七年级数学新人教版上册第一章《有理数》同步练习及答案
人教版七年级数学上册《第一章有理数》同步训练-附有答案
![人教版七年级数学上册《第一章有理数》同步训练-附有答案](https://img.taocdn.com/s3/m/513a2165dc36a32d7375a417866fb84ae45cc39b.png)
人教版七年级数学上册《第一章有理数》同步训练-附有答案【题型1】有理数1.(2022·全国·七年级课时练习)下列说法错误的是()A.0既不是正数也不是负数B.零上6摄氏度可以写成+6℃也可以写成6℃C.向东走一定用正数表示向西走一定用负数表示D.若盈利1000元记作+1000元则-200元表示亏损200元【答案】C【解析】【分析】根据有理数的概念和性质判断即可.【详解】∵0既不是正数也不是负数∴A正确不符合题意;∵零上6摄氏度可以写成+6℃也可以写成6℃∴B 正确 不符合题意;∵正方向可以自主确定∴向东走一定用正数表示 向西走一定用负数表示 是错误的∴C 不正确 符合题意;∵盈利1000元记作+1000元 则-200元表示亏损200元∴D 正确 不符合题意;故选:C .【点睛】本题考查了有理数的基本概念 熟练掌握有理数的基本概念是解题的关键.【变式1-1】2.(2022·全国·七年级专题练习)在3- 3π1.62 0四个数中 有理数的个数为() A .4 B .3 C .2 D .1【答案】B【解析】【分析】根据有理数的定义进行判断即可.【详解】 解:在3- 3π1.62 0四个数中 3- 1.62 0是有理数∴有理数的个数为3故选:B .【点睛】本题主要考查了有理数的识别 熟练掌握有理数的定义是解决本题的关键.【题型2】有理数的分类1.(2022·全国·七年级课时练习)有理数-3 0.23 -85 206 -4 5中 非正整数有() A .6个 B .5个 C .4个 D .3个【答案】D【解析】【分析】根据有理数的分类 求解即可 非正整数包括负整数和零 也就是非正数中的整数.【详解】解:有理数-3 0.23 -85 206 -4 5中 非正整数有385,4---,共3个 故选D【点睛】本题考查了非正整数 理解非正整数包括负整数和零 也就是非正数中的整数是解题的关键.【变式2-1】2.(2020·山西省运城市实验中学七年级期中)把下列各数填在相应的大括号内:0.5 5- 2 47- 0 134- 29 2020 5.6⋅ 正数集合:{ …}; 分数集合:{ …}; 非负整数集合:{ …}.【答案】0.5 2 292020 5.6⋅; 0.5 47- 134- 29 5.6⋅; 0.5 2 0292020 5.6⋅ 【解析】【分析】 根据正数 负数 分数 非负整数的定义进行分类即可解决问题.【详解】解:正数集合:{ 0.5 2 292020 5.6⋅ …};分数集合:{0.547-134-29 5.6⋅…};非负整数集合:{0.5 2 0 292020 5.6⋅…}.所以集合里分别填:0.5 2 292020 5.6⋅;0.547-134-29 5.6⋅;0.5 2 0 292020 5.6⋅【点睛】本题考查了有理数的分类解题的关键是熟练掌握有理数的分类方法属于中考常考题型.【题型3】数轴表示数1.(2020·黑龙江·集贤县第七中学七年级期中)画出数轴并表示下列有理数并用“>”把它们连起来.4- 3 1.5 0122 -.【答案】数轴是表示见解析3>1.5>0>-212>-4.【解析】【分析】首先在数轴上确定表示各数的点的位置再根据在数轴上表示的有理数右边的数总比左边的数大用“>”号把这些数连接起来即可.【详解】解:如图所示:用“>”把它们连起来为:3>1.5>0>-212>-4.【点睛】此题主要考查了有理数的比较大小关键是正确在数轴上确定表示各数的点的位置.【变式3-1】2.(2020·黑龙江·虎林市实验中学七年级期中)a、b是有理数它们在数轴上的对应点的位置如图所示把a、-a、b、-b按从小到大的顺序排列为()A.-b<-a<a<b B.-a<-b<a<b C.-b<a<-a<b D.-b<b<-a<a【答案】C【解析】【分析】先根据a b两点在数轴上的位置判断出a、b的符号及其绝对值的大小再比较出其大小即可.【详解】解:∵由图可知a<0<b|a|<b∴0<-a<b-a<b<0 0b a-<<∴b a a b-<<-<故C正确.故选:C.【点睛】本题考查的是有理数的大小比较熟知数轴上各点所表示的数的特点是解答此题的关键.【题型4】数轴上两点之间的距离1.(2019·广东·广州市第二中学七年级阶段练习)如图:A、B两点在数轴上表示的数分别为a b则A B 两点间的距离不正确的是()A.﹣b+a B.|a﹣b| C.b﹣a D.|a|+|b|【答案】A【解析】【分析】根据A、B两点在数轴上的位置进行计算.【详解】解:A B两点间的距离=b﹣aA、由题意知﹣b+a<0 故本选项符合题意;B、由题意知|a﹣b|=b﹣a故本选项不符合题意;C、由题意知b﹣a故本选项不符合题意;D、由题意知|a|+|b|=﹣a+b故本选项不符合题意;故选:A.【点睛】本题考查了数轴上两点间的距离能够正确理解A、B两点间的距离的几何意义是解题的关键.【变式4-1】2.(2020·湖南·常德市第七中学七年级期中)数轴上一点A表示的数为-7 当点A在数轴上滑动2个单位后所表示的数是_________.【答案】-9或-5【解析】【分析】分向右滑动和向左滑动两种情况讨论求解即可.【详解】解:∵数轴上一点A表示的数为-7∴当点A在数轴上向左滑动2个单位后所表示的数是-7-2=-9;当点A在数轴上向右滑动2个单位后所表示的数是-7+2=-5故答案为:-9或-5.【点睛】本题主要考查了用数轴表示有理数利用分类讨论的思想求解是解题的关键.【题型5】相反数1.(2020·黑龙江·虎林市实验中学七年级期中)25-的相反数是()A.25B.52-C.52D.0【答案】A 【解析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】根据只有符号不同的两个数互为相反数进行解答即可得.解:25-的相反数是25故A正确.故选:A【点睛】本题主要考查了相反数掌握相反数的定义是解题的关键.【变式5-1】2.(2022·黑龙江·哈尔滨市萧红中学校期中)数轴上A、B表示的数互为相反数并且两点间的距离是12 在A、B之间有一点P P到A的距离是P到B的距离的2倍求P点表示的数_______.【答案】2±【解析】【分析】直接利用相反数的定义得出A B表示的数据再利用P到A的距离是P到B的距离的2倍得出P点位置.【详解】解:数轴上A、B表示的数互为相反数并且两点间的距离是12∴A表示-6 B表示6 或者A表示6 B表示-6①当A表示-6 B表示6时在A、B之间有一点P P到A的距离是P到B的距离的2倍∴P A=8 PB=4∴点P表示的数是:2;②A表示6 B表示-6时在A、B之间有一点P P到A的距离是P到B的距离的2倍∴P A=8 PB=4∴点P表示的数是:-2;故答案为:2±.此题主要考查了数轴以及互为相反数的定义 正确得出A B 点位置是解题关键.【题型6】绝对值1.(2021·湖北恩施·一模)﹣2的绝对值为( )A .﹣12B .12C .﹣2D .2【答案】D【解析】【分析】直接利用绝对值的性质化简得出答案.【详解】解:﹣2的绝对值为:2故选:D .【点睛】本题考查化简绝对值 解题的关键是掌握绝对值的定义.【变式6-1】2.(2021·辽宁本溪·七年级期中)化简:3π4π---=____________.【答案】2π7-【解析】【分析】根据绝对值的定义即可得.【详解】 解:3π4π3427πππ---=--+=-;故答案为:2π7-【点睛】此题考查了绝对值 掌握绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值是解题的关键.专项训练一.选择题1.(2019·贵州安顺·中考真题)-2019的相反数是( )A .2019B .-2019C .12019 D .12019-【答案】A【解析】【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】解:-2019的相反数是2019.故选:A .【点睛】本题考查了相反数的定义 解答本题的关键是熟练掌握相反数的定义.2.(2021·贵州安顺·中考真题)如图 已知数轴上,A B 两点表示的数分别是,a b则计算b a -正确的是( )A .b a -B .-a bC .a b +D .a b --【答案】C【解析】【分析】根据数轴上两点的位置 判断,a b 的正负性 进而即可求解.【详解】解:∵数轴上,A B 两点表示的数分别是,a b∴a <0 b >0∴()b a b a a b -=--=+故选:C .【点睛】本题考查了数轴 绝对值 掌握求绝对值的法则是解题的关键.3.(2022·全国·七年级课时练习)数轴上 点A 对应的数是6- 点B 对应的数是2- 点O 对应的数是0.动点P 、Q 从A 、B 同时出发 分别以每秒3个单位和每秒1个单位的速度向右运动.在运动过程中 下列数量关系一定成立的是( )A .2PQ OQ =B .2OP PQ =C .32QB PQ =D .PB PQ = 【答案】A【解析】【分析】设运动时间为t 秒 根据题意可知AP=3t BQ=t AB=2 然后分类讨论:①当动点P 、Q 在点O 左侧运动时 ②当动点P 、Q 运动到点O 右侧时 利用各线段之间的和、差关系即可解答.【详解】解:设运动时间为t 秒 由题意可知: AP=3t BQ=tAB=|-6-(-2)|=4 BO=|-2-0|=2①当动点P 、Q 在点O 左侧运动时PQ=AB-AP+BQ=4-3t+t=2(2-t)∵OQ= BO- BQ=2-t∴PQ= 2OQ ;②当动点P 、Q 运动到点O 右侧时PQ=AP-AB-BQ=3t-4-t=2(t-2)∵OQ=BQ- BO=t-2∴PQ= 2OQ综上所述在运动过程中线段PQ的长度始终是线段OQ的长的2倍即PQ= 2OQ一定成立.故选: A.【点睛】本题考查了数轴上的动点问题及数轴上两点间的距离解题时注意分类讨论的运用.4.(2022·全国·七年级课时练习)已知1|3|a=-则a的值是()A.3 B.-3 C.13D.13+或13-【答案】D【解析】【分析】先计算出3-然后根据绝对值的定义求解即可.【详解】解:∵133 a=-=∴13 a=±∴13 a=±故选:D.【点睛】本题考查绝对值方程的求解理解绝对值的定义是解题关键.5.(2021·全国·七年级课时练习)A为数轴上表示3的点将点A沿数轴向左平移7个单位到点B再由B 向右平移6个单位到点C则点C表示的数是()A.0 B.1 C.2 D.3【答案】C【解析】【分析】根据向左平移为减法向右平移为加法利用有理数的加减法运算计算即可.【详解】376=2-+∴点C 表示的数是2故选:C .【点睛】本题主要考查有理数加减法的应用 正确的计算是关键.6.(2019·黑龙江·中考真题)实效m n 在数轴上的对应点如图所示 则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数 且m <n 由此逐项分析得出结论即可.【详解】解:因为m 、n 都是负数 且m <n |m|>|n|A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选C .【点睛】此题考查有理数的大小比较 关键是根据绝对值的意义等知识解答.二、填空题7.(2020·四川乐山·中考真题)用“>”或“<”符号填空:7-______9-.【答案】>【解析】【分析】两个负数 绝对值大的其值反而小 据此判断即可.【详解】解:∵|-7|=7 |-9|=9 7<9∴-7>-9故答案为:>.【点睛】此题主要考查了有理数大小比较的方法 要熟练掌握 解答此题的关键是要明确:两个负数 绝对值大的其值反而小.8.(2021·江苏常州·中考真题)数轴上的点A 、B 分别表示3-、2 则点__________离原点的距离较近(填“A ”或“B ”).【答案】B【解析】【分析】先求出A 、B 点所对应数的绝对值 进而即可得到答案.【详解】解:∵数轴上的点A 、B 分别表示3-、2 ∴33,22-== 且3>2∴点B 离原点的距离较近故答案是:B .【点睛】本题主要考查数轴上点与原点之间的距离 掌握绝对值的意义 是解题的关键.9.(2022·全国·七年级课时练习)如图 数轴上点A B C 对应的有理数分别是a b c2OA OC OB == 且24a b c ++=- 则a b b c -+-=______.【答案】8【解析】【分析】根据2OA OC OB ==得2c a b =-=- 代入24a b c ++=-即可求出a 和c 的值 再根据绝对值的性质化简a b b c -+- 即可求出结果.【详解】解:∵2OA OC OB ==∴2c a b =-=-∵24a b c ++=-∴4a c c -+=- 即4a =-∴4c = ∴()448a b b c b a c b c a -+-=-+-=-=--=.故答案是:8.【点睛】本题考查数轴的性质和绝对值的性质 解题的关键是掌握数轴上的点表示有理数的性质和化简绝对值的方法.10.(2019·山东德州·中考真题)33x x -=- 则x 的取值范围是______.【答案】3x ≤【解析】【分析】根据绝对值的意义 绝对值表示距离 所以30x -≥ 即可求解;【详解】根据绝对值的意义得 30x -≥3x ∴≤;故答案为3x ≤;【点睛】本题考查绝对值的意义;理解绝对值的意义是解题的关键.11.(2020·湖北·云梦县实验外国语学校七年级期末)若有理数a b c 在数轴上的位置如图所示 则|a -c |-|b +c |可化简为_________ .【答案】a b --##b a --【解析】【分析】根据数轴上的点的位置 判断a -c 和b +c 的符号 然后根据绝对值的意义求解即可.【详解】根据题意得a-c<0 b+c>0所以|a﹣c|﹣|b+c|=c-a-(b+c)=c-a-b-c=-a-b故答案为-a-b.【点睛】此题主要考查了数轴上点与绝对值的化简关键是根据数轴上点的位置求出代数式的符号.三、解答题12.(2020·广东·龙门县华南师范大学附属龙门学校七年级期末)把下列各数在数轴上表示出来 3.5 -3.5 0 2 -0.5 -2 0.5. 并按从小到大的顺序用“<”连接起来.【答案】数轴见解析-3.5<-2<-0.5<0<0.5<2<3.5;【解析】【分析】先根据数轴表示数的方法表示各数再按从左向右的顺序排列即可.【详解】在数轴上表示从小到大的顺序是:用“<”连接起来-3.5 <-2 <-0.5 <0 <0.5<2<3.5.