机械原理 第十一章 齿轮系及其设计

合集下载

机械原理公式

机械原理公式

机械原理公式:第十一章:齿轮系及其设计1.行星轮系公式,齿轮数关系2.定轴轮系公式3.差动轮系求nH第七章:机械的转动及波动调节1.驱动工=阻力工公式2.最大转速公式,标能量最大3.最大盈亏工公式4.飞轮转动惯量公式第十章:齿轮机构及其设计1.基圆半径,渐开线展角,压力角,展角与压力角公式,渐开线曲率半径,向径2.齿顶圆压力角,分度园压力角,分度园压力角与啮合角关系3.四半径大小关系4.齿顶圆曲率半径公式,分度圆曲率半径公式5.齿顶圆压力角公式,展开线压力角公式6.基圆半径与分度圆半径关系公式7.分度圆齿厚公式,齿槽公式,齿距公式8.齿顶圆半径公式,齿根圆半径公式9.分度圆半径公式10.啮合角公式11.重合度公式第八章:连杆机构及其设计1.周转副条件2.双曲柄条件3.曲柄摇杆条件4.极位夹角,摆角,行程速比系数,传动比,设计四杆机构的极位夹角第五章:机械传动的效率和自锁1.总效率第九章:凸轮机构及其设计(反转发)1.作大圆小圆内切2.由大圆作压力角3.大圆小圆差值作推杆位移4.推杆相切圆作反转推杆升高s的解法1.s圆与理论轮廓线的交点2.理论基圆求转角第三章:平面机构的运动分析瞬心法:1.构件1,3瞬心为p13,若1为机架,则p13是3的绝对速度2.求杆1上的m点速度,须知杆1角速度,须知杆1与动力杆的瞬心或者杆1与机架的瞬心3.无穷远的瞬心可以平行4.计算单位矢量方程图解法1.取重合点B(B1,B2,B3)VB2=VB12.VB3=VB2+VB3B23.作图第四章:平面机构的力的分析1.判断压缩还是拉升2.与夹角变化方向相反第二章:机构的结构分析1.自由度公式。

机械原理习题集

机械原理习题集

.. 二.综合题1.根据图示机构,画出去掉了虚约束和局部自由度的等效机构运动简图,并计算机构的自由度。

设标有箭头者为原动件,试判断该机构的运动是否确定,为什么?2.计算图示机构的自由度。

如有复合铰链、局部自由度、虚约束,请指明所在之处。

(a ) (b )3.计算图示各机构的自由度。

(a ) (b )C 21ABEDF34567891011G H IJKLADE CHGF IBK123456789..(c)(d)(e)(f)4.计算机构的自由度,并进行机构的结构分析,将其基本杆组拆分出来,指出各个基本杆组的级别以及机构的级别。

..(a )(b )(c ) (d )5.计算机构的自由度,并分析组成此机构的基本杆组。

如果在该机构中改选FG 为原动件,试问组成此机构的基本杆组是否发生变化。

6.试验算图示机构的运动是否确定。

如机构运动不确定请提出其具有确定运动的修改方案。

..(a ) (b )第三章 平面机构的运动分析一、综合题1、试求图示各机构在图示位置时全部瞬心的位置(用符号ij P 直接在图上标出)。

2、已知图示机构的输入角速度ω1,试用瞬心法求机构的输出速度ω3。

要求画出相应的瞬心,写出ω3的表达式,并标明方向。

. .. . 3、在图示的齿轮--连杆组合机构中,试用瞬心法求齿轮1与3的传动比ω1/ω2。

4、在图示的四杆机构中,AB l =60mm, CD l =90mm, AD l =BC l =120mm, 2ω=10rad/s ,试用瞬心法求:(1)当ϕ=165°时,点C 的速度c v ;(2)当ϕ=165°时,构件3的BC 线上速度最小的一点E 的位置及其速度的大小;(3)当0c v =时,ϕ角之值(有两个解)。

5、如图为一速度多边形,请标出矢量AB v 、BC v 、CA v 及矢量A v 、B v 、C v 的方向?. .6、已知图示机构各构件的尺寸,构件1以匀角速度ω1转动,机构在图示位置时的速度和加速度多边形如图b)、c) 所示。

机械原理第十一十二章

机械原理第十一十二章

周转轮系的传动比(2/2)
ω ω i =ω =ω ω ω
H m H n H m系中由m至n各从动轮齿数的乘积 在转化轮系中由m至n各主动轮齿数的乘积
式中“±”号应根据其转化轮系中m、n两轮的转向关系来确定。 而ωm、ωn、ωH均为代数值,在使用时要带有相应的“±”号。 而差动轮系的传动比就可根据已确定出的ωm、ωn、ωH大小直 接求得。 3.行星轮系的传动比 由于具有固定太阳轮的周转轮系必定为行星轮系,故行星轮 系传动比的一般表达式为
第十一章
§11-1 §11-2 §11-3 §11-4 §11-5 §11-6 §11-7 *§11-8
齿轮系及其设计
齿轮系及其分类 定轴轮系的传动比 周转轮系的传动比 复合轮系的传动比 轮系的功用 行星轮系的效率 行星轮系的类型选择及设计的基本知识 其他新型行星齿轮传动简介 返回
§11-1 齿轮系及其分类
§12-4 凸轮式间歇运动机构
1.机构的工作原理及特点 (1)工作原理 由主动轮和从动盘组成,主动凸轮作连续转动,通过其凸轮 廓线推动从动盘作预期的间歇分度运动。 (2)工作特点 动载荷小,无刚性和柔性冲击,适合高速运转,无需定位装 置,定位精度高,结构紧凑; 但加工成本高,装配与调整的要求。
凸轮式间歇运动机构(2/2)
§12-3 擒纵轮机构
1.擒纵轮机构的组成及工作原理 (1)机构的组成 由擒纵轮、擒纵叉、游丝摆轮及机 架组成。 (2)工作原理 擒纵轮受发条驱动而转动,同时受 擒纵叉上的左右卡瓦阻挡而停止,并通 过游丝摆轮系统控制动停时间,从而实 现周期性单性间歇运动。 游丝摆动系统是由游丝、摆轮及圆 销、擒纵叉及叉头钉等组成。其能量的 补充是通过擒纵轮齿顶斜面与卡瓦的短 暂接触传动来实现的。

西工大教材-机械原理各章习题及答案

西工大教材-机械原理各章习题及答案
η = η1 •η 22 •η3 = 0.95 × 0.972 × 0.92 = 0.822
电动机所需的功率为
p = ρ • v /η = 5500 ×1.2 ×10−3 / 0.822 = 8.029(KW )
5-8 在图示斜面机构中,设已知摩擦面间的摩擦系数 f=0.2。求在 G 力作用下(反行程),此斜面 机构的临界自锁条件和在此条件下正行程(在 F 力作用下)的效率。 解 1)反行程的自锁条件 在外行程(图 a),根据滑块的平衡条件:
解 1 ) 取 比 例 尺 μ 1 = 1mm/mm 绘 制 机 构 运 动 简 图 ( 图 b )
(a)
2 )计算该机构的自由度
n=7
pι=9
ph=2(算齿轮副,因为凸轮与齿轮为一体) p’=
F’= F=3n-2pe-ph
=3x7-2x8-2 =1
G7
D 64 C
EF
3
9
B
2
8
A
ω1
b)
2-6 试计算如图所示各机构的自由度。图 a、d 为齿轮一连杆组合机构;图 b 为凸轮一连杆组合 机构(图中在 D 处为铰连在一起的两个滑块);图 c 为一精压机机构。并问在图 d 所示机构中, 齿轮 3 与 5 和齿条 7 与齿轮 5 的啮合高副所提供的约束数目是否相同?为什么?
C3 重合点继续求解。
解 1)速度分析(图 b)取重合点 B2 与 B3,有
方向 大小 ?
v vv vB3 = vB2 + vB3B2 ⊥ BD ⊥ AB // CD ω1lAB ?
D
C
3 d3
ω3
4
ω3 90°
2
B(B1、B2、B3)
ω1
A1 ϕ = 90°

