,图中三角形的个数为( )A .5个B .6个C .7个D .8个2.如果三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A .锐角三角形B .钝角三角形C .直角三角形D .不确定 3.有4条线段,长度分别是4cm ,8cm ,10cm ,12cm ,选其中三条组成三角形,可以组成三角形的个数是( )A .1个B .2个C .3个D .4个 4.下列语句中,正确的是( )A .三角形的一个外角大于任何一个内角B .三角形的一个外角等于这个三角形的两个内角的和C .三角形的外角中,至少有两个钝角D .三角形的外角中,至少有一个钝角5.若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法确定 6.若一个三角形的一个外角大于与它相邻的内角,则这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法确定7.如果等腰三角形的一边长是5cm ,另一边长是9cm ,则这个三角形的周长是______________.8.三角形三条边长是三个连续的自然数,且三角形的周长不大于18,则这个三角形的三条边长分别是______________. 9.如图,在△ABC 中,∠A =42°,∠B 与∠C 的三等分线,分别交于点D 、E ,则∠BDC 的度数是______________.(第1题图)α22°OBMA(第2题图)B'A'AO B(第3题图)αEDCBAE D AB CF G10.如图,光线l 照射到平面镜上,然后在平面镜Ⅰ、Ⅱ之间来回反射,已知∠α=55,∠γ=75°,∠β=______________.11.如图,点D 、E 、F 分别是BC 、AD 、BE 的中点,且S △EFC =1,则S △ABC =______________. 12.如图,已知: ∠1=∠2,∠3=∠4,∠BAC =63°,则∠DAC =______________. 13.如图,已知点D 、E 是BC 上的点,且BE =AB ,CD =CA ,∠DAE =13∠BAC ,求∠BAC 的度数培优升级·奥赛检测1.在△ABC 中,2∠A =3∠B ,且∠C -30°=∠A +∠B ,则△ABC 是( )A .锐角三角形B .钝角三角形C .有一个角是30°的直角三角形D .等腰直角三角形 B . C .2.已知三角形的三边a 、b 、c 的长都是整数,且a ≤b ≤c ,如果b =7,则这样的三角形共有( )A .21个B .28个C .49个D .54个 3.在△ABC 中,∠A =50°,高BE 、CF 交于O 点,则∠BOC =______________. 4.在等腰△ABC 中,一腰上的高与另一腰的夹角为26°,则底角的度数为______________. 5.如图,BP 平分∠ABC 交CD 于点F ,DP 平分∠ADC 交AB 于点E ,若∠A =40°,∠C =38°,则∠P = ______________.6.如图,已知OABC 是一个长方形,其中顶点A 、B 的坐标分别为(0,a )和(9,a ).点E 在AB 上 ,且AE =13AB .点F 在OC 上 ,且OF =13OC ,点G 在OA 上,且使△GEC 的面积为16,试求α的值.(第9题图)D EBACxy EBG FOCAγβα(第10题图)ⅡⅠ(第11题图)FE DABC(第13题图)D E ABC4321(第12题图)DBA CG FE PAB CDBACDEF 7.如图,已知四边形ABCD 中,∠A +∠DCB =180°,两组对边延长后分别交于P 、Q 两点,∠P 、∠Q 的平分线交于M ,求证PM ⊥QM .第二讲 全等三角形的性质与判定考点·方法·破译1.能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同;2.全等三角形性质:①全等三角形对应边相等,对应角相等;②全等三角形对应高、角平分线、中线相等;③全等三角形对应周长相等,面积相等;3.全等三角形判定方法有:SAS ,ASA ,AAS ,SSS ,对于两个直角三角形全等的判定方法,除上述方法外,还有HL 法;4.证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5..证明两个三角形全等,根据条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.经典·考题·赏析【例1】如图,AB ∥EF ∥DC ,∠ABC =90°,AB =CD ,那么图中有全等三角形( )A .5对B .4对C .3对D .2对【变式题组】 1.(武汉2011)下列判断中错误的是( ) A .有两角和一边对应相等的两个三角形全等 B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等 MQPABCDA F C ED B 2.(黄冈)已知命题:如图,点A 、D 、B 、E 在同一条直线上,且AD =BE ,∠A =∠FDE ,则△ABC ≌△DEF .判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.3.(上海)已知线段AC 与BD 相交于点O , 连接AB 、DC ,E 为OB 的中点,F 为OC 的中点,连接EF (如图所示).⑴添加条件∠A =∠D ,∠OEF =∠OFE ,求证:AB =DC ; ⑵分别将“∠A =∠D ”记为①,“∠OEF =∠OFE ”记为②,“AB =DC ”记为③,添加①、③,以②为结论构成命题1;添加条件②、③,以①为结论构成命题2.命题1是______命题,命题2是_______命题(选择“真”或“假”填入空格).【例2】已知AB =DC ,AE =DF ,CF =FB . 求证:AF =DE .【变式题组】1.如图,AD 、BE 是锐角△ABC 的高,相交于点O ,若BO =AC ,BC =7,CD =2,则AO 的长为( )A .2B .3C .4D .52.如图,在△ABC 中,AB =AC ,∠BAC =90°,AE 是过A 点的一条直线,AE ⊥CE 于E ,BD ⊥AE 于D ,DE =4cm ,CE =2cm ,则BD =__________. AE第1题图A BCDEBCDO第2题图A BC DO F E A C E F B D3.(孝感2013)已知:如图,在△ABC 中,∠ ACB =90°,CD ⊥AB 于点D ,点E 在AC 上,CE =BC ,过点E 作AC 的垂线,交CD 的延长线于点F . 求证:AB =FC .【例3】如图①,△ABC ≌△DEF ,将△ABC 和△DEF 的顶点B 和顶点E 重合,把△DEF 绕点B 顺时针方向旋转,这时AC 与DF 相交于点O .⑴当△DEF 旋转至如图②位置,点B (E )、C 、D 在同一直线上时,∠AFD 与∠DCA 的数量关系是________________;⑵当△DEF 继续旋转至如图③位置时,⑴中的结论成立吗?请说明理由_____________.【变式题组】1.(绍兴2013)如图,D 、E 分别为△ABC 的AC 、BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB边上的点P 处.若∠CDE =48°,则∠APD 等于( ) A .42° B .48° C .52° D .58°2.如图,Rt △ABC 沿直角边BC 所在的直线向右平移得到△DEF ,下列结论中错误的是( )A .△ABC ≌△DEFB .∠DEF =90°C . AC =DFD .EC =CF3.一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B 、F 、C 、D 在同一条直线上. ⑴求证:AB ⊥ED ;⑵若PB =BC ,找出图中与此条件有关的一对全等三角形,并证明.EFB AB P D EC第1题图ACDG 第2题图B (E )OC F 图③FA B C DE FAB (E )C DDA图②图①AFECB DA B C D F E【例4】(第21届江苏竞赛试题)已知,如图,BD 、CE 分别是△ABC 的边A C 和AB 边上的高,点P 在BD 的延长线,BP =AC ,点Q 在CE 上,CQ =AB. 求证:⑴ AP =AQ ;⑵AP ⊥AQ【变式题组】 1.如图,已知AB =AE ,∠B =∠E ,BA =ED ,点F 是CD 的中点,求证:AF ⊥CD .2.(湖州市竞赛试题)如图,在一个房间内有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为am ,此时梯子的倾斜角为75°,如果梯子底端不动,顶端靠在对面的墙上,此时梯子顶端距地面的垂直距离NB 为bm ,梯子倾斜角为45°,这间房子的宽度是( )A .2a bm + B .2a bm - C .bm D .am3.如图,已知五边形ABCDE 中,∠ ABC =∠AED =90°,AB =CD =AE =BC +DE =2,则五边形ABCDE的面积为__________AECBA 75° C45° BNM第2题图第3题图DBF AC E NMPDD A CB FE21ABC P Q EF D1.(海南2011)已知图中的两个三角形全等,则∠α度数是( )A .72°B .60°C .58°D .50°2.如图,△ACB ≌△A /C /B /,∠ BCB /=30°,则∠ACA /的度数是( )A .20°B .30°C .35°D .40°3.尺规作图作∠AOB 的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得△OCP ≌△ODP 的根据是( ) A .SAS B .ASA C .AAS D .SSS 4.(武汉2012)如图,已知AB =AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . CB =CD B .∠BAC =∠DAC C . ∠BCA =∠DCAD .∠B =∠D =90°5.有两块不同大小的等腰直角三角板△ABC 和△BDE ,将它们的一个锐角顶点放在一起,将它们的一个锐角顶点放在一起,如图,当A 、B 、D 不在一条直线上时,下面的结论不正确的是( ) A . △ABE ≌△CBD B . ∠ABE =∠CBD C . ∠ABC =∠EBD =45° D . AC ∥BE6.如图,△ABC 和共顶点A ,AB =AE ,∠1=∠2,∠B =∠E . BC 交AD 于M ,DE 交AC 于N ,小华说:“一定有△ABC ≌△AED .”小明说:“△ABM ≌△AEN .”那么( ) A . 小华、小明都对 B . 小华、小明都不对 C . 小华对、小明不对 D .小华不对、小明对7.如图,已知AC =EC , BC =CD , AB =ED ,如果∠BCA =119°,∠ACD =98°,那么∠ECA 的度数是___________.8.如图,△ABC ≌△ADE ,BC 延长线交DE 于F ,∠B =25°,∠ACB =105°,∠DAC =10°,则∠DFB的度数为_______.9.如图,在Rt △ABC 中,∠C =90°, DE ⊥AB 于D , BC =BD . AC =3,那么AE +DE =______E2 1N AB DC 第5题图ABCDEAB CD第4题图第6题图M第3题图第1题图C AO D BP第2题图ACA /B B /a αcca50° b72° 58°D C10.如图,BA ⊥AC , CD ∥AB . BC =DE ,且BC ⊥DE ,若AB =2, CD =6,则AE =_____.11.如图, AB =CD , AB ∥CD . BC =12cm ,同时有P 、Q 两只蚂蚁从点C 出发,沿CB 方向爬行,P 的速度是0.1cm /s , Q 的速度是0.2cm /s . 求爬行时间t 为多少时,△APB ≌△QDC .12.如图, △ABC 中,∠BCA =90°,AC =BC ,AE 是BC 边上的中线,过C 作CF ⊥AE ,垂足为F ,过B作BD ⊥BC 交CF 的延长线于D . ⑴求证:AE =CD ;⑵若AC =12cm , 求BD 的长.13.(吉林)如图,AB =AC ,AD ⊥BC 于点D ,AD 等于AE ,AB 平分∠DAE 交DE 于点F , 请你写出图中三对全等三角形,并选取其中一对加以证明.14.如图,将等腰直角三角板ABC 的直角顶点C 放在直线l 上,从另两个顶点A 、B 分别作l 的垂线,垂足分别为D 、E .⑴找出图中的全等三角形,并加以证明; ⑵若DE =a ,求梯形DABE 的面积.(温馨提示:补形法)15.如图,AC ⊥BC , AD ⊥BD , AD =BC ,CE ⊥AB ,DF ⊥AB ,垂足分别是E 、F .求证:CE =DF .D A C .QP.B第10题图AB CDE 第9题图EABC D ABC DEF O C AEBD 第7题图第8题图D B A CE FA EB F DC BD E C l AAEF C DB 培优升级·奥赛检测1.如图,在△ABC 中,AB =AC ,E 、F 分别是AB 、AC 上的点,且AE =AF ,BF 、CE 相交于点O ,连接AO 并延长交BC 于点D ,则图中全等三角形有( )A .4对B .5对C .6对D .7对2.如图,在△ABC 中,AB =AC ,OC =OD ,下列结论中:①∠A =∠B ②DE =CE ,③连接DE , 则OE 平分∠AOB ,正确的是( ) A .①② B .②③ C .①③ D .①②③3.如图,A 在DE 上,F 在AB 上,且AC =CE , ∠1=∠2=∠3, 则DE 的长等于()A .DCB . BC C . ABD .AE +AC4.下面有四个命题,其中真命题是( )A .两个三角形有两边及一角对应相等,这两个三角形全等B .两边和第三边上的高对应相等的两个三角形全等C . 有一角和一边对应相等的两个直角三角形全等D . 两边和第三边上的中线对应相等的两个三角形全等5.在△ABC 中,高AD 和BE 所在直线相交于H 点,且BH =AC ,则∠ABC =_______. 6.如图,EB 交AC 于点M , 交FC 于点D , AB 交FC 于点N ,∠E =∠F =90°,∠B =∠C , AE =AF . 给出下列结论:①∠1=∠2;②BE =CF ; ③△ACN ≌△ABM ; ④CD =DB ,其中正确的结论有___________.(填序号)7.如图,AD 为在△ABC 的高,E 为AC 上一点,BE 交AD 于点F ,且有BF =AC ,FD =CD .⑴求证:BE ⊥AC ;⑵若把条件“BF =AC ”和结论“BE ⊥AC ”互换,这个命题成立吗?证明你的判定.8.如图,D 为在△ABC 的边BC 上一点,且CD =AB ,∠BDA =∠BAD ,AE 是△ABD 的中线. 求证:AC =2AE .AB E D CF第6题图2 1AB CE N M3 21ADEBC FADECOA E O BFC D 第1题图B第2题图第3题图4321NM ABO DP A D EG CHBA EB DC 9.如图,在凸四边形ABCD 中,E 为△ACD 内一点,满足AC =AD ,AB =AE , ∠BAE +∠BCE =90°, ∠BAC=∠EAD .求证:∠CED =90°.10.如图,AB =AD ,AC =AE ,∠BAD =∠CAE =180°. AH ⊥AH 于H ,HA 的延长线交DE 于G. 求证:GD=GE .第三讲 角平分线的性质与判定考点·方法·破译1.角平分线的性质定理:角平分线上的点到角两边的距离相等.2.角平分线的判定定理:角的内角到角两边距离相等的点在这个角的平分线上. 3.有角平分线时常常通过下列几种情况构造全等三角形.经典·考题·赏析【例1】如图,已知OD 平分∠AOB ,在OA 、OB 边上截取OA =OB ,PM ⊥BD ,PN ⊥AD .求证:PM =PNP CA B MN M N A B D C P E D A BC D CA B 321FEDCAB 1.如图,CP 、BP 分别平分△ABC 的外角∠BCM 、∠CBN .求证:点P 在∠BAC 的平分线上.2.如图,BD 平分∠ABC ,AB =BC ,点P 是BD 延长线上的一点,PM ⊥AD ,PN ⊥CD .求证:PM =PN【例2】(天津竞赛题)如图,已知四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于点E ,且AE =12(AB +AD ),如果∠D =120°,求∠B 的度数【变式题组】1.如图,在△ABC 中,CD 平分∠ACB ,AC =5,BC =3.求ACD CBDSS ∆∆2.(河北竞赛)在四边形ABCD 中,已知AB =a ,AD =b .且BC =DC ,对角线AC 平分∠BAD ,问a 与b 的大小符合什么条件时,有∠B +∠D =180°,请画图并证明你的结论.【例3】如图,在△ABC 中,∠BAC =90°,AB =AC ,BE 平分∠ABC ,CE ⊥BE .求证:CE =12BDD E C A B DF E B A C第1题图D C B A第2题图D B CA E P 第3题图Q S R PBA C 第4题图E F B D A C 第5题图E B C A 1.如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 、∠DBA ,CD 过点E ,求证:AB =AC +BD .2.如图,在△ABC 中,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .⑴请你判断FE 和FD 之间的数量关系,并说明理由; ⑵求证:AE +CD =AC .演练巩固·反馈提高1.如图,在Rt △ABC 中,∠C =90°,BD 平分∠ABC 交AC 于D ,若CD =n ,AB =m ,则△ABD 的面积是( )A .13mn B .12mn C . mn D .2 mn2.如图,已知AB =AC ,BE =CE ,下面四个结论:①BP =CP ;②AD ⊥BC ;③AE 平分∠BAC ;④∠PBC=∠PCB .其中正确的结论个数有( )个 A . 1 B .2 C .3 D .43.如图,在△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别是R 、S .若AQ =PQ ,PR =PS ,下列结论:①AS =AR ;②PQ ∥AR ;③△BRP ≌△CSP .其中正确的是( ) A . ①③ B .②③ C .①② D .①②③4.如图,△ABC 中,AB =AC ,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,则下列四个结论中:①AD 上任意一点到B 、C 的距离相等;②AD 上任意一点到AB 、AC 的距离相等;③AD ⊥BC 且BD =CD ;④∠BDE =∠CDF .其中正确的是( ) A .②③ B .②④ C .②③④ D .①②③④ 5.如图,在Rt △ABC 中,∠ACB =90°,∠CAB =30°,∠ACB 的平分线与∠ABC 的外角平分线交于E 点,则∠AEB 的度数为( ) A .50° B .45° C .40° D .35°6.如图,P 是△ABC 内一点,PD ⊥AB 于D ,PE ⊥BC 于E ,PF ⊥AC 于F ,且PD =PE =PF ,给出下列结论:①AD =AF ;②AB +EC =AC +BE ;③BC +CF =AB +AF ;④点P 是△ABC 三条角平分线的交点.其中正确的序号是( )第6题图F ED PA B C 第7题图P ABCE F 第8题图DABC E第9题图ED C AB 第10题图K NMQ CBA F BDE C A OFE D A B Cl 1l 2DC FG E P AB C D E O B A 7.如图,点P 是△ABC 两个外角平分线的交点,则下列说法中不正确的是( )A .点P 到△ABC 三边的距离相等B .点P 在∠ABC 的平分线上C .∠P 与∠B 的关系是:∠P +12∠B =90°D .∠P 与∠B 的关系是:∠B =12∠P8.如图,BD 平分∠ABC ,CD 平分∠ACE ,BD 与CD 相交于D .给出下列结论:①点D 到AB 、AC 的距离相等;②∠BAC =2∠BDC ;③DA =DC ;④DB 平分∠ADC .其中正确的个数是( ) A .1个 B .2个 C .3个 D .4个9.如图,△ABC 中,∠C =90°AD 是△ABC 的角平分线,DE ⊥AB 于E ,下列结论中:①AD 平分∠CDE ;②∠BAC =∠BDE ;③ DE 平分∠ADB ;④AB =AC +BE .其中正确的个数有( ) A .3个 B .2个 C .1个 D .4个10.如图,已知BQ 是∠ABC 的内角平分线,CQ 是∠ACB 的外角平分线,由Q 出发,作点Q 到BC 、AC和AB 的垂线QM 、QN 和QK ,垂足分别为M 、N 、K ,则QM 、QN 、QK 的关系是_________ 11.如图,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB =DC .求证:BE =CF12.如图,在△ABC 中,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F .求证:AD ⊥EF .培优升级·奥赛检测1.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( ) A .一处 B .二处 C .三处 D .四处2.已知Rt △ABC 中,∠C =90°,AD 平分∠BAC 交BC 于D ,若BC =32,且BD :CD =9:7,则D 到AB边的距离为( ) A .18 B .16 C .14 D .123.如图,△ABC 中,∠C =90°,AD 是△ABC 的平分线,有一个动点P 从A 向B 运动.已知:DC =3cm ,DB =4cm ,AD =8cm .DP 的长为x (cm ),那么x 的范围是__________GPF E DCBAPD AB C Q P C B A4.如图,已知AB ∥CD ,PE ⊥AB ,PF ⊥BD ,PG ⊥CD ,垂足分别为E 、F 、G ,且PF =PG =PE ,则∠BPD=__________5.如图,已知AB ∥CD ,O 为∠CAB 、∠ACD 的平分线的交点,OE ⊥AC ,且OE =2,则两平行线AB 、CD间的距离等于__________ 6.如图,AD 平分∠BAC ,EF ⊥AD ,垂足为P ,EF 的延长线于BC 的延长线相交于点G .求证:∠G =12(∠ACB -∠B )7.如图,在△ABC 中,AB >AC ,AD 是∠BAC 的平分线,P 为AC 上任意一点.求证:AB -AC >DB -DC8.如图,在△ABC 中,∠BAC =60°,∠ACB =40°,P 、Q 分别在BC 、AC 上,并且AP 、BQ 分别为∠BAC 、∠ABC 的角平分线上.求证:BQ +AQ =AB +BP第四讲 轴对称及轴对称变换考点·方法·破译1.轴对称及其性质把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线成轴对称,这条直线叫对称轴.轴对称的两个图形有如下性质:①关于某直线对称的两个图形是全等形;②对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.2.线段垂直平分线平分.性质定理:线段垂直平分线上的点与这条线段两个端点的距离相等.判定定理:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.3.当已知条件中出现了等腰三角形、角平分线、高(或垂线)、或求几条折线段的最小值等情况时,通常考虑作轴对称变换,以“补齐”图形,集中条件.经典·考题·赏析【例1】(兰州)如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是()【变式题组】1.将正方形纸片两次对折,并剪出一个菱形小洞后铺平,得到的图形是()2.(荆州)如图,将矩形纸片ABCD沿虚线EF折叠,使点A落在点G上,点D落在点H上;然后再沿虚线GH折叠,使B落在点E上,点C落在点F上,叠完后,剪一个直径在BC上的半圆,再展开,则展开后的图形为()【例2】(襄樊)如图,在边长为1的正方形网格中,将△ABC向右平移两个单位长度得到△A’B’C’,则与点B’关于x轴对称的点的坐标是()A.(0,-1)B.(1,1)C.(2,-1)D.(1,-1)【变式题组】1.若点P(-2,3)与点Q(a,b)关于x轴对称,则a、b的值分别是()A.-2,3 B.2,3 C.-2,-3 D.2,-32.在直角坐标系中,已知点P(-3,2),点Q是点P关于x轴的对称点,将点Q向右平移4个单位得到点R,则点R的坐标是___________.3.(荆州)已知点P(a+1,2a-1)关于x轴的对称点在第一象限,则a的取值范【例3】如图,将一个直角三角形纸片ABC(∠ACB=90°),沿线段CD折叠,使点B落在B1处,若∠ACB1=70°,则∠ACD=()A.30°B.20°C.15°D.10°【变式题组】1.(孝感)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在点D’、C’的位置.若∠EFB=65°,则∠AED’等于()A.70°B.65°C.50°D.25°2.如图,△ABC中,∠A=30°,以BE为边,将此三角形对折,其次,又以BA为边,再一次对折,C点落在BE上,此时∠CDB=82°,则原三角形中∠B=___________.【例4】如图,在△ABC中,AD为∠BAC的平分线,EF是AD的垂直平分线,E为垂足,EF交BC的延长线于点F,求证:∠B=∠CAF.【变式题组】1.如图,点D在△ABC的BC边上,且BC=BD+AD,则点D在__________的垂直平分线上.2.如图,△ABC中,∠ABC=90°,∠C=15°,DE⊥AC于E,且AE=EC,若AB=3cm,则DC=___________cm.3.如图,△ABC中,∠BAC=126°,DE、FG分别为AB、AC的垂直平分线,则∠EAG=___________.4.△ABC中,AB=AC,AB边的垂直平分线交AC于F,若AB=12cm,△BCF的周长为20cm,则△ABC的周长是___________cm.【例5】(荆州)如图,在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面的备用图中画出所有这样的△DEF.【变式题组】1.如图,在2×2的正方形格点图中,有一个以格点为顶点的△ABC,请你找出格点图中所有与△ABC 成轴对称且也以格点为顶点的三角形,这样的三角形共有___________个.2.如图甲,正方形被划分成16个全等的三角形,将其中若干个三角形涂黑,且满足下列条件:⑴涂黑部分的面积是原正方形面积的一半;⑵涂黑部分成轴对称图形。

