2019年高考数学总复习3.3解三角形解答题习题讲义文

合集下载

高中数学复习讲义

高中数学复习讲义

高中数学复习讲义一、代数1.1 一元一次方程1.2 一元二次方程1.3 平面直角坐标系1.4 解析几何与向量1.5 指数与对数1.6 三角函数与三角恒等变换1.7 数列与数学归纳法二、几何2.1 平面与立体几何基本概念2.2 直线与角2.3 三角形与三角形的性质2.4 四边形与四边形的性质2.5 圆与圆的性质2.6 空间几何与立体几何三、概率与统计3.1 随机事件与概率的计算3.2 组合与排列3.3 抽样与统计四、数学思想方法4.1 推理与证明4.2 逻辑与谬误4.3 数学建模与解题策略五、应用题本讲义将针对高中数学涵盖的主要内容进行复习总结,旨在帮助大家全面复习数学知识,掌握解题方法和技巧,为高考做好充分准备。

一、代数1.1 一元一次方程一元一次方程是数学中最基础的方程形式之一,解一元一次方程需要掌握方程的基本性质和求解方法。

我们将重点讲解常见的一元一次方程类型,并提供解题思路和方法。

掌握一元一次方程的求解技巧对于解决实际问题具有重要意义。

1.2 一元二次方程一元二次方程在高中数学中起着重要的作用,解一元二次方程需要掌握配方法、因式分解法以及求根公式等知识点。

我们将介绍一元二次方程的基本概念和解法,并通过大量例题帮助大家提高解题能力。

1.3 平面直角坐标系平面直角坐标系是研究平面几何和解析几何的基础,了解坐标系的性质和坐标变换的规律对于解决几何问题至关重要。

我们将详细介绍直角坐标系的相关概念和性质,并结合实例进行讲解,帮助大家掌握平面直角坐标系的应用。

1.4 解析几何与向量解析几何是将代数与几何相结合的重要数学分支,研究空间中点、直线、平面等几何对象的解析表达和性质。

向量是解析几何中的重要工具,学习向量的表示方法和运算规律有助于解决几何问题。

我们将讲解解析几何基本概念和向量的数学性质,并通过练习题提高大家的解题能力。

1.5 指数与对数指数和对数是高中数学中重要的数学工具和运算方法,涉及到数学表达式的简化、方程的求解等。

2019年高考数学一轮复习 第3章 三角函数、解三角形 第2讲 同角三角函数的基本关系与诱导公式增分练

2019年高考数学一轮复习 第3章 三角函数、解三角形 第2讲 同角三角函数的基本关系与诱导公式增分练

2019年高考数学一轮复习 第3章 三角函数、解三角形 第2讲 同角三角函数的基本关系与诱导公式增分练1.[xx·洛阳模拟]下列各数中与sinxx°的值最接近的是( ) A.12 B.32 C .-12D .-32答案 C解析 xx°=5×360°+180°+39°, ∴sinxx°=-sin39°和-sin30°接近.选C.2.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3C.π6D.π3 答案 D解析 ∵sin(π+θ)=-3cos(2π-θ),∴-sin θ=-3cos θ,∴tan θ= 3.∵|θ|<π2,∴θ=π3.3.[xx·华师附中月考]已知tan(α-π)=34,且α∈⎝ ⎛⎭⎪⎫π2,3π2,则sin ⎝ ⎛⎭⎪⎫α+π2=( )A.45 B .-45C.35 D .-35答案 B解析 tan(α-π)=34⇒tan α=34.又因为α∈⎝ ⎛⎭⎪⎫π2,3π2,所以α为第三象限的角,所以sin ⎝ ⎛⎭⎪⎫α+π2=cos α=-45. 4.已知f (α)=π-απ-α-π-αα,则f ⎝⎛⎭⎪⎫-31π3的值为( ) A.12 B .-13C .-12D.13答案 C解析 ∵f (α)=sin α·cos α-cos αtan α=-cos α,∴f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝⎛⎭⎪⎫10π+π3=-cos π3=-12. 5.已知sin ⎝ ⎛⎭⎪⎫α+π12=13,则cos ⎝ ⎛⎭⎪⎫α+7π12的值为( )A.13 B .-13C .-223D.223答案 B解析 cos ⎝ ⎛⎭⎪⎫α+7π12=cos ⎝ ⎛⎭⎪⎫π2+α+π12=-sin ⎝ ⎛⎭⎪⎫α+π12=-13.选B. 6.已知tan x =2,则sin 2x +1的值为( ) A .0 B.95 C.43 D.53答案 B解析 sin 2x +1=2sin 2x +cos 2x sin 2x +cos 2x =2tan 2x +1tan 2x +1=95.故选B. 7.[xx·福建泉州模拟]已知1+sin αcos α=-12,则cos αsin α-1的值是( )A.12 B .-12C .2D .-2答案 A解析 因为1-sin 2α=cos 2α,cos α≠0,1-sin α≠0,所以(1+sin α)(1-sin α)=cos αcos α,所以1+sin αcos α=cos α1-sin α,所以cos α1-sin α=-12,即cos αsin α-1=12.故选A.8.已知角α的终边上一点P (3a,4a )(a <0),则cos ()540°-α的值是________.答案 35解析 c os(540°-α)=cos(180°-α)=-cos α.因为a <0,所以r =-5a ,所以cos α=-35,所以cos(540°-α)=-cos α=35.9.[xx·北京东城模拟]已知sin θ+cos θ=713,θ∈(0,π),则tan θ=________.答案 -125解析 解方程组⎩⎪⎨⎪⎧sin θ+cos θ=713,sin 2θ+cos 2θ=1,得⎩⎪⎨⎪⎧sin θ=1213,cos θ=-513或⎩⎪⎨⎪⎧sin θ=-513,cos θ=1213(舍).故tan θ=-125.10.[xx·淮北模拟]sin 4π3·cos 5π6·tan ⎝ ⎛⎭⎪⎫-4π3的值是________. 答案 -334解析 原式=sin ⎝ ⎛⎭⎪⎫π+π3·cos ⎝⎛⎭⎪⎫π-π6·tan ( -π-π3 )= ⎝⎛⎭⎪⎫-sin π3·⎝ ⎛⎭⎪⎫-cos π6·⎝ ⎛⎭⎪⎫-tan π3=⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-32×(-3)=-334. 1.[xx·湖北荆州联考]若A ,B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( )A .第一象限B .第二象限C .第三象限D .第四象限答案 B解析 ∵△ABC 是锐角三角形,则A +B >π2,∴A >π2-B >0,B >π2-A >0,∴sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B ,sin B >sin ⎝ ⎛⎭⎪⎫π2-A =cos A ,∴cos B -sin A <0,sin B -cos A >0, ∴点P 在第二象限.选B.2.[xx·新乡模拟]若θ∈⎣⎢⎡⎦⎥⎤π4,π2,sin θcos θ=3716,则sin θ=( )A.35 B.45 C.74D.34答案 D解析 ∵sin θcos θ=3716,∴(sin θ+cos θ)2=1+2sin θcos θ=8+378,(sin θ-cos θ)2=1-2sin θcos θ=8-378,∵θ∈⎣⎢⎡⎦⎥⎤π4,π2,∴sin θ+cos θ=3+74 ①,sin θ-cos θ=3-74 ②,联立①②得,sin θ=34.3.已知cos(75°+α)=513,α是第三象限角,则sin(195°-α)+cos(α-15°)的值为________.答案 -1713解析 因为cos(75°+α)=513>0,α是第三象限角,所以75°+α是第四象限角, sin(75°+α)=-1-cos2+α=-1213.所以sin(195°-α)+cos(α-15°) =sin[180°+(15°-α)]+cos(15°-α) =-sin(15°-α)+cos(15°-α)=-sin[90°-(75°+α)]+cos[90°-(75°+α)] =-cos(75°+α)+sin(75°+α) =-513-1213=-1713.4.