【点睛】此题主要考查了有理数与数轴关键是正确在数轴上表示各数.13.(2022·全国·七年级专题练习)如图数轴上点A B M N表示的数分别为-1 5 m n且AM=23AB点N是线段BM的中点求m n的值.【答案】m=3 n=4或m=-5 n=0【解析】【分析】根据题意得:AB=6.再由AM=23AB可得AM=4.然后分两种情况讨论即可求解.【详解】解:∵数轴上 点A B 表示的数分别为-1 5∴AB =6.∵AM =23AB∴AM =4.①当点M 在点A 右侧时∵点A 表示的数为-1 AM =4∴点M 表示的数为3 即m =3.∵点B 表示的数为5 点N 是线段BM 的中点∴点N 表示的数为4 即n =4.② 当点M 在点A 左侧时∵点A 表示的数为-1 AM =4∴点M 表示的数为-5 即m =-5.∵点B 表示的数为5 点N 是线段BM 的中点∴点N 表示的数为0 即n =0.综上 m =3 n =4 或m =-5 n =0.【点睛】本题主要考查了数轴上两点间的距离 熟练掌握数轴上两点间的距离 并利用分类讨论思想解答是解题的关键.14.(2022·全国·七年级课时练习)阅读下面材料:如图 点A 、B 在数轴上分别表示有理数a 、b 则A 、B 两点之间的距离可以表示为a b -根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与2-的两点之间的距离是________.(2)数轴上有理数x 与有理数7所对应两点之间的距离用绝对值符号可以表示为________.(3)代数式8x +可以表示数轴上有理数x 与有理数________所对应的两点之间的距离;若85x += 则x =________.【答案】(1)5;(2)7x ;(3)-8;-3或-13;【解析】【分析】(1)根据材料计算即可;(2)根据材料列代数式即可;(3)将8x +化为()8x --即可;根据绝对值的性质计算求值即可;(1)解:数轴上表示3与2-的两点之间的距离是3-(-2)=5;(2)解:数轴上有理数x 与有理数7所对应两点之间的距离用绝对值符号可以表示为7x ;(3) 解:∵8x +=()8x -- ∴代数式8x +可以表示数轴上有理数x 与有理数-8所对应的两点之间的距离; 若85x += 则当(x+8)>0时 x +8=5 x =-3当(x+8)<0时 x +8=-5 x =-13故答案为:-8;x =-3或-13;【点睛】本题考查了数轴上两点之间的距离 绝对值的化简(正数的绝对值是它本身 零的绝对值是零 负数的绝对值是它的相反数);掌握绝对值的意义是解题关键.15.(2022·河南·郑州外国语中学七年级期末)数轴是一个非常重要的数学工具 它使数和数轴上的点建立起对应关系 揭示了数与点之间的内在联系 它是“数形结合”的基础.例如:从“形”的角度看:|31|-可以理解为数轴上表示 3 和 1 的两点之间的距离;|31|+可以理解为数轴上表示 3 与﹣1 的两点之间的距离.从“数”的角度看:数轴上表示 4 和﹣3 的两点之间的距离可用代数式表示为: 4-(-3) .根据以上阅读材料探索下列问题:(1)数轴上表示 3 和 9 的两点之间的距离是 ;数轴上表示 2 和﹣5 的两点之间的距离是 ;(直接写出最终结果)(2)①若数轴上表示的数 x 和﹣2 的两点之间的距离是 4 则 x 的值为 ;②若 x 为数轴上某动点表示的数 则式子|1||3|x x ++-的最小值为 .【答案】(1)6 7;(2)①-6或2;②4【解析】【分析】(1)直接根据数轴上两点之间的距离求解即可;(2)①根据数轴上两点之间的距离公式列绝对值方程 然后解方程即可;②由于所给式子表示x 到-1和3的距离之和 当x 在-1和3之间时和最小 故只需求出-1和3的距离即可.(1)解:数轴上表示 3 和 9 的两点之间的距离是|9-3|=6 数轴上表示 2 和﹣5 的两点之间的距离是|2-(-5)|=7故答案为:6 7;(2)解:①根据题意 得:|x -(-2)|=4∴|x +2|=4∴x +2=-4或x +2=4解得:x =-6或x =2故答案为:-6或2;②∵|1||3|x x ++-表示x 到-1和3的距离之和∴当x 在-1和3之间时距离和最小 最小值为|-1-3|=4故答案为:4.【点睛】本题考查数轴上两点之间的距离 会灵活运用数轴上两点之间的距离解决问题是解答的关键.16.(2018·全国·七年级专题练习)如图 一个点从数轴上的原点开始 先向右移动3个单位长度 再向左移动5个单位长度 可以看到终点表示的数是-2.已知点A B 是数轴上的点 请参照图并思考 完成下列各题.(1) 若点A 表示数2- 将A 点向右移动5个单位长度 那么终点B 表示的数是 此时 A B 两点间的距离是________.(2)若点A 表示数3 将A 点向左移动6个单位长度 再向右移动5个单位长度后到达点B 则B 表示的数是________;此时 A B 两点间的距离是________.(3)若A 点表示的数为m 将A 点向右移动n 个单位长度 再向左移动t 个单位长度后到达终点B 此时A 、B 两点间的距离为多少?【答案】(1) 3 5 ;(2) 2 ; 1 ;(3)n t -【解析】【详解】试题分析:(1)由数轴上面的点表示的数查出结果即可 并根据绝对值求出两点间的距离;(2)由数轴上面的点表示的数查出结果即可 并根据绝对值求出两点间的距离;(3)结合(1)和(2)的距离与平移的关系直接列式即可(距离为两次移动的单位长度的差的绝对值). 试题解析:(1)(1) 3 5 ;(2) 2 ; 1 ;(3)n t -17.(2022·全国·七年级课时练习)如图 数轴上的三个点A B C 分别表示实数a b c .(1)如果点C 是AB 的中点 那么a b c 之间的数量关系是________;(2)比较4b -与1c +的大小 并说明理由;(3)化简:|2||1|||--+++a b c .【答案】(1)2c =a +b (答案不唯一)(2)4-<b 1c +;理由见解析(3)3a b c ---【解析】【分析】(1)利用C 是AB 的中点得到AC =BC 可得a c c b -=- 化简即可;(2)通过数轴得出a b c 的大小关小 从而得出b -4和c +1的大小;(3)先判断a -2 b +1 c 的正负 然后根据绝对值的性质化简即可.(1)∵C 是AB 的中点 且数轴上的三个点A B C 分别表示实数a b c∴AC =BC∴a c c b -=-∴2c =a +b故答案是:2c =a +b ;(2)4-<b 1c + 理由如下:由数轴知:01a << 10c -<< 1b <-∴b -4<-5 c +1>0∴4-<b 1c +;(3)由数轴知:01a << 10c -<< 1b <-∴a -2<0 b +1<0 ∴()()2121213a b c a b c a b c a b c --+++=---+-=-+---=---.【点睛】本题考查了数轴的意义 绝对值以及有理数大小的比较 掌握绝对值的性质以及有理数的加减法则是解题的关键.第21 页共21 页。
人教版七年级数学上册第1章有理数科学记数法同步练习(含答案)
![人教版七年级数学上册第1章有理数科学记数法同步练习(含答案)](https://img.taocdn.com/s3/m/514a5af608a1284ac85043cb.png)
人教版七年级上册第一章有理数1.5. 2科学记数法同步测试一.选择题(共10小题,3*10=30)1. 长江三峡工程电站的总装机容量用科学记数法表示为1.82×107千瓦,把它写成原数是( )A.182000千瓦B.182000000千瓦C.18200000千瓦D.1820000千瓦2. 用科学记数法表示的数3.76×10100的原来的位数是( )A.98 B.99C.100 D.1013. 国产科幻电影《流浪地球》上映17日,票房收入突破40亿元人民币,将40亿用科学记数法表示为( )A.40×108B.4×109C.4×1010D.0.4×10104. 云台山景区空气清爽,景色宜人.“五一”小长假期间购票进山游客约22万人次,再创历史新高.云台山景区门票价格旺季120元/人.以此计算,“五一”小长假期间云台山景区进山门票总收入用科学记数法表示( )A.2.64×108B.0.264×107C.2.64×107D.26.4×1045. 2017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学记数法表示正确的是( )A.1.35×106B.1.35×105C.13.5×104D.13.5×1036. 今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10117.用科学记数法表示-37800000正确的是( )A.-378×105B.-3.78×107C.3.78×108D.-37.8×1068.在科学记数法a×10n中,n是正整数,a的取值范围是( )A.1<|a|<10 B.1<|a|≤10C.1≤|a|<10 D.1≤|a|≤109. 中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( ) A.0.96×107B.9.6×106C.96×105D.9.6×10210.世界文化遗产长城总长约为6700000 m,若将6700000用科学记数法表示为6.7×10n(n 是正整数),则n的值为( )A.5 B.6 C.7 D.8二.填空题(共8小题,3*8=24)11. 从党的“十八大”到“十九大”经历43800小时,我国的“天宫、蛟龙、天眼、悟空、墨子、大飞机”等各项科技创新成果“井喷”式发展,这些记录下了党的极不平凡的壮阔进程,请将数43800用科学记数法表示为___________.12.一个数用科学记数法表示为7.08×1011,则这个数是___位数.13. 把下列用科学记数法表示的数写成原数:(1)6.25×108=______________;(2)106=_____________;(3)8.0015×103=_______;14.许多人由于粗心,经常造成水龙头“滴水”或“流水”不断.根据测定,一般情况下一个水龙头“滴水”一个小时可以流掉3.5千克水.若1年按照365天计算,则这个水龙头1年约可以流掉_________千克水.15. 据统计:我国微信用户数量已突破887000000人,将887000000用科学记数法表示为_________________.16.用科学记数法表示一个六位整数,则10的指数是____;用科学记数法表示一个整数,若10的指数是n,则这个数是__________位整数.17.科学研究发现,每公顷的森林可吸收二氧化碳1.5吨,我国人工林累计面积达48000000公顷,可吸收二氧化碳____________吨.(用科学记数法表示)18. 比较大小:9.532×1010____1.001×1011;-8.67×109____-1.05×1010. (在横线上填“>”或“<”)三.解答题(共6小题,46分)19. (7分) 用科学记数法写出下列各数:(1)3600;(2)-100000;(3)-24000;(4)380亿.20. (7分) 下列用科学记数法写出的数,原来分别是什么数?3.5×106,1.20×105,-9.3×104,-2.34×108.21. (7分) 2018年,中国贸易进出口总额为4.62万亿美元(美国约为4.278万亿美元),同比增长12.6%,占全球贸易总额的11.75%,贸易总额连续两年全球第一!那么2018年全球贸易总额用科学记数法表示为多少?(小数点后保留2位有效数字)22. (8分) 地球绕太阳转动(即地球的公转)每小时约通过1.1×105千米,声音在空气中传播每小时约通过1.2×106米.地球公转的速度与声音传播的速度哪个快?23. (8分) 比较大小.(1)1.5×102 020与9.8×102 019;(2)-3.6×105与-1.2×106.24. (9分先计算,然后根据计算结果回答问题:(1)计算:①(1×102)×(2×104);②(2×104)×(3×107);③(3×107)×(4×104);④(4×105)×(5×1010).(2)已知式子(a·10n)·(b·10m)=c·10p成立,其中a,b,c均为大于或等于1而小于10的数,m,n,p均为正整数,你能说出m,n,p之间存在的等量关系吗?参考答案1-5 CDBCB 6-10CBCBB11. 4.38×10412. 1213. 625000000,1000000,8001.514. 3.066×10415. 8.87×10816. 5,n+117. 7.2×10718. <,>19. 解:(1)原式=3.6×103(2)原式=-1×105(3)原式=-2.4×104(4)原式=3.8×101020. 解:原数分别为3500000,120000,-93000,-23400000021. 解:4.62万亿=4.62×1012,4.62×1012÷11.75%=4.62×1012×10011.75=3.93×1013答:2018年全球贸易总额用科学记数法表示为3.93×1013美元。
人教版七年级上册数学 第一章《有理数》练习题(附答案)
![人教版七年级上册数学 第一章《有理数》练习题(附答案)](https://img.taocdn.com/s3/m/64d4c3bd2b160b4e777fcf79.png)
1 2
,
−
3
48.食品店一周中的盈亏情况如下 ( 盈余为正 ) : 132 元, −12.5 元, −10.5 元,127 元, −87 元, 136.5 元,98 元. 请通过计算说明这一周食品店的盈亏情况.
49.试比较 a 与﹣a 的大小.
50.把下列各数填在相应的表示集合的大括号内:
-3,-
(2)解:原式=
1 2
×(﹣24)+
5 6
×(﹣24)﹣
7 12
×(﹣24)=﹣12﹣20+14=﹣18.
40.【答案】 解:原式=2+2-1=3
四、解答题
41.【答案】
解:正数集合:{
1 10
,2014,20%,…}
负数集合:{-7,﹣
1 3
,
-0.75…}
整数集合:{0,2014…}
正分数集合:{
+
1
+
2
−
3+2×
3 2
−
2
2
=
13 4
−
2
2
37.【答案】 解:(+7)+(﹣4)﹣(﹣3)﹣(+14)=7﹣4+3﹣14=3+3-14=6-14=﹣8
38.【答案】 解:原式 = 3 × 2 − ( − 1)
39.【答案】 (1)解:原式=6.8﹣(﹣4.2)+ ( − 1)3 =6.8+4.2﹣1=10
A. -6
B.
−5
1 3
C.
−4
1 2
D.