人教版初二数学培优和竞赛二合一讲炼教程:三角形总复习

人教版初二数学培优和竞赛二合一讲炼教程:三角形总复习

人教版初二数学培优和竞赛二合一讲炼教程15、三角形总复习【知识精读】1. 三角形的内角和定理与三角形的外角和定理;2. 三角形中三边之间的关系定理及其推论;3. 全等三角形的性质与判定;4. 特殊三角形的性质与判定(如等腰三角形);5. 直角三角形的性质与判定。

三角形一章在平面几何中占有十分重要的地位。

从知识上来看,许多内容应用十分广泛,可以解决一些简单的实际问题;从证题方法来看,全等三角形的知识,为我们提供了一个及为方便的工具,通过证明全等,解决证明两条线段相等,两个角相等,从而解决平行、垂直等问题。

因此,它揭示了研究封闭图形的一般方法,为以后的学习提供了研究的工具。

因此,在学习中我们应该多总结,多归纳,使知识更加系统化,解题方法更加规范,从而提高我们的解题能力。

【分类解析】1.例1. 如图1 求证:∠ 证明:由 又∠ABD 则∠ABD 可证∠∠CAD EBD > 即∠∠BED C >说明:在角度不定的情况下比较两角大小,如果能运用三角形内角和都等于180°间接求得。

2. 三角形三边关系的应用例2. 已知:如图2,在∆ABC 中,AB AC >,AM 是BC 边的中线。

在∆CMA 和∆BMD 中,AM DM AMC DMB CM BM ===,∠∠,∴≅∴=∆∆CMA BMDBD AC在∆ABD 中,AB BD AD -<,而AD AM =2()∴-<∴>-AB AC AMAM AB AC 212说明:在分析此问题时,首先将求证式变形,得2AM AB AC >-,然后通过倍长中线的方法,相当于将∆AMC 绕点旋转180°构成旋转型的全等三角形,把AC 、AB 、2AM 转化到同一三角形中,利用三角形三边不等关系,达到解决问题的目的。

很自然有()()1212AB AC AM AB AC -<<+。

请同学们自己试着证明。

∴M 在∠ADC 的平分线上(到一个角的两边距离相等的点,在这个角的平分线上)∴DM平分∠ADC说明:本题的证明过程中先使用角平分线的定理是为判定定理的运用创造了条件MG=MB。

初中数学 八年级竞赛培优训练 直角三角形 含解析

初中数学 八年级竞赛培优训练  直角三角形  含解析

直角三角形【思维入门】1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是() A.120°B.90°C.60°D.30°2.如图1-5-1,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连结DE,则△CDE的周长为()A.20 B.12 C.14 D.13图1-5-13.如图1-5-2,Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,AB=10 cm,则CD的长为______cm.图1-5-24.将一副三角板拼成如图1-5-3所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.图1-5-35.如图1-5-4,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE ,DE ,DC . (1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数.【思维拓展】6.如图1-5-5,在Rt △ABC 中,D ,E 为斜边AB 上的两个点,且BD =BC ,AE =AC ,则∠DCE 的大小为____°.图1-5-57.如图1-5-6,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC =______.图1-5-68.如图1-5-7,∠ABC =90°,D ,E 分别在BC ,AC 上,AD ⊥DE ,且AD =DE ,点F 是AE 的中点,FD 与AB 延长线相交于点M . (1)求证:∠FMC =∠FCM ; (2)AD 与MC 垂直吗?并说明理由.图1-5-79.如图1-5-8,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点图1-5-8D.CG平分∠ACB交BD于点G,F为AB边上一点,连结CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【思维升华】10.如图1-5-9,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,若∠A=40°,则∠ABX+∠ACX=()图1-5-9A.25°B.30°C.45°D.50°11.如图1-5-10,直线l平行于射线AM,要在直线l与射线AM上各找一点B和C,使得以A,B,C为顶点的三角形是等腰直角三角形,这样的三角形最多能画____个.图1-5-1012.如图1-5-11,点P在△ABC的BC边上,且PC=2PB,若∠ABC=45°,∠APC =60°,则∠ACB的度数是____.图1-5-1113.如图1-5-12,在△ABC中,AC=BC,且∠ACB=90°,点D是AC上一点,AE⊥BD,交BD的延长线于点E,且AE=12BD,则∠ABD=____.图1-5-1214.如图1-5-13,在△ABC中,∠ACB=90°,M是∠CAB的平分线AL的中点,延长CM交AB于K,BK=BC,则∠CAB=____,∠ACK∠KCB=____.图1-5-1315.如图1-5-14,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点.过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1-5-14①),求证:M为AN的中点;(2)将图1-5-14①中△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图1-5-14②),求证:△CAN为等腰直角三角形;(3)将图1-5-14①中△BCE绕点B旋转到图③的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.图1-5-14第5讲直角三角形【思维入门】1.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是(D) A.120°B.90°C.60°D.30°2.如图1-5-1,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连结DE,则△CDE的周长为(C) A.20 B.12 C.14 D.13图1-5-1【解析】∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=12BC=4,∵点E为AC的中点,∴DE=CE=12AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.3.如图1-5-2,Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,AB=10 cm,则CD的长为__5____cm.图1-5-24.将一副三角板拼成如图1-5-3所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.图1-5-3解:(1)证明:∵∠DCE=90°,CF平分∠DCE,∴∠DCF =45°,∵△ABC 是等腰直角三角形,∴∠BAC =45°,∴∠BAC =∠DCF ,∴CF ∥AB ; (2)∵∠D =30°,∴∠DFC =180°-30°-45°=105°.5.如图1-5-4,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE ,DE ,DC . (1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数. 解:(1)证明:∵∠ABC =90°,∴∠DBE =180°-∠ABC =180°-90°=90°, ∴∠ABE =∠CBD .在△ABE 和△CBD 中,∵⎩⎨⎧AB =CB ,∠ABE =∠CBD ,EB =DB ,∴△ABE ≌△CBD ;(2)∵AB =CB ,∠ABC =90°, ∴△ABC 是等腰直角三角形, ∴∠ECA =45°.∵∠CAE =30°,∠BEA =∠ECA +∠EAC , ∴∠BEA =45°+30°=75°. 由①知∠BDC =∠BEA . ∴∠BDC =75°.【思维拓展】6.如图1-5-5,在Rt △ABC 中,D ,E 为斜边AB 上的两个点,且BD =BC ,AE =AC ,则∠DCE 的大小为__45__°.图1-5-5【解析】设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°-∠ACE=90°-x-y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°-x-y+x=90°-y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°-y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.7.如图1-5-6,△ABC中,AB=AC,DE垂直平分AB,BE⊥AC,AF⊥BC,则∠EFC =__45°____.图1-5-68.如图1-5-7,∠ABC=90°,D,E分别在BC,AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB延长线相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.图1-5-7解:(1)证明:∵△ADE是等腰直角三角形,F是AE的中点,∴DF⊥AE,DF=AF=EF.又∵∠ABC=90°,∠DCF,∠AMF都与∠MAC互余,∴∠DCF=∠AMF.又∵∠DFC=∠AFM=90°,∴△DFC≌△AFM.∴CF=MF.∴∠FMC=∠FCM;(2)AD⊥MC.由(1)知∠MFC=90°,FD=FE,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,∴AD⊥MC.9.如图1-5-8,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点图1-5-8D.CG平分∠ACB交BD于点G,F为AB边上一点,连结CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.证明:(1)∵∠ACB=90°,CG平分∠ACB,AC=BC.∴∠BCG=∠CAB=45°,又∵∠ACF=∠CBG,AC=BC,∴△ACF≌△CBG(ASA),∴AF=CG;(2)如答图,延长CG交AB于点H.∵AC=BC,CG平分∠ACB,∴CH⊥AB,H为AB的中点,又∵AD⊥AB,∴CH∥AD,∴G为BD的中点,∠D=∠EGC,∵E为AC的中点,∴AE=EC,又∵∠AED=∠CEG,∴△AED≌△CEG,∴DE=EG,∴DG=2DE,∴BG=DG=2DE,由(1)得CF=BG,∴CF=2DE.第9题答图【思维升华】10.如图1-5-9,有一块直角三角板XYZ放置在△ABC上,恰好三角板XYZ的两条直角边XY,XZ分别经过点B,C,若∠A=40°,则∠ABX+∠ACX=(D)图1-5-9A.25°B.30°C.45°D.50°11.如图1-5-10,直线l平行于射线AM,要在直线l与射线AM上各找一点B和C,使得以A,B,C为顶点的三角形是等腰直角三角形,这样的三角形最多能画__3__个.图1-5-10【解析】如答图.①AC为直角边时,符合的等腰直角三角形有2个,一个是以∠BAC为直角,一个是以∠ACB为直角;②AC为斜边时,符合的等腰直角三角形有1个.∴这样的三角形最多能画3个,12.如图1-5-11,点P在△ABC的BC边上,且PC=2PB,若∠ABC=45°,∠APC=60°,则∠ACB的度数是__75°__.图1-5-11【解析】过C作AP的垂线CD,垂足为点D,连结BD.∵△PCD中,∠APC=60°,∴∠DCP=30°,PC=2PD,∵PC=2PB,∴BP=PD,∴△BPD是等腰三角形,∠BDP=∠DBP=30°,∵∠ABP=45°,∴∠ABD=15°,∵∠BAP=∠APC-∠ABC=60°-45°=15°,∴∠ABD=∠BAD=15°,∴BD=AD,∵∠DBP=∠DCP=30°,∴BD=DC,∴△BDC是等腰三角形,∵BD=AD,∴AD=DC,∵∠CDA=90°,∴∠ACD=45°,∴∠ACB=∠DCP+∠ACD=75°.13.如图1-5-12,在△ABC中,AC=BC,且∠ACB=90°,点D是AC上一点,AE⊥BD,交BD的延长线于点E,且AE=12BD,则∠ABD=__22.5°__.第11题答图图1-5-12 第13题答图【解析】 延长AE ,BC 交于点F .∵AE ⊥BE , ∴∠BEF =90°,又∵∠ACF =∠ACB =90°, ∴∠DBC +∠AFC =∠F AC +∠AFC =90°, ∴∠DBC =∠F AC , 在△ACF 和△BCD 中,⎩⎨⎧∠ACF =∠BCD =90°,AC =BC ,∠F AC =∠DBC ,∴△ACF ≌△BCD (ASA ), ∴AF =BD . 又∵AE =12BD ,∴AE =EF ,即点E 是AF 的中点. ∴AB =BF ,∴BD 是∠ABC 的角平分线. ∴∠ABD =22.5°.14.如图1-5-13,在△ABC 中,∠ACB =90°,M 是∠CAB 的平分线AL 的中点,延长CM 交AB 于K ,BK =BC ,则∠CAB =__45°__,∠ACK ∠KCB=__13__.图1-5-13【解析】 设∠CAB =2α.∵AM =ML ,且∠ACB =90°,∴CM =MA , ∴∠ACM =∠MAC =α.∴∠CKB =∠CAK +∠ACM =3α, ∠KCB =90°-∠ACM =90°-α. ∵BK =BC , ∴∠CKB =∠KCB .∴3α=90°-α,即α=22.5°. ∴∠CAB =45°,∠ACK ∠KCB =22.5°67.5°=13.15.如图1-5-14,已知△BAD 和△BCE 均为等腰直角三角形,∠BAD =∠BCE =90°,点M 为DE 的中点.过点E 与AD 平行的直线交射线AM 于点N .(1)当A ,B ,C 三点在同一直线上时(如图1-5-14①),求证:M 为AN 的中点; (2)将图1-5-14①中△BCE 绕点B 旋转,当A ,B ,E 三点在同一直线上时(如图1-5-14②),求证:△CAN 为等腰直角三角形;(3)将图1-5-14①中△BCE 绕点B 旋转到图③的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.图1-5-14证明:(1)∵点M 为DE 的中点,∴DM =ME . ∵AD ∥EN ,∴∠ADM =∠NEM ,又∵∠DMA=∠EMN,∴△DMA≌△EMN,∴AM=MN,即M为AN的中点;(2)由(1)中△DMA≌△EMN可知DA=EN,又∵DA=AB,∴AB=NE,∵∠ABC=∠NEC=135°,BC=CE,∴△ABC≌△NEC,∴AC=CN,∠ACB=∠NCE,∵∠BCE=∠BCN+∠NCE=90°,∴∠BCN+∠ACB=90°,∴∠ACN=90°,∴△CAN为等腰直角三角形.(3)由(2)可知AB=NE,BC=CE.又∵∠ABC=360°-45°-45°-∠DBE=270°-∠DBE=270°-(180°-∠BDE-∠BED)=90°+∠BDE+∠BED=90°+∠ADM-45°+∠BED=45°+∠MEN+∠BED =∠CEN,∴△ABC≌△NEC,再同(2)可证△CAN为等腰直角三角形,∴(2)中的结论仍然成立.。