求值:sin(-1200°)·cos1290°+cos(-1020°)·sin(-1050°)+tan945°. 解 原式=-sin1200°·cos1290°+cos1020°·(-sin1050°)+tan 945° =-sin120°·cos210°+cos300°·(-sin330°)+tan225° =(-sin60°)·(-cos30°)+cos60°·sin30°+tan45°=32×32+12×12+1=2. 5.[xx·南京检测]已知f (α)=π-απ-α⎝⎛⎭⎪⎫-α+3π2cos ⎝ ⎛⎭⎪⎫π2-α-π-α.(1)化简f (α);(2)若α是第三象限角,且cos ⎝⎛⎭⎪⎫α-3π2=15,求f (α)的值. 解 (1)f (α)=π-απ-α⎝⎛⎭⎪⎫-α+3π2cos ⎝ ⎛⎭⎪⎫π2-α-π-α=sin αcos α-sin αsin αsin α=-cos α.(2)因为α是第三象限角,且cos ⎝⎛⎭⎪⎫α-3π2=-sin α=15,sin α=-15.所以cos α=-1-sin 2α=-1-⎝ ⎛⎭⎪⎫-152=-265.所以f (α)=-cos α=265.2019年高考数学一轮复习第一章集合与常用逻辑用语 1.3 简单的逻辑联结词、全称量词与存在量词讲义分析解读江苏高考近五年没有考查本部分知识,在复习时主要要理解逻辑联结词“或”“且”“非”的含义,会写含有全称量词与存在量词的命题的否定.五年高考考点一简单的逻辑联结词(xx湖南改编,5,5分)已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是(填序号).答案②③考点二全称量词与存在量词1.(xx课标Ⅰ改编,3,5分)设命题p:∃n∈N,n2>2n,则¬p为.答案∀n∈N,n2≤2n2.(xx山东,12,5分)若“∀x∈,tan x≤m”是真命题,则实数m的最小值为.答案 13.(xx重庆理改编,2,5分)命题“对任意x∈R,都有x2≥0”的否定为.答案存在x0∈R,使得<04.(xx四川理改编,4,5分)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:∀x∈A,2x∈B,则¬p 为.答案∃x∈A,2x∉B三年模拟A组xx模拟·基础题组考点一简单的逻辑联结词1.(苏教选2—1,一,2,变式)若命题p:0是偶数,命题q:2是3的约数,则下列命题中为真的是.①p且q;②p或q;③ ;④p且q.答案②2.(苏教选2—1,一,2,变式)若p、q是两个命题,且“p或q”的否定是真命题,则p、q的真假性是. 答案p假q假3.(苏教选2—1,一,2,变式)对于命题p、q,若p且q为真命题,则下列四个命题:①p或q是真命题;②p且q是真命题;③p且q是假命题;④p或q是假命题.其中真命题是.答案①③考点二全称量词与存在量词4.(xx江苏南通中学测试)若命题“存在x∈R,ax2+4x+a≤0”为假命题,则实数a的取值范围是.答案(2,+∞)5.(xx江苏南京溧水中学质检,2)命题“∀x∈R,x2+2x+5>0”的否定是.答案∃x0∈R,+2x0+5≤06.(xx江苏苏州期中,2)若命题p:∃x∈R,使x2+ax+1<0,则p: .答案∀x∈R,x2+ax+1≥0B组xx模拟·提升题组(满分:30分时间:15分钟)一、填空题(每小题5分,共15分)1.(xx江苏南京师大附中期初调研,8)已知命题p:∃x∈R,x2+2x+a≤0是真命题,则实数a的取值范围是.答案(-∞,1]2.(xx江苏前黄中学第二次学情调研,8)已知下列四个命题,其中真命题的序号是(把所有真命题的序号都填上).(1)命题“∃x∈R,x2+x+1>0”的否定是“∀x∈R,x2+x+1<0”;(2)命题“在△ABC中,若A>B,则sin A>sin B”的逆命题为真命题;(3)“f '(x0)=0”是“函数f(x)在x=x0处取得极值”的充分不必要条件;(4)直线y=x+b不能作为函数f(x)=图象的切线.答案(2)(4)3.(xx江苏泰州一模,5)若命题“存在x∈R,ax2+4x+a≤0”为假命题,则实数a的取值范围是.答案(2,+∞)二、解答题(共15分)4.(xx江苏盐城期中,15)设p:实数x满足x2-4ax+3a2<0,其中a>0;q:实数x满足<0.(1)若a=1,且p∨q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.解析(1)由x2-4ax+3a2<0,得(x-3a)(x-a)<0,因为a>0,所以a<x<3a,当a=1时,1<x<3,即p为真时,实数x的取值范围是1<x<3.<0等价于(x-2)(x-3)<0,解得2<x<3,即q为真时,实数x的取值范围是2<x<3.若p∨q为真,则实数x的取值范围是1<x<3.(2)p是q的必要不充分条件等价于q⇒p且p⇒/ q,则有或所以实数a的取值范围是1≤a≤2.C组xx模拟·方法题组方法1 含有逻辑联结词的命题的真假判断1.若命题p:不等式4x+6>0的解集为,命题q:关于x的不等式(x-4)(x-6)<0的解集为{x|4<x<6},则“p且q”“p 或q”“ ”形式的命题中的真命题是.答案p或q,p且q2.分别指出下列各组命题构成的“p∧q”“p∨q”“ ”形式的命题的真假.(1)p:6<6,q:6=6;(2)p:梯形的对角线相等,q:梯形的对角线互相平分;(3)p:函数y=x2+x+2的图象与x轴没有公共点,q:不等式x2+x+2<0无解;(4)p:函数y=cos x是周期函数,q:函数y=cos x是奇函数.解析(1)∵p为假命题,q为真命题,∴p∧q为假命题,p∨q为真命题,p为真命题.(2)∵p为假命题,q为假命题,∴p∧q为假命题,p∨q为假命题,p为真命题.(3)∵p为真命题,q为真命题,∴p∧q为真命题,p∨q为真命题,p为假命题.(4)∵p为真命题,q为假命题,∴p∧q为假命题,p∨q为真命题,p为假命题.方法2 全称(存在性)命题真假的判定3.下列命题中的真命题的个数是.①∃x∈R,使得sin x+cos x=;②∃x∈(-∞,0),2x<3x;③∀x∈(0,π),sin x>cos x.答案04.已知命题p:∃x∈R,使tan x=1,命题q:∀x∈R,x2>0.下面结论正确的是.①命题“p∧q”是真命题;②命题“p∧ ”是假命题;③命题“ ∨q”是真命题;④命题“ ∧ ”是假命题.答案④方法3 全称(存在性)命题的否定5.(xx江苏姜堰中学高三期中)命题“∀x∈,sin x>0”的否定是.答案∃x∈,sin x≤06.命题“任意x∈R,|x-2|+|x-4|>3”的否定是.答案存在x∈R,使得|x-2|+|x-4|≤37.判断下列命题是全称命题还是存在性命题,并写出它们的否定:(1)p:对任意的x∈R,x2+x+1=0都成立;(2)p:∃x∈R,x2+2x+5>0.解析(1)由于命题中含有全称量词“任意的”,因而是全称命题;又由于“任意的”的否定为“存在一个”,因此,p:存在一个x∈R,使x2+x+1≠0成立.(2)由于“∃x∈R”表示存在一个实数x,即命题中含有存在量词“存在一个”,因而是存在性命题;又由于“存在一个”的否定为“任意一个”,因此,p:∀x∈R,x2+2x+5≤0.方法4 与逻辑联结词、全称(存在性)命题有关的参数问题8.(xx江苏盐城高三(上)期中)命题“∃x∈R,使x2-ax+1<0”是真命题,则a的取值范围是.答案(-∞,-2)∪(2,+∞)9.已知p:函数y=x2+mx+1在(-1,+∞)上单调递增,q:4x2+4(m-2)x+1>0恒成立.若p或q为真,p且q为假,求m的取值范围.解析若函数y=x2+mx+1在(-1,+∞)上单调递增,则-≤-1,∴m≥2,即p:m≥2;若4x2+4(m-2)x+1>0恒成立,则Δ=16(m-2)2-16<0,解得1<m<3,即q:1<m<3.因为p或q为真,p且q为假,所以p、q一真一假,当p真q假时,解得m≥3.当p假q真时,解得1<m<2.综上可知,m的取值范围是{m|m≥3或1<m<2}.。