机械原理_齿轮传动

机械原理_齿轮传动

齿轮机构及其设计 渐开线直齿圆柱齿轮的啮合传动 一对轮齿的啮合过程及连续传动条件
1 [ Z1(tg a1 tg ) Z 2 (tg a 2 tg )] 外啮合 2 1 [ Z1 (tg a1 tg ) Z 2 (tg a 2 tg )] 内啮合 2 2ha Z1 (tg a1 tg ) 齿轮齿条 2 sin 2 与m无关,随Z增大而增大,当Z 也增大到无
齿轮机构及其设计 渐开线标准齿轮的基本参数和几何尺寸 标准齿条的特点
1) 各同侧齿廓均为相互平行的直线,且齿廓上各 点压力角α相等,均等于齿形角 2) 不同线上的齿距相等,均为pi=p =πm,但 只有分度线上e=s
ha 、 h f 、h 、e 、s 、p 、c 等 仍用表10—2中有关公式计算
齿轮机构及其设计 渐开线直齿圆柱齿轮的啮合传动 渐开线直齿圆柱齿轮传动的 啮合过程 N1N2—理论上可能 的最长啮合线段, 特称为理论啮合线 N1、N2为啮合极限点 B1B2—实际啮合线
齿轮机构及其设计 渐开线直齿圆柱齿轮的啮合传动 一对轮齿的啮合过程及连续传动条件 齿轮齿条啮合传动
PB1不变, ha 2 ha m PB2 且 sin sin 2 h 1 a [ Z1 (tg a1 tg ) ] 2 sin cos 2ha Z1 (tg a1 tg ) 2 sin 2
m1 m2 m 正确啮合条件 1 2
齿轮机构及其设计 渐开线直齿圆柱齿轮的啮合传动 齿轮传动的中心距与啮合角
1 a (d 1 d 2 ) 2 m ( Z1 Z 2 ) 2
c
c c m
标准安装
1 d2 ) a (d 1 2

机械原理 轮系

机械原理  轮系

i= 14
z2z3z4 z1z2' 3' z
传动比方向判断: 传动比方向判断:画箭头 传动比大小表示: 传动比大小表示:在传动比大小前加正负号
§11-3 周转轮系的传动比 11一、周转轮系传动比计算原理 1.反转法 1.反转法——转化轮系 反转法 转化轮系
给整个轮系加上一个假想的公共角速度(-wH),据相对 的公共角速度( 运动原理,各构件之间的相对运动关系并不改变,但此 运动原理,各构件之间的相对运动关系并不改变, 时系杆的角速度就变成了wH-wH=0,即系杆可视为静止不 =0, 动。于是,周转轮系就转化成了一个假想的定轴轮系— 于是,周转轮系就转化成了一个假想的定轴轮系— —周转轮系的转化机构。 周转轮系的转化机构。
z5 L ⇒ω3 = − ω5 L (2) z3′
3)联立(1)、(2)求解 联立(1)、(2)求解 (1)
z ω1 z2 z3 1 + 5 + 1 ⇒ i15 = = ω5 z1 z2′ z3′
33× 78 78 = 1+ +1 = 28.24 24 × 21 18
-ω H
ωH
ω H - ω H=0
周转轮系 假想定轴轮系
转化轮系
指给整个 周转轮系加上 一个“ 的 一个“-wH”的 公共角速度, 公共角速度, 使系杆H变为 相对固定后, 相对固定后,
原轮系
所得到的假想 转化轮系 的定轴轮系。 的定轴轮系。
2. 转化轮系中各构件的角速度
3. 转化轮系的传动比
在运动简图上用箭头标明两轮的转向关 在运动简图上用箭头标明两轮的转向关 箭头标明 系。
大小: 大小:
ω 从动齿轮齿数连乘积 1 = i1k = ωk 主动齿轮齿数连乘积

孙恒《机械原理》(第八版)学习辅导书第11章 齿轮系及其设计【圣才出品】

孙恒《机械原理》(第八版)学习辅导书第11章 齿轮系及其设计【圣才出品】

第11章 齿轮系及其设计11.1 复习笔记本章主要介绍了定轴轮系、周转轮系和复合轮系的传动比计算,轮系的功用,以及行星轮系的效率、齿数的确定。

学习时需要重点掌握轮系传动比的计算,尤其是复合轮系的分析计算,常以计算题的形式考查。

除此之外,轮系的类型和功用、行星轮系中各齿数的确定(需要满足4个条件)等内容,常以选择题和填空题的形式考查,复习时需要把握其具体内容,重点记忆。

一、齿轮系及其分类1.定义齿轮系是由一系列的齿轮所组成的齿轮传动系统,简称轮系。

2.分类根据轮系运转时各个齿轮的轴线相对于机架的位置是否固定,将轮系分为三大类:(1)定轴轮系运转时各个齿轮的轴线相对于机架的位置都是固定的轮系称为定轴轮系。

(2)周转轮系(见表11-1-1)表11-1-1 周转轮系图11-1-1 周转轮系二、定轴轮系的传动比(见表11-1-2)表11-1-2 定轴轮系的传动比三、周转轮系的传动比1.周转轮系的传动比设周转轮系中的两个太阳轮分别为m 和n ,行星架为H ,则其转化轮系的传动比i mn H 可表示为H Hm m H mn H n n Hm nm nωωωi ωωω-==-=±在转化轮系中由至各从动轮齿数的乘积在转化轮系中由至各主动轮齿数的乘积2.具有固定轮的行星轮系的传动比具有固定轮的行星轮系,设固定轮为n ,即ωn =0,则有i mn H =(ωm -ωH )/(0-ωH )=-i mH +1,即i mH =1-i mn H 。

四、复合轮系的传动比1.计算步骤(1)将各部分的周转轮系和定轴轮系一一分开;(2)分别列出其传动比计算式;(3)联立求解。

2.划分周转轮系(1)先要找到轮系中的行星轮和行星架(注意:轮系中行星架往往由其他功用的构件所兼任);(2)每一行星架以及连同行星架上的行星轮和与行星轮相啮合的太阳轮组成一个基本周转轮系;(3)当将所有的基本周转轮系部分找出之后,剩下的便是定轴轮系部分。

机械原理11-本科)-轮系

机械原理11-本科)-轮系

ω
H 3
ω1 i1H = = 1 + 1.875= + 2.875 ωH
ω
H 1
例 2:
在图示的周转轮系中, 在图示的周转轮系中,设已知 z1=100, z2=101, z2’=100, z3 = 99. 试求传动比 iH1。
2 2′
解: 为固定轮(即 轮3为固定轮 即n3=0) 为固定轮
n1 − nH n1 − nH i = = n3 − nH 0− nH
齿轮4对传动比没有影响, 齿轮4对传动比没有影响,但能改变从动 轮的转向,称为过轮或中介轮。 轮的转向,称为过轮或中介轮。
§11—3 周转轮系传动比的计算 一、周转轮系的分类 按周转轮系所具有的自由度数目的不同分类: 按周转轮系所具有的自由度数目的不同分类: 1) 行星轮系
F = 3× 3 − 2 × 3 − 2 = 1
i AB
从 A → B 从动轮齿数的连乘积 = 从 A → B 主动轮齿数的连乘积
二、首、末轮转向的确定 1、用“+” “-”表示
ω1 ω1 1 ω2
1
2
ω2
p
vp
转向相反
2
转向相同
i 12
ω1 = = ω2
z2 − z1 z2 + z1
外啮合 内啮合
对于平面定轴轮系, 对于平面定轴轮系,设轮系中有 m对外啮合齿轮,则末轮转向为(-1) 对外啮合齿轮,则末轮转向为 对外啮合齿轮
关键是先要把其中的周转轮系部分划分出来 。 周转轮系的找法: 周转轮系的找法: 先找出行星轮,然后找出系杆, 先找出行星轮,然后找出系杆,以及与 行星轮相啮合的所有中心轮。 行星轮相啮合的所有中心轮。 每一系杆, 每一系杆,连同系杆上的行星轮和与行星 轮相啮合的中心轮就组成一个周转轮系 在将周转轮系一一找出之后, 在将周转轮系一一找出之后,剩下的便是 定轴轮系部分。 定轴轮系部分。