−3
3 4
6.计算 18 − ( − 5) 的结果等于( )
人教版数学七年级上第一章《有理数》1.5有理数的乘方同步练习题(含解析答案)
![人教版数学七年级上第一章《有理数》1.5有理数的乘方同步练习题(含解析答案)](https://img.taocdn.com/s3/m/a5ec678d360cba1aa811daf0.png)
人教版七年级数学(上)第一章《有理数》1.5有理数的乘方同步练习题学校:___________姓名:___________班级:___________得分:___________一、选择题(本大题共10小题,共30分)1.计算(-1)5×23÷(-3)2÷的结果是 ( )。
A. -26B. -24C. 10D. 122.你喜欢吃拉面吗?拉面馆的师傅将一根很粗的面条,捏合一起拉伸变成2根,第二次捏合,再拉伸变成4根,反复几次,就把这根很粗的面条,拉成了许多细的面条,如图所示:这样,第n次捏合后可拉出细面条的数量是()。
A. 2nB. 2nC. 2n-1D. 2+n3.下列说法错误的是 ( )。
A. 近似数16.8与16.80表示的意义不同B. 近似数0.290 0是精确到0.0001的近似数C. 3.850×104是精确到十位的近似数D. 49 564精确到万位是4.9×1044.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,用你所发现的规律得出22017+22018的末位数字是( )。
A. 2B. 4C. 8D. 65.已知是由四舍五入得到的近似数,则的可能取值范围是()。
A. B.C. D.6.下列计算正确的是()。
A. B. C. D.7.近似数1.30是由数a四舍五入得到的,那么数a的取值范围是()。
A. 1.25≤a<1.35B. 1.25<a<1.35C. 1.295<a<1.305D. 1.295≤a<1.3058.下列说法:①近似数3.45精确到百分位;②近似数0.50精确到百分位,③2019.5精确到个位是2019.其中说法正确的个数有()。
A. 1个B. 2个C. 3个D. 0个9.如果一个近似数是1.60,则它的精确值x的取值范围是()。
A. 1.594<x<1.605B. 1.595≤x<1.605C. 1.595<x≤1.604D. 1.601<x<1.60510.如图是一个计算程序,若输入a的值为-1,则输出的结果应为()。
人教版七年级数学上册第一章《有理数》课时练习题(含答案)
![人教版七年级数学上册第一章《有理数》课时练习题(含答案)](https://img.taocdn.com/s3/m/a70ea730e3bd960590c69ec3d5bbfd0a7856d551.png)
人教版七年级数学上册第一章《有理数》课时练习题(含答案)一、单选题1 )A .BC D .32.实数a 的绝对值是54,a 的值是( ) A .54 B .54- C .45± D .54± 3.如图,数轴上两点,M N 所对应的实数分别为,m n ,则m n -的结果可能是( )A .1-B .1C .2D .34.在2,-4,-3,5中,任选两个数的积最小的是( )A .-12B .-15C .-20D .-65.实数2021的相反数是( )A .2021B .2021-C .12021D .12021- 6.2022的相反数是( )A .2022B .2022-C .12022D .12022- 二、填空题7.如图,点A 在数轴上对应的数为2,若点B 也在数轴上,且线段AB 的长为112,C 为OB 的中点,则点C 在数轴上对应的数为__________.8.数轴上一点A ,在原点左侧,离开原点6个单位长度,点A 表示的数是______.9.已知a 、b 为有理数,下列说法:①若a 、b 互为相反数,则“a b =﹣1;②若|a ﹣b |+a ﹣b =0,则b >a ;③若a +b <0,ab >0,则|3a +4b |=﹣3a ﹣4b ;④若|a |>|b |,则(a +b )•(a ﹣b )是正数,其中正确的序号是 _____. 10.如图,在数轴上,点A 表示1,现将点A 沿x 轴做如下移动:第一次将点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,按照这种移动规律移动下去,第n 次移动到点n A ,如果点n A 与原点的距离不小于20,那么n 的最小值是_________.三、解答题11.把下列各数:()4-+,3-,0,213-,1.5 (1)分别在数轴上表示出来:(2)将上述的有理数填入图中相应的圈内.12.(1)写出下列各数的绝对值,并分别把它们和它们的绝对值在数轴上表示出来.11,2,,(3),| 3.5|2-----.(2)已知a ,b 互为相反数,c ,d 互为倒数,m 绝对值等于2的数,求22a b m cd a b c++-++的值.13.已知下列有理数:-4,-212,412,-1,2.5,3(1)在给定的数轴上表示这些数:(2)这些数中是否存在互为相反数的两个数?若存在,请指出来,并写出这两个数之间所有的整数;(3)这些数在数轴上表示的点中是否存在两点之间的距离等于7的两个数?若存在,请指出来。
最新人教版七年级数学上册全套同步练习题(课课练)及答案
![最新人教版七年级数学上册全套同步练习题(课课练)及答案](https://img.taocdn.com/s3/m/220a1b8628ea81c758f578e7.png)
第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。
2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数;_____和_____统称为分数;______、______、______、______和______统称为有理数; ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.3拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
七年级数学上册《第一章-有理数的乘方》同步练习题及答案(人教版)
![七年级数学上册《第一章-有理数的乘方》同步练习题及答案(人教版)](https://img.taocdn.com/s3/m/a51bb675ff4733687e21af45b307e87101f6f86f.png)
七年级数学上册《第一章 有理数的乘方》同步练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.下列运算正确的是( )A .525217777⎛⎫-+=-+=- ⎪⎝⎭B .7259545--⨯=-⨯=-C .54331345÷⨯=÷=D .21139⎛⎫-=- ⎪⎝⎭2.过度包装即浪费又污染环境,据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为( ) A .3.12×106 B .3.12×105 C .31.2×104 D .0.312×107 3.由四舍五入得到近似数1.20万,是精确到( ) A .万位 B .千位 C .百位 D .十位 4.乐乐在学习绝对值时,发现“”像是一个神奇的箱子;当负数钻进这个箱子以后,结果就转化为它的相反数;正数或零钻进这个箱子以后,结果没有发生变化,乐乐把 2(3)-- 放进了这个神奇的箱子,发现 2(3)-- 的结果是( )A .9B .-9C .6D .-6 5.数据26000用科学记数法表示为2.6×10n ,则n 的值是( ) A .2 B .3 C .4 D .5 6.若m 是有理数,则下列各数中一定是正数的是( ) A .|m| B .m 2 C .m 2+1 D .|m+1|7.已知()2280x y -++=,则x y +的值为( ) A .10B .不能确定C .-6D .-108.定义一种新运算符号“Θ”,满足Θba b a b a =-+,则()()1Θ2Θ3-的值为( ) A .7 B .8 C .9D .11二、填空题:9.0.003069= (精确到万分位). 10.在中有个数是正数,有 个数不是整数. 11.“激情同在”第23届冬奥会于2018年2月在韩国平昌郡举行,场馆的建筑面积约是358 000平方米,将358 000用科学记数法表示为 ; 12.已知:(x ﹣2)2+|2y+1|=0,求y x = . 13.计算: 123410001001(1)(1)(1)(1)(1)(1)-+-+-+-++-+-=三、解答题:14.计算:()()3213244⎛⎫---⨯-÷- ⎪⎝⎭.15.计算:(1)2235(3)-+--- .(2)22111(0.4)29462⎛⎫⎛⎫-÷-+-⨯ ⎪ ⎪⎝⎭⎝⎭.16.纳米技术已经开始用于生产生活之中,已知1米等于1 000 000 000纳米,请问216.3米等于多少纳米?(结果用科学记数法表示)17.已知下列有理数: ()()2302412------,,,, (1)计算: ()22-= , 4--= , ()1--=(2)这些数中,所有负数的和的绝对值是(3)把下面的直线补充成一条数轴,在数轴上描出表示 ()()2302412------,,,, 这些数的点,并把这些数标在对应点的上方.18.阅读下列计算过程:313-22÷()2130.752⎡⎤⎛⎫--+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦×5. 解:原式= 313-22÷13344⎡⎤-+⎢⎥⎣⎦×5 ①=313+4÷(-2)×5 ②=313-25③ =21415.回答下列问题:(1)步骤①错在 ; (2)步骤①到步骤②错在 ; (3)步骤②到步骤③错在 ; (4)此题的正确解法是什么?参考答案:1. 【答案】D2. 【答案】A3. 【答案】C 4.【答案】A 5.【答案】C 6.【答案】C 7.【答案】C 8.【答案】C 9.【答案】0.0031 10.【答案】6;6 11.【答案】53.5810⨯ 12.【答案】1413.【答案】-114.【答案】解:原式()()19844⎛⎫=---⨯-÷-⎪⎝⎭()9324=--⨯-9128=-+119=. 15.【答案】(1)解:原式=﹣4+|﹣2|+3 =﹣4+2+3=1 (2)解:原式=( 893636- )÷ 136 +(﹣ 25 )× 52=(﹣136)×36+(﹣1) =(﹣1)+(﹣1) =﹣2.16【答案】(216.3×1000000000=216300000000=2.163×1011.17.【答案】(1)4;-4;1(2)152(3)解:如图18.【答案】(1)去小括号符号错误(2)乘方计算错误(3)运算顺序错误(4)解:原式=3 13-4÷13344⎛⎫+-⎪⎝⎭×5=3 13-4÷52×5=3 13-4×25×5=3 13-8=-4 2 5。
2024-2025学年人教版七年级数学上册《第1章有理数》自主学习选择同步练习题(附答案)
![2024-2025学年人教版七年级数学上册《第1章有理数》自主学习选择同步练习题(附答案)](https://img.taocdn.com/s3/m/d341b7a605a1b0717fd5360cba1aa81145318f57.png)
2024-2025学年人教版七年级数学上册《第1章有理数》自主学习选择同步练习题(附答案)1.下列选项中具有相反意义的量是()A.胜1局和亏损2万元B.向东行驶5km与向北行驶10kmC.运进6kg苹果与卖完5kg苹果D.水位上升0.6米与水位下降1米2.在中国古代数学著作《九章算术》中记载了用算筹表示正负数的方法,即“正算赤,负算黑”.如果向西走80米记作“−80米”,那么向东走40米记作()A.+40米B.+80米C.−80米D.−40米3.人体的正常体温大约为36.5℃,如果低于正常体温0.5℃记作−0.5℃;那么高于正常体温0.8℃应该记作()A.−0.8℃B.+0.8℃C.−37.3℃D.+37.3℃4.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,如果收入100元记作+100,那么−40表示为()A.收入40元B.支出40元C.收入60元D.支出60元5.下列说法中不正确的是()A.任何一个有理数都可以用数轴上的一个点表示B.一个负数的绝对值等于它的相反数C.在数轴上,到原点距离越远的点所表示的数一定越大D.任何有理数都有相反数6.古人都讲“四十不惑”,如果以40岁为基,张明60岁,记为+20岁,那么王横25岁,记为()A.25岁B.−25岁C.−15岁D.+15岁7.一袋面粉的标准质量是15kg,如果把一袋面粉15.5kg记为+0.5kg,那么另一袋面粉14.7kg记为()A.−14.7kg B.+14.7kg C.-0.3kg D.+0.3kg8.下列各数中,最小的数是().A.1B.2C.−12D.−39.下列各数中是负数的是()A.−3B.−(−1)C.0D.−210.在下列数−56,+1,6.7,0,722,−5,25%中整数有()A.2个B.3个C.4个D.5个11.下列四个数在数轴上表示的点,距离原点最近的是()A.−1B.−1.5C.+0.5D.+112.下列比较大小正确的是()A.−3=−−73B.−56<−45C.−−21<+−21D.−|−10|>813.下列各组数中,互为相反数的一组是()A.+−2和−+2B.−−2和+2C.−−2和−2D.−+2和−+214.下列化简正确的是()A.−+2=2B.−−2=−2C.+−2=−2D.−+2=2 15.在−1,0,53,−6.8和2024这五个有理数中,正数有()A.1个B.2个C.3个D.4个16.在−2,0,3.14,102,3,−−2021,100%中,非负整数的个数有()A.2个B.3个C.4个D.5个17.如果在数轴上A点表示−3,那么在数轴上与点A距离2个长度单位的点所表示的数是()A.−1B.−1和−5C.+1或−5D.−518.液体沸腾时的温度叫做沸点,下表是几种物质在标准大气压下的沸点,则沸点最低的物质是()物质酒精液态甲醛液态一氧化碳花生油沸点/℃78−19.5−191.5335A.液态一氧化碳B.液态甲醛C.酒精D.花生油19.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是()A.+0.9B.−3.5C.−0.5D.+2.520.实数a、b在数轴上的位置如图所示,则下列结论正确的是()A.>B.−>−C.>D.−>−参考答案1.解:A、胜1局和亏损2万元不具有相反意义的量,故选项不合题意;B、向东行驶5km与向北行驶10km不具有相反意义的量,故选项不合题意;C、运进6kg苹果与卖完5kg苹果不具有相反意义的量,故选项不合题意;D、水位上升0.6米与水位下降1米是一对意义相反的量,故选项符合题意.故选:D.2.解:∵向东走与向西走是一对意义相反的量,∴如果向西走80米记作“−80米”,∴向东走40米记作+40米,故选:A.3.解:体温低于正常体温0.5℃记作−0.5℃;那么高于正常体温0.8℃应该记作+0.8℃,故选:B.4.解:如果收入100元记作+100,那么−40表示为支出40元.故选:B.5.解:∵实数与数轴上的点一一对应,故选项A正确;∵负数的绝对值等于它的相反数,∴一个负数的绝对值等于它的相反数,故选项B正确;∵在数轴的负半轴上,到原点距离越远的点所表示的数一定越小,故选项C不正确;∵任何有理数都有相反数,故选项D正确.故选:C.6.解:由题意得:王横25岁,记为−15岁,故选:C.7.解:一袋面粉15.5kg记为+0.5kg,那么另一袋面粉14.7kg记为-0.3kg.故选:C.8.解:∵−3<−12<1<2,∴所给的各数中,最小的数是−3.故选:D9.解:A.−3=3是正数,不符合题意;B.−(−1)=1是正数,不符合题意;C.0既不是正数,也不是负数,不符合题意;D.−2是负数,符合题意;故选:D.10.解:−56,+1,6.7,0,722,−5,25%中整数有:+1,0,−5,共3个,故选:B.11.解:∵−1=1,−1.5=1.5,+0.5=0.5,+1=1,∴−1.5>−1=+1>+0.5,∴+0.5的位置距离原点最近,故选:C.12.解:A、∵−=−723,−−7=723,∴−<−−7符合题意;B、∵−=56=2530,−=45=2430,∴−56<−45,故本选项正确,符合题意;C、∵−−21=21,+−21=−21,∴−−21>+−21,故本选项错误,不符合题意;D、∵−|−10|=−10,∴−|−10|<8,故本选项错误,不符合题意.故选:B.13.解:A、+−2=−2,−+2=−2,故两数不是相反数,不符合题意;B、−−2=−2,+2=2,两数互为相反数,符合题意;C、−−2=2,−2=2,故两数不是相反数,不符合题意;D、−+2=−2,−+2=−2,故两数不是相反数,不符合题意.故选:B.14.解:A、−+2=−2,此选项化简错误,不符合题意;B、−−2=2,此选项化简错误,不符合题意;C、+−2=−2,此选项化简正确,符合题意;D、−+2=−2,此选项化简错误,不符合题意;故选:C.15.解:正数有:53和2024,有2个正数.故选B.16.解:−2为负数,不符合题意;0为非负整数,符合题意;3.14为小数,不符合题意;102=5为非负整数,符合题意;3为小数,不符合题意;−−2021=2021为非负整数,符合题意;100%=1为非负整数,符合题意;综上所述,非负整数的个数有4个,故选:C.17.解:如图所示,∴在数轴上与点A距离2个长度单位的点所表示的数是−1和−5.故选B.18.解:∵−191.5>−19.5,∴−191.5<−19.5<78<335,∴沸点最低的液体是液态一氧化碳.故选A.19.解:+0.9=0.9,−3.5=3.5,−0.5=0.5,+2.5=2.5,∵0.5<0.9<2.5<3.5,∴从轻重的角度看,最接近标准的是−0.5,故选:C.20.解:由图可得:0<<,且|U<|U,∴A、<,故此选项不符合题意;B、−>−,故此选项符合题意;C、|U<|U,故此选项不符合题意;D、|−U<|−U,故此选项不符合题意;故选:B.。
人教版初中七年级数学上册第一章《有理数》习题(含答案解析)
![人教版初中七年级数学上册第一章《有理数》习题(含答案解析)](https://img.taocdn.com/s3/m/e975d1040242a8956aece453.png)