2022届高考数学一轮复习第三章三角函数解三角形3.3和差倍角的正弦余弦正切公式及恒等变换学案理新人

2022届高考数学一轮复习第三章三角函数解三角形3.3和差倍角的正弦余弦正切公式及恒等变换学案理新人

第三节 和、差、倍角的正弦、余弦、正切公式及恒等变换1.两角和与差的正弦、余弦、正切公式(1)S (α+β):sin (α+β)=sin_αcos_β+cos_αsin_β. (2)S (α-β):sin (α-β)=sin_αcos_β-cos_αsin_β. (3)C (α+β):cos (α+β)=cos_αcos_β-sin_αsin_β. (4)C (α-β):cos (α-β)=cos_αcos_β+sin_αsin_β. (5)T (α+β):tan (α+β)=tan α+tan β1-tan αtan β.(6)T (α-β):tan (α-β)=tan α-tan β1+tan αtan β.2.倍角公式(1)S 2α:sin 2α=2sin_αcos_α. (2)C 2α:cos 2α=cos 2α-sin 2α =2cos 2α-1 =1-2sin 2α.(3)T 2α:tan2α=2tan α1-tan 2α.1.和、差、倍角公式的转化2.公式的重要变形(1)降幂公式:cos 2α=1+cos2α2,sin 2α=1-cos2α2.(2)半角公式(不要求记忆):①sin α2=±1-cos α2. ②cos α2=±1+cos α2. ③tan α2=±1-cos α1+cos α=1-cos αsin α=sin α1+cos α⎝⎛⎭⎫根号前面的正负号由角α2所在象限确定. (3)升幂公式:1+cos 2α=2cos 2α,1-cos2α=2sin 2α. (4)公式变形:tan α±tan β=tan (α±β)(1∓tan αtan β). (5)辅助角公式:a sinx +b cosx =a 2+b 2sin(x+φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.1.(基础知识:逆用公式)化简cos 15°cos 45°-cos 75°sin 45°的值为( ) A .12B .32C .-12D .-32答案:A2.(基本方法:构造和角公式)已知sin ⎝⎛⎭⎫α-π3=1517,α∈⎝⎛⎭⎫π2,56π,则sin α的值为( )A .817B .153+834C .15-8334D .15+8334答案:D3.(基础知识:半角公式)已知cos θ=-15,5π2<θ<3π,那么sin θ2=( )A .105 B .-105 C .155D .-155答案:D4.(基本能力:正切倍角公式)若α是第二象限角,且sin(π-α)=35,则tan 2α=________.答案:-2475.(基本应用:辅助角公式)f (x )=sin (x +3π)-3cos x 的最小值为________. 答案:-10题型一 两角和、差及倍角公式的直接应用[典例剖析]类型 1 给值(角)求值 [例1] (1)化简 2+cos 2-sin 21的结果是( )A .-cos1B .cos 1C .3cos 1D .-3cos 1 解析:原式=1+cos 2+1-sin 21=2cos 21+cos 21=3cos 21=3cos1. 答案:C(2)若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫α+π4=13,sin ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2=( ) A .33 B .-33 C .63D .-69解析:因为0<α<π2,所以π4<α+π4<3π4.又cos ⎝ ⎛⎭⎪⎫α+π4=13,所以sin ⎝ ⎛⎭⎪⎫α+π4=1-cos 2⎝ ⎛⎭⎪⎫α+π4=1-19=223.因为-π2<β<0,所以π4<π4-β2<π2.又sin ⎝ ⎛⎭⎪⎫π4-β2=33,所以cos ⎝ ⎛⎭⎪⎫π4-β2=1-sin 2⎝ ⎛⎭⎪⎫π4-β2=1-13=63, 所以cos ⎝⎛⎭⎫α+β2=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π4-⎝ ⎛⎭⎪⎫π4-β2=cos ⎝ ⎛⎭⎪⎫α+π4cos ⎝ ⎛⎭⎪⎫π4-β2+sin ⎝ ⎛⎭⎪⎫α+π4sin ⎝ ⎛⎭⎪⎫π4-β2=13×63+223×33=63. 答案:C类型 2 给值求角[例2] (1)(2021·某某六市联考)已知cos α=17,cos (α-β)=1314.若0<β<α<π2,则β=________.解析:由cos α=17,0<α<π2,得sin α=1-cos 2α=1-⎝⎛⎭⎫172=437,又0<β<α<π2,∴0<α-β<π2,∴sin (α-β)=1-cos 2(α-β)=1-⎝⎛⎭⎫13142=3314.由β=α-(α-β)得cos β=cos [α-(α-β)] =cos αcos (α-β)+sin αsin (α-β) =17×1314+437×3314=12, ∵β∈⎝ ⎛⎭⎪⎫0,π2,∴β=π3.答案:π3(2)已知α,β∈(0,π),且tan (α-β)=12,tan β=-17,则2α-β的值为________.解析:∵tan α=tan [(α-β)+β]=tan (α-β)+tan β1-tan (α-β)tan β=12-171+12×17=13>0,∵α∈(0,π),∴0<α<π2.又∵tan 2α=2tan α1-tan 2α=2×131-⎝⎛⎭⎫132=34>0,∴0<2α<π2,∴tan(2α-β)=1. ∵tan β=-17<0,∴π2<β<π, ∴-π<2α-β<0, ∴2α-β=-3π4.答案:-3π4方法总结1.应用三角公式化简求值的策略(1)使用两角和、差及倍角公式时,首先要记住公式的结构特征和符号变化规律.例如两角和、差的余弦公式可简记为:“同名相乘,符号反”.(2)使用公式求值时,应注意与同角三角函数基本关系、诱导公式的综合应用.(3)使用公式求值时,应注意配方法、因式分解和整体代换思想的应用,用特殊角来表示非特殊角等.2.“给值求角”实质是转化为“给值求值”,先求角的某一函数值,再求角的X 围,最后确定角.遵照以下原则:(1)已知正切函数值,选正切函数;(2)已知正、余弦函数值,选正弦或余弦函数;若角的X 围是⎝ ⎛⎭⎪⎫0,π2,选正、余弦皆可;若角的X 围是(0,π),选余弦较好;若角的X 围为⎝ ⎛⎭⎪⎫-π2,π2,选正弦较好.[题组突破]1.设α∈⎝⎛⎭⎫0,π2,β∈⎝⎛⎭⎫0,π2,且tan β=1+sin αcos α,则( )A .α-3β=-π2B .α-2β=-π2C .α+3β=π2D .α+2β=π2解析:法一(化切为弦):因为tan β=sin βcos β,所以sin βcos β=1+sin αcos α,即sin βcos α=cos β+cos βsin α, 整理得sin (β-α)=cos β,即sin (β-α)=sin ⎝ ⎛⎭⎪⎫π2-β.因为α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,所以β-α∈⎝ ⎛⎭⎪⎫-π2,π2,π2-β∈⎝ ⎛⎭⎪⎫0,π2.因为函数y =sin x 在⎝ ⎛⎭⎪⎫-π2,π2上单调递增,所以β-α=π2-β,整理得α-2β=-π2.法二(化弦为切):因为1+sin αcos α=1+cos ⎝ ⎛⎭⎪⎫π2-αsin ⎝ ⎛⎭⎪⎫π2-α=2cos 2⎝ ⎛⎭⎪⎫π4-α22sin ⎝ ⎛⎭⎪⎫π4-α2cos ⎝ ⎛⎭⎪⎫π4-α2=1tan ⎝ ⎛⎭⎪⎫π4-α2,所以tan β=1tan ⎝ ⎛⎭⎪⎫π4-α2=tan ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-α2=tan ⎝ ⎛⎭⎪⎫π4+α2.因为α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,π4+α2∈⎝ ⎛⎭⎪⎫π4,π2,又函数y =tan x 在⎝ ⎛⎭⎪⎫0,π2上单调递增,所以β=π4+α2,即α-2β=-π2.答案:B2.计算sin 110°sin 20°cos 2155°-sin 2155°的值为( )A .-12B .12C .32D .-32解析:原式=sin70°sin 20°cos 225°-sin 225°=cos20°sin 20°cos 50°=12×sin 40°sin 40°=12. 答案:B3.已知sin ⎝⎛⎭⎫π4+α=25,则sin 2α=________.解析:sin 2α=-cos ⎝ ⎛⎭⎪⎫π2+2α=2sin 2⎝ ⎛⎭⎪⎫π4+α-1=2×⎝⎛⎭⎫252-1=-1725.答案:-1725题型二 两角和、差及倍角公式的逆用和变形运用[典例剖析][典例](1)3tan 10°-1sin 10°=________.(用数字作答)解析:原式=3sin 10°cos 10°-1sin 10°=3sin 10°-cos 10°sin 10°cos 10°=2sin (10°-30°)12sin 20°=-2sin 20°12sin 20°=-4.答案:-4(2)计算:tan 25°+tan 35°+3tan 25°·tan 35°=________.解析:原式=tan (25°+35°)(1-tan 25°tan 35°)+3tan 25°tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°= 3.答案: 3(3)已知:①tan 10°tan 20°+tan 20°tan 60°+tan 60°tan 10°=1,②tan 5°tan 10°+tan 10°tan 75°+tan 75°·tan 5°=1,③tan 20°tan 30°+tan 30°·tan 40°+tan 40°·tan 20°=1成立.由此得到一个由特殊到一般的推广.此推广是什么?并证明.解析:观察到:10°+20°+60°=90°,5°+10°+75°=90°,20°+30°+40°=90°,猜想此推广为:若α+β+γ=90°,且α,β,γ都不为k·180°+90°(k∈Z),则tan αtan β+tan βtan γ+tan γtan α=1.