《离散数学》复习题及答案
离散数学复习题含答案

离散数学复习题含答案1. 集合论基础集合A和集合B的交集表示为A∩B,它包含所有既属于A又属于B的元素。
请写出集合{1, 2, 3}和{2, 3, 4}的交集。
答案:{2, 3}2. 逻辑运算设命题p为“今天是周一”,命题q为“明天是周三”。
请判断复合命题“p且q”的真值。
答案:假3. 图论初步在无向图中,若存在一条路径使得起点和终点相同,则称该图为欧拉图。
请判断一个有5个顶点且每个顶点的度均为2的无向图是否一定是欧拉图。
答案:是4. 组合数学从5个不同的球中选取3个,有多少种不同的选取方法?答案:10种5. 布尔代数在布尔代数中,逻辑或运算符表示为∨,逻辑与运算符表示为∧。
请计算表达式(A∨B)∧(¬A∨¬B)的值。
答案:¬(A∧B)6. 归纳与递归给定递归关系式T(n) = 2T(n-1) + 1,初始条件为T(1) = 1,求T(3)的值。
答案:T(3) = 2T(2) + 1 = 2(2T(1) + 1) + 1 = 2(2*1 + 1) + 1 =2(3) + 1 = 77. 有限状态机在有限状态机中,状态转移可以通过一个转移函数来描述。
若状态转移函数定义为δ(q, a) = q',其中q和q'是状态,a是输入符号,请说明该函数的作用。
答案:该函数定义了在给定当前状态q和输入符号a的情况下,有限状态机将转移到新的状态q'。
8. 正则表达式正则表达式用于描述字符串的模式。
请写出匹配任意长度的数字串的正则表达式。
答案:\d*9. 命题逻辑命题逻辑中的等价关系是指两个命题逻辑表达式在所有可能的真值赋值下具有相同的真值。
请判断命题p∨¬p和命题¬(p∧¬p)是否等价。
答案:是10. 树的遍历在计算机科学中,树的遍历有前序、中序和后序三种方式。
请简述后序遍历的步骤。
答案:后序遍历的步骤是先访问左子树,然后访问右子树,最后访问根节点。
离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。
答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。
答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。
答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。
答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。
解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。
反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。
由于R是自反的,所以(a, a) ∈ R,与假设矛盾。
因此,R一定是反自反的。
答案完整证明了该结论。
2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。
解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。
所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
离散数学考试题及答案

离散数学考试题及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(3,4)属于()。
A. {1,2,3}B. {3,4,5}C. {1,2,3,4,5}D. {1,2,3}×{3,4,5}答案:D2. 命题“若x>2,则x>1”的逆否命题是()。
A. 若x≤2,则x≤1B. 若x≤1,则x≤2C. 若x≤1,则x≤2D. 若x≤2,则x≤1答案:C3. 函数f: A→B的定义域是集合A,值域是集合B的()。
A. 子集B. 真子集C. 任意子集D. 非空子集答案:D4. 以下哪个图是无向图()。
A. 有向图B. 无向图C. 完全图D. 树答案:B5. 以下哪个命题是真命题()。
A. 所有的马都是白色的B. 有些马是白色的C. 没有马是白色的D. 以上都不是答案:B二、填空题(每题2分,共10分)6. 集合{1,2,3}的子集个数为______。
答案:87. 命题“若x>0,则x>1”的逆命题是:若x>1,则______。