1.下列说法中,①a-一定是负数;② a-一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有()A.2个B.3个C.4个D.5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a不一定是负数,若a为负数,则-a就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A.【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.2.数轴上点A和点B表示的数分别为-4和2,若要使点A到点B的距离是2,则应将点A向右移动()A.4个单位长度B.6个单位长度C.4个单位长度或8个单位长度D.6个单位长度或8个单位长度C解析:C【分析】A点移动后可以在B点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C.【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.3.如果a=14-,b=-2,c=324-,那么︱a︱+︱b︱-︱c︱等于()A .-12B .112C .12D .-112A 解析:A【分析】逐一求出三个数的绝对值,代入原式即可求解.【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A .【点睛】 本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.4.某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( )A .B 处比A 处高B .A 处比B 处高C .A ,B 两处一样高D .无法确定B解析:B【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高.【详解】根据题意,得: ()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------=∵1.5>0∴A B h h >故选B .【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.5.2--的相反数是()A.12-B.2-C.12D.2D解析:D【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】2--的相反数是2,故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.6.已知a、b在数轴上的位置如图所示,将a、b、-a、-b从小到排列正确的一组是()A.-a<-b<a<b B.-b<-a<a<bC.-b<a<b<-a D.a<-b<b<-a D解析:D【解析】【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则-a>b,-b>a,然后把a,b,-a,-b从大到小排列.【详解】∵a<0<b,且|a|>b,∴a<-b<b<-a,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.7.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A 、|a|>|b|,故选项正确;B 、a 、c 异号,则|ac|=-ac ,故选项错误;C 、b <d ,故选项正确;D 、d >c >1,则c+d >0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.8.-1+2-3+4-5+6+…-2011+2012的值等于A .1B .-1C .2012D .1006D 解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D .点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键. 9.下列正确的是( )A .5465-<- B .()()2121--<+- C .1210823-->D .227733⎛⎫--=-- ⎪⎝⎭A 解析:A【分析】根据不等式的性质对各选项进行判断即可.【详解】解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A .【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键. 10.一个数的绝对值是3,则这个数可以是( )A .3B .3-C .3或者3-D .13C 解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a ,∴|a|=3,∴a=±3故选C .11.若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12B .2或-12C .-2或12D .-2或-12A 解析:A【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可.【详解】 由x 7=可得x=±7,由y 5=可得y=±5,由x+y>0可知:当x=7时,y=5;当x=7时,y=-5,则x y 75122-=±=或,故选A【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.12.下列四个式子,正确的是( ) ①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④B .①C .①②D .②③D 解析:D【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】①∵33 3.754⎛⎫-+=- ⎪⎝⎭, 33.83 3.754>=, ∴33.834⎛⎫-<-+ ⎪⎝⎭,故①错误;②∵33154420⎛⎫--== ⎪⎝⎭,21335502⎛⎫--== ⎪⎝⎭, 15122020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.13.下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则ab=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.14.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃B解析:B【解析】【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃, 根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.15.某市11月4日至7日天气预报的最高气温与最低气温如表:其中温差最大的一天是( )A .11月4日B .11月5日C .11月6日D .11月7日C解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C.【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.1.3-的平方的相反数的倒数是___________.【分析】根据倒数相反数平方的概念可知【详解】−3的平方是99的相反数是-9-9的倒数是故答案为【点睛】此题考查倒数相反数平方的概念及性质解题关键在于掌握各性质定义解析:1 9 -【分析】根据倒数,相反数,平方的概念可知.【详解】−3的平方是9,9的相反数是-9,-9的倒数是1 9 -故答案为1 9 -.【点睛】此题考查倒数,相反数,平方的概念及性质.解题关键在于掌握各性质定义.2.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.3.数轴上,如果点 A所表示的数是3-,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.-7【分析】根据在数轴上点A所表示的数为3可以得到到点A的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A所表示的数是-3到点A的距离等于4个单位长度的点所表示的数解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.4.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.5.在|﹣3|、﹣32、﹣(﹣3)2、﹣(3﹣π)、﹣|0|中,负数的个数为_____.2个【分析】分别计算出题目中所给的每一个数即可作出判定【详解】∵|﹣3|=3﹣32=﹣9﹣(﹣3)2=﹣9﹣(3﹣π)=π﹣3﹣|0|=0∴﹣32﹣(﹣3)2是负数故答案为2个【点睛】此题考查的知识解析:2个【分析】分别计算出题目中所给的每一个数,即可作出判定.【详解】∵|﹣3|=3,﹣32=﹣9,﹣(﹣3)2=﹣9,﹣(3﹣π)=π﹣3,﹣|0|=0,∴﹣32、﹣(﹣3)2是负数.故答案为2个.【点睛】此题考查的知识点是正数和负数,关键是理解负数的概念,而且要把这些数化为最后结果才能得出正确答案.这就又要理解平方、绝对值,正负号的变化等知识点.6.数轴上表示 1 的点和表示﹣2 的点的距离是_____.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键解析:3【分析】直接根据数轴上两点间的距离公式求解即可.【详解】∵|1-(-2)|=3,∴数轴上表示-2的点与表示1的点的距离是3.故答案为3.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.7.大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.8.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[________]+1.2=________+1.2=____;(2)32.5+46+(-22.5)=[____]+46=_____+46=____.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2=-2.4;(2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56.【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.9.在一次区级数学竞赛中,某校8名参赛学生的成绩与全区参赛学生平均成绩80分的差分别为(单位:分):5,2-,8,14,7,5,9,6-,则该校8名参赛学生的平均成绩是______ .85【解析】分析:先求出总分再求出平均分即可解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+(−2)+(−6)+8=40(分)∴该校8名参赛学生的平均成绩是80+(40解析:85【解析】分析:先求出总分,再求出平均分即可.解:∵5+(−2)+8+14+7+5+9+(−6)=(5+14+7+5+9)+[(−2)+(−6)+8]=40(分),∴该校8名参赛学生的平均成绩是80+(40÷8)=85(分).故答案为85.点睛:本题考查的是正数和负数,熟知正数和负数的概念是解答此题的关键.10.化简﹣|+(﹣12)|=_____.﹣12;【分析】利用绝对值的定义化简即可【详解】﹣|+(﹣12)|=故答案为﹣12【点睛】本题考查了绝对值化简熟练掌握绝对值的定义是解题关键解析:﹣12;【分析】利用绝对值的定义化简即可.【详解】﹣|+(﹣12)|=|12|12--=-故答案为﹣12.【点睛】本题考查了绝对值化简,熟练掌握绝对值的定义是解题关键.11.在数轴上,距离原点有2个单位的点所对应的数是________.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x 由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型解析:2±【分析】由绝对值的定义可知:|x |=2,所以x =±2.【详解】设距离原点有2个单位的点所对应的数为x ,由绝对值的定义可知:|x |=2,∴x =±2.故答案为±2.【点睛】本题考查了绝对值的性质,属于基础题型.1.计算:(1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯. 解析:(1)6;(2)-5【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)152|18|()263-⨯-+=18×(12﹣56+23) =18×12﹣18×56+18×23=9﹣15+12=6;(2)20203221124(2)3()3-+÷--⨯ =﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1=﹣5.【点睛】 此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.2.计算(1)(-5)+(-7);(2)(-1)100×5+(-2)4÷4解析:(1)-12;(2)9【分析】(1)同号相加,取相同符号,并把绝对值相加,据此计算即可;(2)先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)(-5)+(-7)=-(5+7)=-12.(2)(-1)100×5+(-2)4÷4=5+16÷4=5+4=9.【点睛】本题主要考查了有理数的加法及有理数的混合运算,熟练掌握运算法则是解本题的关键. 3.计算:(1)14-25+13(2)42111|23|()823---+-⨯÷ 解析:(1)2;(2)4【分析】 (1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案.【详解】解:(1)14251311132-+=-+=;(2)42111|23|()823---+-⨯÷=111834--+⨯⨯ =26-+=4.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.4.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯- 123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦ ()313212⎛⎫=---+⨯-+ ⎪⎝⎭ ()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯--()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.。
人教版七年级数学上册同步练习题及答案全套(课课练)七年级上同步练习
![人教版七年级数学上册同步练习题及答案全套(课课练)七年级上同步练习](https://img.taocdn.com/s3/m/57219e7b7f21af45b307e87101f69e314332fa2b.png)
第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。
2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、_____、______和______统称为整数;_____和_____统称为分数;______、______、______、______和______统称为有理数; ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.3拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
人教版初中七年级数学上册第一章《有理数》经典习题(含答案解析)
![人教版初中七年级数学上册第一章《有理数》经典习题(含答案解析)](https://img.taocdn.com/s3/m/feb1368431b765ce0408149b.png)
1.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b判断出a 和b 异号. 2.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.3.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③ 1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道B .2道C .3道D .4道A 解析:A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.【详解】①2018(1)1-=,故本小题错误;②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题.故选A .【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键. 4.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.5.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( )A .6B .12C .8D .24B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B .【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.6.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a D 解析:D【解析】【分析】根据数轴表示数的方法得到a <0<b ,且|a|>b ,则-a >b ,-b >a ,然后把a ,b ,-a ,-b 从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.7.若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1C解析:C【解析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.8.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.9.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.10.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.11.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】 根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D .【点睛】 本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 12.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0C解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误.故选C .13.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.14.计算(-2)2018+(-2)2019等于( )A.-24037B.-2 C.-22018D.22018C 解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.15.下列计算结果正确的是()A.-3-7=-3+7=4B.4.5-6.8=6.8-4.5=2.3C.-2-13⎛⎫-⎪⎝⎭=-2+13=-213D.-3-12⎛⎫-⎪⎝⎭=-3+12=-212D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.1.若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积2000abcde=,则它们的和a b c d e++++的最小值为__.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.2.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.3.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.4.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.5.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对解析:71.610⨯【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.16000000 =71.610⨯.6.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.7.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:1621(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-. 【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.8.填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.9.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.++-+++-++++-=_____.【分析】第1 10.计算:(1)(2)(3)(4)(2019)(2020)个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.11.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;当输入2-时,输出的结果为24(3)524350-+---=-++-=.故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 1.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =154()68-÷⨯- =5468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.2.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】 (1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=;①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.3.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.4.计算:(1)13 |38|44⎛⎫--+- ⎪⎝⎭(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦解析:(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13 544 --=5-1 =4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157 (48)()(48)(48)2812 -⨯---⨯+-⨯=24+30-28=26.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.。