证明如下:因为α+β+γ=90°,所以β=90°-(α+γ),故tan β=tan [90°-(α+γ)]=sin [90°-(α+γ)]cos [90°-(α+γ)]=cos (α+γ)sin (α+γ)=cos αcos γ-sinαsin γsin αcos γ+cos αsin γ=1-tan αtan γtan α+tan γ,所以tan αtan β+tan βtan γ=1-tan αtan γ,即tan αtan β+tan βtan γ+tan αtan γ=1.方法总结1.将tan (α+β)=tan α+tan β1-tan α·tan β整理变形为tan α+tan β=tan (α+β)-tan α·tanβ·tan (α+β).2.(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)和差角公式变形:sin αsin β+cos (α+β)=cos αcos β, cos αsin β+sin (α-β)=sin αcos β, tan α±tan β=tan (α±β)·(1∓tan α·tan β). (3)倍角公式变形:降幂公式.[拓展] 1±sin α=⎝ ⎛⎭⎪⎫sin α2± cos α22,1+cos α=2cos 2α2,1-cos α=2sin 2α2.提醒 tan αtan β,tan α+tan β(或tan α-tan β),tan (α+β)(或tan (α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.[对点训练]1.已知m =(α+β+γ),tan (α-β+γ)),若sin 2(α+γ)=3sin 2β,则m =( ) A.12 B .34C .32D .2解析:设A =α+β+γ,B =α-β+γ, 则2(α+γ)=A +B ,2β=A -B , 因为sin 2(α+γ)=3sin 2β, 所以sin (A +B )=3sin (A -B ),即sin A cos B +cos A sin B =3(sin A cos B -cos A sin B ), 即2cos A ·sin B =sin A cos B , 所以tan A =2tan B ,所以m =tan Atan B =2.答案:D 2.1cos 80°-3sin 80°=________.解析:1cos 80°-3sin 80°=sin 80°-3cos 80°sin 80°cos 80°=2sin (80°-60°)12sin 160°=2sin 20°12sin 20°=4.答案:4题型三 三角恒等变换的综合应用[典例剖析][典例] 已知函数f (x )=23sin ⎝⎛⎭⎫ωx +π6cos ωx (0<ω<2),且f (x )的图象过点⎝⎛⎭⎫5π12,32.(1)求ω的值及函数f (x )的最小正周期; (2)将y =f (x )的图象向右平移π6个单位,得到函数y =g (x )的图象,已知g ⎝⎛⎭⎫α2=536,求cos ⎝⎛⎭⎫2α-π3的值.解析:(1)函数f (x )=23sin ⎝⎛⎭⎪⎫ωx +π6·cos ωx =⎝⎛⎭⎫23sin ωx ·32+23cos ωx ·12·cos ωx =32sin 2ωx +3·1+cos 2ωx 2=3sin ⎝ ⎛⎭⎪⎫2ωx +π6+32. ∵f (x )的图象过点⎝⎛⎭⎪⎫5π12,32,∴3sin ⎝ ⎛⎭⎪⎫2ω·5π12+π6+32=,∴2ω·5π12+π6=k π,k ∈Z ,解得ω=6k -15,k ∈Z .又0<ω<2,∴ω=1,∴f (x )=3sin ⎝⎛⎭⎪⎫2x +π6+32,故它的最小正周期为2π2=π.(2)将y =f (x )=3sin ⎝⎛⎭⎪⎫2x +π6+32的图象向右平移π6个单位,得到函数y =g (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6+32的图象.已知g ⎝ ⎛⎭⎪⎫α2=536=3sin ⎝ ⎛⎭⎪⎫α-π6+32,∴sin ⎝ ⎛⎭⎪⎫α-π6=13,∴cos ⎝ ⎛⎭⎪⎫2α-π3=1-2sin 2⎝ ⎛⎭⎪⎫α-π6=79.方法总结三角恒等变换在研究三角函数图象和性质中的应用(1)图象变换问题:先根据和角公式、倍角公式把函数解析式变为正弦型函数y =A sin(ωx +φ)+b 或余弦型函数y =A cos (ωx +φ)+b 的形式,再进行图象变换.(2)函数性质问题:求函数周期、最值、单调区间的方法步骤:①利用三角恒等变换及辅助角公式把三角函数关系式化成y =A sin (ωx +φ)+b 或y =A cos (ωx +φ)+b 的形式;②利用公式T =2πω(ω>0)求周期;③根据自变量的X 围确定ωx +φ的X 围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为求二次函数的最值;④根据正、余弦函数的单调区间列不等式求函数y =A sin (ωx +φ)+b 或y =A cos (ωx +φ)+b 的单调区间.[对点训练]已知函数f (x )=2(sin ωx -cos ωx )cos ωx +22(ω>0)的图象的一条对称轴为x =3π8.(1)求ω的最小值; (2)当ω取最小值时,若f ⎝⎛⎭⎫α2+π4=35,-π2<α<0,求2sin ⎝⎛⎭⎫2α-π4的值.解析:(1)f (x )=2(sin ωx -cos ωx )cos ωx +22=2sin ωx cos ωx -2cos 2ωx +22=22sin2ωx -22cos 2ωx =sin ⎝⎛⎭⎪⎫2ωx -π4. 因为函数f (x )的图象的一条对称轴为x =3π8,所以3π4ω-π4=π2+k π(k ∈Z ),所以ω=1+43k (k ∈Z ).又ω>0,所以ω的最小值为1.(2)由(1)知f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4.则f ⎝ ⎛⎭⎪⎫α2+π4=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α2+π4-π4=sin ⎝ ⎛⎭⎪⎫α+π4=35.因为-π2<α<0,所以-π4<α+π4<π4,所以cos ⎝ ⎛⎭⎪⎫α+π4>0,则cos ⎝ ⎛⎭⎪⎫α+π4=45.所以2sin ⎝ ⎛⎭⎪⎫2α-π4=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π4-3π4=-sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π4-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α+π4=-2×35×45-2×⎝⎛⎭⎫452+1=-3125.再研高考创新思维1.(2019·高考全国卷 Ⅱ)已知α∈⎝⎛⎭⎫0,π2,2sin 2α=cos 2α+1,则sin α=( )A .15B .55C .33D .255解析:法一:由2sin 2α=cos 2α+1,得4sin α·cos α=2cos 2α.∵α∈⎝ ⎛⎭⎪⎫0,π2,∴2sin α=cos α.又∵sin 2α+cos 2α=1, ∴sin 2α=15.又α∈⎝ ⎛⎭⎪⎫0,π2,∴sin α=55.法二:设tan α=t ,t ∈(0,+∞),由已知得4t1+t 2=1-t 21+t 2+1,解得t =12.∴t =sin αcos α=12,∴sin 2α=15,∴sin α=55.答案:B2.(2018·高考全国卷Ⅲ)函数ƒ(x )=tan x1+tan 2x 的最小正周期为( )A .π4B .π2C .πD .2π解析:由万能公式可知f (x )=12sin2x ,故T =2π2=π.答案:C3.(2019·高考某某卷)已知tan αtan ⎝⎛⎭⎫α+π4=-23,则sin ⎝⎛⎭⎫2α+π4的值是________.解析:法一:由tan αtan ⎝ ⎛⎭⎪⎫α+π4=tan αtan α+11-tan α=tan α(1-tan α)tan α+1=-23,解得tan α=2或-13.sin ⎝⎛⎭⎪⎫2α+π4=22(sin 2α+cos 2α)=22(2sin αcos α+2cos 2α-1) =2(sin αcos α+cos 2α)-22=2·sin αcos α+cos 2αsin 2α+cos 2α-22=2·tan α+1tan 2α+1-22,将tan α=2和-13分别代入得sin ⎝ ⎛⎭⎪⎫2α+π4=210.法二:∵tan αtan ⎝ ⎛⎭⎪⎫α+π4=sin αcos ⎝ ⎛⎭⎪⎫α+π4cos αsin ⎝ ⎛⎭⎪⎫α+π4=-23,∴ sin αcos ⎝ ⎛⎭⎪⎫α+π4=-23cos αsin ⎝ ⎛⎭⎪⎫α+π4.①又sin π4=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π4-α=sin ⎝ ⎛⎭⎪⎫α+π4cos α-cos ⎝ ⎛⎭⎪⎫α+π4sin α=22,②由①②,解得sin αcos ⎝ ⎛⎭⎪⎫α+π4=-25,cos αsin ⎝ ⎛⎭⎪⎫α+π4=3210.∴ sin ⎝ ⎛⎭⎪⎫2α+π4=sin ⎣⎢⎡⎦⎥⎤α+⎝ ⎛⎭⎪⎫α+π4=sin αcos ⎝ ⎛⎭⎪⎫α+π4+cos αsin ⎝ ⎛⎭⎪⎫α+π4=210.法三:令tan α=t (t ≠±1),则t =-23·t +11-t ,得t =2或t =-13,故sin ⎝⎛⎭⎪⎫2α+π4=22(sin 2α+cos 2α)=22⎝ ⎛⎭⎪⎫2t 1+t 2+1-t 21+t 2=210. 答案:210素养升华角的灵活变换已知sin (α+2β)=34,cos β=13,α,β为锐角,则sin(α+β)的值为( )A .37-2212B .3-21412C .37+2212D .3+21412解析:因为cos β=13,β为锐角,所以sin β=1-⎝⎛⎭⎫132=223,cos 2β=2cos 2β-1=-79<0, 又β为锐角,所以π2<2β<π,因为α为锐角,所以α+2β∈⎝ ⎛⎭⎪⎫π2,3π2,又sin(α+2β)=34,所以cos (α+2β)=-1-sin 2(α+2β)=-74, 所以sin(α+β)=sin [(α+2β)-β] =sin (α+2β)cos β-cos (α+2β)sin β =34×13-⎝⎛⎭⎫-74×223 =3+21412.答案:D。