《机械原理》第八版课后习题答案

《机械原理》第八版课后习题答案

第2章 机构的结构分析(P29)2-12:图a 所示为一小型压力机。

图上,齿轮1与偏心轮1’为同一构件,绕固定轴心O 连续转动。

在齿轮5上开有凸轮轮凹槽,摆杆4上的滚子6嵌在凹槽中,从而使摆杆4绕C 轴上下摆动。

同时,又通过偏心轮1’、连杆2、滑杆3使C 轴上下移动。

最后通过在摆杆4的叉槽中的滑块7和铰链G 使冲头8实现冲压运动。

试绘制其机构运动简图,并计算自由度。

解:分析机构的组成:此机构由偏心轮1’(与齿轮1固结)、连杆2、滑杆3、摆杆4、齿轮5、滚子6、滑块7、冲头8和机架9组成。

偏心轮1’与机架9、连杆2与滑杆3、滑杆3与摆杆4、摆杆4与滚子6、齿轮5与机架9、滑块7与冲头8均组成转动副,滑杆3与机架9、摆杆4与滑块7、冲头8与机架9均组成移动副,齿轮1与齿轮5、凸轮(槽)5与滚子6组成高副。

故解法一:7=n 9=l p 2=h p12927323=-⨯-⨯=--=h l p p n F解法二:8=n 10=l p 2=h p 局部自由度1='F11210283)2(3=--⨯-⨯='-'-+-=F p p p n F h l(P30) 2-17:试计算如图所示各机构的自由度。

图a 、d 为齿轮-连杆组合机构;图b 为凸轮-连杆组合机构(图中在D 处为铰接在一起的两个滑块);图c 为一精压机机构。

并问在图d 所示机构中,齿轮3与5和齿条7与齿轮5的啮合高副所提供的约束数目是否相同?为什么?解: a) 4=n 5=l p 1=h p11524323=-⨯-⨯=--=h l p p n Fb) 5=n 6=l p 2=h p12625323=-⨯-⨯=--=h l p p n F12625323=-⨯-⨯=--=h l p p n Fc) 5=n 7=l p 0=h p10725323=-⨯-⨯=--=h l p p n Fd) 6=n 7=l p 3=h p13726323=-⨯-⨯=--=h l p p n F(C 可看做是转块和导块,有1个移动副和1个转动副)齿轮3与齿轮5的啮合为高副(因两齿轮中心距己被约束,故应为单侧接触)将提供1个约束。

机械原理习题及答案

机械原理习题及答案

机械原理习题及答案-CAL-FENGHAI.-(YICAI)-Company One1兰州2017年7月4日于家属院复习资料第2章平面机构的结构分析1.组成机构的要素是和;构件是机构中的单元体。

2.具有、、等三个特征的构件组合体称为机器。

3.从机构结构观点来看,任何机构是由三部分组成。

4.运动副元素是指。

5.构件的自由度是指;机构的自由度是指。

6.两构件之间以线接触所组成的平面运动副,称为副,它产生个约束,而保留个自由度。

7.机构具有确定的相对运动条件是原动件数机构的自由度。

8.在平面机构中若引入一个高副将引入______个约束,而引入一个低副将引入_____个约束,构件数、约束数与机构自由度的关系是。

9.平面运动副的最大约束数为,最小约束数为。

10.当两构件构成运动副后,仍需保证能产生一定的相对运动,故在平面机构中,每个运动副引入的约束至多为,至少为。

11.计算机机构自由度的目的是______。

12.在平面机构中,具有两个约束的运动副是副,具有一个约束的运动副是副。

13.计算平面机构自由度的公式为F=,应用此公式时应注意判断:(A)铰链,(B)自由度,(C)约束。

14.机构中的复合铰链是指;局部自由度是指;虚约束是指。

15.划分机构的杆组时应先按的杆组级别考虑,机构的级别按杆组中的级别确定。

16.图示为一机构的初拟设计方案。

试:(1〕计算其自由度,分析其设计是否合理如有复合铰链,局部自由度和虚约束需说明。

(2)如此初拟方案不合理,请修改并用简图表示。

23题16图 题17图17.在图示机构中,若以构件1为主动件,试:(1)计算自由度,说明是否有确定运动。

(2)如要使构件6有确定运动,并作连续转动,则可如何修改说明修改的要点,并用简图表示。

18.计算图示机构的自由度,将高副用低副代替,并选择原动件。

19.试画出图示机构的运动简图,并计算其自由度。

对图示机构作出仅含低副的替代机构,进行结构分析并确定机构的级别。

机械原理习题集

机械原理习题集

机械原理习题集文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]二.综合题1.根据图示机构,画出去掉了虚约束和局部自由度的等效机构运动简图,并计算机构的自由度。

设标有箭头者为原动件,试判断该机构的运动是否确定,为什么2.计算图示机构的自由度。

如有复合铰链、局部自由度、虚约束,请指明所在之处。

(a)(b)3.计算图示各机构的自由度。

(a)(b)(c)(d)(e)(f)4.计算机构的自由度,并进行机构的结构分析,将其基本杆组拆分出来,指出各个基本杆组的级别以及机构的级别。

(a)(b)(c)(d)5.计算机构的自由度,并分析组成此机构的基本杆组。

如果在该机构中改选FG为原动件,试问组成此机构的基本杆组是否发生变化。

6.试验算图示机构的运动是否确定。

如机构运动不确定请提出其具有确定运动的修改方案。

(a)(b)第三章平面机构的运动分析一、综合题P直接在图上标出)。

1、试求图示各机构在图示位置时全部瞬心的位置(用符号ij2、已知图示机构的输入角速度1,试用瞬心法求机构的输出速度3。

要求画出相应的瞬心,写出3的表达式,并标明方向。

3、在图示的齿轮--连杆组合机构中,试用瞬心法求齿轮1与3的传动比ω1/ω2。

4、在图示的四杆机构中,AB l =60mm, CD l =90mm, AD l =BC l =120mm, 2ω=10rad/s ,试用瞬心法求:(1)当ϕ=165°时,点C 的速度c v ;(2)当ϕ=165°时,构件3的BC 线上速度最小的一点E 的位置及其速度的大小; (3)当0cv =时,ϕ角之值(有两个解)。

5、如图为一速度多边形,请标出矢量AB v 、BC v 、CA v 及矢量A v 、B v 、C v 的方向6、已知图示机构各构件的尺寸,构件1以匀角速度ω1转动,机构在图示位置时的速度和加速度多边形如图b)、c) 所示。

(1)分别写出其速度与加速度的矢量方程,并分析每个矢量的方向与大小,(2)试在图b)、c) 上分别标出各顶点的符号,以及各边所代表的速度或加速度及其指向。

机械原理第十一章习题答案

机械原理第十一章习题答案

第十一章 齿轮系及其设计习题11-11如图所示为一手摇提升装置,其中各轮齿数均已知,试求传动比15i 并指出当提升重物时手柄的转向。

解:8.5771811520524030504321543215=⨯⨯⨯⨯⨯⨯='''=z z z z z z z z i习题11-14如图所示为一装配用电动螺丝刀齿轮减速部分简图。