(完整版)人教版八年级上数学培优精编讲义教师版

(完整版)人教版八年级上数学培优精编讲义教师版

第十一章全等三角形及其应用【知识精读】1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。

互相重合的边叫对应边,互相重合的角叫对应角。

2. 全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC ≌△A′B′C′其中,“≌”读作“全等于”。

记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。

3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等;4. 寻找对应元素的方法(1)根据对应顶点找如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。

通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。

(2)根据已知的对应元素寻找全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(3)通过观察,想象图形的运动变化状况,确定对应关系。

通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。

①翻折如图(1),∆BOC≌∆EOD,∆BOC可以看成是由∆EOD沿直线AO翻折180︒得到的;②旋转如图(2),∆COD≌∆BOA,∆COD可以看成是由∆BOA绕着点O旋转180︒得到的;平移如图(3),∆DEF≌∆ACB,∆DEF可以看成是由∆ACB沿CB方向平行移动而得到的。

5. 判定三角形全等的方法:(1)边角边公理、角边角公理、边边边公理、斜边直角边公理(2)推论:角角边定理6. 注意问题:(1)在判定两个三角形全等时,至少有一边对应相等;(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。

全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。

在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。

(人教版数学)八年级竞赛专题讲解:第九讲 三角形的边与角

(人教版数学)八年级竞赛专题讲解:第九讲 三角形的边与角

第九讲 三角形的边与角三角形是最基本的图形之一,是研究其他复杂图形的基础,三角形的三边相互制约,三个内角之和为定值,边与角之间有密切的联系(如大角对大边、大边对大角等),反映三角形的边与角关联的基本知识有:三角形三边关系定理及推论、三角形内角和定理及推论等,它们在线段。

角度的计算、图形的计数等方面有广泛的应用.解与三角形的边与角有关的问题时,往往要用到数形结合及分类讨论法,即用代数方法(方程、不等式)解几何计算题及简单的证明题,按边或角对三角形进行分类. 熟悉以下基本图形、并证明基本结论:(1) ∠l +∠2=∠3+∠4;(2) 若BD 、CO 分别为∠ABC 、∠ACB 的平分线,则∠BOC=90°+21∠A ; (3) 若BO 、CO 分别为∠DBC 、∠ECB 的平分线,则∠BOC=90°-21∠A ; (4) 若BE 、CE 分别为∠ABC 、∠ACD 的平分线,则∠E=21∠A .注: 中线、角平分线、高是三角形中的重要线段,它们的差别在于高随着三角形形状的不同,可能在三角内部、边上或外部.代数法解几何计算问题的基本思路是通过设元,运用几何知识建立方程(组)、不等式(组),将问题转化为解方程(组)或解不等式(组).例题求解【例1】 在△ABC 中,三个内角的度数均为整数,且∠A<∠B<∠C ,4∠C =7∠A ,则∠B 的度数为 .(北京市竞赛题)思路点拨 设∠C =x °,根据题设条件及三角形内角和定理把∠A 、∠B 用x 的代数式表示,建立关于x 的不等式组.【例2】以1995的质因数为边长的三角形共有( )A .4个B .7个C .13个D .60个(河南省竞赛题)思路点拨 1995=3×5×7×19,为做到计数的准确,可将三角形按边分类,注意三角形三边应满足的关系制约.【例3】 (1)如图,BE 是∠ABD 的平分线.CF 是∠ACD 的平分线,BE 与CF 交于G ,若∠BDC=140°,∠BGC=110°,求∠A 的大小.(“希望杯”邀请赛试题)(2)在△ABC 中,∠A=50°,高BE 、CF 交于O ,且O 不与B 、C 重合,求∠BOC 的度数. (“东方航空杯”——上海市竞赛题)思路点拨 (1)运用凹边形的性质计算.(2)由O 不与B 、C 重合知,∠B 、∠C 均非直角,这样,△ABC 既可能是锐角三角形又可能是钝角三角形,故应分两种情况讨论.【例4】 周长为30,各边长互不相等且都是整数的三角形共有多少个?(2003年河南省竞赛题)思路点拨 不妨设三角形三边为a 、b 、c ,且a <b <c ,由三角形三边关系定理及题设条件可确定 c 的取值范围,以此作为解题的突破口.注 如图,在凹四边ABCD 中,∠BDC=∠A +∠B +∠C .请读者证明.解所研究的问题的图形形状不惟一或几何固形位置关系不确定或与分类概念相关的命题时.往往用到分类讨论法.【例5】 (1)用长度相等的100根火柴杆,摆放成一个三角形,使最大边的长度是最小边长度的3倍,求满足此条件的每个三角形的各边所用火柴杆的根数.(大原市竞赛题)(2)现有长为150cm 的铁丝,要截成n(n>2)小段,每段的长为不小于l ㎝的整数.如果其中任意3小段都不能拼成三角形,试求n 的最大值,此时有几种方法将该铁丝截成满足条件的n 段.(第17届江苏省竞赛题)思路点拨 (1)设三角形各边需用火柴杆数目分别为x 、y 、3x ,综合运用题设条件及三角形边的关系等知识,建立含等式、不等式的混合组,这是解本例的突破口.(2)因n 段之和为定值150㎝,故欲n 尽可能的大,必须每段的长度尽可能小,这样依题意可构造一个数列.学力训练1.若三角形的三个外角的比是2:3:4,则这个三角形的最大内角的度数是 . (2003年河南省竞赛题)2.一条线段的长为a ,若要使3a —l ,4a+1,12-a 这三条线段组成一个三角形,则a 的取值范围是 .3.如图,在△ABC 中,两条角平分线CD 、BE 相交于点F ,∠A =60°,则∠DFE = 度.4.如图,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =α,∠DBE =β,则∠DCE = . (用α、β表示). (山东省竞赛题)5.若a 、b 、c 为三角形的三边,则下列关系式中正确的是( )A .02222>---bc c b aB .02222=---bc c b aC .02222<---bc c b aD .02222≤---bc c b a(江苏省竞赛题)6.△ABC 的内角A 、B 、C 满足3A>5B ,3C ≤2B ,则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定7.如图,△ABC 内有三个点D 、E 、F ,分别以A 、B 、C 、D 、E 、F 这六个点为顶点画三角形,如果每个三角形的顶点都不在另一个三角形的内部,那么,这些三角形的所有内角之和为( )A .360°B .900°C .1260°D .1440° (重庆市竞赛题)8.如图,在Rt △ABC 中,∠C =90°,∠A =30°,∠C 的平分线与∠B 的外角平分线交于E 点,连结AE ,则∠AEB 是( )A .50°B .45°C .40°D .35° (山东省竞赛题)9.如图,已知∠3=∠1+∠2,求证:∠A+∠B+∠C+∠D =180°.10.如图,已知射线ox 与射线oy 互相垂直,B ,A 分别为ox 、oy 上一动点,∠ABx 、∠BAy 的平分线交于C .问:B 、A 在ox 、oy 上运动过程中,∠C 的度数是否改变?若不改变,求出其值;若改变,说明理由.11.已知三角形的三条边长均为整数,其中有一条边长是4,但它不是最短边,这样的三角形共有 个.12.三角形的三个内角分别为α、β、γ,且α≥β≥γ,α=2γ,则β的取值范围 .13.已知△ABC 的周长是12,三边为a 、b 、c ,若b 是最大边,则b 的取值范围是 .14.如图,E 和D 分别在△ABC 的边BA 和CA 的延长线上,CF 、EF 分别平分∠ACB 和∠AED ,若∠B =70°,∠D=40°,则∠F 的大小是 .15.已知△ABC 中,∠B=60°,∠C>∠A ,且(∠C)2=(∠A)2+(∠B)2,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定( “希望杯”邀请赛试题)16.不等边三角形中,如果有一条边长等于另外两条边长的平均值,那么,最大边上的高与最小边上的高的比值k 的取值范围是( )A .143<<kB .131<<k C . 1<k<2 D .121<<k 17.已知三角形的三边的长a 、b 、c 都是整数,且a ≤b<c ,若b=7,则这样的三角形有( )A .14个B .28个C .21个D .49个18.如果三角形的一个外角大于这个三角形的某两个内角的2倍,那么这个三角形一定是( )A.锐角三角形B.钝角三角形C.直角三角形D.直角或钝角三角形19.如图,已知DM平分∠ADC,BM平分∠ABC,且∠A=27°,∠M=33°,求∠C的度数.20.不等边△ABC的两条高长度分别为4和12,若第三条高的长也是整数,试求它的长.(美国数学邀请赛试题)21.将长度为2n(n为自然数,且n≥4)的一根铅丝折成各边的长均为整数的三角形,记(a,b,c)为三边的长,且满足a≤b≤c的一个三角形.(1)就n=4,5,6的情况,分别写出所有满足题意的(a,b,c);(2)有人根据(1)中的结论,便猜想:当铅丝的长度为2n(n为自然数且n≥4)时,对应(a,b,c)的个数一定是n-3,事实上,这是一个不正确的猜想,请写出n=12时的所有(a,b,c),并回答(a,b,c)的个数;(3)试将n=12时所有满足题意的(a,b,c),按照至少两种不同的标准进行分类.(河北省初中数学创新与知识应用竞赛试题)22.阅读以下材料并填空.平面上有n个点(n≥2),且任意三个点不在同一条直线上,过这些点作直线,一共能作出多少条不同的直线?(1)分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;有5个点时,可连成l0条直线……(2)归纳:考察点的个数n和可连成直线的条数S发现:(1)分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3.条直线;当有4个点时,可连成6条直线;当有5个点时,可连成1 O条直线;(2)归纳:考察点的个数n和可连成直线的条数Sn,发现:(3)推理:平面上有n个点,两点确定一条直线.取第一个点以有n种取法,取第二个点B 有(n-1)种取法,所以一共可连成n(n-1)条直线,但A B与BA是同一条直线,故应除以2,即Sn=21)-n(n.(4)结论:Sn=21)-n(n.试探究以下问题:平面上有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形,一共能作出多少不同的三角形?(1)分析:当仅有3个点时,可作个三角形;当有4个点时,可作个三角形;当有5个点时,可作个三角形.Sn,发现:(填下表)(3)推理:(4)结论:(甘肃省中考题)。