解三角形解答题十大题型总结(解析版)--2024高考数学常考题型精华版

解三角形解答题十大题型总结(解析版)--2024高考数学常考题型精华版

解三角形解答题十大题型总结【题型目录】题型一:利用正余弦定理面积公式解题题型二:解三角形与三角恒等变换结合题型三:三角形面积最大值,及取值范围问题题型四:三角形周长最大值,及取值范围问题题型五:角平分线相关的定理题型六:有关三角形中线问题题型七:有关内切圆问题(等面积法)题型八:与向量结合问题题型九:几何图形问题题型十:三角函数与解三角形结合【典例例题】题型一:利用正余弦定理面积公式解题【例1】△ABC 的内角、、A B C 的对边分别为a b c 、、,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【答案】(1)2sin sin 3B C =(2)3+.【详解】:(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =.由正弦定理得1sin sin sin 23sin A C B A =.故2sin sin 3B C =.(2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=-.所以23B C π+=,故3A π=.由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即()239b c bc +-=,得b c +=.故ABC 的周长为3【例2】的内角的对边分别为,,a b c ,已知2sin()8sin 2B AC +=.(1)求cos B ;(2)若6a c +=,ABC ∆面积为2,求b .【答案】(1)1517;(2)2.【详解】:(1)()2sin 8sin 2B A C +=,∴()sin 41cos B B =-,∵22sin cos 1B B +=,∴()22161cos cos 1B B -+=,∴()()17cos 15cos 10B B --=,∴15cos 17B =;(2)由(1)可知8sin 17B =,∵1sin 22ABC S ac B =⋅=,∴172ac =,∴()2222222217152cos 2152153617154217b ac ac B a c a c a c ac =+-=+-⨯⨯=+-=+--=--=,∴2b =.【例3】ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若c =332ABC S ∆=,求ABC ∆的周长.【答案】(1)3C π=(2)5+【详解】:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C +=12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C(2)11sin 6222∆=⇒=⋅⇒=ABC S ab C ab ab 又2222cos +-= a b ab C c 2213a b ∴+=,2()255∴+=⇒+=a b a b ABC ∆∴的周长为5+【例4】已知a ,b ,c 分别为ABC ∆三个内角A ,B ,C 的对边,c ccosA =-.(Ⅰ)求A ;(Ⅱ)若a =2,ABC ∆,求b ,c .【答案】(1)3A π=(2)b c ==2【详解】(Ⅰ)由sin cos c C c A =-及正弦定理得sin cos sin sin A C A C C-=由于sin 0C ≠,所以1sin 62A π⎛⎫-= ⎪⎝⎭,又0A π<<,故3A π=.(Ⅱ)ABC ∆的面积S =1sin 2bc A ,故bc =4,而2222cos a b c bc A =+-故22c b +=8,解得b c ==2【例5】(2022·陕西·安康市教学研究室高三阶段练习(文))在ABC 中a ,b ,c 分别为内角A ,B ,C 的对边.sin sin 2A C c b C +=.(1)求角B 的大小;(2)若112,2tan tan tan b A C B+==,求ABC 的面积.,【题型专练】1.已知,,a b c 分别为ABC ∆三个内角,,A B C 的对边,(1)求角A (2)若2a =,ABC ∆的面积为;求,b c .【答案】(1)(2)b=c=2【解析】:(1)由及正弦定理得sin cos sin sin sin 0A C A C B C --=,因为B A C π=--sin cos sin sin 0A C A C C --=.由于sin 0C ≠,所以1sin(62A π-=.又0A π<<,故3A π=.(2)ABC ∆的面积1sin 2S bc A ==4bc =,而2222cos a b c bc A =+-,故228b c +=.解得2b c ==.2.已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =.(1)若a b =,求cos ;B(2)若90B = ,且a =求ABC ∆的面积.【答案】(1)14;(2)1【解析】:(1)由题设及正弦定理可得22b ac=又a b =,可得2,2b c a c==由余弦定理可得2221cos 24a cb B ac +-==(2)由(1)知22b ac=因为90B = ,由勾股定理得222a cb +=故222a c ac +=,得c a ==所以的面积为13.(2021新高考2卷)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+..(1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.【详解】(1)因为2sin 3sin C A =,则()2223c a a =+=,则4a =,故5b =,6c =,2221cos 28a b c C ab +-==,所以,C 为锐角,则37sin 8C ==,因此,11sin 452284ABC S ab C ==⨯⨯⨯=△;(2)显然c b a >>,若ABC 为钝角三角形,则C 为钝角,由余弦定理可得()()()()22222221223cos 022121a a a a b c a a C ab a a a a ++-++---===++,解得13a -<<,则0<<3a ,由三角形三边关系可得12a a a ++>+,可得1a >,a Z ∈ ,故2a =.4.(2022·广东佛山·高三阶段练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos sin B a B =+.(1)求角A 的大小;(2)若2sin a B C ==,求ABC 的面积.5.(2022·安徽省宿松中学高二开学考试)在ABC 中,角,,A B C 的对边分别为,,,tan sin a b c B A C B ==.(1)求角C 的大小;(2)若ABC 的面积为196,求ABC 外接圆的半径.题型二解三角形与三角恒等变换结合【例1】ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a ,b ,求ABC 的面积;(2)若sin A C =22,求C .【答案】(1;(2)15︒.【分析】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==∴△的面积1sin 2S ac B ==;(2)30A C +=︒ ,sin sin(30)A C C C∴=︒-+1cos sin(30)222C C C =+=+︒=,030,303060C C ︒<<︒∴︒<+︒<︒ ,3045,15C C ∴+︒=︒∴=︒.【例2】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知25cos ()cos 24A A π++=.(1)求A ;(2)若33b c a -=,证明:△ABC 是直角三角形.【答案】(1)3A π=;(2)证明见解析【分析】(1)因为25cos cos 24A A π⎛⎫++=⎪⎝⎭,所以25sin cos 4A A +=,即251cos cos 4A A -+=,解得1cos 2A =,又0A π<<,所以3A π=;(2)因为3A π=,所以2221cos 22b c a A bc +-==,即222b c a bc +-=①,又33b c a -=②,将②代入①得,()2223b c b c bc +--=,即222250b c bc +-=,而b c >,解得2b c =,所以a =,故222b a c =+,即ABC 是直角三角形.【例3】在ABC ∆中,满足222sin cos sin cos A B A B C -+=-.(1)求C ;(2)设()()2cos cos cos cos 5cos 5A B A B ααα++==,,求tan α的值.【详解】(1)∵221cos B sin B =-,221cos C sin C =-,∴222sin A cos B cos C -=-变形为22211sin A sin B sin C --+=--()(),即222sin A sin B sin C ++=,利用正弦定理可得:222a b c ++=,由余弦定理可得cosC=22-,即C=34π.(2)由(1)可得cos (A+B )=2,A+B=4π,又cosAcosB=cos()cos 3225A B A B ++-=(),可得72cos(A B)10-=,同时cos (αA +)cos (αB +)=72cos(2α)cos(2αA B)cos A B 41022π+++++-=(),∴22272272cos(2α)sin2αcos(αA)cos(αB)410210222cos cos cos πααα++-+++===222222722sinαcosα2102cos sin cos sin cos ααααα--++()=222622552cos sin cos ααα+-=2510tan α+- 2tan α=5,∴2tan 5tan 62αα-+=,∴ 1tan α=或4.【题型专练】1.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .【答案】(1)3A π=;(2)sin 4C +=.【分析】【详解】(1)()2222sin sin sin 2sin sin sin sin sin sin B C B B C C A B C-=-+=-即:222sin sin sin sin sin B C A B C+-=由正弦定理可得:222b c a bc +-=2221cos 22b c a A bc +-∴==()0,A π∈ 3A π∴=(2)2b c +=,由正弦定理得:sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin 2sin222C C C ++=整理可得:3sin C C22sin cos 1C C += (()223sin 31sin C C ∴=-解得:62sin 4C =或624因为sin 2sin 2sin 02B C A C ==->所以sin 4C >,故62sin 4C +=.