已知 图11-11 各轮齿数为741==z z ,3963==z z , m in /30001r n =,试求螺丝刀的转速。

解:739131311113-=-=--=z z n n n n i H H H 74611=⇒H n n 739462624246-=-=--=z z n n n n i H H H 74624=⇒H n n 由已知得:14H n n =492116746746241121=⨯=⨯=H H H n n n n n n 47.69211630004921164912=⨯==⇒n n H 图11-14习题11-16在图示的复合轮系中,设已知m in /35491r n =,又各轮齿数为361=z ,602=z ,233=z ,494=z ,315=z ,1316=z ,947=z ,368=z ,1679=z ,求H n等于多少?解:2456969245233649601431424114n n z z z z n n i =⇒=⨯⨯=== 200696913147467674746n n z z n n n n i =⇒-='-=--= 94167799779-=-=--=z z n n n n i H H H19.1243549245692006926194261947=⨯⨯⨯==∴n n H 图11-16习题11-16图a 、b 所示为两个不同结构的锥齿轮周转轮系,已知201=z ,242=z ,302='z ,403=z ,m in /2001r n =,min /1003r n -=。

机械原理齿轮

机械原理齿轮

机械原理齿轮机械原理中的齿轮是一种常见且重要的机械传动元件,它通过齿轮的啮合来实现传动功能,广泛应用于各种机械设备中。

齿轮传动具有传递动力平稳、传动比恒定、传动效率高等特点,因此在工程领域中得到了广泛的应用。

本文将从齿轮的基本原理、结构特点、工作原理和应用领域等方面对齿轮进行深入探讨。

首先,我们来了解一下齿轮的基本原理。

齿轮是利用啮合齿轮的圆周上的齿来传递运动和动力的一种机械传动装置。

齿轮通常由两个或多个啮合的齿轮组成,其中一个为主动齿轮,另一个为从动齿轮。

当主动齿轮转动时,从动齿轮也随之转动,从而实现了动力的传递。

齿轮的传动比取决于齿轮的齿数和模数,通过不同齿轮的组合可以实现不同的传动比。

其次,我们来看一下齿轮的结构特点。

齿轮通常由齿轮轮毂、齿轮齿、齿顶圆、齿根圆等部分组成。

齿轮的齿数、模数、压力角等参数决定了齿轮的传动性能,不同的参数组合可以实现不同的传动效果。

齿轮的制造工艺一般包括铸造、锻造、车削、磨削等,以确保齿轮的精度和耐用性。

接下来,我们将探讨一下齿轮的工作原理。

齿轮传动是利用齿轮的啮合来传递运动和动力的一种机械传动方式。

当主动齿轮转动时,齿轮的齿与从动齿轮的齿进行啮合,从而使从动齿轮也跟随转动。

齿轮传动具有传递动力平稳、传动比恒定、传动效率高等特点,适用于各种机械设备的传动装置。

最后,我们来谈一下齿轮在实际应用中的领域。

齿轮广泛应用于各种机械设备中,如汽车、船舶、飞机、工程机械、农业机械等。

在这些设备中,齿轮传动起着至关重要的作用,它们可以实现不同转速、不同转矩的传动,满足机械设备的不同工作要求。

总之,齿轮作为一种重要的机械传动元件,在机械原理中具有重要的地位和作用。

通过对齿轮的基本原理、结构特点、工作原理和应用领域的深入了解,我们可以更好地应用齿轮传动技术,提高机械设备的传动效率和可靠性,推动机械工程技术的发展和进步。

孙桓《机械原理》笔记和课后习题(含考研真题)详解-第十一章至第十四章【圣才出品】

孙桓《机械原理》笔记和课后习题(含考研真题)详解-第十一章至第十四章【圣才出品】

第11章齿轮系及其设计11.1复习笔记一、齿轮系及其分类1.定义由一系列的齿轮所组成的齿轮传动系统称为齿轮系,简称轮系。

2.分类根据轮系运转时各个齿轮的轴线相对于机架的位置是否固定,将轮系分为三大类:(1)定轴轮系运转时各个齿轮的轴线相对于机架的位置都是固定的轮系称为定轴轮系。

(2)周转轮系①定义如图11-1-1所示,运转时至少有一个齿轮轴线的位置不固定,而是绕着其他齿轮的固定轴线回转的轮系称为周转轮系。

图11-1-1周转轮系②基本构件在周转轮系中,一般都以太阳轮和行星架作为输入和输出构件,称为周转轮系的基本构件。

a.太阳轮轮系中绕固定轴回转的齿轮称为太阳轮。

如图11-1-1中齿轮l和内齿轮3都围绕着固定轴线OO回转,则齿轮1和内齿轮3为太阳轮;b.行星轮不仅绕自身轴线作自转,还随着行星架一起绕固定轴线做公转的齿轮称为行星轮。

如图11-1-1中齿轮2,其中构件H为行星架,又称转臂或系杆。

③分类a.根据其自由度的数目分类第一,差动轮系自由度为2的周转轮系称为差动轮系;第二,行星轮系自由度为1的周转轮系称为行星轮系。

b.根据基本构件的不同分类若轮系中的太阳轮以K表示,行星架以H表示,则如图11-1-1所示的轮系称为2K-H 型周转轮系。

(3)复合轮系既包含定轴轮系部分,又包含周转轮系部分,或者是由几部分周转轮系组成的轮系称为复合轮系。

二、定轴轮系的传动比1.轮系传动比的定义轮系的传动比是指轮系中首、末两构件的角速度之比。

2.传动比计算(1)定轴轮系的传动比等于组成该轮系的各对啮合齿轮传动比的连乘积;(2)传动比又等于各对啮合齿轮中所有从动轮齿数的连乘积与所有主动轮齿数的连乘积之比,即:定轴轮系的传动比=所有从动轮齿数的连乘积/所有主动轮齿数的连乘积3.首、末轮转向关系的确定(1)转向的确定①齿轮的转向可用箭头表示,箭头方向表示齿轮可见侧的圆周速度的方向;②标志一对啮合传动的齿轮转向的箭头为同时指向节点或同时背离节点;③当首、末两轮的轴线彼此平行时,两轮的转向不是相同就是相反;当两者的转向相同时,规定其传动比为“+”,反之为“-”;④若首、末两轮的轴线不平行,其间的转向关系只能在图上用箭头来表示。

《机械原理》课程教学大纲

《机械原理》课程教学大纲

《机械原理》课程教学大纲一、课程与任课教师基本信息二、课程简介《机械原理》是机械设计制造及其自动化专业的一门学科基础必修课程。

主要研究机械系统的运动学和动力学分析及机械方案设计基本理论,包括研究各种机构的结构分析、运动分析和受力分析问题,常用机构的设计问题,机器动力学和机构的选型及机械系统设计问题。

它在培养学生的机械设计能力和创新能力所需的知识、能力和素质结构中,占有十重要的地位;在培养高级工程技术人才的全局中,具有增强学生对机械技术工作的适应能力和开发创造能力的作用,为学生今后从事机械方面的设计、制造、研究和开发奠定重要的基础。

本课程包括课堂教学和实践教学两部分,在教学过程中,应注意把一般的原理和方法与研究实际机构和机器时的具体运用密切结合起来。

引导学生随时注意在日常生活和生产中所遇到的各种机构和机器,根据所学的原理和方法进行观察和分析,做到理论与实际的紧密结合。

使学生掌握关于机构的结构、运动学和机器动力学的某些基本理论和基本知识。

三、课程目标本课程教学的总体目标是:通过本课程的学习,使学生能认识机械、了解机械;掌握机构学和机械动力学的基本理论、基本知识和基本技能,学会常用机构的分析和综合方法,并具有进行机械系统运动方案(创新)设计的初步能力;获得机械产品设计与制造技术的基础知识;使学生达到运用所学知识去解决现代机械工程中的实际问题的能力。