人教版八年级上册数学培优精编讲义

人教版八年级上册数学培优精编讲义

三角形面积(讲义)一、知识点睛1.三角形相关概念:(1)在三角形中,连接一个顶点与它对边中点的________,叫做这个三角形的中线,三角形的三条中线_____________交于一点,这点称为三角形的____________.(2)在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的________叫做三角形的角平分线,三角形的三条角平分线________________交于一点,这点称为三角形的_________.(3)从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的________叫做三角形的高线(简称三角形的高),三角形的三条高________________交于一点,这点称为三角形的________;锐角三角形三条高线及垂心都在其________,直角三角形的垂心是________,钝角三角形的垂心和两条高线在其________.在△ABC 中,作出AC边上的高线.________即为所求.(4)三角形的相关定理:180⎧⎪︒⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩边:三角形的两边之和大于第三边,两边之差小于第三边;三角形的内角和是;角直角三角形两锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.2.面积问题:(1)处理面积问题的思路:①_____________________________;②_____________________________;③_____________________________.(2)处理面积问题方法举例:①利用平行转移面积:如图,满足S △ABP =S △ABC 的点P 都在直线l 1,l 2上.②利用等分点转移面积:两个三角形底相等时,面积比等于_____之比,高相等时,面积比等于_____之比.二、精讲精练1.现有3cm ,4cm ,7cm ,9cm 长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A .1个B .2个C .3个D .4个2.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是()A .5B .6C .7D .103.△ABC 的三边分别为4,9,x .(1)求x 的取值范围;(2)求△ABC 的周长的取值范围;(3)当x 为偶数时,求x ;(4)当△ABC 的周长为偶数时,求x ;(5)若△ABC 为等腰三角形,求x .第2题图4.如图,△ABC的角平分线AD,中线BE交于点O,则结论:①AO是△ABE的角平分线;②BO是△ABC的中线.其中()A.①,②都正确B.①,②都不正确C.①正确,②不正确D.①不正确,②正确5.如图所示,在△ABC中,BC边上的高是_______,AB边上的高是_______;在△BCE中,BE边上的高是________,EC边上的高是_________;在△ACD 中,AC边上的高是________,CD边上的高是________.6.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.都有可能7.如图,在正方形ABCD中,BC=2,∠DCE是正方形ABCD的外角,P是∠DCE 的角平分线CF上任意一点,则△PBD的面积等于_________.第7题图第8题图8.如图,在梯形ABCD中,AB∥CD,延长DC到E,使CE=AB,连接BD,BE,若梯形ABCD的面积为25cm2,则△BDE的面积是__________.9.正方形ABCD,正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK 上,正方形BEFG的边长为4,则△DEK的面积为____________.第9题图10.已知在正方形网格中,每个小方格都是边长为1的正方形,A ,B 两点在小方格的顶点上,位置如图所示,点C 也在小方格的顶点上,且以A ,B ,C 为顶点的三角形面积为1,则点C 的个数是_______个.第10题图第11题图11.在如图的方格纸中,每个小方格都是边长为1的正方形,点A ,B 是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C 使△ABC 的面积为2个平方单位,则满足条件的格点C 的个数是_______个.12.如图,AD 是△ABC 的边BC 上的中线,点E 在AD 上,AE =2DE ,若△ABE 的面积是4,则△ABC 的面积是_______.第12题图第13题图13.如图,在△ABC 中,点D ,E ,F 分别为BC ,AD ,CE 的中点,且S △ABC =16,则S △DEF =_____________.14.如图,在△ABC 中,E 是BC 边上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF ,△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF S △BEF =()A .1B .2C .3D .415.如图所示,S △ABC =6,若S △BDE =S △DEC =S △ACE ,则S △ADE =_______.第14题图第15题图16.如图,设E,F分别是△ABC的边AC,AB上的点,线段BE,CF交于点D.若△BDF,△BCD,△CDE的面积分别是3,7,7,则△EDF的面积是_______,△AEF的面积是______.第16题图第17题图17.如图,梯形ABCD被对角线分为4个小三角形,已知△AOB和△BOC的面积分别为25cm2和35cm2,那么梯形的面积是_____________.18.如图,在长方形ABCD中,△ABP的面积为20cm2,△CDQ的面积为35cm2,则阴影四边形EPFQ的面积是_________.19.如图,若梯形ABCD面积为6,E,F为AB的三等分点,M,N为DC的三等分点,则四边形EFNM的面积是_________.三、回顾与思考_______________________________________________________________________________ _______________________________________________________________________________ __________________________________【参考答案】【知识点睛】1.(1)线段,在三角形内部,重心;(2)线段,在三角形内部,内心;(3)线段,所在直线,垂心,内部,直角顶点,外部;作图略2.(1)①公式法;②割补法;③转移法;(2)②对应高,对应底【精讲精练】1.B2.C3.(1)5<x<13(2)18<x<26(3)6,8,10,12(4)7,9,11(5)9 4.C5.AF,CE,CE,BE,DC,AC6.C7.28.25cm29.1610.6 11.512.1213.214.B15.1 16.3,1517.144cm218.55cm219.2三角形面积(作业)1.现有2cm,4cm,6cm,8cm长的四根木棒,任意选取三根组成一个三角形,那么可以组成三角形的个数为()A.1个B.2个C.3个D.4个2.如图,为估计池塘岸边A,B的距离,小方在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B间的距离不可能是()A.20米B.15米C.10米D.5米第2题图第3题图3.如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E,则下列说法不正确的是()A.AC是△ABC的高B.DE是△BCD的高C.DE是△ABE的高D.AD是△ACD的高4.在直角三角形,钝角三角形和锐角三角形中,有两条高在三角形外部的是()A.锐角三角形B.钝角三角形C.直角三角形D.都有可能5.在如图的方格纸中,每个小方格都是边长为1的正方形,点A,B是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C使△ABC的面积为2个平方单位,则满足条件的格点C的个数是_______个.6.如图,直线AE∥BD,点C在BD上,若AE=4,BD=8,△ABD的面积为16,则△ACE的面积为.第6题图第7题图7.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,那么阴影部分的面积是.8.已知:如图,在△ABC中,点D,E,F分别在三边上,E是AC的中点,AD,BE,CF交于一点G,BD=2DC,S△BGD=8,S△AGE=3,那么△ABC的面积是.第8题图第9题图9.两条对角线把梯形分割成四个三角形,若S△EDC=6,S△BEC=18,则△AEB的面积是,△AED的面积是.10.如图所示,在□ABCD中,点E是AD的中点,点F在边CD上,CF=2DF,若□ABCD的面积为12,则△EDF的面积是_______.第10题图第11题图11.四边形ABCD与AEFG均为正方形,△ABH的面积为6cm2,图中阴影部分的面积是______________.12.多项式4x2+4加上一个单项式后,能使它成为一个整式的平方,则可以加上的单项式共有________个,分别是______________________________.13.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥DG.【参考答案】1.A2.D3.C4.B5.56.87.1cm28.309.6;210.111.6cm212.5;-4,-4x2,x4,-8x,8x13.证明略三角形面积(随堂测试)1.现有2cm,3cm,4cm,5cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个2.如图,一个面积为50cm2的正方形与另一个小正方形并排放在一起,则△ABC的面积是________________.第2题图第3题图3.已知在正方形网格中,每个小方格都是边长为1的正方形,A,B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C为顶点的三角形面积为2,则点C的个数是_______个.(在图中标出点C的位置)4.如图,在□ABCD中,点E,F分别是是AB,BC的中点,连接EF,若□ABCD的面积是8cm2,则△BEF的面积是________.【参考答案】1.C2.25cm23.104.1cm2三角形综合应用(讲义)一、知识点睛在三角形背景下处理问题的思考方向:1.三角形中的隐含条件是:_____________________________________________________;_____________________________________________________;_____________________________________________________.2.角平分线出现时采用______________解决问题.3.高线出现时考虑__________或__________.4.中线、周长一起出现时,考虑________和________的关系.二、精讲精练1.下列五种说法中:①三角形的三个内角中至少有两个锐角;②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不少于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余,正确的有___________________________________.2.如图,在三角形纸片ABC中,∠A=60°,∠B=55°.将纸片一角折叠使点C落在△ABC内,则∠1+∠2的度数为______.第2题图第3题图3.如图,一个五角星的五个角的和是________.4.如图,∠A+∠B+∠C+∠D+∠E+∠F=________.5.如图①,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=40°,∠ABC=30°,则∠AEC=________;如图②,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α,∠ABC=β,则∠AEC=_________________.图①图②6.探究:(1)如图①,在△ABC中,BP平分∠ABC,CP平分∠ACB,猜想∠P和∠A有何数量关系?(2)如图②,在△ABC中,BP平分∠ABC,CP平分外角∠ACE,猜想 P和∠A有何数量关系?(3)如图③,BP平分∠CBF,CP平分∠BCE,猜想∠P和∠A有何数量关系?图①图②图③7.如图,在△ABC中,三个内角的角平分线交于点O,OE⊥BC于点E.(1)∠ABO+∠BCO+∠CAO的度数为____________;(2)∠BOD和∠COE的数量关系是________________.第7题图8.在锐角△ABC中,BD和CE是两条高,相交于点M,BF和CG是两条角平分线,相交于点N,如果∠BMC=100°,求∠BNC的度数.9.等腰三角形的周长为17cm,其中一边长为5cm,则该等腰三角形的底边长为__________.10.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边长为________.11.等腰三角形的周长是25cm,一腰上的中线将周长分为3:2的两部分,则此三角形的底边长为________________.12.已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是________________.13.如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,连接AD,若AE=4cm,则△ABD的周长是____________.14.如图,在Rt△ABC中,∠BAC=90°,AD⊥BC.(1)若AB=6,AC=8,BC=10,则AD=____________;(2)若AB=2,BC=3,则AC:AD=____________.第14题图第15题图15.如图所示,在△ABC中,若AB=2cm,AC=3cm,BC=4cm,AD,BF,CE为△ABC的三条高,则这三条高的比AD:BF:CE=____________________.16.如图,在△ABC 中,AB =AC ,P 是BC 边上任意一点,PD ⊥AB 于点D ,PE ⊥AC 于点E .(1)若AB =8,△ABC 的面积为14,则PD +PE 的值是多少?(2)过点B 作BF ⊥AC ,求证:PD +PE =BF .三、回顾与思考_____________________________________________________________________________________________________________________________________________________________________【参考答案】【知识点睛】1.三角形中的隐含条件:1.三角形内角和是180°;2.三角形的一个外角等于和它不相邻的两个内角的和;3.三角形两边之和大于第三边,两边只差小于第三边.2.设元3.互余,面积4.边长,周长【精讲精练】1.①③⑤2.130°3.180°4.360°5.35°;12(α+β)6.(1)∠P =90°+12∠A(2)∠P =12∠A(3)∠P=90° 12∠A7.(1)90°(2)∠BOD=∠COE8.130°9.5cm或7cm10.3cm11.5cm或353cm12.213.22cm14.(1)245(2)3:215.3:4:616.(1)72(2)略三角形综合应用随堂测试题姓名________5.如图,∠A+∠B+∠C+∠D+∠E=.6.如图,E和D分别在△ABC的边BA和CA的延长线上,CF,EF分别平分∠ACB和∠AED,若∠B=65°,∠D=45°,则∠F的大小是________.第1题图第2题图7.等腰三角形周长为14cm,一腰上的中线将三角形分为两个三角形,这两个三角形的周长差为5cm,则此等腰三角形的底边长为___________.8.如图,在△ABC中,CE平分∠ACB,CD⊥AB于点D,DF⊥CE于点F,其中∠A=40°,∠B=72°,求∠FDE.【参考答案】1.180°2.55°3.434.16°三角形综合应用(作业)1.满足下列条件的△ABC 中,不是直角三角形的是()A .∠B +∠A =∠CB .∠A :∠B :∠C =2:3:5C .∠A =2∠B =3∠CD .一个外角等于和它相邻的一个内角2.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=______________.3.如图,∠A +∠B +∠C +∠D +∠E +∠F =__________.第3题图第4题图4.如图,在Rt △ABC 中,∠C =90°,若∠CAB 与∠CBA 的平分线相交于点O ,则∠AOB =__________.5.如图,在△ABC 中,∠ABC 的平分线BD 与外角平分线CE 的反向延长线相交于点D ,若∠A =30°,则∠D =________.第5题图第6题图6.如图,在△ABC 中,AD 平分∠BAC ,点F 在DA 的延长线上,FE ⊥BC ,∠B =40°,∠C =70°,则∠DFE =__________.7.等腰三角形的周长为21cm ,其中一边长为6cm ,则该等腰三角形的底边长为__________.第2题图8.等腰三角形周长为17cm,一腰上的中线将三角形分为两个三角形,这两个三角形的周长差为4cm,则此等腰三角形的底边长为__________.9.如图,在△ABC中,若AB=2cm,BC=4cm,则△ABC的高AD与CE的比是__________.10.如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O,∠BAC=50°,∠C=60°,求∠DAC及∠BOA的度数.11.如图,在△ABC 中,AD为∠BAC的角平分线,G为AD的中点,延长BG交AC于E.CF⊥AD于H,交AB于F.下列说法中正确的有_____________________.①AD是△ABE的角平分线;②BE是△ABD的中线;③CH为△ACD边AD上的高;④AH是△ACF边CF上的高;⑤BG是△ABD的中线.12.已知:如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的数量关系,并说明理由.【参考答案】1.C2.270°3.360°4.135°5.15°6.15°7.6cm或9cm 8.3cm或253cm9.12 10.30°;120°第12题图第9题图第10题图第11题图11.③④⑤12.∠AED=∠C,证明略平行线与三角形内角和的综合应用(讲义)一、知识点睛1.如果两个角的和是____,那么称这两个角互为余角;如果两个角的和是____,那么称这两个角互为补角;①_____或_____的余角相等,②_____或_____的补角相等.2.对顶角:____________________________________________;③对顶角____.3.④三角形的内角和为_____,⑤直角三角形两锐角_____.已知:如图,△ABC.求证:∠BAC+∠B+∠C=180°.证明:_____,______________________________,∵MN∥BC∴∠B=∠1,∠C=∠2()∵∠1+∠2+∠3=180°()∴∠BAC+∠B+∠C=180°()二、精讲精练1.如图,∠AOC和∠BOD都是直角,如果∠AOD=50°,则∠BOC的度数是______.第1题图第2题图2.如图,∠COD为平角,AO⊥OE,∠AOC=2∠DOE,则有∠AOC=_______.3.已知:如图,OA⊥OB,直线CD经过顶点O,若∠BOD:∠AOC=5:2,则∠AOC=_____,∠BOD=_______.4.‘如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,则∠A的余角是_______和________,∠ACD=∠_______,∠BCD=∠______.5.如图,△ABC中,∠B=∠C,E是AC上一点,ED⊥BC,DF⊥AB,垂足分别为D,F,若∠AED=140°,则∠C=,∠BDF=,∠A=.第5题图第6题图AE BD,∠1=110o,∠2=30o,则∠C=______.6.已知:如图,//7.已知:如图,∠BAC与∠GCA互补,∠1=∠2,若∠E=46°,则∠F的度数是多少?8.已知:如图,AB⊥BC,BC⊥CD,∠1=∠2.求证:BE∥CF.证明:∵AB⊥BC,BC⊥CD()∴______=______=90°(垂直的性质)∵∠1=∠2()∴∠EBC=∠BCF()∴___∥___()9.已知:如图,∠1+∠2=180°,∠3=∠B.求证:∠AED=∠C.证明:∵∠1+∠2=180°()∠1+∠DFE=180°()∴_____=______()∴∥()∴∠3=∠ADE()∵∠3=∠B()∴∠ADE=∠B()∴___∥___()∴∠AED=∠C()10.已知:如图,∠1=∠2,∠C=∠D.求证:∠F=∠A.证明:∵∠1=∠2()∠1=∠DGF()∴∠2=∠DGF()∴____∥_____()∴∠D=∠FEC()∵∠C=∠D()∴∠FEC=∠C()∴DF∥AC()∴∠F=∠A.()三、回顾与思考___________________________________________________________________ ___________________________________________________________________ _____________________________________【参考答案】一、知识点睛1.90°;180°;同角;等角;同角;等角.2.具有公共顶点且角的两边互为反向延长线;相等.3.180°;互余;如图,过点A作BC的平行线MN;两直线平行,内错角相等;1平角=180°;等量代换.二、精讲精练第9题图第10题图1.50°2.60°3.60°;150°4.∠ACD,∠B;∠B;∠A5.50°;40°;80°6.40°;7.46°;8.已知;∠ABC,∠BCD;已知;等角的余角相等;BE,CF;内错角相等,两直线平行;9.已知;1平角=180°;∠2,∠DFE,同角的补角相等;AB,EF;内错角相等,两直线平行;两直线平行,内错角相等;已知;等量代换;DE,BC;同位角相等,两直线平行;两直线平行,同位角相等.10.已知;对顶角相等;等量代换;CE,BD;同位角相等,两直线平行;两直线平行,同位角相等;已知;等量代换;内错角相等,两直线平行;两直线平行,内错角相等.平行线与内角和的综合应用(随堂测试)1.已知:如图,AD与AB,CD交于A,D两点,EC,BF 与AB,CD交于E,F,且∠1=∠2,∠B=∠C.求证:∠A=∠D.证明:∵∠1=∠2()∠CGD=∠1()∴______=______(等量代换)∴CE//BF()∴_____=∠3()又∵∠B=∠C()∴∠3=______()∴____//_____()∴______=______()第1题图2.已知:如图,EF⊥BC,DE⊥AB,∠B=∠ADE.求证:AD∥EF.证明:∵EF⊥BC,DE⊥AB()∴∠EFB=∠AED=90°(垂直的性质)∴∠BEF+∠B=90°(直角三角形两锐角互余)∠BAD+∠ADE=90°()第2题图∵∠B=∠ADE()∴∠BEF=∠BAD()∴______∥______()【参考答案】1.