答案:x>08. 函数f: A→B中,若A={1,2},B={3,4},则f的值域可以是{3}或{4}或{3,4},但不能是______。
答案:{1,2}9. 在有向图中,若存在从顶点A到顶点B的有向路径,则称A到B是______的。
答案:可达10. 命题逻辑中,合取(AND)的符号是______。
答案:∧三、解答题(每题15分,共30分)11. 证明:若p∧q为真,则p和q都为真。
证明:根据合取(AND)的定义,p∧q为真当且仅当p和q都为真。
因此,若p∧q为真,则p和q都为真。
12. 给定函数f: A→B,其中A={1,2,3},B={4,5,6},且f(1)=4,f(2)=5,f(3)=6。
请找出f的值域。
答案:根据函数的定义,f的值域是其所有输出值的集合。
因此,f的值域为{4,5,6}。
《离散数学》复习题及答案

页眉内容《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PP⌝P→⌝↔(4)QQ→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。
(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散数学复习题及答案

总复习题(一)一.单选题1 (C)。
一连通的平面图,5个顶点3个面,则边数为()。
、4 、5 、6 、72、 (A)。
如果一个简单图,则称为自补图,非同构的无向4阶自补图有()个。
、1 、2 、3 、43、 (D)。
为无环有向图,为的关联矩阵,则()。
、是的终点、与不关联、与关联、是的始点4、 (B)。
一连通的平面图,8个顶点4个面,则边数为。
、9 、10 、11 、125、 (D)。
如果一个简单图,则称为自补图,非同构的3阶有向完全图的子图中自补图有个。
、1 、2 、3 、46、21条边,3个4度顶点,其余顶点为3度的无向图共有个顶点。
、13 、12 、11 、107、 (D)。
有向图的通路包括。
、简单通路、初级通路、复杂通路、简单通路、初级通路和复杂通路8、 (D)。
一连通的平面图,9个顶点5个面,则边数为。
、9 、10 、11 、12A B C D G G ≅G A B C D E ,V D =[]m n ij m ⨯D 1m ij =A i v j e B i v j e C i v j e D i v j e A B C D G G ≅G A B C D A B C D A B C D A B C D9、21条边,3个4度顶点,其余顶点为3度的无向图共有个顶点。
、13 、12 、11 、1010、 (D)。
有向图的通路包括。
、简单通路、初级通路、复杂通路、简单通路、初级通路和复杂通路11、 (D)。
一连通的平面图,9个顶点5个面,则边数为。
、9 、10 、11 、1212、 (B)。
为有向图,为的邻接矩阵,则。
、邻接到的边的条数是5、接到的长度为4的通路数是5、长度为4的通路总数是5、长度为4的回路总数是513、 (C)。
在无向完全图中有个结点,则该图的边数为()。
A 、B 、C 、D 、14、 (C)。
任意平面图最多是()色的。
A 、3B 、4C 、5D 、615、 (A)。
对与10个结点的完全图,对其着色时,需要的最少颜色数为()。
离散数学考试题及答案

离散数学考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项不是离散数学的研究对象?A. 图论B. 组合数学C. 微积分D. 逻辑学答案:C2. 在逻辑学中,下列哪个命题是真命题?A. 如果今天是周一,那么明天是周二。
B. 如果今天是周一,那么明天是周三。
C. 如果今天是周一,那么明天是周四。
D. 如果今天是周一,那么明天是周五。
答案:A3. 在集合论中,下列哪个符号表示集合的并集?A. ∩B. ∪C. ⊆D. ⊂答案:B4. 在图论中,下列哪个术语描述的是图中的顶点集合?A. 边B. 路径C. 子图D. 顶点答案:D二、填空题(每题5分,共20分)1. 如果一个集合A包含5个元素,那么它的子集个数是______。
答案:322. 在逻辑学中,如果命题P和命题Q都是真命题,那么复合命题“P且Q”的真值是______。
答案:真3. 在图论中,如果一个图的顶点数为n,那么它的最大边数是______。
答案:n(n-1)/24. 如果一个二叉树的深度为3,那么它最多包含______个节点。
答案:7三、简答题(每题10分,共30分)1. 请简述什么是图的连通性,并给出一个例子。