素质目标:通过该课程学习,学生应获得机械产品设计与制造技术的基础知识,对机械学科有比较清楚的认识,更懂得所学专业的内涵,具备机械工程师的基本素质。

能力目标:通过本课程学习,学生应具有进行机械系统运动方案(创新)设计的初步能力;获得机械产品设计与制造技术的基础知识;使学生达到运用所学知识去解决现代机械工程中的实际问题的能力。

知识目标:通过本课程学习,使学生掌握1)对一般机械中的平面机构能绘制其运动简图,并能计算其自由度和判断其运动的确定性。

2)具有对一般平面机构进行运动分析和力分析的基本知识和技能。

机械原理课后习题答案部分

机械原理课后习题答案部分

第二章2-1 何谓构件?何谓运动副及运动副元素?运动副是如何进行分类的?答:参考教材5~7页。

2-2 机构运动简图有何用处?它能表示出原机构哪些方面的特征?答:机构运动简图可以表示机构的组成和运动传递情况,可进行运动分析,也可用来进行动力分析。

2-3 机构具有确定运动的条件是什么?当机构的原动件数少于或多于机构的自由度时,机构的运动将发生什么情况?答:参考教材12~13页。

2-5 在计算平面机构的自由度时,应注意哪些事项?答:参考教材15~17页。

2-6 在图2-22所示的机构中,在铰链C、B、D处,被连接的两构件上连接点的轨迹都是重合的,那么能说该机构有三个虚约束吗?为什么?答:不能,因为在铰链C、B、D中任何一处,被连接的两构件上连接点的轨迹重合是由于其他两处的作用,所以只能算一处。

2-7 何谓机构的组成原理?何谓基本杆组?它具有什么特性?如何确定基本杆组的级别及机构的级别? 答:参考教材18~19页。

2-8 为何要对平面高副机构进行“高副低代"?“高副低代”应满足的条件是什么?答:参考教材20~21页。

2-11 如图所示为一简易冲床的初拟设计方案。

设计者的思路是:动力由齿轮1输入,使轴 A连续回转;而固装在轴A上的凸轮2与杠杆3组成的凸轮机构将使冲头上下运动以达到冲压目的。

试绘出其机构运动简图,分析其是否能实现设计意图?并提出修改方案。

解:1)取比例尺绘制机构运动简图。

2)分析其是否可实现设计意图。

F=3n-( 2P l +P h –p’ )-F’=3×3-(2×4+1-0)-0=0此简易冲床不能运动,无法实现设计意图。

3)修改方案。

为了使此机构运动,应增加一个自由度。

办法是:增加一个活动构件,一个低副。

修改方案很多,现提供两种。

※2-13图示为一新型偏心轮滑阎式真空泵。

其偏心轮1绕固定轴心A转动,与外环2固连在一起的滑阀3在可绕固定轴心C转动的圆柱4中滑动。

机械原理课程教案—齿轮机构及其运动设计

机械原理课程教案—齿轮机构及其运动设计

一、教案基本信息机械原理课程教案—齿轮机构及其运动设计课时安排:2学时教学目标:1. 了解齿轮机构的基本概念和分类。

2. 掌握齿轮的啮合条件和传动比计算。

3. 能够分析齿轮机构的运动设计。

教学方法:1. 讲授:讲解齿轮机构的基本概念、分类和啮合条件。

2. 案例分析:分析齿轮机构的运动设计实例。

3. 互动讨论:引导学生探讨齿轮机构设计中的关键问题。

教学内容:1. 齿轮机构的基本概念和分类2. 齿轮的啮合条件3. 传动比计算4. 齿轮机构的运动设计5. 齿轮机构设计实例分析二、教学过程1. 导入:通过展示齿轮机构的图片,引导学生思考齿轮机构在机械系统中的应用和重要性。