已知;对顶角相等;∠CGD,∠2;同位角相等,两直线平行;∠C;两直线平行,同位角相等;已知;∠B;等量代换;AB,CD;内错角相等,两直线平行;∠A,∠D,两直线平行,内错角相等.2.已知,直角三角形两锐角互余;已知;等角的余角相等;同位角相等,两直线平行.平行线与三角形内角和的综合应用(作业)1.如图,三条直线AB ,CD ,EF 相交于点O ,∠AOF =3∠FOB ,∠AOC =90°,则∠EOC =.第1题图第2题图2.如图,在△ABC 中,DE ∥BC ,∠ADE =55°,∠1=25°,则∠DBE =________.3.如图,∠1+∠2=180°,∠3=90°,则∠4=______.4.如图,D 是△ABC 边BC 上的一点,∠1=∠B ,若∠ADC =60°,则∠BAC =_______.解:∵∠B +∠C +∠BAC =180°()∠1+∠C +∠ADC =180°()∵∠1=∠B ()∴∠BAC =∠ADC (等式的性质)∵∠ADC =60°()∴∠BAC =________()第4题图5.已知:如图,△ABC .求证:∠A +∠B +∠ACB =180°.证明:作BC 的延长线CE ,过点C 作CD ∥AB ,∵CD ∥AB ∴∠A =∠1()∠B =∠2()∵∠1+∠2+∠3=180°()∴∠A +∠B +∠ACB =180°()6.已知:如图,AB ∥CD ,∠BAE =∠DCE =45°.求证:∠E =90°.证明:∵AB ∥CD ()∴______+______=180°()∵∠BAE =∠DCE =45°()∴∠1+45°+∠2+45°=______即∠1+∠2=_______()∴∠E =180°-(∠1+∠2)=180°-90°=90°()7.已知:如图,∠1=∠ACB ,∠2=∠3.求证:CD ∥HF .证明:∵∠1=∠ACB ()∴____∥____()∴∠2=____()∵∠2=∠3()∴∠3=____()∴____∥____()第6题图第5题图第7题图【参考答案】1.45°;2.30°;3.90°;4.60°,三角形三个内角的和是180°三角形三个内角的和是180°;已知;已知;60°;等量代换.5.两直线平行,内错角相等;两直线平行,同位角相等;1平角=180°;等量代换.6.已知;∠BAC,∠ACD,两直线平行,同旁内角互补;已知;180°,90°,等式的性质;三角形三个内错的和等于180°;7.已知;DE,BC;同位角相等,两直线平行;∠DCB,两直线平行,内错角相等;已知;∠DCB,等量代换;CD,HF,同位角相等,两直线平行.三角形的外角(讲义)一、知识点睛1._________________________组成的角,叫做三角形的外角.2.三角形外角定理:三角形的一个外角等于____________________________________.已知:如图,∠2是△ABC的一个外角.求证:∠2=∠A+∠B证明:如图,∵∠A+∠B+∠1=180°()∠1+∠2=180°()∴∠2=∠A+∠B()二、精讲精练11.已知:如图,AC∥ED,∠C=25°,∠B=35°,则∠E的度数是()A.60°B.85°C.70°D.50°第1题图第2题图12.已知:如图,在△ABE中,D是边BE上一点,C是AE延长线上一点,连接CD,若∠BDC=140°,∠B=35°,∠C=25°,则∠A=.13.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则α=________.14.如图,D 是AB 上一点,E 是AC 上一点,BE ,CD 相交于点F ,∠A =60°,∠ACD =35°,∠ABE =20°,则∠BDC =_____,∠BEC =_____.第4题图第5题图15.已知:如图,在△ABC 中,DE ∥BC ,F 是AB 上一点,FE 的延长线交BC 的延长线于点G ,∠A =45°,∠ADE =60°,∠CEG =40°,则∠EGH =______.16.如图,在△ABC 中,AD ⊥BC ,垂足为D ,AE 平分∠BAC ,BF 平分∠ABC ,它们相交于点O ,∠BAC =50°,∠C =70°,则∠DAC =____,∠AED =_____,∠BOE =______.17.已知:如图,在△ABC 中,∠B =∠C ,AD 平分外角∠EAC .求证:AD ∥BC .第6题图第7题图18.已知:如图,BE是∠ABC的平分线,AB∥CE,∠A=50°,∠E=30°,求∠ACD 的度数.解:∵AB∥CE()∴∠ABE=_______()∵∠E=30°()∴∠ABE=_______()∵BE是∠ABC的平分线()∴∠ABC=2∠ABE=2×30°=60°(角平分线的定义)∵∠ACD是△ABC的一个外角(外角的定义)∠A=50°()∴∠ACD=______+______=______+______=_______()19.已知:如图,在△ABC中,BD平分∠ABC,且∠ADE=∠C,求证:∠AED=2∠EDB证明:∵∠ADE=∠C()∴_____∥_____()∴∠EDB=∠DBC()∵BD平分∠ABC()∴∠EBD=∠DBC(角平分线的定义)∴∠EDB=∠EBD()∵∠AED是△BDE的一个外角()∴∠AED=_____+_____=2∠EDB()20.已知:如图,在△ABC中,CD平分∠ACB交AB于点D,∠ADE=∠B,DE交AC于点F,连接CE.求证:∠EFC=2∠FDC.第8题图第9题图第10题图【参考答案】一、知识点睛1.三角形的一边与另一边的延长线;2.和它不相邻的两个内角的和;三角形三个内角的和为180°;1平角=180°;等式性质.二、精讲精练1.A2.80°;3.75°;4.95°,80°;5.145°;6.20°,85°,55°;7.证明:如图,∵AD平分∠EAC(已知)∴∠EAC=2∠EAD(角平分线定义)∵∠EAC为△ABC的一个外角(外角的定义)∠B=∠C(已知)∴∠EAC=∠B+∠C=2∠B(三角形的一个外角等于和它不相邻的两个内角的和)∴∠EAD=∠B(等式性质)∴AD∥BC(同位角相等,两直线平行)8.已知;∠E,两直线平行,内错角相等;已知;30°,等量代换;已知;已知;∠A,∠ABC,50°,60°,110°,三角形的一个外角等于和它不相邻的两个内角的和;9.已知;DE,BC,同位角相等,两直线平行;两直线平行,内错角相等;已知;等量代换;外角的定义;∠EBD,∠EDB,三角形的一个外角等于和它不相邻的两个内角的和;10.证明:如图,∵∠B=∠ADE(已知)∴DE∥BC(同位角相等,两直线平行)∴∠FDC=∠DCB(两直线平行,内错角相等)∵CD平分∠ACB(已知)∴∠DCB=∠FCD(角平分线的定义)∴∠FDC=∠FCD(等量代换)∵∠EFC是△DFC的一个外角(外角的定义)∴∠EFC=∠FDC+∠FCD=2∠FDC(三角形的一个外角等于和它不相邻的两个内角的和)几何证明每日一题(三角形的外角)1.已知:如图,直线AD与直线EB、FC分别相交于点G,H,若∠BEF+∠CFE=180°,求证:∠A+∠B+∠C+∠D=180°.2.已知:如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠A=50°,求∠BOC的度数.3.已知:如图,在△ABC中,D是AB上一点,E是AC上一点,DE的延长线交BC的延长线于点F.若∠ACB=50°,∠DFB=30°,∠ADF=80°,求∠A的度数.∠BAC且AD平分∠EDF,若∠CFD=75°,则∠BED的度数为多少?若∠D=∠A+∠B,∠BFE=75°,∠G=35°,求∠EFG的度数.【参考答案】1.证明:如图,∵∠BEF+∠CFE=180°(已知)∴BE∥CF(同旁内角互补,两直线平行)∴∠BGH+∠CHG=180°(两直线平行,同旁内角互补)∵∠BGH是△ABG的一个外角(外角的定义)∴∠BGH=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∵∠CHG是△CHD的一个外角(外角的定义)∴∠CHG=∠C+∠D(三角形的一个外角等于和它不相邻的两个内角的和)∴∠A+∠B+∠C+∠D=∠BGH+∠CHG=180°(等式性质)2.证明:如图,∵BO平分∠ABC,CO平分∠ACB(已知)∴∠OBC=12∠ABC,∠OCB=12∠ACB(角平分线的定义)∵∠A=50°(已知)∴∠BOC=180°-∠OBC-∠OCB=180°-12∠ABC-12∠ACB=180°-12(∠ABC+∠ACB)=180°-12(180°-∠A)=90°+12∠A=115°(三角形的三个内角的和等于180°)3.解:如图,∵∠ADF是△BDF的一个外角(外角的定义)∴∠ADF=∠B+∠DFB(三角形的一个外角等于和它不相邻的两个内角的和)∵∠ADF=80°,∠DFB=30°(已知)∴∠B=50°(等式性质)∵∠ACB=50°(已知)∴∠A=180°-∠B-∠ACB=180°-50°-50°=80°(三角形的三个内角的和等于180°)4.证明:如图,∵AD平分∠BAC且AD平分∠EDF(已知)∴∠FAD=∠EAD,∠FDA=∠EDA(角平分线的定义)∴∠FAD+∠FDA=∠EAD+∠EDA(等式性质)∵∠CFD是△ADF的一个外角(外角的定义)∴∠CFD=∠F AD+∠FDA(三角形的一个外角等于和它不相邻的两个内角的和)∵∠BED是△ADE的一个外角(外角的定义)∴∠BED=∠EAD+∠EDA(三角形的一个外角等于和它不相邻的两个内角的和)∴∠BED=∠CFD(等量代换)∵∠CFD=75°(已知)∴∠BED=75°(等量代换)5.证明:如图,∵∠ACF是△ABC的一个外角(外角的定义)∴∠ACF=∠A+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∵∠D=∠A+∠B(已知)∴∠D=∠ACF(等量代换)∴BF∥DG(同位角相等,两直线平行)∴∠FEG=∠BFE(两直线平行,内错角相等)∵∠BFE=75°(已知)∴∠FEG=75°(等量代换)∵∠G=35°(已知)∴∠EFG=180°-∠FEG-∠G=180°-75°-35°=70°(三角形的三个内角的和等于180°)三角形的外角(随堂测试)1.如图,AB∥CD,EG与AB,CD分别交于F,G,∠A=30°,∠EGD=70°,求∠E 的度数.解:∵_____∥______()∴∠EFB=______()∵∠EGD=70°()∴∠EFB=_______()∵∠EFB是△AEF的一个外角()∴∠EFB=_______+_______()∵∠A=30°()∴∠E=______-________=______-________=_______()2.如图,BD是∠ABC的平分线,DE∥BC,交AB于点E,∠A=30°,∠BDC=60°,求∠BDE的度数.解:∵∠BDC是△ABD的一个外角()∴∠BDC=____+______()∵∠A=30°,∠BDC=60°()∴∠ABD=____-______=____-______=______()∵BD是∠ABC的平分线()∴∠DBC=∠ABD=_______()∵DE∥BC()∴∠BDE=______=_____()【参考答案】1.AB,CD,已知;∠EGD,两直线平行同位角相等;已知;70°,等量代换;外角的定义;∠A,∠E,三角形的一个外角等于和它不相邻的两个内角的和;已知;∠EFB,∠EAB,70°,30°,40°,等式性质.2.外角的定义;∠ABD,∠A,三角形的一个外角等于和它不相邻的两个内角的和;已知;∠BDC,∠A,60°,30°,30°,等式性质;已知;30°;角平分线的定义;已知;∠DBC,30°,两直线平行内错角相等.三角形的外角(作业)1.将一副直角三角板,按如图所示叠放在一起,则图中α的度数是()A.45°B.60°C.75°D.90°第1题图第2题图2.如图,在△ABC中,∠1是它的一个外角,E为AC上一点,延长BC到点D,连接DE.若∠1=115°,∠A=40°,∠2=35°,则∠3=_______.3.如图,AB∥CD,EG与AB,CD分别交于F,G,∠E=40°,∠CGE=110°,则∠A=_______.第3题图第4题图4.如图,在△ABC中,AD⊥BC,垂足为D,AE是∠BAC的平分线,若∠B=70°,∠C=30°,则∠BAD=_______,∠AED=_______.5.如图,在△ABC中,∠BAC=50°,∠C=60°,AD⊥BC,BE是∠ABC的平分线,AD,BE相交于点F,求∠AFB的度数.解:∵∠C=60°,∠BAC=50°()∴∠ABC=180°-_____-∠C=180°-50°-60°=70°()∵BE是∠ABC的平分线()∴∠EBD=12∠ABC=35°(角平分线的定义)∵AD⊥BC()∴∠ADB=90°(垂直的性质)∵∠AFB是△BDF的一个外角()∴∠AFB=______+_______=______+_______=________()6.填写下列解题过程中的推理根据:如图,在△ABC中,∠A=40°,BD平分∠ABC交AC于点D,∠BDC=70°,求∠C的度数.解:∵∠BDC是△ABD的一个外角()∴∠BDC=∠A+∠ABD()∵∠A=40°,∠BDC=70°()∴∠ABD=______()∵BD平分∠ABC()∴∠ABC=2∠ABD(角平分线的定义)∴∠ABC=60°()∴∠C=180°-∠A-∠ABC=180°-______-______=______()7.已知:E是AB,CD外一点,∠D=∠B+∠E,求证:AB∥CD.第6题图第5题图【参考答案】1.C;2.40°;3.30°;4.20°,70°;5.已知;∠BAC;三角形三个内角的和等于180°;已知;已知;外角的定义;∠FDB;∠FBD;90°;35°;125°;三角形的一个外角等于和它不相邻的两个内角的和;6.外角的定义;三角形的一个外角等于和它不相邻的两个内角的和;已知;30°;等式性质;已知;等式性质;40°;60°;80°;三角形三个内角的和等于180°;7.证明:如图,∵∠AFE是△FEB的一个外角(外角的定义)∴∠AFE=∠E+∠B(三角形的一个外角等于和它不相邻的两个内角的和)∵∠D=∠E+∠B(已知)∴∠AFE=∠D(等量代换)∴AB∥CD(同位角相等,两直线平行)全等三角形性质及判定(讲义)一、知识点睛1.由_____________________的三条线段_________________所组成的图形叫做三角形.三角形可用符号“__________”表示.2.三角形有关定理:三角形两边之和____________第三边,两边之差___________第三边.3._____________________的两个三角形叫做全等三角形,全等用符号“__________”表示.全等三角形的__________相等,____________相等.4.全等三角形的判定定理:______________________________.二、精讲精练1.作出下图三角形的高线.第1题图第2题图2.如图,△ABC≌△DEF,对应边AB=DE,____________,__________,对应角∠B=∠DEF,________,_________.3.如图,△ACO≌△BCO,对应边AC=BC,___________,__________,对应角∠1=∠2,__________,__________.第3题图第4题图4.如图,△ABC≌△DEC,对应边___________,___________,___________,对应角_______________,_______________,______________.5.如图,若AD=CB,AB=DC,则_________≌__________,理由是___________________;若∠B=∠D,∠BCA=∠DAC,则_________≌________,理由是___________.第5题图第6题图6.如图,AD,BC相交于点O,若AO=DO,BO=CO,则__________≌___________,理由是________________.7.如图,AO=BO,若加上一个条件_____________________,则△AOC≌△BOC,理由是_________________________.第7题图第8题图8.如图,∠1=∠2,若加上一个条件____________________,则△ABE≌△ACE,理由是_______________.9.如图,AD,BC相交于点O,∠A=∠C,若加上一个条件_______________,则△AOB≌△COD,理由是___________.10.如图,某同学把一块三角形的玻璃打碎成3块,现要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D .①②③都带去第9题图11.如图,AB =AD ,∠1=∠2,要使△ABC ≌△ADE ,还需添加的条件是____________或____________或____________.第11题图第12题图12.如图,点B ,E ,C ,F 在一条直线上,在△ABC 与△DEF 中,AB =DE ,AC =DF ,如果∠__________=∠____________,则△ABC ≌△DEF ,所以BC =________,因此BE =________.13.如图,AE =BF ,AD ∥BC ,AD =BC ,则△ADF ≌_________,理由是__________,因此DF =__________.14.已知:如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C .求证:△ADC ≌△AEB .15.已知:如图,AB =CD ,AB //DC .试猜想AD 和BC 相等吗?并说明理由.第13题图第14题图第15题图16.已知:如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,DE⊥AB于E.求证:CD DE.第16题图三、回顾与思考________________________________________________________________________________________________________________________________________________________________________________________________【参考答案】一、知识点睛1.由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.三角形可用符号“△”表示.2.三角形有关定理:三角形两边之和大于第三边,两边之差小于第三边.3.能够完全重合的两个三角形叫做全等三角形,全等用符号“≌”表示.全等三角形的对应边相等,对应角相等.4.全等三角形的判定定理:SSS,SAS,ASA,AAS.二、精讲精练1.略2.AC=DF,BC=EF,∠A=∠D,∠ACB=∠F3.AO=BO,CO=CO,∠A=∠B,∠ACO=∠BCO4.AB=DE,AC=DC,BC=EC,∠A=∠D,∠B=∠E,∠ACB=∠DCE5.△ADC,△CBA,SSS,△ADC,△CBA,AAS6.△AOB,△DOC,SAS7.AC=BC,SSS(其它答案合理也可以)8.BE=CE,SAS(其它答案合理也可以)9.AO=OC,ASA(其它答案合理也可以)10.C11.AC=AE,∠B=∠D,∠C=∠E12.∠A=∠D,EF,CF13.△BCE,SAS,CE14.证明:在△ADC和△AEB中A AAC ABC B ∠=∠⎧⎪=⎨⎪∠=∠⎩(公共角)(已知)(已知)∴△ADC ≌△AEB (ASA )15.解:AD =BC ,理由如下:∵AB ∥DC ∴∠ABD =∠CDB 在△ABD 和△CDB 中=⎧⎪∠=∠⎨⎪=⎩AB CD ABD CDBBD DB (已知)(已证)(公共边)∴△ABD ≌△CDB (SAS )∴AD =CB (全等三角形对应边相等)16.解:∵AD 平分∠BAC∴∠CAD =∠EAD ∵DE ⊥AB ∴∠DEA =90°∵∠C =90°∴∠DEA =∠C 在△CAD 和△EAD 中C DEA CAD EADAD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(已证)(已证)(公共边)∴△CAD ≌△EAD (AAS )∴CD =ED (全等三角形对应边相等)全等三角形性质及判定(每日一题)姓名_________ 1.已知:如图,DF=CE,AD=BC,∠D=∠C.求证:△AED≌△BFC.2.已知:如图,在等边三角形ABC中,∠C=∠ABD=60°,AB=BC=AC,点D,E分别为BC,AC边上一点且AE=CD,连接AD,BE相交于点F.求证:△ABD≌△BCE.3.已知:如图,AB=CD,AC=BD.求证:12∠=∠.4.如图,在正方形ABCD,DEFG中,AD=CD,DE=DG,∠EDG=∠ADC=90°,连接CG交AD于点N,连接AE交CG于点M.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.考答案】1.证明:如图,∵DF =CE ∴DF -EF=CE -EF 即DE =CF在△AED 和△BFC 中AD BCD CDE CF (已知)(已知)(已证)=⎧⎪∠=∠⎨⎪=⎩∴△AED ≌△BFC (SAS )2.证明:如图,∵AC =BC AE =CD∴AC -AE =BC -CD 即CE =BD在△ABD 和△BCE 中AB BCABD CBD CE (已知)(已知)(已证)=⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△BCE (SAS )3.证明:如图,在△ABC 和△DCB 中AB CD AC BDBC BC (已知)(已知)(公共边)=⎧⎪=⎨⎪=⎩∴△ABC ≌△DCB (SSS )∴∠ABC =∠DCB ,∠ACB =∠DBC ∵∠1=∠ABC -∠DBC ∠2=∠DCB -∠ACB ∴∠1=∠24.证明:如图,(1)∵∠EDG =∠ADC∴∠EDG +∠ADG=∠ADC +∠ADG 即∠ADE =∠CDG 在△ADE 和△CDG 中AD CDADE CDGDE DG (已知)=(已证)(已知)=⎧⎪∠∠⎨⎪=⎩∴△ADE ≌△CDG (SAS )∴AE =CG (2)AE ⊥CG ∵∠ADC =90°∴∠GCD +∠CND =90°∵△ADE ≌△CDG ∴∠EAD =∠GCD ∵∠ANG =∠CND ∴∠EAD +∠ANG =90°∴∠AMC =90°即:AE ⊥CG全等三角形性质及判定(随堂测试)1.已知:如图,△ABC≌△DEF,对应边AB=DE,______________,_______________,对应角∠ABC=∠DEF,_______________,_______________.第1题图第2题图2.如图,∠BAD=∠CAE,AB=AD,若加上一个条件_______________,则△ABC≌△ADE,理由是_________.3.已知:如图,A,F,C,D在一直线上,AF=CD,AB∥DE,且AB=DE.求证:EC=BF.【参考答案】1.AC=DF BC=EF∠A=∠D∠C=∠F2.AE=AC SAS或者∠B=∠ADE ASA或者∠C=∠E AAS3.证明略全等三角形性质及判定(作业)1.作出下图三角形的高线.2.如图,△ABC≌△AEF,有以下结论:①AC=AE;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.其中正确的个数是()A.1个B.2个C.3个D.4个第2题图第3题图3.如图,△ABC≌△DEF,对应边AB=DE,_____________,___________,对应角∠B=∠DEF,___________,__________.4.如图,点B,C,F,E在同一直线上,∠1=∠2,BC=EF,若加上一个条件______________________,则△ABC≌△DEF,理由是_______________.。