(2)法二:2b c += sin 2sin A B C +=又()sin sin sin cos cos sin B A C A C A C =+=+,3A π=1cos sin 2sin222C C C ++=整理可得:3sin C C ,即3sin 6C C C π⎛⎫=- ⎪⎝⎭sin 62C π⎛⎫∴-= ⎪⎝⎭由2(0,),(,)3662C C ππππ∈-∈-,所以,6446C C ππππ-==+62sin sin()464C ππ=+=.2.(2022·重庆巴蜀中学高三阶段练习)已知在锐角ABC 中,sin tan 1cos B A B =+.(1)证明:2B A =;(2)求tan tan 1tan tan B A A B-的取值范围.,再逆用正切的差角公式,结合第一问的结论得到3.在ABC 中,已知223sin cos sin cos sin 222A CB +=.(1)求证:2a c b +=;(2)求角B 的取值范围.【详解】证明:(1)223sin cossin cos sin 222C A A C B += 1cosC 1cos 3sin sin sin 222A A C B++∴+=()()sin 1cosC sin 1cos 3sin A C A B ∴+++=sin sin sin cosC sin cos 3sin A C A C A B∴+++=()sin sin sin C 3sin A C A B ∴+++=C A B π++= A C B π∴+=-()sin sin A C B∴+=sin sin 2sin A C B∴+=根据正弦定理得:2a c b +=,得证.(2)由(1)知在ABC 中,2a c b+=又222cos 2a c b B ac +-=消去b 化简得:()2231611cos 84842a c ac B ac ac +=-≥-=当且仅当a c =时取等号,又B 为三角形的内角,0,3B π⎛⎤∴∈ ⎥⎝⎦题型三:三角形面积最大值,及取值范围问题【例1】在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若()tan tan 2AB C +=,且2a =,则ABC 的面积的最大值为A .33B .32CD.【答案】A【解析】:因为()tan tan2AB C +=,且B C A +=π-,所以()22tan2tan tan 1tan 2A B C A A +=-=--tan 02A =>,所以tan 2A =,则2π3A =.由于2a =为定值,由余弦定理得222π42cos 3b c bc =+-,即224b c bc =++.根据基本不等式得22423b c bc bc bc bc =++≥+=,即43bc ≤,当且仅当b c =时,等号成立.所以11433sin 22323ABC S bc A =≤⨯⨯=.故选:A【例2】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sinsin 2A Ca b A +=.(1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围.【答案】(1)3B π=;(2)33(,)82.【分析】(1)根据题意sinsin 2A C a b A +=,由正弦定理得sin sin sin sin 2A CA B A +=,因为0A π<<,故sin 0A >,消去sin A 得sin sin 2A CB +=.0<B π<,02AC π+<<因为故2A C B +=或者2A CB π++=,而根据题意A BC π++=,故2A C B π++=不成立,所以2A CB +=,又因为A BC π++=,代入得3B π=,所以3B π=.(2)解法一:因为ABC 是锐角三角形,由(1)知3B π=,A B C π++=得到23A C π+=,故022032C C πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62C ππ<<.又应用正弦定理sin sin a cA C=,1c =,由三角形面积公式有:222sin()111sin 33sin sin sin 222sin 4sin ABC C a A S ac B c B c B c C Cπ-=⋅=⋅==⋅22sin cos cos sin 2123133(sin cos )4sin 43tan 38tan 8C C C C C ππππ-=⋅=⋅-=+.又因3,tan 623C C ππ<<>,故3313388tan 82C <+<,故3382ABC S <<.故ABC S 的取值范围是33,82解法二:若ABC ∆为锐角三角形,且1c =,由余弦定理可得b ==,由三角形ABC 为锐角三角形,可得2211a a a +-+>且2211a a a +-+>,且2211a a a +>-+,解得122a <<,可得ABC ∆面积1sin 23S a π==∈.【例3】在ABC △中,a ,b ,c 分别为内角A ,B ,C 的对边,若4a c +=,2sin sin sin B A C =+,则ABC △的面积的最大值为()AB .2C.D .4【答案】A 【解析】因为2sin sin sin B A C =+,所以2b a c =+,因4a c +=,所以2=b ,由余弦定理得()acacac ac ac b ac c a ac b c a B 221224216222cos 22222-=--=--+=-+=所以ac B ac 212cos 2-=,所以acacB -=6cos ,所以()()()()acac ac ac ac B B 22222661cos 1sin --=--=-=因11sin 22ABCa c ac a c Sac B ac ac ∆==⋅==因为ac c a 2≥+,所以()442=+≤c a ac,ABC S ∆=≤=注:此题也可用椭圆轨迹方程做【例4】在ABC △中,a ,b ,c 分别为内角A ,B ,C的对边,若2a =,b =,则ABC △的面积的最大值为()AB .2C .D .4【答案】A 【解析】因为2a =,b =,由余弦定理得()2222222324432432cos c c cc cc bcac b A -=⋅-+=-+=所以()()2244244222223216324121632161232441cos 1sin c c c c c c c cc A A -+-=-+-=--=-=因21sin 2ABCS bc A ∆===设t c =2,则ABCS∆==≤注:此题也可用圆轨迹方程做【题型专练】1.已知分别为三个内角的对边,,且,则面积的最大值为____________.【解析】:由,且,故()()()a b sinA sinB c b sinC +-=-,又根据正弦定理,得()()()a b a b c b c +-=-,化简得,222b c a bc +-=,故222122b c a cosA bc +-==,所以060A =,又224b c bc bc +-=≥,故12BAC S bcsinA ∆=≤2.已知,,分别为△ABC 角,,的对边,cos 2−cos 2−cos 2=cosvos +cos −cos2,且=3,则下列结论中正确的是()A.=3B.=23C.△ABC D.△ABC 【答案】B【解答】解∵cos 2−cos 2−cos 2=cosvos +cos −cos2,∴(1−sin 2p −(1−sin 2p −(1−sin 2p =cosvos −cos(+p −(1−2sin 2p ,∴sinLin +sin 2+sin 2−sin 2=0,由正弦定理可得B +2+2−2=0,∴cos =2+2−22B=−12,又0<<,∴=23,即2=3=2+2−23=2+2+B⩾2B +B =3B ,当且仅当==1时取等号,∴B⩽1,∴=12Bsin 故选:B .3.ABC 的内角,,A B C 的对边分别为,,a b c ,已知B c C b a sin cos +=.(Ⅰ)求B ;(Ⅱ)若2=b ,求ABC 面积的最大值.【详解】(1)∵Bc C b a sin cos +=∴由正弦定理知B C C B A sin sin cos sin sin +=①在三角形ABC 中,()C B A +-=π∴()B C C B C B A sin sin cos sin sin sin +=+=②由①和②得C B C B sin cos sin sin =而()π,0∈C ,∴0sin ≠C ,∴B B cos sin =又()π,0∈B ,∴4π=B (2)ac B ac S ABC 42sin 21==∆,由已知及余弦定理得:4=a 2+c 2﹣2ac cos 4π≥2ac ﹣2ac 22⨯,整理得:ac≤,当且仅当a =c 时,等号成立,则△ABC 面积的最大值为(1212222⨯=+1=+4.△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,设sin A cos B =sin B (2﹣cos A ).(1)若b +c =3a ,求A ;(2)若a =2,求△ABC 的面积的最大值.【解析】(1)∵sin A cos B =sin B (2﹣cos A ),结合正、余弦定理,可得a •2+2−22B=b •(2−2+2−22B),化简得,c =2b ,代入b +c =3a ,得a =3b ,由余弦定理知,cos A =2+2−22B =2+42−322δ2=12,∵A ∈(0,π),∴A =3.(2)由(1)知,c =2b ,由余弦定理知,cos A =2+2−22B =52−442=5412,∴△ABC 的面积S =12bc sin A =b 21−c 22=b 2=16=当b 2=209时,S 取得最大值,为43.5.在ABC ∆中,内角、、A B C 所对的边分别为,,a b c ,D 是AB 的中点,若1CD =且1()sin ()(sin sin )2a b A c b C B -=+-,则ABC ∆面积的最大值是___【答案】5如图,设CDA θ∠=,则CDB πθ∠=-,在CDA ∆和C D B ∆中,分别由余弦定理可得22221144cos ,cos()c c b a c cθπθ+-+-=-=,两式相加,整理得2222()02c a b +-+=,∴2222()4c a b =+-.①由()()1sin sin sin 2a b A c b C B ⎛⎫-=+- ⎪⎝⎭及正弦定理得()()1c b 2a b a c b ⎛⎫-=+- ⎪⎝⎭,整理得2222aba b c +-=,②由余弦定理的推论可得2221cos 24a b c C ab +-==,所以sin 4C =.把①代入②整理得2242aba b ++=,又222a b ab +≥,当且仅当a b =时等号成立,所以54222ab ab ab ≥+=,故得85ab ≤.所以118sin 22545ABCab C S ∆=≤⨯=.即ABC ∆面积的最大值是5.