答案:图的连通性是指在图中任意两个顶点之间都存在一条路径。
例如,在一个完全图K3中,任意两个顶点之间都可以通过一条边直接连接,因此它是连通的。
2. 解释什么是逻辑蕴含,并给出一个例子。
答案:逻辑蕴含是指如果一个命题P为真,则另一个命题Q也必须为真。
例如,命题P:“如果今天是周一”,命题Q:“明天是周二”。
如果今天是周一,那么根据逻辑蕴含,明天必须是周二。
3. 请描述什么是二叉搜索树,并给出它的一个性质。
答案:二叉搜索树是一种特殊的二叉树,其中每个节点的左子树只包含小于当前节点的数,右子树只包含大于当前节点的数。
它的一个性质是中序遍历可以得到一个有序序列。
四、计算题(每题15分,共30分)1. 给定一个集合A={1, 2, 3, 4, 5},请计算它的幂集,并列出所有元素。
离散数学试题总汇及答案

离散数学试题总汇及答案一、单项选择题(每题2分,共20分)1. 在集合{1,2,3}和{3,4,5}的笛卡尔积中,元素(2,4)是否存在?A. 存在B. 不存在C. 无法确定D. 以上都不对2. 函数f: A→B是单射的,当且仅当对于任意的a1, a2∈A,若f(a1)=f(a2),则a1=a2。
A. 正确B. 错误C. 无法确定D. 以上都不对3. 以下哪个命题是真命题?A. 所有的狗都会游泳。
B. 有些狗不会游泳。
C. 所有的狗都不会游泳。
D. 以上都不是真命题。
4. 如果p蕴含q为假,那么p和q的真值可以是?A. p为真,q为假B. p为假,q为真C. p为真,q为真D. p为假,q为假5. 以下哪个图是连通图?A. 一个孤立点B. 两个不相连的点C. 一个包含三个点且每对点都相连的图D. 以上都不是连通图6. 在有向图中,如果存在从顶点u到顶点v的路径,那么称v是u的后继顶点。
A. 正确B. 错误C. 无法确定D. 以上都不对7. 以下哪个等价关系是集合{1,2,3}上的?A. {(1,1), (2,2), (3,3)}B. {(1,2), (2,1), (2,2), (3,3)}C. {(1,1), (2,3), (3,2), (3,3)}D. {(1,1), (2,2), (3,3), (1,3)}8. 以下哪个命题是假命题?A. 所有的鸟都有羽毛。
B. 有些鸟不会飞。
C. 所有的哺乳动物都是温血动物。
D. 以上都不是假命题。
9. 在图论中,一个图的生成树是包含图中所有顶点的最小连通子图。
A. 正确B. 错误C. 无法确定D. 以上都不对10. 如果命题p和q互为逆否命题,那么它们具有相同的真值。
A. 正确B. 错误C. 无法确定D. 以上都不对二、填空题(每题2分,共20分)1. 集合{1,2,3}和{3,4,5}的并集是________。
2. 函数f: A→B是满射的,当且仅当对于任意的b∈B,存在a∈A,使得f(a)=________。
离散数学复习题有答案

离散数学复习题有答案1. 什么是集合的子集?子集是指一个集合中的所有元素都属于另一个集合。
如果集合A中的每一个元素都是集合B的元素,那么集合A就是集合B的子集。
2. 描述有限集合和无限集合的区别。
有限集合是指元素数量有限的集合,可以被一一列举。
无限集合则包含无限多个元素,无法被完全列举。
3. 什么是二元关系?二元关系是集合A和集合B之间的一种对应关系,它由有序对(a, b)组成,其中a属于集合A,b属于集合B。
4. 什么是函数?函数是一种特殊的二元关系,其中每个定义域中的元素都与值域中的一个且仅一个元素相关联。
5. 什么是等价关系?等价关系是一种自反的、对称的、传递的二元关系。
在集合A上的等价关系将A划分为若干个不相交的等价类。
6. 什么是偏序关系?偏序关系是一种自反的、反对称的、传递的二元关系。
它在集合上定义了一个部分顺序。
7. 什么是有向图和无向图?有向图是一种图,其中的边有方向,表示从一个顶点指向另一个顶点。
无向图的边没有方向,表示两个顶点之间的双向连接。
8. 什么是强连通分量?在有向图中,强连通分量是指图中的一组顶点,这些顶点中的每一个顶点都可以到达集合中的其他任何顶点。
9. 什么是二进制数?二进制数是一种基数为2的数制,只使用0和1两个数字来表示数值。
10. 什么是逻辑运算?逻辑运算是对逻辑值(真或假)进行的操作,包括与(AND)、或(OR)、非(NOT)等运算。
11. 什么是归纳法?归纳法是一种数学证明方法,通过证明一个基本情况,然后假设某个情况成立,再证明下一个情况也成立,从而证明整个命题。