人教版七年级上数学同步练习题及答案
![人教版七年级上数学同步练习题及答案](https://img.taocdn.com/s3/m/cc65c28990c69ec3d4bb7561.png)
第一章 有理数1.1 正数和负数基础检测 1.521,76,106,14.3,732.1,34,5.2,0,1----+-中,正数有 ,负数有 。
2.如果水位升高5m 时水位变化记作+5m ,那么水位下降3m 时水位变化记作 m ,水位不升不降时水位变化记作 m 。
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010年我国全年平均降水量比上年减少24㎜.2009年比上年增长8㎜.2008年比上年减少20㎜。
用正数和负数表示这三年我国全年平均降水量比上年的增长量。
拓展提高5.下列说法正确的是( )A.零是正数不是负数B.零既不是正数也不是负数C.零既是正数也是负数D.不是正数的数一定是负数,不是负数的数一定是正数6.向东行进-30米表示的意义是( )A.向东行进30米B.向东行进-30米C.向西行进30米D.向西行进-30米7.甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为 这时甲乙两人相距 m.8.某种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存才合适。
9.如果把一个物体向右移动5m 记作移动-5m ,那么这个物体又移动+5m 是什么意思?这时物体离它两次移动前的位置多远?1.2.1有理数测试基础检测1、 ______和______统称为非负数;______和______统称为非正数;______和______统称为非正整数;______和______统称为非负整数.2、下列不是正有理数的是( )A 、-3.14B 、0C 、37 D 、3 3、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.3 拓展提高4、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对5、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数6、下列说法中,错误的有( )①742 是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
七年级数学上册《第一章 有理数的除法》同步练习带答案-人教版
![七年级数学上册《第一章 有理数的除法》同步练习带答案-人教版](https://img.taocdn.com/s3/m/539486eb48649b6648d7c1c708a1284ac850051d.png)
七年级数学上册《第一章 有理数的除法》同步练习带答案-人教版学校:___________班级:___________姓名:___________考号:___________基础巩固练习一、选择题1.﹣54的倒数是( ) A.﹣54 B. 54 C.﹣45 D. 452.计算36÷(﹣9)的值是( ) A.4 B.18 C.﹣18 D.﹣43.计算-4÷49×94的结果是( )A.4B.- 4C.2014D.- 20144.两个因数相乘,其中一个因数是35,积是-1,那么另一个因数是( ) A.35 B.53 C.-35 D.-535.在计算时,有四名同学给出了以下四种计算步骤,其中正确的是( )A.原式=1÷(- 2)×12- 9×(2- 13 - 29) B.原式=- 4+5÷(- 1)- 9×(2- 13 - 29) C.原式=- 4+5÷(- 2)×12- 18- 3- 2 D.原式=- 4- 54 - 18+3+26.在算式4-∣-3□5∣中的□所在位置,填入下列哪种运算符号,计算出来值最小( )A.+B.-C.×D.÷7.实数a,b在数轴上对应的点的位置如图所示,则正确的结论是( )[A.a+b<0B.a>|﹣2|C.b>πD.8.在算式4-|-3□5|中的□所在位置,填入下列哪种运算符号,计算出来的值最小( )A.+B.-C.×D.÷二、填空题9.若a、b互为倒数,则4ab= .10.一个数与-34的积为12,则这个数是____________11.填空:(____________)÷7=-3;12.一个数的25是-165,则这个数是_________13.-114的倒数与4的相反数的商是____________.14.将0.5的倒数减去-1,再除以-4的绝对值,结果为.三、解答题15.计算:(-12)÷(-14 );16.计算:-1+5÷(-61)×(-6);17.计算:(-10)÷(-8)÷(-0.25).18.计算:42×(-71)+(-0.25)÷34;19.小明在计算 (-6)÷(12+13-34)时,他是这样计算的: (-6)÷(12+13-34)=(-6)÷12+(-6)÷13+(-6)÷(-34)=-12-18+8=-22. 他做得对吗?如果不对,请你写出正确的计算过程.20.一天,小明与小强利用温度计测量山峰的高度,小明在山顶测得温度是-2 ℃,小强此时在山脚测得温度是4 ℃.已知该地区高度每增加100 m ,气温大约降低0.6 ℃,这个山峰的高度大约是多少?21.自来水费采取阶梯式计价,第一阶梯为月总用水量不超过34m 3的用户,自来水价格为2.40元/m3,第二阶梯为月总用水量超过34m3的用户,前34m3水价为2.40元/m3,超出部分的水价为3.35元/m3.小敏家上月总用水量为50m3,求小敏家上月应交多少水费.能力提升练习一 、选择题1.下列各式的运算结果为负的是( )A.1×(-2)÷(-3)B.(-1)×2÷(-3)C.(-1)×(-2)÷(-3)D.(-1)÷2×02.两个有理数的商为正数,则( )A.它们的和为正数B.它们的和为负数C.至少有一个数为正数D.它们的积为正数3.下列说法正确的是( )A.负数没有倒数B.正数的倒数比自身小C.任何有理数都有倒数D.- 1的倒数是- 14.两个数之和为负,商为负,则这两个数应是( )A.同为负数B.同为正数C.一正一负且正数的绝对值较大D.一正一负且负数的绝对值较大5.两个不为零的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数( )A.一定相等B.一定互为倒数C.一定互为相反数D.相等或互为相反数6.如图,在数轴上点A ,B 对应的数分别为a ,b ,则下列结论:①b a >0;②a b>0;③-b a >0;④-a b>0.其中,正确的有( )A.1个B.2个C.3个D.4个二 、填空题7.-214除以一个数的商为-9,则这个数是_________8.一个数的25是-165,则这个数是_________9.甲、乙、丙、丁四位同学围成一圈依次循环报数,规定:①甲、乙、丙、丁首次报出的数依次为1、2、3、4,接着甲报5,乙报6…,后一位同学报出的数比前一位同学报出的数大1,按此规律,当报到的数是50时,报数结束;②若报出的数为3的倍数,则该报数的同学需拍手一次,在此过程中,甲同学需要拍手的次数为.10.设a+b+c=0,abc<0,则的值是 .三、解答题11.计算:(-1.5)×45÷(-25)×34;12.计算:-34÷38×(-49)÷(-23);13.计算:-112÷34×(-0.2)×134÷1.4×(-35).14.计算:1÷(16-13)×16;15.分类讨论题:已知a,b,c是非零有理数,求式子a|a|+b|b|+c|c|的值.16.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14524÷=14342÷=所以14是“差一数”;19534÷=但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.答案基础巩固练习1.C.2.D3.C4.D5.D6.C.7.D8.C9.答案为:4.10.答案为:-2 311.答案为:-21;12.答案为:-813.答案为:1 514.答案为:0.7515.解:原式=4816.:原式=17917.解:原式=-5.18.解:原式=-61 319.解:不对.正确的计算过程如下:原式=(-6)÷=(-6)÷1 12=(-6)×12=-72.20.解:[4-(-2)]÷0.6=10,10×100=1000(m).答:这个山峰的高度大约是1000 m.21.解:由题意得:34×2.4+3.35×(50-34)=34×2.4+16×3.35=135.2(元). 答:小敏家上月应交135.2元的水费.能力提升练习1.C2.D3.D4.D5.D6.B.7.答案为:148.答案为:-89.答案为:4.10.答案为:-111.解:原式=32×45×52×34=94. 12.解:原式=-43. 13.解:原式=-31014.解:原式=-115.解:①当a ,b ,c 三个数都为正数时a |a|+b |b|+c |c|=a a +b b +c c=1+1+1=3; ②当a ,b ,c 三个数中有两个为正数,一个为负数时,不妨设a 为负数,b ,c 为正数则a |a|+b |b|+c |c|=a -a +b b +c c=-1+1+1=1; ③当a ,b ,c 三个数中有一个为正数,两个为负数时,不妨设a 为正数,b ,c 为负数则a|a|+b|b|+c|c|=aa+b-b+c-c=1-1-1=-1;④当a,b,c三个数都为负数时,a|a|+b|b|+c|c|=a-a+b-b+c-c=-1-1-1=-3.综上所述,式子a|a|+b|b|+c|c|的值为3或-3或1或-1.16.解:(1)∵49594÷=;493161÷=∴49不是“差一数”∵745144÷=;743242÷=∴74是“差一数”;(2)解法一:∵“差一数”这个数除以5余数为4∴“差一数”这个数的个位数字为4或9∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399∵“差一数”这个数除以3余数为2∴“差一数”这个数的各位数字之和被3除余2∴大于300且小于400的所有“差一数”为314、329、344、359、374、389.解法二:∵“差一数”这个数除以5余数为4,且除以3余数为2∴这个数加1能被15整除∵大于300且小于400的能被15整除的数为315、330、345、360、375、390∴大于300且小于400的所有“差一数”为314、329、344、359、374、389.。
人教版七年级数学上《第1章有理数》同步单元检测试题附答案
![人教版七年级数学上《第1章有理数》同步单元检测试题附答案](https://img.taocdn.com/s3/m/6fed9e245f0e7cd185253635.png)
人教版七年级数学第1章有理数同步检测试题(全卷总分100分)姓名得分一、选择题(每小题3分,共30分)1.冰箱冷藏室的温度零上5 ℃,记作+5 ℃,保鲜室的温度零下7 ℃,记作()A.7 ℃B.-7 ℃C.2 ℃D.-12 ℃2.在数轴上表示数-1和2 017的两点分别为A和B,则A,B两点之间的距离为()A.2 016 B.2 017C.2 018 D.2 0193.|-6|的相反数是()A.6 B.-6C.16D.-164.在数轴上与表示-2的点之间的距离是5的点表示的数是()A.3 B.-7C.-3 D.-7或35.第31届夏季奥运会将于2019年8月5日~21日在巴西举行,为纪念此次体育盛事发行的奥运会纪念币,在中国发行450 000套,450 000这个数用科学记数法表示为()A.45×104B.4.5×105C.0.45×106D.4.5×1066.用四舍五入法按要求对0.050 49分别取近似值,其中错误的是()A.0.1(精确到0.1) B.0.05(精确到百分位)C.0.05(精确到千分位) D.0.050(精确到0.001)7.下列说法中,正确的是()A.0是最小的有理数B.任一个有理数的绝对值都是正数C.-a是负数D.0的相反数是它本身8.下列各数:-(-2),(-2)2,-22,(-2)3,负数的个数为()A.1 B.2C.3 D.49.已知有理数a,b在数轴上的位置如图所示,下列结论错误的是()A.|a|<1<|b| B.1<-a<bC.1<|a|<b D.-b<a<-110.在一条笔直的公路边,有一些树和灯,每相邻的两盏灯之间有3棵树,相邻的树与树、树与灯间的距离都是10 m,如图,第一棵树左边5 m处有一个路牌,则从此路牌起向右510 m~550 m之间树与灯的排列顺序是()二、填空题(每小题3分,共18分)11.-1.5的倒数是.12.近似数2.12×104精确到位.13.如图是一个简单的数值运算程序,当输入x的值为-2时,则输出的数值为.输入x→×(-1)→-4→输出14.已知(x-3)2+|y+5|=0,则xy-y x=.15.定义一种新运算:a⊗b=b2-ab,如:1⊗2=22-1×2=2,则(-1⊗2)⊗3=.16.找出下列各图形中数的规律,依此,a的值为.三、解答题(共52分)17.(6分)已知下列各数:0.5,-2,2.5,-2.5,0,-1.4,4,-13.(1)在数轴上表示以上各数;(2)用“<”号连接以上各数;(3)求出以上各数的相反数和绝对值.18.(16分)计算:(1)1÷(-1)+0÷4-5×0.1×(-2)3(2)-32-(-8)×(-1)5÷(-1)4(3)[212-(79-1112+16)×36]÷5(4)317×(317-713)×722÷112119.(6分)一辆汽车沿着南北向的公路往返行驶,某天早上从A地出发,晚上最后到达B地,若约定向北为正方向(如+7.4千米表示汽车向北行驶7.4千米,-6千米则表示该汽车向南行驶6千米),当天的行驶记录如下(单位:千米):+18.3,-9.5,+7.1,-14,-6.2,+13,-6.8,-8.5.(1)B地在A地何方?相距多少千米?(2)如果汽车行驶每千米耗油0.335升,那么这一天共耗油多少升?20.(8分)有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数) 21.(8分)阅读下面材料:因为11×2=1-12,12×3=12-13,13×4=13-14,…,119×20=119-120,所以11×2+12×3+13×4+…+119×20=1-12+12-13+13-14+…+119-120=1-120=1920. 请你用上面的方法计算:12×3+13×4+14×5+…+12 017×2 018.22.(8分)请你先看懂下面给出的例题,再按要求计算.例:若规定⎪⎪⎪⎪⎪⎪a1b1a2b2=a1b2-a2b1,计算:⎪⎪⎪⎪⎪⎪3243.解:依规定,则⎪⎪⎪⎪⎪⎪3243=3×3-4×2=1.问题:若规定⎪⎪⎪⎪⎪⎪a1b1c1a2b2c2a3b3c3=a1b2c3+a2b3c1+a3b1c2-a3b2c1-a1b3c2-a2b1c3.请你计算:⎪⎪⎪⎪⎪⎪31-115-23-214-5.人教版七年级数学第1章有理数同步检测试题参考答案一、选择题(每小题3分,共30分)1.冰箱冷藏室的温度零上5 ℃,记作+5 ℃,保鲜室的温度零下7 ℃,记作(B)A.7 ℃B.-7 ℃C.2 ℃D.-12 ℃2.在数轴上表示数-1和2 017的两点分别为A和B,则A,B两点之间的距离为(C)A.2 016 B.2 017C.2 018 D.2 0193.|-6|的相反数是(B)A.6 B.-6C.16D.-164.在数轴上与表示-2的点之间的距离是5的点表示的数是(A)A.3 B.-7C.-3 D.-7或35.第31届夏季奥运会将于2019年8月5日~21日在巴西举行,为纪念此次体育盛事发行的奥运会纪念币,在中国发行450 000套,450 000这个数用科学记数法表示为(B)A.45×104B.4.5×105C.0.45×106D.4.5×1066.用四舍五入法按要求对0.050 49分别取近似值,其中错误的是(C)A.0.1(精确到0.1) B.0.05(精确到百分位)C.0.05(精确到千分位) D.0.050(精确到0.001)7.下列说法中,正确的是(D)A.0是最小的有理数B.任一个有理数的绝对值都是正数C.-a是负数D.0的相反数是它本身8.下列各数:-(-2),(-2)2,-22,(-2)3,负数的个数为(B)A.1 B.2C.3 D.49.已知有理数a,b在数轴上的位置如图所示,下列结论错误的是(A)A.|a|<1<|b| B.1<-a<bC.1<|a|<b D.-b<a<-110.在一条笔直的公路边,有一些树和灯,每相邻的两盏灯之间有3棵树,相邻的树与树、树与灯间的距离都是10 m,如图,第一棵树左边5 m处有一个路牌,则从此路牌起向右510 m~550 m之间树与灯的排列顺序是(B)二、填空题(每小题3分,共18分)11.-1.5的倒数是32.12.近似数2.12×104精确到百位.13.如图是一个简单的数值运算程序,当输入x的值为-2时,则输出的数值为-2.输入x→×(-1)→-4→输出14.已知(x-3)2+|y+5|=0,则xy-y x=110.15.定义一种新运算:a⊗b=b2-ab,如:1⊗2=22-1×2=2,则(-1⊗2)⊗3=-9.16.找出下列各图形中数的规律,依此,a的值为226.三、解答题(共52分)17.(6分)已知下列各数:0.5,-2,2.5,-2.5,0,-1.4,4,-13.(1)在数轴上表示以上各数;(2)用“<”号连接以上各数;(3)求出以上各数的相反数和绝对值.解:(1)略.(2)-2.5<-2<-1.4<-13<0<0.5<2.5<4.(3)相反数分别为-0.5,2,-2.5,2.5,0,1.4,-4,13.绝对值分别为0.5,2,2.5,2.5,0,1.4,4,13.18.(16分)计算:(1)1÷(-1)+0÷4-5×0.1×(-2)3解:原式=-1+0+4=3(2)-32-(-8)×(-1)5÷(-1)4解:原式=-9-(-8)×(-1)÷1=-9-8=-17(3)[212-(79-1112+16)×36]÷5解:原式=[212-(79×36-1112×36+16×36)]÷5=[212-(28-33+6)]÷5=(212-1)÷5=310(4) 317×(317-713)×722÷1121解:原式=227×722×(227-223)×2122=227×2122-223×2122 =3-7 =-4.19.(6分)一辆汽车沿着南北向的公路往返行驶,某天早上从A 地出发,晚上最后到达B 地,若约定向北为正方向(如+7.4千米表示汽车向北行驶7.4千米,-6千米则表示该汽车向南行驶6千米),当天的行驶记录如下(单位:千米):+18.3,-9.5,+7.1,-14,-6.2,+13,-6.8,-8.5. (1)B 地在A 地何方?相距多少千米?(2)如果汽车行驶每千米耗油0.335升,那么这一天共耗油多少升? 解:(1)18.3-9.5+7.1-14-6.2+13-6.8-8.5=-6.6(千米). 因此B 地在A 地南边,相距6.6千米.(2)18.3+9.5+7.1+14+6.2+13+6.8+8.5=83.4(千米). 83.4×0.335=27.939(升). 答:这一天共耗油27.939升.20.(8分)有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数) 解:(1)3-(-3)=6(千克). (2)-3×1+(-2)×4+(-1)×2+0×3+1.5×2+3×8=14(千克). 答:总计超过14千克. (3)2.6×(25×20+14)≈1 336(元).答:出售这20筐白菜可卖1 336元.21.(8分)阅读下面材料:因为11×2=1-12,12×3=12-13,13×4=13-14,…,119×20=119-120, 所以11×2+12×3+13×4+…+119×20=1-12+12-13+13-14+…+119-120=1-120=1920.请你用上面的方法计算:12×3+13×4+14×5+…+12 017×2 018.解:原式=12-13+13-14+14-15+…+12 017-12 018=12-12 018 = 1 009-12 018=5041 009. 22.(8分)请你先看懂下面给出的例题,再按要求计算. 例:若规定⎪⎪⎪⎪⎪⎪a 1 b 1a 2 b 2=a 1b 2-a 2b 1,计算:⎪⎪⎪⎪⎪⎪324 3. 解:依规定,则⎪⎪⎪⎪⎪⎪3243=3×3-4×2=1. 问题:若规定⎪⎪⎪⎪⎪⎪a 1b 1c 1a 2b 2c 2a 3 b 3c 3=a 1b 2c 3+a 2b 3c 1+a 3b 1c 2-a 3b 2c 1-a 1b 3c 2-a 2b 1c 3.请你计算: ⎪⎪⎪⎪⎪⎪ 3 1 -115 -2 3-21 4 -5. 解:原式=3×(-2)×(-5)+15×4×(-1)+(-21)×1×3-(-21)×(-2)×(-1)-3×4×3-15×1×(-5)=30-60-63+42-36+75 =-12.。