2. 讲解齿轮机构的基本概念和分类:解释齿轮机构的特点、工作原理和分类。

3. 讲解齿轮的啮合条件:介绍齿轮啮合的基本条件,如齿数、模数、压力角等。

4. 讲解传动比计算:解释传动比的定义和计算方法,引导学生理解传动比在齿轮机构中的作用。

5. 案例分析:分析齿轮机构的运动设计实例,如减速器和变速器的设计。

6. 互动讨论:引导学生探讨齿轮机构设计中的关键问题,如啮合条件、传动比选择等。

三、教学评估1. 课堂提问:通过提问了解学生对齿轮机构的基本概念和分类的理解。

2. 作业布置:布置有关齿轮啮合条件和传动比计算的练习题,巩固所学知识。

3. 课程报告:要求学生分析一个齿轮机构的运动设计实例,评估其设计合理性。

四、教学资源1. 教材:机械原理教材相关章节。

2. 图片:齿轮机构的图片。

3. 视频:齿轮机构的运动原理视频。

4. 练习题:相关齿轮啮合条件和传动比计算的练习题。

五、教学延伸1. 深入学习其他齿轮机构的分类,如蜗轮蜗杆机构、行星齿轮机构等。

2. 研究齿轮机构的运动仿真,深入了解其运动特性和性能。

3. 探索齿轮机构在实际工程应用中的设计和优化方法。

六、教学过程7. 讲解齿轮机构的运动设计:介绍齿轮机构运动设计的方法和步骤,包括运动传递分析、齿轮尺寸计算等。

机械原理知识点归纳总结

机械原理知识点归纳总结

第一章绪论基本概念:机器、机构、机械、零件、构件、机架、原动件和从动件;第二章平面机构的结构分析机构运动简图的绘制、运动链成为机构的条件和机构的组成原理是本章学习的重点;1. 机构运动简图的绘制机构运动简图的绘制是本章的重点,也是一个难点;为保证机构运动简图与实际机械有完全相同的结构和运动特性,对绘制好的简图需进一步检查与核对运动副的性质和数目来检查;2.运动链成为机构的条件判断所设计的运动链能否成为机构,是本章的重点;运动链成为机构的条件是:原动件数目等于运动链的自由度数目;机构自由度的计算错误会导致对机构运动的可能性和确定性的错误判断,从而影响机械设计工作的正常进行;机构自由度计算是本章学习的重点;准确识别复合铰链、局部自由度和虚约束,并做出正确处理;1 复合铰链复合铰链是指两个以上的构件在同一处以转动副相联接时组成的运动副;正确处理方法: k个在同一处形成复合铰链的构件,其转动副的数目应为k-1个;2 局部自由度局部自由度是机构中某些构件所具有的并不影响其他构件的运动的自由度;局部自由度常发生在为减小高副磨损而增加的滚子处;正确处理方法:从机构自由度计算公式中将局部自由度减去,也可以将滚子及与滚子相连的构件固结为一体,预先将滚子除去不计,然后再利用公式计算自由度;3 虚约束虚约束是机构中所存在的不产生实际约束效果的重复约束;正确处理方法:计算自由度时,首先将引入虚约束的构件及其运动副除去不计,然后用自由度公式进行计算;虚约束都是在一定的几何条件下出现的,这些几何条件有些是暗含的,有些则是明确给定的;对于暗含的几何条件,需通过直观判断来识别虚约束;对于明确给定的几何条件,则需通过严格的几何证明才能识别;3. 机构的组成原理与结构分析机构的组成过程和机构的结构分析过程正好相反,前者是研究如何将若干个自由度为零的基本杆组依次联接到原动件和机架上,以组成新的机构,它为设计者进行机构创新设计提供了一条途径;后者是研究如何将现有机构依次拆成基本杆组、原动件及机架,以便对机构进行结构分类;第三章平面机构的运动分析1.基本概念:速度瞬心、绝对速度瞬心和相对速度瞬心数目、位置的确定,以及“三心定理”;2.瞬心法在简单机构运动分析上的应用;3.同一构件上两点的速度之间及加速度之间矢量方程式、组成移动副两平面运动构件在瞬时重合点上速度之间和加速度的矢量方程式,在什么条件下,可用相对运动图解法求解4.“速度影像”和“加速度影像”的应用条件;5.构件的角速度和角加速度的大小和方向的确定以及构件上某点法向加速度的大小和方向的确定;6.哥氏加速度出现的条件、大小的计算和方向的确定;第四章平面机构的力分析1.基本概念:“静力分析”、“动力分析”及“动态静力分析” 、“平衡力”或“平衡力矩”、“摩擦角”、“摩擦锥”、“当量摩擦系数”和“当量摩擦角”引入的意义、“摩擦圆”;2.各种构件的惯性力的确定:①作平面移动的构件;②绕通过质心轴转动的构件;③绕不通过质心的轴转动的构件;④作平面复合运动的构件;3.机构的动态静力分析的方法和步骤;4.总反力方向的确定:根据两构件之间的相对运动或相对运动的趋势方向,正确地确定总反力的作用方向是本章的难点之一;移动副斜面摩擦、槽面摩擦:总反力R xy总是与相对速度v yx之间呈90°+φ的钝角;斜面摩擦问题的分析方法是本章的重点之一;槽面摩擦问题可通过引入当量摩擦系数及当量摩擦角的概念,将其简化为平面摩擦问题;运动副元素的几何形状不同,引入的当量摩擦系数也不同,由此使得运动副元素之间的摩擦力不同;转动副:总反力R xy总是与摩擦圆相切;它对铰链中心所形成的摩擦力矩M fxy=R xy·ρ;方向与相对角速度ωyx的方向相反;R xy的确切方向需从该构件的力平衡条件中得到;第五章机械的效率和自锁1.基本概念:“自锁”;2.“机构效率”和“损失系数”以及具体机构效率的计算方法;3.“自锁”与“不动”这两个概念有何区别“不动”的机构是否一定“自锁”机构发生自锁是否一定“不动”为什么4. 自锁现象及自锁条件的判定无论驱动力多大,机械都无法运动的现象称为机械的自锁;其原因是由于机械中存在摩擦力,且驱动力作用在某一范围内;一个自锁机构,只是对于满足自锁条件的驱动力在一定运动方向上的自锁;而对于其他外力,或在其他运动方向上则不一定自锁;因此,在谈到自锁时,一定要说明是对哪个力,在哪个方向上自锁;自锁条件可用以下3种方法求得:1对移动副,驱动力位于摩擦角之内;对转动副,驱动力位于摩擦圆之内;2 令工作阻力小于零来求解;采用图解解析法或解析法求出工作阻力与主动力的数学表达式,然后再令工作阻力小于零,即可求出机构的自锁条件;3 利用机械效率计算式求解,即令η<0;第六章机械的平衡本章的重点是刚性转子的平衡设计;1. 刚性转子的平衡设计根据直径D与轴向宽度b之比的不同,刚性转子可分为两类:1 当b / D≤时,可以将转子上各个偏心质量近似地看作分布在同一回转平面内,其惯性力的平衡问题实质上是一个平面汇交力系的平衡问题;2 当b /D >时,转子的轴向宽度较大,首先应在转子上选定两个可添加平衡质量的、且与离心惯性力平行的平面作为平衡平面,然后运用平行力系分解的原理将各偏心质量所产生的离心惯性力分解到这两个平衡平面上;这样就把一个空间力系的平衡问题转化为两平衡平面内的平面汇交力系的平衡问题;2. 刚性转子的平衡试验当b / D≤时,可在平衡架上进行静平衡试验;当b /D >时,则需要在动平衡机上进行动平衡试验;第七章机械的运转及其速度波动的调节本章主要研究两个问题:一是确定机械真实的运动规律;二是研究机械运转速度的波动调节;1. 机械的运转过程机械在外力作用下的运转过程分为启动、稳定运转和停车等3个阶段;注意理解3个阶段中功、能量和机械运转速度的变化特点;2. 机械的等效动力学模型1 对于单自由度的机械系统,研究机械的运转情况时,可以就某一选定的构件即等效构件来分析,将机械中所有构件的质量、转动惯量都等效地转化到这一构件上,把各构件上所作用的力、力矩也都等效地转化到等效构件上,然后列出等效构件的运动方程式来研究其运动规律;这就是建立所谓的等效动力学模型的过程;2 建立机械系统等效动力学模型时应遵循的原则是:使机械系统在等效前后的动力学效应不变,即① 动能等效:等效构件所具有的动能,等于整个机械系统的总动能;② 外力所做的功等效:作用在等效构件上的外力所做的功,等于作用在整个机械系统中的所有外力所做功的总和;3. 机械速度波动的调节方法1 周期性速度波动的机械系统,可以利用飞轮储存能量和释放能量的特性来调节机械速度波动的大小;飞轮的作用就是调节周期性速度的波动范围和调节机械系统能量;2 非周期性速度波动的机械系统,不能用飞轮进行调节;当系统不具有自调性时,则需要利用调速器来对非周期性速度波动进行调节;4. 飞轮设计1 飞轮设计的基本问题,是根据等效力矩、等效转动惯量、平均角速度,以及机械运转速度不均匀系数的许用值来计算飞轮的转动惯量;无论等效力矩是哪一种运动参数的函数关系,最大盈亏功必然出现在ωmax和ωmin所在两位置之间;2 飞轮设计中应注意以下2个问题:① 为减小飞轮转动惯量即减小飞轮的质量和尺寸,应尽可能将飞轮安装在系统的高速轴上;② 安装飞轮只能减小周期性速度波动,但不能消除速度波动;第八章平面连杆机构及其设计1. 平面四杆机构的基本型式及其演化方法铰链四杆机构可以通过4种方式演化出其他形式的四杆机构:①取不同构件为机架;②改变构件的形状和尺寸;③运动副元素的逆换;④运动副的扩大;2. 平面连杆机构的工作特性1 急回特性有时某一机构本身并无急回特性,但当它与另一机构组合后,此组合后的机构并不一定亦无急回特性;机构有无急回特性,应从急回特性的定义入手进行分析;2 压力角和传动角压力角是衡量机构传力性能好坏的重要指标;对于传动机构,应使其α角尽可能小γ尽可能大;连杆机构的压力角或传动角在机构运动过程中是不断变化的,在从动件的一个运动循环中,α角存在一个最大值αmax;在设计连杆机构时,应注意使αmax≤α;3 死点位置此处应注意:“死点”、“自锁”与机构的自由度F≤0的区别;自由度小于或等于零,表明该运动链不是机构而是一个各构件间根本无相对运动的桁架;死点是在不计摩擦的情况下机构所处的特殊位置,利用惯性或其他办法,机构可以通过死点位置,正常运动;自锁是指机构在考虑摩擦的情况下,当驱动力的作用方向满足一定的几何条件时,虽然机构自由度大于零,但机构却无法运动的现象;死点、自锁是从力的角度分析机构的运动情况,而自由度是从机构组成的角度分析机构的运动情况;3. 