初中八年级数学竞赛培优讲义全套专题15 全等三角形

初中八年级数学竞赛培优讲义全套专题15 全等三角形

初中八年级数学竞赛培优讲义全套专题15 全等三角形专题15:全等三角形全等是指两个几何图形之间的一种关系,其中最基本的关系是点的对应关系,以及对应边之间、对应角之间的相等关系。

全等三角形是研究三角形、四边形等图形性质的主要工具,是解决有关线段、角等问题的一个出发点。

证明线段相等、线段和差相等、角相等、两直线位置关系等问题总要直接或间接用到全等三角形,我们把这种应用全等三角形来解决问题的方法称为全等三角形法。

我们实际遇到的图形,两个全等三角形并不重合在一起,而是处于各种不同的位置,但其中一个是由另一个经过平移、翻折、旋转等变换而成的。

了解全等变换的这几种形式,有助于发现全等三角形、确定对应元素。

善于在复杂的图形中发现、分解、构造基本的全等三角形是解题的关键,应熟悉涉及有关共边、公共角的以下两类基本图形:1.三角形2.四边形例题与求解例1】考查下列命题:①全等三角形的对应边上的中线、高、角平分线对应相等;②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等;③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等;④两边和其中一边上的高(或第三边上高)对应相等的两个三角形全等。

其中正确命题的个数有()解题思路:真命题给出证明,假命题举出一个反例。

例2】如图,已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB。

求证:(1)AP=AQ;(2)AP⊥AQ。

解题思路:(1)证明对应的两个三角形全等;(2)证明∠PAQ=90°。

例3】如图,已知AD为△ABC的中线,求证:AD<(AB AC)。

解题思路:三角形三边关系定理是证明线段不等关系的基本工具,关键是设法将AB,AC,AD集中到同一个三角形中,从构造2AD入手。

例4】如图,已知AC∥BD,EA、EB分别平分∠CAB、∠DBA,CD过点E。

求证:AB=AC+BD。

解题思路:本例是线段和差问题的证明,截长法(或补短法)是证明这类问题的基本方法,即在AB上截取AF,使AF=AC,以下只要证明FB=BD即可,于是将问题转化为证明两线段相等。

第十讲 培优竞赛 全等三角形全章复习与巩固

第十讲  培优竞赛 全等三角形全章复习与巩固

第十讲 全等三角形全章复习与巩固培优【要点梳理】要点一、基本概念1、命题, 定理,公理,证明,逆定理,互逆定理2、尺规作图(五种)要点二、1、全等三角形的判定与性质 2、全等三角形的证明思路SASHLSSS AAS SAS ASAAAS ASA AAS ⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边要点三、角平分线、等腰三角形、线段垂直平分线的性质与判定 1、与角平分线有关的辅助线 在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段. 2、与等腰三角形有关的辅助线:3、与线段垂直平分线有关的辅助线: 要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1. 证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等. (2) 等式性质.(3) 利用角平分线的性质证明角平分线上的点到角两边的距离相等. 2. 证明角相等的方法:(1) 利用平行线的性质进行证明. (2) 证明两个角所在的两个三角形全等. (3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等. 3. 证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4. 辅助线的添加:(1)作公共边可构造全等三角形; (2)作以角平分线为对称轴的翻折变换全等三角形; (3)倍长中线法; (4)截长(或补短)法 5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.【典型例题】类型一、全等三角形的性质和判定例、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE .【变式】一张长方形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如下右图形式,使点B、F、C、D在同一条直线上(1)求证:AB⊥ED(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明类型二、巧引辅助线构造全等三角形例、如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关系,并证明你的结论.【变式】P是等边△ABC内部一点,∠APB、∠BPC、∠CPA的大小之比是5:6:7,所以PA、PB、PC的长为边的三角形的三个角的大小之比是______.F ED C B A 类型三、等腰三角形,等边三角形问题例、如图,已知ABC ∆为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ∆也是等边三角形.(1)除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜想是正确的; (2)你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程.【变式】**在等腰ABC ∆中,AB AC =,顶角20A ∠=︒,在边AB 上取点D ,使AD BC =,求BDC ∠.类型三、角平分线问题如图,在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,并且1()2AE AB AD =+,求∠ABC+∠ADC 的度数。

人教版数学八年级上册-第11章-三角形-复习(共38张PPT)省公开课获奖课件市赛课比赛一等奖课件

人教版数学八年级上册-第11章-三角形-复习(共38张PPT)省公开课获奖课件市赛课比赛一等奖课件

形旳外角中必有两个角是钝角;
D、锐角三角形中两锐角旳和必然不不小于
60O;
随堂检测
• 1.一种三角形旳三边长是整数,周1 长为5,则最
小边为

• 2三.木角形工具师有稳傅定做性 完门框后,为预防变形,通常在 角上钉一斜条,根据3是60

90O

• 3.小明绕五边形各边走一圈,他共转了 度

(1)、(2)、(4)
可表达为:五边形ABCDE 或五边形AEDCB
B
内角
E
外角
C
对角线:连接多边形不相邻旳两个 顶点旳线段。
1
D
对角线
10、多边形旳分类
请分别画出下列两个图形各边所在旳直线,你能得到什么结论?
D
E
A
G C
B
(1)
H F
(2)
如图(1)这么,画出多边形旳任何一条边所在旳直线,整个多边形都在这 条直线旳同一侧,那么这个多边形就是凸多边形。本节我们只讨论凸多边形。
那么(C )
A、只有一种截法 B、只有两种截法 C、有三种截法 D、有四种截法
3、等腰三角形旳腰长为a,底为X,则X旳取值范围是( A )
A、0<X<2a B、0<X<a C、0<X<a/2 D、0<X≤2a
随堂检测
4、一种正多边形每一种内角都是120o,这个多边形是( C )
A、正四边形
B、正五边形
随堂检测
101试卷库 三角形旳复习 随堂测试
同学们要仔细答题哦!
随堂检测
1、三角形三个内角旳度数分别是(x+y)o, (x-y)o,xo,且x>y>0,则该三角形有一种
内角为 ( C )

人教版八年级上册数学课件:三角形全章复习PPT

人教版八年级上册数学课件:三角形全章复习PPT
三角形的中线定义
顶点与它对边中点
连结三角形一个 的线段叫做三角形的中线。
9. 三角形木架的形状不会改变,而四边形木架的形状会改变.这就是说,三角形具有稳定性,而四边形没有稳定性。
10. 三角形内角和定理
三角形的内角和等于1800
3.如图,已知:AD是△ABC
的中线,△ABC的面积为 ,求
△ABD的面积
A
B
C
D

E
4.求下列图形中X的值
(3)
(2)
(1)

1
D
C
A
B
A
B
C
X
1
2
3
4
7.如图, △ABC中, ∠A= ∠ABD, ∠C= ∠BDC= ∠ABC,求∠DBC的度数
A
B
C
D
友情提示:把图形内部七边形各角看作外部三角形外角,分析可得
9、求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数。
A
G
F
E
D
C
B
7×180O-2×360O=540O
三角形三个内角的度数分别是(x+y)o, (x-y)o,xo,且x>y>0,则该三角形有一个内角为 ( ) A、30O B、45O C、60O D、90O 把14cm长的细铁丝截成三段,围成不等边三角形,并且使三边长均为整数,那么( ) A、只有一种截法 B、只有两种截法 C、有三种截法 D、有四种截法 等腰三角形的腰长为a,底为X,则X的取值范围是( ) A、0<X<2a B、0<X<a C、0<X<a/2 D、0<X≤2a
40°
60°
35°
A
B
C
D

八年级数学全等三角形综合培优竞赛讲义(38页)

八年级数学全等三角形综合培优竞赛讲义(38页)

全等三角形培优竞赛讲义(一)知识点全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.例题精讲板块一、截长补短【例1】 已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.4321FDOE CB A【解析】BE CD BC +=, 理由是:在BC 上截取BF BE =,连结OF , 利用SAS 证得BEO ∆≌BFO ∆,∴12∠=∠,∵60A ∠=︒,∴1901202BOC A ∠=+∠=,∴120DOE ∠=,∴180A DOE ∠+∠=,∴180AEO ADO ∠+∠=,∴13180∠+∠=, ∵24180∠+∠=,∴12∠=∠,∴34∠=∠,利用AAS 证得CDO ∆≌CFO ∆,∴CD CF =,∴BC BF CF BE CD =+=+.【例2】 如图,点M 为正三角形ABD 的边AB 所在直线上的任意一点(点B 除外),作60DMN ∠=︒,射线MN 与DBA ∠外角的平分线交于点N ,DM 与MN 有怎样的数量关系?GNEB M A D【解析】 猜测DM MN =.过点M 作MG BD ∥交AD 于点G ,AG AM =,∴GD MB =又∵120ADM DMA +∠=∠,120DMA NMB +=∠∠ ∴ADM NMB =∠∠,而120DGM MBN ==∠∠, ∴DGM MBN ∆∆≌,∴DM MN =.【变式拓展训练】如图,点M 为正方形ABCD 的边AB 上任意一点,MN DM ⊥且与ABC∠外角的平分线交于点N ,MD 与MN 有怎样的数量关系?NCDEB M A【解析】 猜测DM MN =.在AD 上截取AG AM =,∴DG MB =,∴45AGM =∠∴135DGM MBN ==︒∠∠,∴ADM NMB =∠∠, ∴DGM MBN ∆∆≌,∴DM MN =.【例3】 已知:如图,ABCD 是正方形,∠FAD =∠FAE . 求证:BE +DF =AE .M F EDCB A【解析】 延长CB 至M ,使得BM =DF ,连接AM .∵AB =AD ,AD ⊥CD ,AB ⊥BM ,BM =DF ∴△ABM ≌△ADF∴∠AFD =∠AMB ,∠DAF =∠BAM ∵AB ∥CD∴∠AFD =∠BAF =∠EAF +∠BAE =∠BAE +∠BAM =∠EAM ∴∠AMB =∠EAM∴AE =EM =BE +BM =BE +DF .【例4】 以ABC ∆的AB 、AC 为边向三角形外作等边ABD ∆、ACE ∆,连结CD 、BE 相交于点O .求证:OA 平分DOE ∠. 【解析】 因为ABD ∆、ACE ∆是等边三角形,所以AB AD =,AE AC =,CAE ∠=60BAD ∠=,则BAE DAC ∠=∠,所以BAE DAC ∆∆≌,则有ABE ADC ∠=∠,AEB ACD ∠=∠,BE DC =.在DC 上截取DF BO =,连结AF ,容易证得ADF ABO ∆∆≌,ACF AEO ∆∆≌. 进而由AF AO =.得AFO AOF ∠=∠;由AOE AFO ∠=∠可得AOF ∠=AOE ∠,即OA 平分DOE ∠.【例5】 如图所示,ABC ∆是边长为1的正三角形,BDC ∆是顶角为120︒的等腰三角形,以D 为顶点作一个60︒的MDN ∠,点M 、N 分别在AB 、AC 上,求AMN ∆的周长.EABC DM N【解析】 如图所示,延长AC 到E 使CE BM =.在BDM ∆与CDE ∆中,因为BD CD =,90MBD ECD ∠=∠=,BM CE =, 所以BDM CDE ∆∆≌,故MD ED =.因为120BDC ∠=,60MDN ∠=,所以60BDM NDC ∠+∠=. 又因为BDM CDE ∠=∠,所以60MDN EDN ∠=∠=.在MND ∆与END ∆中,DN DN =,60MDN EDN ∠=∠=,D M D E =, 所以MND END ∆∆≌,则NE MN =,所以AMN ∆的周长为2.【例6】 五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDEABDEFC【解析】 延长DE 至F ,使得EF =BC ,连接AC .∵∠ABC +∠AED =180°,∠AEF +∠AED =180° ∴∠ABC =∠AEF ∵AB =AE ,BC =EF ∴△ABC ≌△AEF ∴EF =BC ,AC =AF∵BC +DE =CD ∴CD =DE +EF =DF ∴△ADC ≌△ADF ∴∠ADC =∠ADF 即AD 平分∠CDE .板块二、全等与角度【例7】如图,在ABC ∆中,60BAC ∠=︒,AD 是BAC ∠的平分线,且AC AB BD =+,求ABC ∠的度数.【解析】 如图所示,延长AB 至E 使BE BD =,连接ED 、EC .由AC AB BD =+知AE AC =,而60BAC ∠=,则AEC ∆为等边三角形.注意到EAD CAD ∠=∠,AD AD =,AE AC =, 故AED ACD ∆∆≌.从而有DE DC =,DEC DCE ∠=∠,故2BED BDE DCE DEC DEC ∠=∠=∠+∠=∠.所以20DEC DCE ∠=∠=,602080ABC BEC BCE ∠=∠+∠=+=.【另解】在AC 上取点E ,使得AE AB =,则由题意可知CE BD =.在ABD ∆和AED ∆中,AB AE =,BAD EAD ∠=∠,AD AD =,则ABD AED ∆∆≌,从而BD DE =,进而有DE CE =,ECD EDC ∠=∠,AED ECD EDC ∠=∠+∠=2ECD ∠. 注意到ABD AED ∠=∠,则:1318012022ABC ACB ABC ABC ABC BAC ∠+∠=∠+∠=∠=-∠=,故80ABC ∠=︒.【点评】由已知条件可以想到将折线ABD “拉直”成AE ,利用角平分线AD 可以构造全等三角形.同样地,将AC 拆分成两段,之后再利用三角形全等亦可,此思路也是十分自然的.需要说明的是,无论采取哪种方法,都体现出关于角平分线“对称”的思想.上述方法我们分别称之为“补短法”和“截长法”,它们是证明等量关系时优先考 虑的方法.【例8】在等腰ABC ∆中,AB AC =,顶角20A ∠=︒,在边AB 上取点D ,使AD BC =,求BDC ∠.【解析】 以AC 为边向ABC ∆外作正ACE ∆,连接DE .在ABC ∆和EAD ∆中,AD BC =,AB EA =,2060EAD BAC CAE ∠=∠+∠=+= 80ABC =∠,E D CB AED CB AD CBADCB AED CBA则ABC EAD ∆∆≌.由此可得ED EA EC ==,所以EDC ∆是等腰三角形. 由于20AED BAC ∠=∠=,则602040CED AEC AED ∠=∠-∠=-=,从而70DCE ∠=,706010DCA DCE ACE ∠=∠-∠=-=, 则201030BDC DAC DCA ∠=∠+∠=+=.【另解1】以AD 为边在ABC ∆外作等边三角形ADE ∆,连接EC .在ACB ∆和CAE ∆中,6020CAE ACB ︒︒∠=+=∠,AE AD CB ==,AC CA =, 因此ACB CAE ∆∆≌,从而CAB ACE ∠=∠,CE AB AC ==.在CAD ∆和CED ∆中,AD ED =,CE CA =,CD CD =, 故CAD CED ∆∆≌, 从而ACD ECD ∠=∠,2CAB ACE ACD ∠=∠=∠, 故10ACD ︒∠=,因此30BDC ︒∠=. 【另解2】如图所示,以BC 为边向ABC ∆内部作等边BCN ∆,连接NA 、ND .在CDA ∆和ANC ∆中,CN BC AD ==,20CAD ∠=, ACN ACB BCN ∠=∠-∠=806020-=, 故CAD ACN ∠=∠,而AC CA =,进而有CDA ANC ∆∆≌. 则10ACD CAN ∠=∠=,故30BDC DAC DCA ∠=∠+∠=. 【点评】上述三种解法均是向三边作正三角形,然后再由三角形全等得到边长、角度之间的关系.【例9】如图所示,在ABC ∆中,AC BC =,20C ∠=︒,又M 在AC 上,N 在BC 上,且满足50BAN ∠=︒,60ABM ∠=︒,求NMB ∠.【解析】 过M 作AB 的平行线交BC 于K ,连接KA 交MB 于P .连接PN ,易知APB ∆、M KP ∆均为正三角形.因为50BAN ∠=︒,AC BC =,20C ∠=︒,所以50ANB ∠=︒,BN AB BP ==,80BPN BNP ∠=∠=︒,则40PKN ∠=︒,180608040KPN ∠=︒-︒-︒=︒, 故PN KN =.从而MPN MKN ∆∆≌.进而有PMN KMN ∠=∠,1302NMB KMP ∠=∠=︒.【另解】如图所示,在AC 上取点D ,使得20ABD ∠=︒,由20C ∠=︒、AC BC =可知80BAC ∠=︒. 而20ABD ∠=︒,故80ADB ∠=︒,BA BD =. 在ABN ∆中,50BAN ︒∠=,80ABN ∠=︒,故50ANB ∠=︒,从而BA BN =,进而可得BN BD =.E DCBA N DC B APA BCM NK NMCBA D NMCBA而802060DBN ABC ABD ∠=∠-∠=︒-︒=︒, 所以BDN ∆为等边三角形.在ABM ∆中,180180806040AMB ABM BAM ∠=︒-∠-∠=︒-︒-︒=︒, 804040DBM ADB AMB ∠=∠-∠=︒-︒=︒,故DM B DBM ∠=∠,从而D M D B =.我们已经得到DM DN DB ==,故D 是BMN ∆的外心,从而1302NMB NDB ∠=∠=︒.【点评】本题是一道平面几何名题,加拿大滑铁卢大学的几何大师Ross Honsberger 将其喻为“平面几何中的一颗明珠”.本题的大多数解法不是纯几何的,即使利用三角函数也不是那么容易.【例10】在四边形ABCD 中,已知AB AC =,60ABD ︒∠=,76ADB ︒∠=,28BDC ︒∠=,求DBC ∠的度数.【解析】 如图所示,延长BD 至E ,使DE DC =,由已知可得:180********ADE ADB ︒︒︒︒∠=-∠=-=, 7628104ADC ADB BDC ︒︒︒∠=∠+∠=+=,故ADE ADC ∠=∠.又因为AD AD =,DE DC =,故ADE ADC ∆∆≌,因此AE AC =,E ACD ∠=∠,EAD CAD ∠=∠.又因为AB AC =, 故AE AB =,ABC ACB ∠=∠. 而已知60ABD ︒∠=,所以ABE ∆为等边三角形. 于是60ACD E EAB ∠=∠=∠=︒,故18016CAD ADC ACD ∠=︒-∠-∠=︒, 则28CAB EAB CAD EAD ∠=∠-∠-∠=︒,从而1(180)762ABC CAB ∠=︒-∠=︒,所以16DBC ABC ABD ∠=∠-∠=︒.【例11】 如图所示,在四边形ABCD 中,12DAC ︒∠=,36CAB ︒∠=,48ABD ︒∠=,24DBC ︒∠=,求ACD ∠的度数.【解析】 仔细观察,发现已知角的度数都是12︒的倍数,这使我们想到构造60︒角,从而利用正三角形.在四边形ABCD 外取一点P ,使12PAD ︒∠=且AP AC =,连接PB 、PD . 在ADP ∆和ADC ∆中,12PAD CAD ︒∠=∠=,AP AC =,AD AD =,故ADP ADC ∆∆≌. 从而APD ACD ∠=∠.CDB A DC BA EC D B A PDC在ABC ∆中,36CAB ∠=︒,72ABC ∠=︒, 故72ACB ︒∠=,AC AB =, 从而AP AB =.而12123660PAB PAD DAC CAB ∠=∠+∠+∠=︒+︒+︒=︒, 故PAB ∆是正三角形,60APB ︒∠=,PA PB =.在DAB ∆中,123648DAB DAC CAB DBA ︒︒︒∠=∠+∠=+==∠, 故DA DB =.在PD A ∆和PDB ∆中,PA PB =,PD PD =,DA DB =, 故PDA PDB ∆∆≌,从而1302APD BPD APB ︒∠=∠=∠=,则30ACD ︒∠=.【例12】 在正ABC ∆内取一点D ,使DA DB =, 在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.【解析】 如图所示,连接DC .因为AD BD =,AC BC =,CD CD =,则ADC BDC ∆∆≌, 故30BCD ∠=.而DBE DBC ∠=∠,BE AB BC ==,BD BD =, 因此BDE BDC ∆∆≌,故30BED BCD ∠=∠=.【例13】 如图所示,在ABC ∆中,44BAC BCA ︒∠=∠=,M 为ABC ∆内一点,使得30MCA ︒∠=,16MAC ︒∠=,求BMC ∠的度数.D E CB AD E CB A OM B MCAB【解析】 在ABC ∆中,由44BAC BCA ︒∠=∠=可得AB AC =,92ABC ︒∠=.如图所示,作BD AC ⊥于D 点,延长CM 交BD 于O 点,连接OA , 则有30OAC MCA ︒∠=∠=,443014BAO BAC OAC ︒︒︒∠=∠-∠=-=, 301614OAM OAC MAC ︒︒︒∠=∠-∠=-=, 所以BAO MAO ∠=∠.又因为90903060AOD OAD COD ︒︒︒︒∠=-∠=-==∠, 所以120AOM AOB ∠=︒=∠.120BOM ∠=︒ 而AO AO =,因此ABO AMO ∆∆≌, 故OB OM =.由于120BOM ︒∠=,则180302BOMOMB OBM ︒-∠∠=∠==︒,故180150BMC OMB ︒︒∠=-∠=.全等三角形培优竞赛讲义(二)【知识点精读】1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。