七年级数学上册《第一章 有理数的加减法》同步练习题及答案(人教版)
![七年级数学上册《第一章 有理数的加减法》同步练习题及答案(人教版)](https://img.taocdn.com/s3/m/3f0d0f762f3f5727a5e9856a561252d380eb2024.png)
七年级数学上册《第一章 有理数的加减法》同步练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:1.在﹣1,0,﹣2,1四个数中,最小的数是( )A .﹣1B .0C .﹣2D .12.下列算式中,与﹣1+9的结果相同的是( )A .1+9B .﹣(9﹣1)C .﹣(1+9)D .9﹣13.下列说法不正确的是( )A .绝对值相等的两个有理数,它们的差是0B .一个有理数减零所得的差是它本身C .互为相反数的两个有理数,它们的和是0D .零减去一个有理数所得的差是这个有理数的相反数4.下列各式中,计算结果为正的是( )A .(﹣7)+(+4)B .2.7+(﹣3.5)C .(﹣13)+25D .0+(﹣14) 5.一天早晨的气温是﹣2℃,中午上升了6℃,半夜又下降了8℃,则半夜的气温是( )A .﹣2℃B .﹣8℃C .0℃D .﹣4℃6.如图,有理数a 、b 在数轴上对应的点如图所示,则 a b - 的结果是( )A .-2B .-1C .0D .17.计算:()()()()1234562022-++-++-++-+=( )A .2022B .2022-C .1011-D .10118.在1,2,3,……,99,100这100个数中,任意加上“+”或“-”,相加后的结果一定是 ( )A .奇数B .偶数C .0D .不确定二、填空题:9.比较大小: 56-67- .(填“ > ”、“ = ”或“ < ”) 10.小王家的冰箱冷冻室现在的温度是 8C -︒ ,调高 2C ︒ 的温度是 C ︒ .11.已知m 是6的相反数,n 比m 小2,则 m n - 等于 . 12.李明的练习册上有这样一道题,计算 ()3m -+ ,其中“m ”是被墨水污染而看不到的一个数,他翻看了后边的答案得知该题的计算结果为6,那么“m ”表示的数应该是 .13.某车间生产一批圆柱形机器零件,从中抽出了6件进行检验,把标准直径的长记为0,比标准则第 个零件最符合标准.三、解答题:14.计算: (45)(92)35(8)++-++- .15.计算:(1)()()()5342---+----⎡⎤⎣⎦ ; (2)351131426483⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--+-+---+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦16.已知 320a b ++-= ,则 a b - 的相反数是多少?17.已知 4m = 3n = .(1)当 m n 、 同号时,求 m n - 的值;(2)当 m n 、 异号时,求 m n + 的值.18.某检修小组乘汽车从 A 地出发,在东西走向的马路上检修线路,如果规定向东行驶为正,一天中七个检修点的行驶记录如下(单位:km ):-4,+7,-9,+8,+6,-4,-3.(1)收工时汽车共行驶了多少千米?(2)收工时,汽车距 A 地多远?(3)在检修时,第几个检修点离 A 地最远,最远距离是多少?19.下表列出了国外几个城市与首都北京的时差(带正号的表示同一时刻比北京时间早的时数),如北京时间的上午10:00时,东京时间的10点已过去了1小时,现在已是10+1=11:00.(1)如果现在是北京时间下午3:00,那么现在的纽约时间是多少?(2)此时(北京时间9:00)小明想给远在巴黎的姑妈打电话,你认为合适吗?为什么?参考答案:1.C 2.D 3.A 4.C 5.D 6.A 7.C 8.B9.>10.6-11.212.-3或913.514.解: (45)(92)35(8)++-++-453592880100=+--=- 20=-15.(1)解: ()()()5342---+----⎡⎤⎣⎦=-5+3-4-2=-8;(2)解: 351131426483⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫--+-+---+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦=351131426483-++- = 36206691122424242424-++- = 362066911224-++- = 78- 16.解:∵320a b ++-=∴3020a b +=-=, ,解得 32a b =-=,∴325a b -=--=-∵5- 的相反数是5∴a b - 的相反数是5.17.(1)解:∵4m = , 3n = 且 m n 、 同号∴m=4,n=3或者m=-4,n=-3∴m-n=1或-1(2)解:∵4m = , 3n = 且 m n 、 异号∴m=4,n=-3或者m=-4,n=3∴m+n=1或-118.(1)解:|-4|+7+|-9|+8+6+|-4|+|-3|=4+7+9+8+6+4+3=41汽车行驶的路程是各数绝对值之和.共41千米(2)解:-4+7-9+8+6-4-3=1收工时,汽车离A地的距离就是各数的和的绝对值,是1千米(3)解:第2个:-4+7=3第3个:3-9=-6第4个:-6+8=2第5个:2+6=8第6个:8-4=4第7个:4-3=1第5个检修点离A地最远,最远距离是8千米19.(1)解:15−13=2如果现在是北京时间下午3:00,那么现在的纽约时间是凌晨2点(2)解:不合适。
人教版初中七年级数学上册第一章《有理数》经典习题(含答案解析)
![人教版初中七年级数学上册第一章《有理数》经典习题(含答案解析)](https://img.taocdn.com/s3/m/249b3443c77da26924c5b05c.png)
人教版初中七年级数学上册第一章《有理数》经典习题(含答案解析)一、选择题1.(0分)数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( )A .94分B .85分C .98分D .96分D 解析:D【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断.【详解】解:根据题意得:859=94,854=81,8511=96,857=78,850=85+-+--即五名学生的实际成绩分别为:94;81;96;78;85,则这五名同学的实际成绩最高的应是96分.故选D .【点睛】本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.2.(0分)已知n 为正整数,则()()2200111n -+-=( ) A .-2B .-1C .0D .2C 解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n 为正整数,∴2n 为偶数.∴(-1)2n +(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1. 3.(0分)2017年12月17日,第二架国产大型客机C919在上海浦东国际机场完成首次飞行.飞行时间两个小时,飞行的高度达到15000英尺.15000用科学记数法表示是( )A .0.15×105B .15×103C .1.5×104D .1.5×105C 解析:C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】15000用科学记数法表示是1.5×104.故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(0分)某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为()A.8个B.16个C.32个D.64个D解析:D【分析】每半小时分裂一次,一个变为2个,实际是21个.分裂第二次时,2个就变为了22个.那么经过3小时,就要分裂6次.根据有理数的乘方的定义可得.【详解】26=2×2×2×2×2×2=64.故选D.【点睛】本题考查了有理数的乘方在实际生活中的应用,应注意观察问题得到规律.5.(0分)计算-3-1的结果是()A.2 B.-2 C.4 D.-4D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.6.(0分)一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为()A.312⎛⎫⎪⎝⎭米B.512⎛⎫⎪⎝⎭米C.612⎛⎫⎪⎝⎭米D.1212⎛⎫⎪⎝⎭米C解析:C 【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米.【详解】∵1-12=12,∴第2次后剩下的绳子的长度为(12)2米;依此类推第六次后剩下的绳子的长度为(12)6米.故选C.【点睛】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.7.(0分)下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则ab=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a,b互为相反数,则ab=-1在a、b均为0的时候不成立,故本小题错误;③∵如果a=2,b=0,a>b,但是b没有倒数,∴a的倒数小于b的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x2-2x-33x3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.8.(0分)若1<x<2,则|2||1|||21x x xx x x---+--的值是()A.﹣3 B.﹣1 C.2 D.1D 解析:D在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.【详解】解:12x <<,20x ∴-<,10x ->,0x >,∴原式1111=-++=,故选:D .【点睛】 本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.9.(0分)据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元C 解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.(0分)已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >0A解析:A【分析】根据数轴判断出a 、b 的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b <﹣1<0,0<a <1,∴a+b <0,故选项A 符合题意,选项B 不合题意;a ﹣b >0,故选项C 不合题意;ab <0,故选项D 不合题意.故选:A .本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a、b的符号,熟知有理数的运算法则是解题关键.二、填空题11.(0分)若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积++++的最小值为__.【分析】先把abcde=,则它们的和a b c d e2000abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.12.(0分)绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.13.(0分)已知|a|=3,|b|=2,且ab<0,则a﹣b=_____.5或﹣5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab的值最后代入a﹣b中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b解析:5或﹣5先根据绝对值的定义,求出a 、b 的值,然后根据ab <0确定a 、b 的值,最后代入a ﹣b 中求值即可.【详解】解:∵|a|=3,|b|=2,∴a =±3,b =±2;∵ab <0,∴当a =3时b =﹣2;当a =﹣3时b =2,∴a ﹣b =3﹣(﹣2)=5或a ﹣b =﹣3﹣2=﹣5.故填5或﹣5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.14.(0分)填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-;0( 2.3)0÷-=,100()023⨯-=;故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.15.(0分)运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算.16.(0分)等边三角形ABC(三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A,B对应的数分别为0和1-,若ABC绕着顶点顺时针方向在数轴上翻转1次后,点C所对应的数为1,则再翻转3次后,点C所对应的数是________.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C在数轴上∴点C对应的数是故答案为:4【点睛】本题考查了数轴及数的解析:4【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C在数轴上,∴点C对应的数是1134+⨯=.故答案为:4.本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.17.(0分)数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2020厘米的线段AB,则线段AB盖住的整点个数是______.2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑重合时盖住的整点是线段的长度+1不重合时盖住的整点是线段的长度由此即可得出结论【详解】若线段的端点恰好与整点重合则1厘米长的线解析:2020或2021【分析】分线段AB的端点与整点重合和不重合两种情况考虑,重合时盖住的整点是线段的长度+1,不重合时盖住的整点是线段的长度,由此即可得出结论.【详解】若线段AB的端点恰好与整点重合,则1厘米长的线段盖住2个整点,若线段AB的端点+=,所以2020厘米不与整点重合,则1厘米长的线段盖住1个整点,因为202012021长的线段AB盖住2020或2021个整点.故答案为:2020或2021.【点睛】本题考查了数轴,解题的关键是找出长度为n(n为正整数)的线段盖住n或n+1个整点.本题属于基础题,难度不大,解决该题型题目时,分端点是否与整点重合两种情况来考虑是关键.18.(0分)如果点A表示+3,将A向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.19.(0分)点A,B表示数轴上互为相反数的两个数,且点A向左平移8个单位长度到达点B,则这两点所表示的数分别是____________和___________.-4【解析】试题解析:-4试题两点的距离为8,则点A 、B 距离原点的距离是4,∵点A ,B 互为相反数,A 在B 的右侧,∴A 、B 表示的数是4,-4.20.(0分)绝对值小于4.5的所有负整数的积为______.24【分析】找出绝对值小于45的所有负整数求出之积即可【详解】解:绝对值小于45的所有负整数为:-4-3-2-1∴积为:故答案为:24【点睛】此题考查了有理数的乘法以及绝对值熟练掌握运算法则是解本题解析:24【分析】找出绝对值小于4.5的所有负整数,求出之积即可.【详解】解:绝对值小于4.5的所有负整数为:-4,-3,-2,-1,∴积为:4(3)(2)(1)24-⨯-⨯-⨯-=,故答案为:24.【点睛】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.三、解答题21.(0分)计算:(1)4222(37)2(1)-+--⨯-; (2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭. 解析:(1)-2;(2)-19【分析】(1)先括号里,再计算乘方、乘法,最后相加减即可;(2)利用乘法的分配率进行计算.【详解】(1)4222(37)2(1)-+--⨯-=16162-+-=-2;(2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭=157(36)(36)(36)2912⨯--⨯-+⨯- =-18+20-21=-19【点睛】 考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.22.(0分)已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|= 0请回答问题:(1)请直接写出a、b、c的值:a=,b=,c=,(2)数轴上a,b,c所对应的点分别为A,B,C,则B,C两点间的距离为;(3)在(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动了t秒,①此时A表示的数为;此时B表示的数为;此时C表示的数为;②若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.解析:(1)-1;1;5;(2)4;(3)①-1-t;1+2t;5+5t;②BC-AB的值为2,不随着时间t的变化而改变.