故答案为5.6.(2023·全国·高三专题练习)在ABC 中,角,,A B C 的对边分别为,,a b c,且cos sin a b C B -=.(1)求B ;(2)若2a =,且ABC 为锐角三角形,求ABC 的面积S 的取值范围.题型四:三角形周长最大值,及取值范围问题【例1】在锐角ABC 中,内角A ,B ,C 所对的边分别为a,b ,c ,若ABC 的面积为()2224a b c +-,且4c =,则ABC 的周长的取值范围是________.【答案】4,12]+【解析】因为ABC 的面积为()2224a b c +-,所以()2221sin 42a b c ab C +-=,所以222sin 2a b c C ab +-=.由余弦定理可得222cos 2a b c C ab +-=,sin C C =,即tan C ,所以3Cπ=.由正弦定理可得sin sin sin 3a b c A B C ===,所以83832(sin sin )sin sin 8sin 3336a b A BA A A ππ⎡⎤⎛⎫⎛⎫+=+=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.因为ABC 为锐角三角形,所以62A ππ<<,所以sin 126A π⎛⎫<+ ⎪⎝⎭,则ssin()86A π<+,即8a b <+≤.故ABC 的周长的取值范围是4,12]+.【例2】在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c sin sin cos sin B CC C A++=(1)求A ;(2)若ABC 的外接圆的半径为1,求22b c +的取值范围.c【例3】(2022·重庆八中高三阶段练习)在锐角ABC 中,内角,,A B C 所对的边分别为,,a b c ,已知sinsin ,2A Ca b A b +==(1)求角B 的大小;(2)求2a c -的取值范围.【例4】(2022·四川省仁寿县文宫中学高三阶段练习(文))在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且()sin sin 2B Ca A B c ++=.(1)求角A 的大小;(2)若角B 为钝角,求b的取值范围.【题型专练】1.在ABC ∆中,设角,,A B C 的对边分别为,,a b c ,已知222cos sincos sin sin A B C A B =++.(1)求角C 的大小;(2)若c ,求ABC ∆周长的取值范围.【答案】(1)23π;(2)(2+(1)由题意知2221sin sin 1sin sin sin A B C A B -=+-+,即222sin sin sin sin sin A B C A B +-=-,由正弦定理得222a b c ab+-=-由余弦定理得2221cos 222a b c ab C ab ab +--===-,又20,3C C ππ<<∴=.(2)2,2sin ,2sin 2sin sin sin sin3a b c a A b BA B C π====∴==,则ABC ∆的周长()2sin sin 2sin sin 2sin 33L a b c A B A A A ππ⎡⎤⎛⎫⎛⎫=++=++++++ ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦230,,sin 1333323A A A πππππ⎛⎫<<∴<+<<+≤ ⎪⎝⎭ ,2sin 23A π⎛⎫∴<++≤ ⎪⎝⎭,ABC ∴∆周长的取值范围是(2+.2.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C .(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【分析】【详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=.(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB =+-⋅=++⋅=,即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号),()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤(当且仅当AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+,ABC ∴ 周长的最大值为3+.3.已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,(cos )a C C b c +=+.(1)求角A ;(2)若5a =,求ABC △的周长的最大值.【详解】(1)由题意知()(cos )sin cos sin sin a C C b c A C C B C =+⇒+=+,所以()()sin cos sin sin A C C A C C +=++,即sin cos sin sin cos cos sin sin A C A C A C A C C+=++sin cos sin sin A C A C C =+,因0sin ≠C cos 1A A -=,即2sin 16A π⎛⎫-= ⎪⎝⎭又50,,666A A ππππ⎛⎫<<∴-∈- ⎪⎝⎭ ,所以66A ππ-=,所以3π=A (2)由余弦定理得:222222cos 25a b c b c A b c bc =+-⋅=+-=,即()2325b c b c +-⋅=.22b c b c +⎛⎫⋅≤ ⎪⎝⎭ (当且仅当b c =时取等号),()()()22221253324b c b c b c b c b c +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:10b c +≤(当且仅当b c =时取等号),ABC ∴ 周长51015L a b c =++≤+=,ABC ∴ 周长的最大值为15.题型五:角平分线相关的定理【例1】在中ABC △,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,BD BC ⊥交AC 于点D ,且1BD =,则2a c +的最小值为.【详解】由题意知ABC ABD BCD S S S ∆∆∆=+ ,所以111sin sin sin 222ac B cBD ABD aBD CBD ∴=∠+∠,即1311111122222ac c a ∴⨯=⨯⨯+⨯⨯即2c a =+,所以12a c =+,所以))12422224333a c a c a c a c c a ⎛⎫⎫+++=+++≥+=⎪⎪⎝⎭⎝⎭【例2】△ABC 中D 是BC 上的点,AD 平分∠BAC,BD=2DC .(Ⅰ)求sin sin BC∠∠;(Ⅱ)若60BAC ∠= ,求B ∠.【详解】(Ⅰ)由正弦定理得,,sin sin sin sin AD BD AD DCB BADC CAD==∠∠∠∠因为AD 平分∠BAC,BD=2DC,所以sin 1.sin 2B DC C BD ∠==∠.(Ⅱ)因为()180,60,C BAC B BAC∠=-∠+∠∠=所以()31sin sin cos sin .22C BAC B B B ∠=∠+∠=∠+∠由(I )知2sin sin B C ∠=∠,所以3tan ,30.3B B ∠=∠= 【例3】(河南省豫北名校普高联考2022-2023学年高三上学期测评(一)文科数学试卷)在ABC 中,内角,,A B C的对边分别为,,a b c ,且______.在①cos cos 2b C B π⎛⎫-= ⎪⎝⎭;②2ABC S BC =⋅△ ;③tan tan tan A C A C +-这三个条件中任选一个,补充在上面的问题中,并进行解答.(1)求角B 的大小;(2)若角B 的内角平分线交AC 于D ,且1BD =,求4a c +的最小值.ABC ABD BCD S S S =+ ,12π1sin 232ac c ∴=⋅即333444ac c a =+,a c ac ∴+=,a ac +∴()11444552a c a c a c ac c a ⎛⎫∴+=++=++≥+ ⎪⎝⎭【题型专练】1.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,23BAC π∠=,BAC ∠的平分线交BC 于点D ,1AD =,则b c +的最小值为.【详解】ABC ABD BCD S S S ∆∆∆=+ ,所以111sin sin sin 222bc A cAD BAD bAD CAD ∴=∠+∠,即11111222222bc c ∴⨯=⨯⨯+⨯⨯,即bc b c =+,所以111b c ∴=+,所以()111124b cb c b c b c c b ⎛⎫+=++=+++≥+= ⎪⎝⎭2.ABC ∆中,D 是BC 上的点,AD 平分∠BAC ,ABD ∆面积是ADC ∆面积的2倍.(1)求sin sin BC;(2)若AD =1,DC =22,求BD 和AC 的长.【详解】,1sin 2ACD S AC AD CAD ∆=⋅⋅∠,∵2ABD ACD S S ∆∆=,BAD CAD ∠=∠,∴2AB AC =.由正弦定理可知sin 1sin 2B AC C AB ∠==∠.(2)∵::2:1ABD ACD BD DC S S ∆∆==,22DC =,∴BD =.设AC x =,则2AB x =,在△ABD 与△ACD中,由余弦定理可知,2222cos 2AD BD AB ADB AD BD +-∠==⋅222232cos 2x AD CD AC ADC AD CD -+-∠==⋅∵ADB ADC π∠+∠=,∴cos cos ADB ADC ∠=-∠,2232x -=,解得1x =,即1AC =.题型六:有关三角形中线问题遇到角平分线问题一般有两种思路:思路一:中线倍长法思路二:利用平面向量【例1】在ABC ∆中,,,a b c 分别是内角,,A B C 所对的边,且满足cos 0cos 2B bC a c+=+,(1)求角B 的值;(2)若2c =,AC 边上的中线32BD =,求ABC ∆的面积.【详解】(1)cos cos sin 00cos 2cos 2sin sin B b B BC a c C A C+=⇔+=++,()cos 2sin sin sin cos 0B A C B C ⇒++=2sin cos cos sin sin cos 0A B B C B C ⇒++=()2sin cos sin 0A B B C ⇒++=.()1sin 2cos 10,sin 0,cos 2A B A B ⇒+=≠∴=-.