12. 什么是图的遍历?图的遍历是指按照一定的规则访问图中的每个顶点,确保每个顶点都被访问一次。
常见的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
13. 什么是正规表达式?正规表达式是一种描述字符串集合的模式,用于文本搜索和文本处理。
它由一系列字符和元字符组成,定义了字符串的匹配规则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式?x((A(x)?B(y,x))??z C(y,z))?D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)P↔(4)QP→⌝P⌝Q→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。
(1) ?x?y(x+y=0) (2) ?y?x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ?x?y (xy=y) ( ) (2) ?x?y(x+y=y) ( )(3) ?x?y(x+y=x) ( ) (4) ?x?y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式?x(P(x)?Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
答:2不是偶数且-3不是负数。
12、永真式的否定是()(1) 永真式(2) 永假式(3) 可满足式(4) (1)--(3)均有可能答:(2)13、公式(⌝P∧Q)∨(⌝P∧⌝Q)化简为(),公式 Q→(P∨(P∧Q))可化简为()。
答:⌝P ,Q→P14、谓词公式?x(P(x)??yR(y))→Q(x)中量词?x的辖域是()。
答:P(x)??yR(y)15、令R(x):x是实数,Q(x):x是有理数。
则命题“并非每个实数都是有理数”的符号化表示为()。
答:⌝?x(R(x)→Q(x))(集合论部分)16、设A={a,{a}},下列命题错误的是()。
(1) {a}∈P(A) (2) {a}⊆P(A) (3) {{a}}∈P(A) (4) {{a}}⊆P(A)答:(2)17、在0()Φ之间写上正确的符号。
(1) = (2) ⊆(3) ∈(4) ∉答:(4)18、若集合S的基数|S|=5,则S的幂集的基数|P(S)|=()。
答:3219、设P={x|(x+1)2≤4且x∈R},Q={x|5≤x2+16且x∈R},则下列命题哪个正确()(1) Q⊂P (2) Q⊆P (3) P⊂Q (4) P=Q答:(3)20、下列各集合中,哪几个分别相等( )。
(1) A1={a,b} (2) A2={b,a} (3) A3={a,b,a} (4) A4={a,b,c}(5) A5={x|(x-a)(x-b)(x-c)=0} (6) A6={x|x2-(a+b)x+ab=0}答:A1=A2=A3=A6, A4=A521、若A-B=Ф,则下列哪个结论不可能正确?( )(1) A=Ф (2) B=Ф(3) A⊂B (4) B⊂A答:(4)22、判断下列命题哪个为真?( )(1) A-B=B-A => A=B (2) 空集是任何集合的真子集(3) 空集只是非空集合的子集 (4) 若A的一个元素属于B,则A=B答:(1)23、判断下列命题哪几个为正确?( )(1) {Ф}∈{Ф,{{Ф}}} (2) {Ф}⊆{Ф,{{Ф}}} (3) Ф∈{{Ф}}(4) Ф⊆{Ф} (5) {a,b}∈{a,b,{a},{b}}答:(2),(4)24、判断下列命题哪几个正确?( )(1) 所有空集都不相等 (2) {Ф}≠Ф (4) 若A为非空集,则A⊂A成立。
答:(2)25、设A∩B=A∩C,A∩B=A∩C,则B( )C。
答:=(等于)26、判断下列命题哪几个正确?( )(1) 若A∪B=A∪C,则B=C (2) {a,b}={b,a}(3) P(A∩B)≠P(A)∩P(B) (P(S)表示S的幂集)(4) 若A为非空集,则A≠A∪A成立。
答:(2)27、A,B,C是三个集合,则下列哪几个推理正确:(1) A⊆B,B⊆C=> A⊆C (2) A⊆B,B⊆C=> A∈B (3) A∈B,B∈C=> A∈C 答:(1)(二元关系部分)28、设A={1,2,3,4,5,6},B={1,2,3},从A到B的关系R={〈x,y〉|x=y2},求(1)R (2) R-1 。