平面连杆机构的设计曲柄摇杆机构、曲柄滑块机构、导杆机构平面连杆机构运动设计常分为三大类设计命题:刚体导引机构的设计、函数生成机构的设计和轨迹生成机构的设计;在设计一个四杆机构使其两连架杆实现预定的对应角位置时,可以用“刚化反转法”求解此四杆机构;这个问题是本章的难点之一;第九章凸轮机构及其设计本章的重点是凸轮机构的运动设计;1. 凸轮机构的类型及其特点2. 从动件运动规律的选择或设计运动规律:a:名词术语:推回程运动角、远近休止角、推程、基圆等;b:常用的运动规律:方程式的推导仅要求等速、运动线图及其变化规律、运动特点刚柔性冲击及其发生的位置、时刻和应用的场合;c:运动规律的选择依据:满足工作对从动件特殊的运动要求;满足运动规律拼接的边界条件,即各段运动规律的位移、速度和加速度值在连接点处应分别相等;使最大速度和最大加速度的值尽可能小;3. 凸轮廓线的设计凸轮廓线设计的反转法原理是本章的重点内容之一;无论是用图解法还是解析法设计凸轮廓线,所依据的基本原理都是反转法原理;4. 凸轮基本尺寸的确定a:压力角:定义、不同位置时机构压力角的确定以及对压力角所提出限制的原因αmax不超过许用压力角αb:基圆半径:确定原则:αmax≤α或者ρmin≥ρ=3~5 mmc:滚子半径:取决于凸轮轮廓曲线的形状,对于内凹的曲线形状,保证最大压力角αmax不超过许用压力角α;对于外凸的曲线形状,保证凸轮实际廓线的最小曲率半径ρa min= ρmin-r r ≥ 3~5 mm,以避免运动失真和应力集中;运动失真:增大基圆半径、减小滚子半径以及改变机构的运动规律;d平底尺寸:图解法:l=2lmax+5~7mm解析法:l=2|ds/dδ|max+5~7mm5. 凸轮机构的分析在设计移动滚子从动件盘形凸轮机构时,若发现其压力角超过了许用值,可以采取以下措施:1 增大凸轮的基圆半径r0;2 选择合适的从动件偏置方向;在设计凸轮机构时,若发现采用对心移动从动件凸轮机构推程压力角过大,而设计空间又不允许通过增大基圆半径的办法来减小压力角时,可以通过选取从动件适当的偏置方向,以获得较小的推程压力角;即在移动滚子从动件盘形凸轮机构的设计中,选择偏置从动件的主要目的,是为了减小推程压力角;当出现运动失真现象时,可采取以下措施:1 修改从动件的运动规律;2 当采用滚子从动件时,滚子半径必须小于凸轮理论廓线外凸部分的最小曲率半径ρmin,通常取r r≤ρmin;若由于结构、强度等因素限制,r r不能取得太小,而从动件的运动规律又不允许修改时,则可通过加大凸轮的基圆半径r b,从而使凸轮廓线上各点的曲率半径均随之增大的办法来避免运动失真;对于移动平底从动件盘形凸轮机构来说,偏距e并不影响凸轮廓线的形状,选择适当的偏距,主要是为了减轻从动件在推程中过大的弯曲应力;第十章齿轮机构及其设计渐开线直齿圆柱齿轮机构的传动设计是本章的重点;1. 易混淆的概念本章的特点是名词、概念多,符号、公式多,理论系统性强,几何关系复杂;学习时要注意清晰掌握主要脉络,对基本概念和几何关系应有透彻理解;以下是一些易混淆的概念;1 法向齿距与基圆齿距2 分度圆与节圆3 压力角与啮合角4 标准齿轮与零变位齿轮5 变位齿轮与传动类型6 齿面接触线与啮合线7 理论啮合线与实际啮合线8 齿轮齿条啮合传动与标准齿条型刀具范成加工齿轮2. 什么是节点、节线、节圆以及齿廓啮合基本定律定传动比的齿廓曲线的基本要求3. 渐开线齿廓:形成、特性以及其在传动过程中的优点;4. 标准齿轮:概念、名称符号、基本参数以及几何尺寸;5. 渐开线直齿圆柱齿轮的正确啮合条件、安装条件和连续啮合传动条件;6. 标准齿轮的标准安装中心距,标准安装有什么特点;非标准安装中心距,非标准安装有什么特点;7. 齿轮的变位修正:渐开线齿轮的切制方法仿形法和范成法及其原理加工标准齿轮的条件、轮齿齿廓的根切定义、条件以及不发生根切的最少齿数Z min;变位修正法:为了切制齿数少于17且不发生根切的齿轮、在无齿侧间隙的条件下拼凑中心矩以及改善传动性能强度性能和啮合性能所采用的改变刀具与轮坯相对位置的加工方法;变位齿轮:正变位、负变位齿轮的概念以及与标准齿轮的尺寸差别;8. 斜齿轮:渐开线螺旋曲面齿廓的形成、基本参数端面与法面参数的关系以及几何尺寸的计算;9. 斜齿轮传动:正确啮合条件、中心矩条件和连续传动条件;10. 斜齿轮的当量齿轮和当量齿数:概念、意义和作用;11. 直齿圆锥齿轮:基本参数和尺寸特点;圆锥齿轮传动的背锥、当量齿轮、当量齿数;第十一章齿轮系及其设计本章的重点是轮系的传动比计算和轮系的设计;1 定轴轮系虽然定轴轮系的传动比计算最为简单,但它却是本章的重点内容之一;定轴轮系传动比的大小,等于组成轮系的各对啮合齿轮中从动轮齿数的连乘积与主动轮齿数的连乘积之比,关于定轴轮系中主、从动轮转向关系的确定有3种情况;1 轮系中各轮几何轴线均互相平行:在这种情况下,可用-1m来确定轮系传动比的正负号,m为轮系中外啮合的对数;2 轮系中齿轮的几何轴线不都平行,但首末两轮的轴线互相平行:仍可用正、负号来表示两轮之间的转向关系:二者转向相同时,在传动比计算结果中标以正号;二者转向相反时,在传动比计算结果中标以负号;需要特别注意的是,这里所说的正负号是用在图上画箭头的方法来确定的,而与-1m无关;3 轮系中首末两轮几何轴线不平行:首末两轮的转向关系不能用正、负号来表示,而只能用在图上画箭头的方法来表示;2 周转轮系周转轮系的传动比计算是本章的重点内容之一;周转轮系传动比计算的基本思路:假想给整个轮系加上一个公共的角速度-ωH,使系杆固定不动,将周转轮系转化成一个假想的定轴轮系再进行传动比或者运动参量的求解;3 混合轮系混合轮系传动比计算既是本章的重点,也是本章的难点;混合轮系传动比计算的基本思路:首先,将各个基本轮系正确地划分开来,分别列出计算各基本轮系传动比的关系式,然后找出各基本轮系之间的联系,最后将各个基本轮系传动比关系式联立求解;第十二章其它常用机构及其设计本章的重点是掌握各种常用间歇运动机构棘轮机构、槽轮机构、螺旋机构和万向铰链机构的工作原理、结构组成、运动特点和功能,并了解其适用的场合,以便在进行机械系统方案设计时,能够根据工作要求正确地选择执行机构的型式;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周转轮系部分
i2H 4 n2 nH z 4 n4 nH z2
i2H 4
n2 nH z 4 n4 nH z2 n2 nH 4 nH
z1=20 z3=30
H
z4=80
由n4 0, n2 n2 , z2 20, z4 80
nH = (n1+n3) / 2 n1 = 2nH-n2
加法机构 减法机构
传动比求解思路:将混合轮系分解为基本轮系,分别计算传
动比,然后根据组合方式联立求解。
求解要点:
1.分清轮系 ——首先找出其中的基本周转轮系 2.列出方程 ——分别列出基本周转轮系、定轴轮系的传动比方程 3.建立联系 ——找出运动相同的联系构件 4.联立求解
例 3: 如图所示的轮系中,设已知各轮齿数,试求其传动比。
2H 2 H
H i 1 2 H
H 12
1 H
3
§11-4 复合轮系的传动比
3 H 1 2' 4 定轴轮系 周转轮系 2
定轴轮系
周转轮系
前面所介绍的2K-H型周转轮系,称为基本周转轮系(Elementary epicyclic gear train),通过一次反转可以得到一个定轴轮系(转化机构)。而对 于既包含定轴轮系又包含基本周转轮系的复合轮系 (Combined gear train), 不能通过一次反转得到一个定轴轮系。
nH 100 n1
z2 z3 n1 101 100 1 1 1 z1 z2' 100 100 100 nH
小 结
i
H mn H m H H m ( 1) k n H n
z z
从 mn
主 mn
1.
在周转轮系各轮齿数已知的条件下,如果给定 m、 n和H中的两个, 第三个就可以由上式求出。(对于行星轮系,有一个中心轮的转速为零)
H H- H
H
3 3H=3- H
=0 O
1
1 H = - 3 1 1 H
1
周转轮系加上一公共角速度“-H”后,各构件的角速度: 构件 周转轮系角速度 转化轮系角速度
1
2 3
1
2 3 H
1- H = 1H 2- H = 2H
H
3- H = 3H H- H = 0
解: 1)划分轮系 齿轮1-2组成定轴轮系部分; 齿轮2-3-4-H组成周转轮系部分。 2)计算各轮系传动比
z1=20 z3=30 H z4=80
z2=40
z2=20
定轴轮系部分
i12 n1 z 2 40 2 n2 z1 20
定轴轮系 周转轮系
n1 2n2
(1)
例4:图示为一电动卷扬机的减速器运动简图,已知各轮齿数,试求: 传动比 i15
解: 首先,分解轮系 齿轮1、3、2-2´、5组成周转轮系,有 齿轮3´、4、5组成定轴轮系,有
5 1 5 z2 z3 5 i13 1 5 3 5 z1 z2' 3 3' 3 z5 i3'5 5 5 z 3系
各齿轮轴线的位置都相对机架固定不动的齿轮传动系统。
2. 周转轮系
至少有一个齿轮的轴线(位置不固定)绕另一齿轮的轴线 转动的齿轮传动系统。
周转轮系的组成:
太阳轮——周转轮系中轴线位置固定不动的齿轮 行星轮——周转轮系中轴线不固定的齿轮 系杆H(行星架)——支撑行星轮的构件
H i13
n n
H 1 H 3