人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题(含答案)

人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题(含答案)

人教版八年级数学上册(三角形、全等三角形、轴对称、整式的乘法)竞赛培优题分数:100 考试时间:80分钟一、选择题(10=30分)1. 下列运算正确的是 ( )A 、x 2 + x 3 = x 5B 、-2x ·x 2 =-2x 3C 、x 6÷x 2 = x 3D 、(- x 2 )3 = x 62. 的值是( )A 、0B 、-2C 、2D 、 3. 下列各组图形中,是全等形的是( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形4. 若二次三项式26x ax +-可分解成,则a ,b 的值分别为( )A . 1,3B . 1-,3C . 1,3-D . 1-,3-5.要使二次三项式25x x p -+在整数范围内能进行因式分解,那么整数p的取值可以有( ) A . 2个 B . 4个 C . 6个 D .无数个6.如图,△ABC 中,∠C=90°,AC=3,∠B=30°,点P 是BC 边上的动点,则AP 的长不可能是( ) A 、3.5 B 、4.2 C 、5.8 D 、77.如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,对于下列结论,其中说法错误的是( )A.△EBD 是等腰三角形,EB =ED ;B .折叠后∠ABE 和∠CBD 一定相等;C .折叠后得到的图形是轴对称图形 ; D.△EBA 和△EDC 一定是全等三角形。

8.如图,等边三角形△ABC 的边长是6,面积是,AD 是BC 边上的高,点E 是AB 的中点,在AD 上求一点P ,则P B +PE 的和的最小值为( )A 、3B 、6C 、D 、9. 如图,AD 是△ABC 的角平分线,DE ⊥AB 于E ,已知△ABC 的 面积为28.AC =6,DE =4,则AB 的长为( ) A .6 B .8 C .4 D .1010. 如图,四边形ABCD 中,AB =AD ,点B 关于AC 的对 称点B ′恰好落在CD 上,若∠BAD =100°,则∠ACB 的 度数为( )A .40°B .45° C .60° D .80° 二、填空题(5=15分)11. 分解因式得正确结果为. 12. 满足的整数的值是 .13. 如图:在△FHI 中,HF +FG=GI ,HG ⊥FI ,∠F=058,则∠FHI= 度。

人教版八年级数学上学期 第十一章 《三角形》知识梳理复习提纲

人教版八年级数学上学期 第十一章 《三角形》知识梳理复习提纲

教材解读:三角形与三角形有关的角1.三角形的外角必须满足三个条件:(1)顶点与三角形的一个内角的顶点重合(即共顶点);(2)一边是三角形的一边(即共边);(3)另一边是三角形一边的延长线(即共线).如图,∠ACD是三角形ABC的外角,与三角形ABC有公共顶点C,公共边AC,CD在BC的延长线上.2.三角形外角的个数一个三角形共有六个外角,它们是三对对顶角,在研究和外角有关的问题时,通常在一个顶点处只取一个外角.如图,∠1、∠2、∠3、∠4、∠5、∠6都是三角形ABC的外角.3.三角形的外角与相邻的内角是邻补角的关系,与不相邻的内角是不等的关系.如上图,∠1是三角形ABC的外角,∠1与∠A是邻补角.因为∠1=∠B+∠C,所以∠1与∠B、∠1与∠C都是不等关系.4.三角形的外角和是360°.如下图,因为∠1和∠BAC是邻补角,所以∠1+∠BAC=180°.同理∠2+∠ABC=180°,∠3+∠ACB=180°.所以∠1+∠BAC+∠2+∠ABC+∠3+∠ACB=540°.又因为∠ABC+∠BAC+∠ACB=180°,所以∠1+∠2+∠3=360°.即三角形ABC的外角和是360°.与三角形有关的线段一、三角形的高及其有关结论1.画出三角形ABC的三条高.三角形高的位置与三角形的形状有关,锐角三角形的三条高在三角形内部;钝角三角形的三条高有两条高在三角形的外部;直角三角形有两条高与直角边重合.2.锐角三角形ABC的三条高交于一点,交点在三角形内部;钝角三角形ABC 三条高不交于一点,但高所在的直线交于一点;直角三角形ABC的三条高交于一点,交点为直角顶点A.3.因为S=BC×AD=AC×BE=AB×CF,所以BC×AD=AC×BE=AB×CF.二、三角形的中线及其有关结论1.在三角形ABC中画出所有中线.2.无论什么形状的三角形,三条边上的中线均在三角形内,并交于一点.3.由AF=BF=AB,BD=DC=BC,AE=CE=AC,所以S△ACF=S△BCF=S△ABD=S△ADC=S△ABE=S△BCE.三、三角形角平分线及其有关结论1.画出△ABC所有的角平分线.【注意】三角形的角平分线是线段,而角的平分线是射线.2.无论什么形状的的三角形,三个角的平分线都在三角形内部,并相交于一点.多边形内角和理解多边形内角和的推导可以让我们把公式的来龙去脉弄得一清二楚,从而加深对公式的理解与掌握,更重要的是能够从中学到许多重要的思想方法.对于n边形的内角和公式:n边形的内角和=(n-2)×180°,其推导方法主要有以下几种:课本方法:从一个顶点出发引n边形的(n-3)条对角线,把n边形分割为(n-2)个三角形(如图1),则这(n-2)个三角形的内角和就是n边形的内角和,从而得到:n边形的内角和=(n-2)×180°;方法二:在n边形内任取一点,然后把这一点与各顶点连结,将n边形分割为n个三角形(如图2),这n个三角形的内角和比n边形的内角和恰好多了一个周角360°,因此n边形的内角和=180°×n-360°=(n-2)×180°;方法三:在n边形的一边上取一点,把这一点与各顶点连结,把n边形分割为(n-1)个三角形(如图3),这些三角形的内角和比n边形的内角和多出了一个平角,因此,n边形的内角和=(n-1)×180°-180°=(n-2)×180°;方法四:在n边形外任取一点,然后把这一点与各顶点连结,将n边形分割为n个三角形(如图4),这n个三角形的内角和比n边形的内角和恰好多出了两个三角形内角和,因此n边形的内角和=n×180°-2×180°=(n-2)×180°.知识梳理:三角形一、学习目标1.了解三角形有关概念(内角、外角、中线、高、角平分线),会画三角形的角平分线、中线和高.了解三角形的稳定性.2.掌握三角形内角和以及多边形内角和公式,了解多边形外角和性质.3.会欣赏美丽的平面镶嵌,掌握一些简单的平面镶嵌知识.二、知识网络根据知识网络结构图,按其中数码顺序,说出各个数码所指内容,以达到梳理知识的目的.三、几个定义的区别下边的图表给出了三角形中线、三角形的高、三角形的角平分线的区别与联系,希望大家能够掌握,区分开来.与三角形有关的角一、学习目标1.了解三角形的内角和和外角的定义.2.会用平行线的性质和平角的定义说明三角形的内角和等于180°.3.探索并掌握三角形的外角的性质.4.会用三角形内角和定理和三角形外角的性质进行相关的计算和证明.二、知识概要1.三角形内角和定理:三角形内角和等于180°.三角形内角和反映了三角形三个内角之间的关系,是解决任意三角形关于内角的证明和计算问题的重要依据之一,利用它可以解决以下问题:(1)计算角度的大小,以及利用求出的角度来判断三角形的形状和证明直线垂直.解决这样的问题常常需要设未知数列方程求解.(2)证明角相等.(3)证明角的和、差、倍、分关系.(4)证明角之间的不等关系.2.三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.3.三角形外角的性质(1)三角形的一个外角等于和它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.4.常用辅助线的做法:(1)说明角的关系时,如果没有现存的外角可以使用,通常要延长某个角的一边.(2)在进行角度计算时,为了能使用三角形内角和定理和外角性质,通常要构造三角形,这时需要连结某些线段或延长某些线段.三、重点难点本周的重点是三角形的内角和和外角的性质,难点是三角形外角性质的应用.四、知识链接本周知识是以前学过的三角形的基础知识的拓展,也是以后求角度、证明角度相等的有利工具之一.五、中考视点中考对这部分知识的考察主要体现在以下两方面:1.三角形内角和定理的使用.2.三角形外角的性质的应用.与三角形有关的线段一、学习目标1.掌握三角形的概念.2.掌握并会应用三角形三边关系.3.掌握三角形的高、中线和角平分线.二、知识概要1. 三角形:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2. 三角形的边:组成三角形的三条线段叫做三角形的边.3. 三角形的表示:三角形用符号“△”表示,读做“三角形”.如图:图中AB、BC、CA是三角形的边,有时也用a,b,c表示;点A、B、C是三角形的顶点;∠A、∠B、∠C是三角形的角;三角形ABC记作“△ABC”,读做“三角形ABC”.4. 三角形的高:由三角形的一个顶点向它对边所在的直线作垂线,顶点和垂足之间线段,叫做这个三角形的高.5.三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段,叫做三角形的中线.6.三角形的角平分线:在三角形中,一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段,叫做这个三角形的角平分线.三、重点难点三角形的高、中线、角平分线的内容和三角形三边关系是本周的重点.三角形的高、中线、角平分线的区别与联系是本周的难点.四、知识链接本周内容是前面学过的三角形的基础知识的拓展,也是以后求面积、求角度有力的工具.五、中考视点本周内容直接考的很少,但是经常与其他知识综合考查,像什么作高求面积,利用角平分线求角度,利用中线求线段等等.多边形内角和镶嵌一、学习目标1.了解多边形有关的概念:边、内角、外角、对角线、正多边形;2.理解并掌握多边形内角和公式与外角和公式;3.通过探索平面图形的镶嵌,知道任何一个三角形、四边形或六边形可以镶嵌平面,并能利用这几种图形进行简单的镶嵌设计.二、知识概要1.多边形的有关概念(1)在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.(2)多边形中相邻两边组成的角叫做多边形的内角.(3)多边形的边与它的邻边的延长线组成的角叫做多边形的外角.(4)连结多边形不相邻的两个顶点的线段,叫做多边形的对角线.2.正多边形:各角都相等,各边都相等的多边形叫做正多边形.3.n边形内角和:n边形的内角和为(n-2)×180°.4.多边形外角和:多边形的外角和等于360°.5.平面镶嵌:用形状、大小完全相同的一种或几种平面图形进行衔接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌.三、重点难点多边形内角和与外角和的应用是本周的重点,镶嵌是本周的难点.四、知识链接多边形内角和知识由前面学过的三角形内角和知识拓展而来,是平面镶嵌问题的知识基础.五、中考视点多边形内角和与多边形边数的关系;多边形的外角和与多边形边数的关系.第十一章三角形复习小结教学目标:1、回顾本章知识,形成本章知识结构.2、总结本章解题规律,进行跟踪训练.重点:归纳本章知识结构,进行跟踪训练.难点:总结本章解题规律.教学过程:一、回顾本章知识,形成本章知识结构二、双基训练:⒈在活动课上,小红有两根长为4cm,8cm的小木棒,现打算拼一个等腰三角形,则小红应取的第三根小木棒的长应为8 cm.⒉⊿ABC中,若∠A∶∠B∶∠C=1∶2∶3,则△ABC是直角三角形.⒊三角形中至少有一个角不小于60 °;没有对角线的多边形是三角形;一个多边形中,锐角最多有三个;一个四边形截去一个角后可以得到的多边形是三角形或四边形或五边形.⒋一个多边形的每个外角都是30°,则它是十二边形,其内角和是1800°.⒌一个多边形的每个内角都相等,且比它的一个外角大100°,则边数n=9 .⒍如图⑴,在直角△ABD中,∠D=90°,C为BD上一点,则x可能是(B)A、10B、20C、30D、40⒎如图⑵有两个正方形和一个等边三角形,则图中度数为30°的角有(D)A、1个B、2个C、3个D、4个⒏一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成其中三个分别为正三角形、正四边形、正六边形,那么另一个为(B)A、正三边形B、正四边形C、正五边形D、正六边形三、例题解析:例1.等腰三角形一腰上的中线将周长分为6和15两部分,求此三角形的腰长. 解:如图等腰△ABC中,AB=AC,BD是腰AC上的中线,x设AB=AC=x ,BC=y 则AD=DC=2①当AB+AD=6 , BC+CD=15时,即:x +2x =6,y +2x =15 解得x =4, y =13 ∵4+4<13∴此时不能组成三角形,故x =4, y =13不合题意,舍去.②当AB +AD =15 , BC +CD =6时,即:x +2x =15,y +2x =6 解得x =10, y =1∵10+1>10∴10、10、1能构成三角形.∴此三角形的腰长为10.例2.如图⑶一个四边形ABCD 模板,设计要求AD 与BC 的夹角应为30°,CD与BA 的夹角应为20°.现在已测得∠A =80°,∠B =70°,∠C =90°,请问:这块模板是否合格?并说明理由.解:这块模板合格.理由:延长AD 、BC 相交于点E,延长BA 、CD 相交于点F在△ABE 中∵∠EAB =80°,∠B =70°∴∠E =180°―∠EAB―∠B =30°在△CFB 中∵∠FCB =90°,∠B =70°∴∠F =180°―∠FCB―∠B =20°∴这块模板合格.例3. ⊿ABC 中,⑴如图⑷,∠DBC 和∠ECB 的角平分线相交于点O ;⑵如图⑸,∠ABC 的角平分线BD 和∠ACE 的角平分线相交于点O ;如图⑹,∠CBD 的角平分线BO 和∠BCE 的角平分线CO 相交于点0,试猜想∠A 与∠D 的关系,并选择其中一个进行证明.提示:⑴∠BOC =180°-(∠2+∠3)=180°-(∠1+∠4)=180°-(∠5+∠6+∠7+∠8)=180°-(∠BAC +∠BOC )=90°-2BAC ∠ ⑵∠A =322∠-∠=2O ∠⑶∠BOC =180°-2ABC ACB ∠+∠ =180°-1802A -∠=90°+2A ∠.三、巩固练习:1.有四条线段,长度分别是12cm,10cm,8cm,4cm,选其中的三条组成三角形,则可组成 3 个不同的三角形.2.如果等腰三角形的两边长为5cm 和9cm ,则三角形周长为19cm 或23cm .3.△ABC 中,若∠A ∶∠B ∶∠C=3∶4∶7,则△ABC 是 直角 三角形.4.一个n 边形的每个内角都相等,且比它的一个外角大60°,则边数n = 6 .5..三角形最长边等于10,另两条边的长分别为x 和4,周长为C ,则x 和C 的取值范围分别是 6<x≤10 ,20<C≤246.如图⑺,AB ∥CE, ∠C =37°,∠A =114°,则∠F 的度数为 77°.7.如图⑻所示,△ABC 中AB =AC ,请你添加一个条件....AD 平分∠EAC (不唯一),使得AD ∥BC.8.如图⑼,D 、E 是边AC 的三等分点若△ABC 的面积为12㎝2,则△BDC 的面积是8 ㎝2.9.如图⑽,∠1+∠2+∠3+∠4的度数是300°.10.一个多边形的内角和是1980°,则它的边数是_13 _,它的外角和是360 ° ,共有__65__条对角线. 11.一个正多边形,它的一个外角等于与它相邻的内角的15,则这个多边形是( D )A 、五边形B 、八边形C 、九边形D 、十二边形12.下列说法不正确的是( D )A 、任意形状的一些三角形可镶嵌地面B、用形状大小完全相同的六边形可镶嵌地面C、用形状大小完全相同的任意四边形可镶嵌地面D、用任意一种多边形可镶嵌地面13.用两个正三角形与下面的若干个(B)可以进行平面镶嵌.A、正方形B、正六边形C、正八边形D、正十二边形14.如图⑾,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外部时,则∠A、∠1、∠2之间的关系是(B)A、∠A=∠1-∠2B、2∠A=∠1-∠2C、3∠A=2∠1-∠2D、3∠A=2(∠2-∠1)15.如图⑿,已知∠1+∠2=180°,DG∥AC,求证:∠A=∠DFE.证明:∵∠1+∠2=180°,∠1+∠DFE=180°∴∠2=∠DFE∴AB∥EF∴∠A=∠3又∵DG∥AC∴∠3=∠DFE ∴∠A=∠DFE.16.如图⒀, △ABC中,点D在AC上,且∠ABC=∠C=∠BDC, ∠ABD=∠A,求∠A的度数.解:设∠ABD=∠A=x°∵∠BDC=∠ABD+∠A∴∠ABC=∠C=∠BDC=2x°∵∠A+∠ABC+∠C=180°∴x°+2x°+2x°=180°∴x=36,∴∠A=36°17.如图⒁,已知D为△ABC边BC延长线上一点,DF⊥AB于F交AC于E,∠A=35°,∠D=42°,求∠ACD的度数.解:∵DF⊥AB∴∠AFE=90°又∵∠CEF =∠AFE +∠A,∠CEF =∠ECD +∠D∴∠AFE +∠A =∠ECD +∠D又∵∠A =35°,∠D =42°∴90°+35°=∠ECD +42°∴∠ECD =83°,即∠ACD =83°.18.如图⒂,已知△ABC 中,∠ACB =90°,CD 是AB 边上的高,BE 是AC 边上的中线,AB =10cm,BC =8cm,AC =6cm.⑴求CD 的长;⑵求△ABE 的面积.解:⑴∵S △ABC =12(AC×BC)=12(AB×CD) ∴12(6×8)=12(10×CD) ∴CD = 4.8(cm) .⑵∵BE 是AC 边上的中线∴S △ABE =12S △ABC =12 (682)=12(cm 2). 19.如图⒂,已知∠xoy =90°,点A 、B 分别在射线ox,oy 上移动,BE 是∠ABy 的平分线,BE 的反向延长线与∠OAB 的平分线相交于点C ,试问∠C 的大小是否随点A 、B 的移动而发生变化?如果保持不变,求出∠C 的大小,如果随点A 、B 的移动而发生变化,请求出变化范围.解:∠C 的大小保持不变.∵BE 是∠ABy 的平分线∴∠3=∠2=12∠ABy 又∵AC 平分∠OAB∴∠1=12∠OAB ∴∠C =∠3-∠1=12∠ABy -12∠OAB =12 (∠ABy -∠OAB)=12∠xoy 又∵∠xoy =90°∴∠C =45°.。