答:(1)R={<1,1>,<4,2>} (2) R1-={<1,1>,<2,4>}29、举出集合A上的既是等价关系又是偏序关系的一个例子。
( ) 答:A上的恒等关系30、集合A上的等价关系的三个性质是什么?( )答:自反性、对称性和传递性31、集合A上的偏序关系的三个性质是什么?( )答:自反性、反对称性和传递性32、设S={1,2,3,4},A上的关系R={〈1,2〉,〈2,1〉,〈2,3〉,〈3,4〉}求(1)R R (2) R-1。
答:R R ={〈1,1〉,〈1,3〉,〈2,2〉,〈2,4〉}R -1 ={〈2,1〉,〈1,2〉,〈3,2〉,〈4,3〉}33、设A={1,2,3,4,5,6},R是A 上的整除关系,求R= {( )}。
答:R={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,4>,<2,6>,<3,6>}34、设A={1,2,3,4,5,6},B={1,2,3},从A到B 的关系R={〈x,y 〉|x=2y },求(1)R (2) R -1 。
答:(1)R={<1,1>,<4,2>,<6,3>} (2) R 1-={<1,1>,<2,4>,(36>}35、设A={1,2,3,4,5,6},B={1,2,3},从A到B 的关系R={〈x,y 〉|x=y 2},求R 和R -1的关系矩阵。
答:R 的关系矩阵=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡000000001000000001 R 1-的关系矩阵=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000010000000001 36、集合A={1,2,…,10}上的关系R={<x,y>|x+y=10,x,y ∈A},则R 的性质为( )。
(1) 自反的 (2) 对称的 (3) 传递的,对称的 (4) 传递的答:(2)(代数结构部分)37、设A={2,4,6},A 上的二元运算*定义为:a*b=max{a,b},则在独异点<A,*>中,单位元是( ),零元是( )。
答:2,638、设A={3,6,9},A 上的二元运算*定义为:a*b=min{a,b},则在独异点<A,*>中,单位元是( ),零元是( );答:9,3(半群与群部分)39、设〈G,*〉是一个群,则(1) 若a,b,x∈G,a*x=b,则x=( );(2) 若a,b,x∈G,a*x=a*b,则x=( )。
-1 b (2) b答:(1) a*40、设a是12阶群的生成元,则a2是( )阶元素,a3是( )阶元素。
答: 6,441、代数系统<G,*>是一个群,则G的等幂元是( )。
答:单位元42、设a是10阶群的生成元,则a4是( )阶元素,a3是( )阶元素。
答:5,1043、群<G,*>的等幂元是( ),有( )个。
答:单位元,144、素数阶群一定是( )群, 它的生成元是( )。
答:循环群,任一非单位元45、设〈G,*〉是一个群,a,b,c∈G,则(1) 若c*a=b,则c=( );(2) 若c*a=b*a,则c=( )。
答:(1) b1-*a (2) b46、<H,,*>是<G,,*>的子群的充分必要条件是( )。
答:<H,,*>是群或? a,b ∈G, a*b∈H,a-1∈H 或? a,b ∈G,a*b-1∈H47、群<A,*>的等幂元有( )个,是( ),零元有( )个。
答:1,单位元,048、在一个群〈G,*〉中,若G中的元素a的阶是k,则a-1的阶是( )。
答:k49、在自然数集N上,下列哪种运算是可结合的?()(1) a*b=a-b (2) a*b=max{a,b} (3) a*b=a+2b (4) a*b=|a-b| 答:(2)50、任意一个具有2个或以上元的半群,它()。
(1) 不可能是群(2) 不一定是群(3) 一定是群(4) 是交换群答:(1)51、6阶有限群的任何子群一定不是()。
(1) 2阶(2) 3 阶 (3) 4 阶(4) 6 阶答:(3)(格与布尔代数部分)52、下列哪个偏序集构成有界格()(1) (N,≤)(2) (Z,≥)(3) ({2,3,4,6,12},|(整除关系))(4) (P(A),⊆)答:(4)53、有限布尔代数的元素的个数一定等于()。
(1) 偶数(2) 奇数 (3) 4的倍数(4) 2的正整数次幂答:(4)(图论部分)54、设G是一个哈密尔顿图,则G一定是( )。