n1 nH n nH 1 n3 nH 0 nH
z3=99,试求传动比 iH1。
1
zz n1 1 i1 H 2 3 nH z1 z2'
z2 z3 1 101 99 z1 z2' 100 100
H i1 H 1 i13 1
机架
行星轮
太阳轮
系杆
太阳轮
周转轮系的分类
(1)根据其自由度的数目分: 差动轮系-自由度为2的周转轮系
行星轮系 -自由度为1的周转轮系
F = 3n-2PL-PH =34-24 -2 = 2
F = 3n-2PL-PH =3 3-2 3-2 = 1
3.混合轮系
——由定轴—动轴或多个动轴轮系组成的轮系
i15
z zz 1 (1 5 ) 2 3 1 (1 78 ) 33 78 1 28.24 5 z3' z1 z2' 18 24 21
§11-5 轮系的功用
一.实现分路传动
利用轮系可以使一个主动轴带动若干个
从动轴同时旋转,并获得不同的转速。

Ⅲ Ⅴ Ⅵ 主轴
从 mn
主 mn
2. 公式中各值均为矢量,计算时必须带“”号。
首、末两轮轴线平行,但中间一些齿轮轴线不平行: ——画虚线箭头来确定:箭头同向取“+”箭头反向取“-”。
3. 如n轮固定,即n=0 ,则上式可写成:
i
H mn
m H H imH 1 即: imH 1 imn 0 H
Ⅱ 图

二.获得较大的传动比
采用周转轮系,可以在使用很少的齿轮并且也很紧凑的条件 下,得到很大的传动比。
图9-14
三.实现变速传动
在主轴转速不变的条件下,利用轮系可使从动轴得到若干种 转速,从而实现变速传动。
1
2 1
2
I
1‘
2‘
II
四.实现换向传动
在主轴转向不变的条件下,可以改变从动轴的转向。
§11-3 周转轮系的传动比
一.周转轮系传动比计算的基本思路
周转轮系传动比不能直接计算,可以利用相对运动原理,将周 转轮系转化为假想的定轴轮系,然后利用定轴轮系传动比的计 算公式计算周转轮系传动比。 ——反转法或转化机构法
关键:设法使系杆H 固定不动,将周转轮系转化为定轴轮系。
O1 H O
2
O1 3
z2=40
z2=20
n2 5nH
(2)
3)将(1)、(2)联立求解
n1 2n2 10nH
n1 2n2
i1 H n1 10 nH 80 1 5 20
(1)
i 2 H 1 i
H 24
z4 1 z 2
轮系的传动比
i1 H i12 i 2 H 2 5 10
1 nH 90 3 1 nH 30
ωH O1 O O1 ω2 O1 O ωH ω1 ω3
1 nH 3 3nH
1 nH 2 n i 1 H 1 2 nH
(负号表明二者的转向相反)
图9-7
例2:在图示的周转轮系中,设已知 z1=100,z2=101,z2=100, 解:
第十一章 齿轮系及其设计
本章教学内容
◆齿轮系及其分类
◆ 轮系的传动比 ◆ 轮系的功用
◆ 轮系的设计
本章基本要求
§11-1 齿轮系及其分类
一.轮系
——由一系列齿轮组成的传动系统。
“红箭”导弹发射快速反应装 置
仪表
二.轮系的分类
根据轮系在运转过程中各齿轮的几何轴线在空 间的相对位置关系是否变动,可以将轮系分为
k——外啮合齿轮对数
对于空间轮系:
在图上用箭头表示 首、末两轮的转向关系,箭头同向取“+”;箭头反向取“”。 z2 z3 z4 z5 1
2.首、末两轮轴线不平行:
i15
5

z1 z2 z3 z4
在图上用箭头表示 首、末两轮的转向关系。 zz z i14 1 2 3 4 (首、末两轮的转向关系如图所示) 4 z1 z2 z3
m 积 m n所有从动轮齿数的连乘 n m n所有主动轮齿数的连乘 积

定轴轮系的传动比 ( imn )
z z

三.首、末两轮转向关系的确定
1.首、末两轮轴线平行:
对于平面轮系:
imn
m ( 1) k n
z z
从 mn
主 mn
二.周转轮系传动比计算的一般公式
转化机构的传动比 i13H 可按定轴轮系传动比的方法求得:
H zz z H H i13 1H 1 2 3 3 3 H z1 z2 z1 3 周转轮系传动比的一般公式为:
H m H H m ( 1) k n H n

iH 1
1 n1 10000 nH
nH 10000 轮 1 转 1 转,其转向 n1 与系杆的转向相同。
当系杆转10000转时,
若将z3由99改为100,则
i1 H 1 i
H 13
z1=100 z2=101 z2=100 z3=99
iH 1
z 1 =100 z 2 =101 z2=100 z 3 =100
- H
O
O1 2 2 2- H
H- HH
1
H
3 H 3-
=0O
1 1- H
3
1
指给整个周转轮系加上一个“-H”的公共角速度,使系杆H变
为相对固定,从而得到假想定轴轮系。
——周转轮系的转化机构(转化轮系)
O1
H O
2
O1 3 O
-H
O1 2 2 2H = 2- H
3 H 1 2 2' 4
§11-2 定轴轮系的传动比
轮系的传动比——输入轴与输出轴的角速度(或转速)之比,即: 大小 m imn n 转向
一.一对齿轮的传动比
1. 大小
i12
1 z2 2 z1
相关文档
最新文档