八年级数学复习备考高分秘籍(人教版):三角形16大核心考点精讲精练(原卷版)

八年级数学复习备考高分秘籍(人教版):三角形16大核心考点精讲精练(原卷版)
【典例剖析】
专题 1.1 三角形 16 大核心考点精讲精练(知识梳理+典例剖析+变式训练)
【考点 1】三角形的概念与分类
【例 1】(2022·江苏常州·七年级期中)如图所示,方格中有 A、B、C、D、E 五个格点,以这 5 个格点中的 3 个点为顶点画三角形,其中直角三角形有( )
A.1
B.2
C.3
2022-2023 学年八年级数学上学期复习备考高分秘籍(人教版)
专题 1.1 三角形 16 大核心考点精讲精练(知识梳理+典例剖析+变式训练) 【目标导航】
【知识梳理】
1. 三角形: (1)三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形. 组成三角形的线段叫做三角形的边. 相邻两边的公共端点叫做三角形的顶点. 相邻两边组成的角叫做三角形的内角,简称三角形的角. (2)按边的相等关系分类:不等边三角形和等腰三角形(底和腰不等的等腰三角形、底和腰相等的等腰三 角形即等边三角形). (3)三角形的主要线段:角平分线、中线、高. (4)三角形具有稳定性. 2.三角形的主要线段: (1)从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高. (2)三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三 角形的角平分线. (3)三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
A.
B.
C.
D.
【变式 2.1】(2021·黑龙江黑河·八年级期末)如图,电线杆的斜拉钢索是三角形的结构,主要是为了( )
A.节省材料
B.保持对称
C.利用三角形的稳定性
D.利用四边形的不稳定性
【变式 2.2】(2022·重庆巴蜀中学七年级期末)下列生活中的实例利用到三角形的稳定性的是( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初二数学培优和竞赛二合一讲炼教程15、三角形总复习【知识精读】1. 三角形的内角和定理与三角形的外角和定理;2. 三角形中三边之间的关系定理及其推论;3. 全等三角形的性质与判定;4. 特殊三角形的性质与判定(如等腰三角形);5. 直角三角形的性质与判定。

三角形一章在平面几何中占有十分重要的地位。

从知识上来看,许多内容应用十分广泛,可以解决一些简单的实际问题;从证题方法来看,全等三角形的知识,为我们提供了一个及为方便的工具,通过证明全等,解决证明两条线段相等,两个角相等,从而解决平行、垂直等问题。

因此,它揭示了研究封闭图形的一般方法,为以后的学习提供了研究的工具。

因此,在学习中我们应该多总结,多归纳,使知识更加系统化,解题方法更加规范,从而提高我们的解题能力。

【分类解析】1. 三角形内角和定理的应用例1. 如图1,已知 ABC 中, BAC AD BC 90,于D ,E 是AD 上一点。

求证: BED C证明:由AD ⊥BC 于D ,可得∠CAD =∠ABC又 ABD ABE EBD则∠∠ABD EBD 可证∠∠CAD EBD 即∠∠BED C 说明:在角度不定的情况下比较两角大小,如果能运用三角形内角和都等于180°间接求得。

2. 三角形三边关系的应用例2. 已知:如图2,在 ABC 中,AB AC ,AM 是BC 边的中线。

求证: AM AB AC12证明:延长AM 到D ,使MD =AM ,连接BD在 CMA 和 BMD 中,AM DM AMC DMB CM BM,∠∠, CMA BMDBD AC在 ABD 中,AB BD AD ,而AD AM2AB AC AMAM AB AC 212说明:在分析此问题时,首先将求证式变形,得2AM AB AC ,然后通过倍长中线的方法,相当于将 AMC 绕点旋转180°构成旋转型的全等三角形,把AC 、AB 、2AM 转化到同一三角形中,利用三角形三边不等关系,达到解决问题的目的。

很自然有 1212AB AC AM AB AC 。

请同学们自己试着证明。

3. 角平分线定理的应用例3. 如图3,∠B=∠C =90°,M 是BC 的中点,DM 平分∠ADC 。

求证:AM 平分DAB 。

证明:过M 作MG ⊥AD 于G ,∵DM 平分∠ADC ,MC ⊥DC ,MG ⊥AD∴MC =MG (在角的平分线上的点到角的两边距离相等)∵MC =MB ,∴MG =MB而MG ⊥AD ,MB ⊥AB∴M 在∠ADC 的平分线上(到一个角的两边距离相等的点,在这个角的平分线上) ∴DM 平分∠ADC说明:本题的证明过程中先使用角平分线的定理是为判定定理的运用创造了条件MG =MB 。

同时要注意不必证明三角形全等,否则就是重复判定定理的证明过程。

4. 全等三角形的应用(1)构造全等三角形解决问题例4. 已知如图4,△ABC是边长为1的等边三角形,△BDC 是顶角(∠BDC )为120°的等腰三角形,以D 为顶点作一个60°的角,它的两边分别交AB 于M ,交AC 于N ,连结MN 。

求证: AMN 的周长等于2。

分析:欲证 AMN 的周长等于2,需证明它等于等边 ABC 的两边的长,只需证MN BM CN 。

采用旋转构造全等的方法来解决。

证明:以点D 为旋转中心,将 DBM 顺时针旋转120°,点B 落在点C 的位置,点M 落在M'点的位置。

得:∠MBD =∠NCD =90°Rt MBD Rt M CDDCM DBM ''∠∠90 ∴∠NCD 与∠DCM'构成平角,且BM =CM',DM =DM',∠NDM'=∠NDC +∠CDM'=∠NDC +∠BDM =120°-60°=60°在 MDN 和 M DN '中,DM DM MDN M DN DN DN'',∠∠,60 MDN M DN SAS MN M NM N M C CN BM CNMN BM CN'()''' AMN 的周长 AM AN MN AM AN BM CN AB AC 2 说明:通过旋转,使已知图形中的角、线段充分得到利用,促进了问题的解决。

(2)“全等三角形”在综合题中的应用例5. 如图5,已知:点C 是∠FAE 的平分线AC 上一点,CE ⊥AE ,CF ⊥AF ,E 、F 为垂足。

点B 在AE 的延长线上,点D 在AF 上。

若AB =21,AD =9,BC =DC =10。

求AC 的长。

分析:要求AC 的长,需在直角三角形ACE 中知AE 、CE 的长,而AE 、CE 均不是已知长度的线段,这时需要通过证全等三角形,利用其性质,创设条件证出线段相等,进而求出AE 、CE 的长,使问题得以解决。

解:∵AC 平分∠FAE ,CF ⊥AF ,CE ⊥AE∴CF =CECF CE F CEA AC AC ACF ACE HL AF AECF CE CD BC F CEB CDF CBE HL∠∠∠∠9090 ()()∴BE =DF设BE DF x ,则AE AB BE x AF AD DF x219, AE AF x x x ,,2196在Rt BCE 中,CE BC BE22221068 在Rt ACE 中, AC AE CE2222216817 答:AC 的长为17。

5、中考点拨例1.如图,在 ABC 中,已知∠B 和∠C 的平分线相交于点F ,过点F 作DE ∥BC ,交AB 于点D ,交AC 于点E ,若BD +CE =9,则线段DE 的长为( )A. 9B. 8C. 7D. 6分析:初看此题,看到DE =DF +FE 后,就想把DF 和FE 的长逐个求出后再相加得DE ,但由于DF 与FE 的长都无法求出,于是就不知怎么办了?其实,若能注意到已知条件中的“BD +CE =9”,就应想一想,DF +FE 是否与BD +CE 相关?是否可以整体求出?若能想到这一点,就不难整体求出DF +FE 也就是DE 的长了。

解:∵BF 是∠B 的平分线∴∠DBF =∠CBF又DE ∥BC∴∠DFB =∠CBF∴∠BDF =∠DFB∴DF =BD同理,FE =CE∴DF +FE =BD +CE =9即DE =9故选A6、题型展示例1. 已知:如图6, ABC 中,AB =AC ,∠ACB =90°,D 是AC 上一点,AE 垂直BD 的延长线于E ,AE BD12。

求证:BD 平分∠ABC 分析:要证∠ABD =∠CBD ,可通过三角形全等来证明,但图中不存在可证全等的三角形,需设法进行构造。

注意到已知条件的特点,采用补形构造全等的方法来解决。

简证:延长AE 交BC 的延长线于F易证 ACF BCD (ASA 或AAS )AF BDAE BD AE AF EF 1212 于是又不难证得 BAE BFE SAS ()∠∠ABD CBD∴BD 平分∠BAC说明:通过补形构造全等,沟通了已知和未知,打开了解决问题的通道。

例2.某小区结合实际情况建了一个平面图形为正三角形的花坛。

如图7,在正三角形ABC,现要在花坛内装一喷水管D ,点D 的位置必须满足条件AD =D 的喷水,问∠BPD 分析:此题是一个实际问题,应先将实际问题转化成数学问题,转化后的数学问题是:如图7,D 为正 ABC 内一点,P 为正 ABC 外一点,PB =AB ,AD =BD ,∠DBP =∠DBC ,求∠BPD =?在解此数学问题时,要用到全等三角形的知识。

解:连CDBP AB BC DBP DBC BD BD PBD CBD SAS BPD BCD∠∠∠∠ ()又 AC BC AD BD CD CDACD BCD SSS ACD BCD ()∠∠30 ∠BPD 30,即∠BPD 30时,才能达到要求。

【实战模拟】1. 填空:等腰三角形一腰上的中线把这个三角形的周长分成12cm和21cm,则这个等腰三角形底边的长为____________。

2. 在锐角 ABC中,高AD和BE交于H点,且BH=AC,则∠ABC=__________。

3. 如图所示,D是 ABC的∠ACB的外角平分线与BA的延长线的交点。

试比较∠BAC与∠B的大小关系。

4. 如图所示,AB=AC,∠BAC=90°,M是AC中点,AE⊥BM。

求证:∠AMB=∠CMD5. 设三个正数a、b、c满足a b c a b c22224442,求证:a、b、c一定是某个三角形三边的长。

【试题答案】1. 5cm2. 45°3. 分析:如图所示,∠BAC 是 ACD 的外角,所以 BAC 1因为∠1=∠2,所以∠BAC >∠2又因为∠2是 BCD 的外角,所以∠2>∠B ,问题得证。

答:∠BAC >∠B∵∠CD 平分∠ACE ,∴∠1=∠2∵∠BAC >∠1,∴∠BAC >∠2∵∠2>∠B ,∴∠BAC >∠B4. 证明一:过点C 作CF ⊥AC 交AD的延长线于F∠∠∠∠∠∠129012BAE BAE 又∠BAC =∠ACF =90°AC =ABABM CAFAM CF F AMB,∠∠ 又AM =MC ,∴MC =CF又∠3=∠4=45°,CD =CDCDM CDF∠∠∠∠F CMDAMB CMD证明二:过点A 作AN 平分∠BAC 交BM 于N ∠∠∠∠∠∠239023BAE BAE 又AN 平分∠BAC∠∠145C 又AB =ACABN CADAN CD又∠∠NAM C 45 AM =CMNAM DCMAMB CMD∠∠ 说明:若图中所证的两个角或两条线段没有在全等三角形中,可以把求证的角或线段用和它相等的量代换。

若没有相等的量代换,可设法作辅助线构造全等三角形。

5. 证明:由已知得:a b c a b b c c a a b c444222222444222222 即a b c a b b c c a 4442222222220 a b a b c a b c c a b a b c a b c a b 4422222242222222242222240240ab c ab a b c ab a b c ab a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c b c a c a b 22222222222222220220000a b c 、、是某一三角形三边的长。

相关文档
最新文档