【分析】(1)先根据b是最小的正整数,求出b,再根据c2+|a+b|=0,即可求出a、c;(2)由(1)得B和C的值,通过数轴可得出B、C的距离;(3)①在(2)的条件下,通过运动速度和运动时间可表示出A、B、C;②先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b是最小的正整数,∴b=1.∵(c-5)2+|a+b|=0,∴a=-1,c=5;故答案为:-1;1;5;(2)由(1)知,b=1,c=5,b、c在数轴上所对应的点分别为B、C,B、C两点间的距离为4;(3)①点A以每秒1个单位长度的速度向左运动,运动了t秒,此时A表示的数为-1-t;点B以每秒2个单位长度向右运动,运动了t秒,此时B表示的数为1+2t;点C以5个单位长度的速度向右运动,运动了t秒,此时C表示的数为5+5t.②BC-AB的值不随着时间t的变化而改变,其值是2,理由如下:∵点A都以每秒1个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC=5+5t–(1+2t)=3t+4,AB=1+2t–(-1-t)=3t+2,∴BC-AB=(3t+4)-(3t+2)=2.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.23.(0分)如图,数轴上A,B两点之间的距离为30,有一根木棒MN,设MN的长度为x.MN数轴上移动,M始终在左,N在右.当点N移动到与点A,B中的一个重合时,点M所对应的数为9,当点N移动到线段AB的中点时,点M所对应的数是多少?解析:点M所对应的数为24或-6.【分析】设MN=x,然后分类计算即可:①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9.【详解】设MN=x,①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9+15=x+24,∴点M所对应的数为x+24-x=24;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9-15=x-6,∴点M所对应的数为x-6-x=-6;综上,点M所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.24.(0分)计算:(1)157(36)2612⎛⎫--⨯-⎪⎝⎭(2)2138(2)3⎛⎫⨯-+÷-⎪⎝⎭解析:(1)33;(2)1.【分析】(1)根据乘法分配律可以解答本题;(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)原式=157(36)(36)(36)2612⨯--⨯--⨯-= -18+30+21=33;(2)原式= -1+2=1.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.25.(0分)某农户家准备出售10袋大米,称得质量如下:(单位:千克)182,180,175,173,182,185,183,181,180,183(1)填空:以180千克作为基准数,可用正、负数表示这10袋大米的质量与180的差为 ;(2)试计算这10袋大米的总质量是多少千克?解析:(1)+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)1804千克【分析】(1)规定超出基准数为正数,则不足部分用负数表示,即可;(2)把第(1)题10个数相加,再加上180×10,即可.【详解】(1)以180千克为基准数,超过180千克的记作正数,低于180千克的记作负数,那么各袋大米的质量分别为:+2,0,−5,-7,+2,+5,+3,+1,0,+3,故答案是:+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)(+2+0−5-7+2+5+3+1+0+3)+ 180×10=1804(千克),答:这10袋大米的总质量是1804千克.【点睛】本题主要考查正负数的意义以及有理数的加减法的实际应用,熟练掌握有理数的加减法运算法则,是解题的关键.26.(0分)计算:(1)()2131753-⨯---+ (2)311131484886⎛⎫-+⨯- ⎪⎝⎭解析:(1)6;(2)58. 【分析】 (1)先计算乘方,再计算乘法,最后计算加减即可;(2)带分数化成假分数,利用乘法分配律去掉括号,再计算加减即可.【详解】(1)()2131753-⨯---+ 29753=-⨯++ 675=-++6=;(2)311131484886⎛⎫-+⨯- ⎪⎝⎭1591148484886=-+⨯-⨯ 3096888=-+- 30916888=-- 58=. 【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.27.(0分)计算:(1)231+-+;(2)()3202111024⎡⎤-⨯+-÷⎣⎦. 解析:(1)6;(2)12-【分析】 (1)先化简绝对值,再算加法即可求解;(2)先算乘方,再算括号里面的,最后算乘除即可.【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键.28.(0分)计算: (1)5721()()129336--÷- (2)22115()(3)(12)23-+÷-⨯---⨯ 解析:(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】(1)原式=572()(36)152824371293--⨯-=-++=. (2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.。
人教版七年级数学上册《第一章有理数》练习题-附有答案
![人教版七年级数学上册《第一章有理数》练习题-附有答案](https://img.taocdn.com/s3/m/6237e16f3069a45177232f60ddccda38376be1fc.png)
人教版七年级数学上册《第一章有理数》练习题-附有答案考点1【正负数和零】1.一种巧克力的质量标识为“23±0.25千克”则下列哪种巧克力的质量是合格的.()A.23.30千克B.22.70千克C.23.55千克D.22.80千克【答案】D解:∵23+0.25=23.2523-0.25=22.75∴巧克力的重量在23.25与22.75kg之间.∴符合条件的只有D.2.若足球质量与标准质量相比超出部分记作正数不足部分记作负数则在下面4个足球中质量最接近标准的是()A.B.C.D.【答案】A-<+<+<-解:0.70.8 2.1 3.5∴质量最接近标准的是A选项的足球3.我市某天最高气温是12℃最低气温是零下3℃那么当天的日温差是_________ ℃【答案】15.12−(−3)=12+3=15(℃)4.若某次数学考试标准成绩定为85分规定高于标准记为正两位学生的成绩分别记作:+9分和﹣3分则第一位学生的实际得分为______分.5.教师节当天出租车司机小王在东西向的街道上免费接送教师规定向东为正向西为负当天出租车的行程如下(单位:千米):+5 ﹣4 ﹣8 +10 +3 ﹣6 +7 ﹣11﹣﹣1)将最后一名老师送到目的地时小王距出发地多少千米?方位如何?﹣2)若汽车耗油量为0.2升/千米则当天耗油多少升?若汽油价格为5.70元/升则小王共花费了多少元钱?解℃℃1℃+5℃4℃8+10+3℃6+7℃11=℃4℃则距出发地西边4千米;℃2)汽车的总路程是:5+4+8+10+3+6+7+11=54千米则耗油是54×0.2=10.8升花费10.8×5.70=61.56元答:当天耗油10.8升小王共花费了61.56元.考点2【有理数分类】1.在数22715π0.40.30.1010010001... 3.1415中有理数有()A.3个B.4个C.5个D.6个【答案】C数22715π0.40.30.1010010001... 3.1415中有理数有227150.40.3 3.1415共计5个2.下列说法正确的有( )(1)整数就是正整数和负整数;(2)零是整数但不是自然数;(3)分数包括正分数、负分数;(4)正数和负数统称为有理数;(5)一个有理数它不是整数就是分数.A.1个B.2个C.3个D.4个【答案】B℃分数包括正分数、负分数正确;℃正数、负数和0 统称为有理数故错误;℃一个有理数它不是整数就是分数正确3.在3.142π15-00.12个数中是有理数的几个()A.2B.3C.4D.5【答案】C解:有理数为3.1415-00.12共4个4.若a是最小的自然数b是最大的负整数c是绝对值最小的有理数则a-b-c的值为()A.-1B.0C.2D.1【答案】D解:由题意得:a=0b=-1c=0∴a-b-c=0-(﹣1)-0=1.5.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有不是自然数C.正整数和负整数统称为整数D.整数和分数统称为有理数【答案】DA.非负有理数就是正有理数和零故A错误;B.零表示没有是自然数故B错误;C.整正数、零、负整数统称为整数故C错误;D.整数和分数统称有理数故D正确;考点3【数轴】1.在数轴上表示a﹣b两数的点如图所示则下列判断正确的是()A.a+b﹣0B.a+b﹣0C.a﹣|b|D.|a|﹣|b|【答案】B解℃℃b℃0℃a而且a℃|b|℃a+b℃0∴选项A不正确选项B正确;℃a℃|b|∴选项C不正确;℃|a|℃|b|∴选项D不正确.2.数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画出一条长2000厘米的线段AB盖住的整点的个数共有()个.A.1998或1999B.1999或2000C.2000或2001D.2001或2002【答案】C解:依题意得:①当线段AB起点在整点时覆盖2001个数;②当线段AB起点不在整点即在两个整点之间时覆盖2000个数.3.已知点A和点B在同一数轴上点A表示数﹣2又已知点B和点A相距5个单位长度则点B表示的数是()A.3B.﹣7C.3或﹣7D.3或7【答案】C分为两种情况:当B点在A点的左边时B点所表示的数是-2-5=−7;当B点在A点的右边时B点所表示的数是-2+5=3;4.a b ,是有理数 它们在数轴上的对应点的位置如图所示 把a a b b --,,,按照从小到大的顺序排列( )A .b a a b -<<-<B .a b a b -<-<<C .b a a b -<-<<D .b b a a -<<-<【答案】A观察数轴可知:b >0>a 且b 的绝对值大于a 的绝对值.在b 和-a 两个正数中 -a <b ;在a 和-b 两个负数中 绝对值大的反而小 则-b <a . 因此 -b <a <-a <b .5.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm) 刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x 则x 的值为( )A .4.2B .4.3C .4.4D .4.5【答案】C利用减法的意义 x -(-3.6)=8 x =4.4.所以选C.6.如图 数轴上四点O A B C 其中O 为原点 且2AC = OA OB = 若点C 表示的数为x 则点B 表示的数为( )A .()2x -+B .()2x --C .2x +D .2x -【答案】B解:∵AC=2 点C 表示的数为x∵OA OB =∴点B 表示的数为:-(x -2)7.点A 在数轴上距原点5个单位长度 将A 点先向左移动2个单位长度 再向右移动6个单位长度 此时A 点所表示的数是( ) A .-1 B .9C .-1或9D .1或9【答案】C解:∵点A 在数轴上距原点5个单位长度 ∴点A 表示的数是−5或5∵A 点先向左移动2个单位长度 再向右移动6个单位长度 ∴−5−2+6=−1或5−2+6=9 ∴此时点A 所表示的数是−1或9.考点4【相反数】1.若a 与1互为相反数 则a +3的值为( ) A .2 B .0C .﹣1D .1【答案】A∵a 与1互为相反数 ∴a =﹣1则a +3的值为:﹣1+3=2.2.下列各对数:()3+-与3- ()3++与+3 ()3--与()3+- ()3-+与()3+-()3-+与()3++ +3与3-中 互为相反数的有( )A .3对B .4对C .5对D .6对解:根据相反数的定义得-(-3)与+(-3)-(+3)与+(+3)+3与-3互为相反数所以有3对.3.如果a+b=0那么a b两个数一定()A.都等于0B.互为相反数C.一正一负D.a>b【答案】B由a+b=0则有=-a b所以a b两个数一定是互为相反数-的相反数是-2那么a是()4.7aA.5B.-3C.2D.1【答案】A解:∵7-a的相反数是-2∴7-a=2解得a=5.5.若a表示有理数则-a是()A.正数B.负数C.a的相反数D.a的倒数【答案】Ca表示有理数则a-表示a的相反数考点5【绝对值】1.下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有()A.0个B.1个C.2个D.3个【答案】B解:①∵互为相反数的两个数相加和为0移项后两边加上绝对值是相等的∴互为相反数的两个数绝对值相等故①正确;④∵|2|=|-2| 但2≠-2 ∴④错误2.如果一个有理数的绝对值是正数 那么这个数必定是( ) A .是正数 B .不是0C .是负数D .以上都不对【答案】B由于正数和负数的绝对值都是正数 而0的绝对值是0;所以若一个有理数的绝对值是正数 那么这个数必不为0.3.已知a>0 b<0 c<0且c >a >b 则下列结论错误的是( ) A .a+c<0 B .b -c>0C .c<-b<-aD .-b<a<-c【答案】C解:∵a>0 b<0 c<0且c >a >b在数轴上表示如下:则a+c<0 b -c>0 c<-a<-b -b<a<-c 故C 错误4.若a ab b=- 则下列结论正确的是( ) A .0a < 0b < B .0a > 0b >C .0ab >D .0ab ≤【答案】D解:a ab b=- ∴0ab≤ 即0ab ≤;A.a>0B.a≥0C.a<0D.a≤0【答案】D=-解:∵||a a∴a≤0.-表示的数是( )6.若x为有理数则x xA.正数B.非正数C.负数D.非负数【答案】D【解析】℃1)若x≥0时丨x丨-x=x-x=0℃℃2)若x℃0时丨x丨-x=-x-x=-2x℃0℃由(1℃℃2)可得丨x丨-x表示的数是非负数.考点6【有理数的加减法】1.已知|a|=7|b|=2且a<b求a+b的值.【答案】-5或-9解:∵|a|=7∴a=±7又∵|b|=2∴b=±2又∵a<b∴a=-7b=2或a=-7b=-2当a=-7b=2时a+b=-7+2=-5当a=-7b=-2时a+b=-7+(-2)=-9综上所述a+b的值为-5或-9.2.已知|a| = 3 |b| = 2 且ab < 0 求:a + b的值.解:℃|a|=3 |b|=2 ℃a=±3 b=±2; ℃ab <0 ℃ab 异号.℃当a=3时 b=-2 则a + b=3+(-2)=1; 当a=-3时 b=2 则a + b=-3+2=-1.3.已知5a = 2a b -=且a b a b -=- 求+a b 的值 【答案】8或-12 解:∵|a|=5 ∴a=±5∵2a b -=且a b a b -=- ∴0a b -> 2a b -= ∴2b a =- ∴当a=5 则b= 3 当a=-5 则b= -7 ∴a+b=8或-12;4.已知│a │=4且a<0 b 是绝对值最小的数 c 是最大的负整数 则a+b -c=____. 【答案】﹣3解:因为a =4且a <0 b 是绝对值最小的数 c 是最大的负整数所以a =﹣4 b =0 c =﹣1所以a +b -c =﹣4+0-(﹣1)=﹣4+1=﹣3.5.绝对值大于3且小于5.5的所有整数的和为______________ ;解:∵绝对值大于3而小于5.5的整数为:-4-545∴其和为:-4+(-5)+4+5=0故绝对值大于3且小于5.5的所有整数的和为0.考点7【有理数的乘除法】1.先阅读下面的材料再回答后面的问题:计算:10÷(12-13+16).解法一:原式=10÷12-10÷13+10÷16=10×2-10×3+10×6=50;解法二:原式=10÷(36-26+16)=10÷26=10×3=30;解法三:原式的倒数为(12-13+16)÷10=(12-13+16)×110=12×110-13×110+16×110=130故原式=30.(1)上面得到的结果不同肯定有错误的解法你认为解法是错误的。
七年级上册数学第一章《有理数》测试题(含答案)人教版
![七年级上册数学第一章《有理数》测试题(含答案)人教版](https://img.taocdn.com/s3/m/cdaad2010640be1e650e52ea551810a6f524c8fe.png)
第一章 有理数一、选择题(4分×10=40分) 1、2008的绝对值是( )A 、2008B 、-2008C 、±2008D 、200812、下列计算准确的是( )A 、-2+1=-3B 、-5-2=-3C 、-112-=D 、1)1(2-=-3、近几年安徽省教育事业加快发展,据2005年末统计的数据显示,仅普通初中在校生就约有334万人,334万人用科学记数法表示为( )A 、0.334×710人B 、33.4×510人C 、3.34×210人D 、3.34×610人 4、下列各对数互为相反数的是( )A 、-(-8)与+(+8)B 、-(+8)与+︱-8︱C 、-2222)与(- D 、-︱-8︱与+(-8)5、计算(-1)÷(-5)×51的结果是( )A 、-1B 、1C 、251D 、-256、下列说法中,准确的是( )A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )A 、800 mB 、200 mC 、2400 mD 、-200 m 8、已知︱x ︱=2,y 2=9,且x ·y<0,则x +y=( )A 、5B 、-1C 、-5或-1D 、±19、已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所表示的数有( )A 、1个B 、2个C 、3个D 、4个10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( )A 、(0.1×20)mmB 、(0.1×40)mmC 、(0.1×220)mmD 、(0.1×202)mm 二、填空题(5分×4=20)11、妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能表示什么12、一个正整数,加上-10,其和小于0,则这个正整数可能是 .(写出两个即可)13、某同学用计算器计算“2÷13”时,计算器上显示结果为0.153846153,将此结果保留三位有效数字为 .14、观察下列各数,按规律在横线上填上适当的数。
人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)
![人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)](https://img.taocdn.com/s3/m/e6ba07eb5a8102d277a22fb0.png)
能力提升 1.C 2.D
参考答案
1.2.2 数轴
能力提升 1.在数轴上,原点及原点右边的点表示的数是( )
A.正数
B.整数
C.非负数
D.非正数
2.数轴上的点 A 与原点距离 6 个单位长度,则点 A 表示的数为( )
A.6 或-6
B.6
C.-6
D.3 或-3
3.在数轴上,表示-17 的点与表示-10 的点之间的距离是( )
A.27 个单位长度 B.-27 个单位长度
参考答案
能力提升 1.C 在数轴上,原点及原点右边的点表示的数是 0 和正数. 2.A 3.C 4.D 5.4 -6 6.2 7.7 符合条件的点有-3,3,-2,2,-1,1,0,共 7 个. 8.-5 或 1 画出数轴,找出-2 表示的点,与该点距离 3 个单位长度的点有两个,分别表示 -5,1. 9.分析:从图中可见墨迹盖住两段,一段是在-8~-3 之间,另一段在 4~9 之间. 解:-8~-3 之间的整数有-4,-5,-6,-7;4~9 之间的整数有 5,6,7,8.
D.Q 站点与 R 站点之间
5. 在 数 轴 上 , 表 示 数 -6,2.1,- ,0,-4 ,3,-3 的 点 中 , 在 原 点 左 边 的 点 有
个,
表示的点与原点的距离最远.
7
6.点 M 表示的有理数是-1,点 M 在数轴上向右移动 3 个单位长度后到达点 N,则点 N 表示的有
理数是 .
5 -0.8 0 -2 -3
整数
分数
负整数
人教版初中七年级上册数学第一章《有理数》同步练习含答案
![人教版初中七年级上册数学第一章《有理数》同步练习含答案](https://img.taocdn.com/s3/m/4dde9a635bcfa1c7aa00b52acfc789eb172d9efc.png)
第一章有理数一、选择题1.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣ B.0 C. D.﹣12.-2的相反数是()A.2 B.-2 C.12D.123.(4分)的相反数是()A.12015B.12015- C. D.﹣4.(3分)12-的相反数是()A.2 B.﹣2 C.12D.12-5.(3分)6的绝对值是()A.6 B.﹣6 C.16D.16-6.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是17.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是()A.﹣10℃ B.10℃ C.14℃ D.﹣14℃8.(4分)下列说法错误的是()A.﹣2的相反数是2B.3的倒数是1 3C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是09.(3分)如图,数轴上的A、B、C、D四点中,与数3-表示的点最接近的是()A .点AB .点BC .点CD .点D10.(3分)(•娄底)若|a ﹣1|=a ﹣1,则a 的取值范围是( ).A .a ≥1B .a ≤1C .a <1D .a >1二、填空题11.有一种原子的直径约为0.00000053米,用科学记数法表示为 .12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是 ,第n 个数是 (n 为正整数).13.-3的倒数是 ,-3的绝对值是 .14.数轴上到原点的距离等于4的数是 .15.|a|=4,b 2=4,且|a+b|=a+b , 那么a-b 的值是 .16.在数轴上点P 到原点的距离为5,点P 表示的数 .17.绝对值不大于2的所有的整数是 .18..把下列各数分别填在相应的集合内(本小题每空2分,满分6分)-11、 5%、 -2.3、61 、3.1415926、0、 34 、 39 、、-9 分数集: 。
负数集: 。
有理数集: 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础检测
七年级数学新人教版上册第一章《有理数》同步练习及答案 1.1 正数和负数
1. −1,0,2.5,+ 4 ,−1.732,−3.14,106,− 6 ,−1 2 中,正数有
3
75
。
,负数有
2.如果水位 升高 5m 时水位变化记作+5m,那么水位 下降 3m 时水位变化记作 m,水位不升 不降时水位变化记作 m。
8.某 种药品的说明书上标明保存温度是(20±2)℃,由此可知在 ℃至 ℃范围内保存 才合 适。
9.如果把一个物体向右移动 5m 记作移动-5m,那么这个物体又移动+5m 是什么意思?这时物 体离它两次移动 前的位置多远?
同步练习答案
1.1 正数和负数
基 础检测:[
1. 2.5, 4 ,106; −1,−1.732,−3.14,− 6 ,−1 2 2.-3, 0. 3.相反
(2) (−4 2) + (−3 1) + 6 1 + (−2 1 )
3
32
4
拓展提高
7 / 19
七年级数学新人教版上册第一章《有理数》
4.(1)绝对值小于 4 的所有整数的和是__ ______; ( 2)绝对值大于 2 且小于 5 的 所有负整数的和是________。
5.若 a = 3, b = 2 ,则 a + b = ________。 6.已知 a = 1, b = 2, c = 3, 且 a>b > c,求 a+b+c 的值。 7.若 1<a<3,求 1 − a + 3 − a 的值。
表示 a 的点在原点处。
基础检测: 1.-8 的绝对值是
1.2.4 绝对值
,记做
。
2.绝对值等于 5 的数有
。
3.若 ︱a︱= a , 则 a
。
4.
的绝对值是 2004,0 的绝对值是
。
5 一个数的绝对值是指在
上表示这个数的点
到
的距离。
6. 如果 x < y < 0, 那么︱x ︱
︱y︱。
7.︱x - 1 ︱ =3 ,则 x =
17
2
2
8、(1)有,如-0.25;(2)有。-2;-1,0,1;(3)没有,没有;( 4)-104,-103,-103.5.
1.2.2 数轴 基础检测
1、 画出 数轴并表示出下列有理数:1.5,−2,2,−2.5, 9 ,− 2 ,0. 23 [
2、 在数轴上表示-4 的点位于原点的
是
个单位长度。
A、正数 和负数互为相反数
B、任何一个数的相反数都与它本身不相同
C、任何一个数都有它的相反数 D、数轴上原点两旁的两个 点表示的数互为相反数
拓展提高:
5、-(- 3)的相反数是 。
6、已知数轴上 A、 B 表示 的数互为相反数,并且两点间的距离是 6, 点 A 在点 B 的左边,
则点 A、B 表示的数分别是 。
边,与原点的距离
3、 比较大小,在横线上填入“>” 、“< ”或“=” 。
1 0;0 -1;-1 -2;-5 -3;-2.5 2.5.
拓展提高
4.数轴上与原点距离是 5 的点有 个,表示的数 是 。
5. 已 知 x 是 整 数 , 并 且 -3 < x < 4 , 那 么 在 数 轴 上 表 示 x 的 所 有 可 能 的 数 值 有
C、正有理数、负有理 数统称为有理数 D 、以上都不对
5、-a 一定是(
)
A、正数 B、负数 C、正数或负数 D、正数或零或负数
6、下列说法中,错误的有( )
① − 2 4 是负分数;②1.5 不是整数;③非负有理数不包括 0;④整数和分数统称为有理数; 7
⑤0 是最小的有理数;⑥-1 是最小的负整数。
1、-(+5)表示 的相反数,即-(+5)= ;
-(-5)表示 的相反数,即-(-5)= 。x k b 1 . c o m
5
2、-2 的相反数是 ; 的相反数是 ; 0 的相 反数是 。
7
3、化简下列各数:
-(-68)=
-(+0.75)=
3
-(- )=
5
-(+3.8)=
+(-3)=
+(+6)=
4、下列说 法中正确的是 ( )
1.2.3 相反数
基础检测
1、5,-5,-5,5;2、2, − 5 ,0;3、68,-0.75, 3 ,-3.8,-3,6;4、C
7
5
拓展提高
5、-3 6、-3,3 7 、-6 8、≥ 9、1 或 5
10、A。11、 a=-a 表示有理数 a 的相反数是它本身,那么这样的有理数只有 0,所以 a=0,
标准?
代号
A
B
C
D
E
超标情况
0.01
-0.02
-0.01
0.04
-0.03
1.2.4 绝对值 基础检测 1. 8, ︱-8︱ 2. ±5 3. a ≥ 0 4. ±2004 5.数轴上,原点 6.> 7.4 或-2 8. 1 9.<,> 10. 0, ±1, ±2, ±3 11. ±6 12.±1, ±5 13.3 14.0, x=-1 15.C 16.A 17. B 拓展提高 18.1 或-3 2.3.3L,正西方向 上, 2 千米 3 .A 球 C 球
1 / 19
七年级数学新人教版上册第一章《有理数》
1.2.1 有理数测试
基础检测 1、_____、______和______统称为整数;_____和_____统称为分数;_ _____、______、______、 ______和______统称为有理数; ______和______统称为非负数;______和______统称为
3
75
4.解:2010 年我国全年平均降水量比上年的增长量记作-24 ㎜
2009 年我国全年平均降水量比上年的增长量记作+8 ㎜
2008 年我国全年平均降水量比上年的增长量记作-20 ㎜
拓展提高 :
5.B 6 .C 7.-32m ,80 8.18 22℃
9. +5m 表示向左移动 5 米,这时物体离它两次前的位置有 0 米,即它回到原处。
正整数、零、负整数、正分数、负分数;
正有理数、 零;负有理数、零;负整数、零;正整数、零;有理数;无理数。
2、A. 3、D.
拓展提高
4、B. 5、D 6、C
7、0,10;-7,0,10, − 4 ; 3.5, 13 ,0.03 ; − 7,−3.1415,−3 1 ,− 4 ;
2
17
22
− 7,3.5,−3.1415,0, 13 ,0.03,−3 1 ,10,−0.23,− 4 。
4 / 19
七年级数学新人教版上册第一章《有理数》
①任何数都不等 于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数 的 点到 原点的距离相等;④若有理数 a,b 互 为相反数,那么 a+b=0;⑤若有理数 a,b 互为相 反数,则它们一定异号。 A 、2 个 B、3 个 C、4 个 D、5 个 11、如果 a=-a,那么表示 a 的点在数轴上的什么位置?
7、已知 a 与 b 互为相反数,b 与 c 互为相反数,且 c=-6,则 a= 。
8、一个数 a 的相反数是非负数,那么这个数 a 与 0 的大小关系是
a 0.
9、数轴上 A 点表示-3,B、C 两点表示的数互为相反数,且点 B 到点 A 的距离是 2,则点 C
表示的数应该是 。
10、下列结论正确的有( )
C.零既是正数也是负数 D.不是正数的数一定是负数,不是负数的数一定是正数
6.向东行进-30 米表示的意义是( )
A.向东行进 30 米
B.向东行进-30 米
C.向西行进 30 米
D.向西行进-30 米
7.甲、乙两人同时从 A 地出发,如果向南走 48m,记作+48m,则乙向北走 32m,记 为 这 时甲乙两人相距 m.
3.在同一个问题中,分别用正数与负数表示的量具有 的意义。
4.2010 年我国全年平均降水量比上年减少 24 ㎜.2009 年比上年增长 8 ㎜.2008 年比上年减 少 20 ㎜。用正数和负数表示这三年我国全年平均降水量比上 年的增长量。
拓展提高
5.下列说法正确的是( )
A.零是正数不是负数 B.零既不是正数也不是负数
D 2[
拓展提高:
18.如果 a , b 互为相反数,c, d 互为倒数,m 的绝对值为 2,求式子
a+b
+ m -cd 的值。
a+b+c
19.某司机在东西路上开车接送乘客,他早晨从 A 地出发,(去向东的方向正方向),到晚 上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞)
+10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14 (1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?
1.3.1 有理数的加法 基础检测 1、 计算: (1)15+(-22) (2)(-13)+(-8) (3)(-0.9)+1.51
2、计 算: (1)23+(-17)+6+(-22)
(2)(- 2)+3+1+(-3)+2+(-4)
3、计算:
(1) (− 4 ) + (− 4 ) + 4 + (− 13) 13 17 13 17
非正数;______和______统称为非正整数;______和______统称为非负整数.
2、下列不是正有理数的是( )
7
A、-3.14 B、0 C、