所以23B π=,(2)解法一:中线倍长法:延长BD 到E ,使BD=DE ,易知四边形AECD 为平行四边形,在BEC ∆中,EC=2,,因为23ABC π∠=,所以3BCE π∠=,由余弦定理2222cos BE EC BC EC BC BCE =+-⋅⋅∠,即223222cos3a a π=+-⋅⋅,2210a a -+=,解得1a =,所以1133sin 122222ABC S ac B ∆==⋅⋅⋅=解法二:BC BA BD +=,所以()22BC BA BD +=B+=即︒++=⎪⎪⎭⎫ ⎝⎛120cos 223222ac a c ,即⎪⎭⎫⎝⎛-⨯⨯++=21424432a a ,2210a a -+=,解得1a =,所以1133sin 122222ABC S ac B ∆==⋅⋅⋅=【例2】(2022·广东佛山·高三阶段练习)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2π3A =.(1)若6a =,ABC的面积为D 为边BC 的中点,求AD 的长度;(2)若E 为边BC上一点,且AE =,:2:BE EC c b =,求2b c +的最小值.【题型专练】1.(2022·广东广州·一模)在ABC 中,内角A ,B ,C 所对边的长分别为a ,b ,c ,且满足cos sin 2B Cb a B +=.(1)求A ;(2)若a =,3BA AC ⋅=,AD 是ABC 的中线,求AD 的长.2.(2022·黑龙江·哈师大附中高三阶段练习)在①()()()()sin sin sin a c A B a b A B -+=-+;②2S BC =⋅;③cos sin b C a c B =;这三个条件中任选一个,补充在下面的问题中,并解答问题.问题:在ABC 中,角、、A B C 的对边分别为,,a b c ,且______.(1)求角B 的大小;(2)AC 边上的中线2BD =,求ABC 的面积的最大值.题型七:有关内切圆问题(等面积法)【例1】在▵B中,sin2=B=1,B=5,则A.B=25B.▵B 的面积为32C.▵BD.▵B【答案】B【解答】解:∵sin2=∴cos=1−2sin22=1−2×2=35,又B=1,B=5,∴由余弦定理,B2=B2+B2−2B⋅B⋅cos=52+12−2×5×1×(35)=20,∴B=25,故A正确;∵cos=35且为三角形内角,∴sin=1−cos2=45,所以△B的面积为=1=12×1×5×45=2,故B错误;根据正弦定理B sin=2o其中表示外接圆的半径)得:2=45=即△B C正确;如图,设△B内切圆圆心为,半径为,连接B,B,B,因为内切圆与边B ,B ,B 相切,故设切点分别为,,,连接B ,B ,B ,可知:B =B =B =,且B ⊥B ,B ⊥B ,,根据题意:△B =12B ⋅B ⋅sin =12×5×1×45=2,利用等面积可得:△B +△B +△B =△B ,即:12B ⋅+12B ⋅+12=2,∴=4B+B+B==D 正确.故选ACD .【例2】(2022·四川·绵阳中学高二开学考试(理))已知在ABC 中,()254cos 4sin A B C ++=.(1)求角C 的大小;(2)若ABC 的内切圆圆心为O ,ABC 的外接圆半径为4,求ABO 面积的最大值.【题型专练】1.三角形有一个角是︒60,夹在这个角的两边长分别为8和5,则()A.三角形另一边长为6B.三角形的周长为20C.三角形内切圆面积为3D.【答案】B【解答】解:因为三角形有一个角是︒60,夹在这个角的两边长分别为8和5,A .由余弦定理得:三角形另一边长为82+52−2×8×5×cos60°=7,故A 错误;B .三角形的周长为8+5+7=20,故B 正确;C .设三角形内切圆的半径为,由面积法得到:12×8×5×sin60°=12×20×,解得=3,所以内切圆的面积为,故C 正确;D .设三角形外接圆的半径为,则由正弦定理得到7sin60°=2,解得=,故D 错误.故选BC .2.(2022·全国·清华附中朝阳学校模拟预测)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos a cC Cb-=.(1)求角B 的大小;(2)若2b =,记r 为ABC 的内切圆半径,求r 的最大值.题型八:与向量结合问题【例1】锐角ABC ∆的内角A ,B ,C 所对的边分别为a ,b ,c ,向量()m a =与(cos ,sin )n A B = 平行.(1)求角A ;(2)若a =ABC ∆周长的取值范围.【解析】解:(1)因为://m n,所以:sin cos 0a B A =,由正弦定理,得:sin sin cos 0A B B A -=,又因为:sin 0B ≠,从而可得:tan A =,由于:0A π<<,所以:3A π=.(2)因为:由正弦定理知sin sin sin 3b c aB C A====,可得:三角形周长sin )3l a b c B C =++=+,又因为:23C B π=-,所以:2sin sin sin sin()36B C B B B ππ+=+-=+,因为:ABC ∆为锐角三角形,所以:62B ππ<<,2(,)633B πππ+∈,3sin sin (2B C +∈,所以:l ∈.【例2】(2022·河北沧州·高三阶段练习)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知(2)cos cos ,3b c A a C a -==.(1)求角A ;(2)若点D 满足1233BD BA BC =+,求BCD △面积的最大值.【题型专练】1.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且a c >.已知2BA BC = ,1cos 3B =,3b =.求:(1)a 和c 的值;(2)cos()B C -的值.【解析】解:(1)2BA BC= ,1cos 3B =,3b =,可得cos 2ca B =,即为6ac =;2222cos b a c ac B =+-,即为2213a c +=,解得2a =,3c =或3a =,2c =,由a c >,可得3a =,2c =;(2)由余弦定理可得2229947cos 22339a b c C ab +-+-===⨯⨯,sin C ==,sin B ==,则17224223cos()cos cos sin sin 393927B C B C B C -=+=⨯+⨯.2.ABC ∆中,a 、b 、c 分别是三内角A 、B 、C 的对边,若1AB AC BA BC ==.解答下列问题:(1)求证:A B =;(2)求c 的值;(3)若||AB AC +=ABC ∆的面积.【解析】证明:(1)因AB AC BA BC =,故cos cos bc A ac B =,即cos cos b A a B =.由正弦定理,得sin cos sin cos B A A B =,故sin()0A B -=,因为A B ππ-<-<,故0A B -=,故A B =.⋯(4分)(2)因1AB AC = ,故cos 1bc A =,由余弦定理得22212b c a bc bc+-=,即2222b c a +-=;又由(1)得a b =,故22c =,故c =.⋯(10分)(3)由||AB AC += 22||||2||6AB AC AB AC ++=,即2226c b ++=,故224c b +=,因22c =,故b =,故ABC ∆是正三角形,故面积23342ABC S ∆=⨯=.⋯(16分)题型九:几何图形问题【例1】在ABC ∆中,3B π∠=,15AB =,点D 在边BC 上,1CD =,1cos 26ADC ∠=.(1)求sin BAD ∠;(2)求ABC ∆的面积.【解析】解:(1)由1cos 26ADC ∠=,可得153sin 26ADC ∠==,则11sin sin()sin cos cos sin 333226BAD ADC ADC ADC πππ∠=∠-=∠-∠=-⨯.(2)在ABD ∆中,由正弦定理可得sin sin BD AB BAD ADB =∠∠=,解得7BD =,所以718BC =+=,所以ABC ∆的面积11sin 158sin 223S AB BC ABD π=⋅⋅∠=⨯⨯⨯=【例2】如图,在ABC ∆中,6B π∠=,AB =,点D 在BC 边上,且2CD =,1cos 7ADC ∠=.(1)求sin BAD ∠;(2)求BD ,AC 的长.【解析】解:(1)在ADC ∆中,因为1cos 7ADC ∠=,所以sin 7ADC ∠=,所以sin sin()BAD ADC B ∠=∠-∠sin cos cos sin ADC B ADC B=∠-∠433117272=-⨯1114=.(2)在ABD ∆中,由正弦定理得11sin 1411sin 437AB BADBD ADB⋅∠===∠,在ABC ∆中,由余弦定理得:222222cos 13213492AC AB BC AB BC B =+-⋅⋅=+-⨯⨯.所以7AC =.【例3】如图,在ABC ∆中,2AB =,1cos 3B =,点D 在线段BC 上.(1)若34ADC π∠=,求AD 的长;(2)若2BD DC =,ACD ∆sin sin BADCAD∠∠的值.【解析】解:(1)ABC ∆ 中,1cos 3B =,22sin 3B ∴=.34ADC π∠= ,4ADB π∴∠=.ABD ∆=,83AD ∴=;(2)设DC a =,则2BD a =,2BD DC = ,ACD ∆,1222323a ∴=⨯⨯⨯,2a ∴=AC ∴==由正弦定理可得42sin sin BAD ADB=∠∠,sin 2sin BAD ADB ∴∠=∠.242sin sin CAD ADC =∠∠,2sin 4CAD ADC ∴∠=∠,sin sin ADB ADC ∠=∠ ,∴sin sin BADCAD∠=∠【例4】如图,在平面四边形ABCD 中,45A ∠=︒,90ADC ∠=︒,2AB =,5BD =.(1)求sin ADB ∠;(2)若DC =,求BC .【解析】解:(1)ABD ∆中,45A ∠=︒,2AB =,5BD =,由正弦定理得sin sin AB BDADB A=∠,即25sin sin 45ADB =∠︒,解得2sin 5ADB ∠=;(2)由90ADC ∠=︒,所以2cos sin 5BDC ADB ∠=∠=,在BCD ∆中,由余弦定理得:222222cos 52525BC BD DC BD DC BDC =+-⋅⋅∠=+-⨯⨯,解得5BC =.【例5】在平面四边形ABCD 中,90ADC ∠= ,45A ∠= ,2AB =,5BD =.(1)求cos ADB ∠;(2)若DC =,求BC .【答案】(1)5;(2)5.【分析】(1)在ABD ∆中,由正弦定理得sin sin BD ABA ADB=∠∠.由题设知,52sin45sin ADB =∠o,所以2sin 5ADB ∠=.由题设知,90ADB ∠<o ,所以cos 5ADB ∠==;(2)由题设及(1)知,2cos sin 5BDC ADB ∠=∠=.在BCD ∆中,由余弦定理得22222cos 25825255BC BD DC BD DC BDC =+-⋅⋅⋅∠=+-⨯⨯=.所以5BC =.【题型专练】1.如图,在平面四边形ABCD 中,1AD =,2CD =,AC =(1)求cos CAD ∠的值;(2)若cos BAD ∠=21sin 6CBA ∠=,求BC 的长.【解析】解:1AD =,2CD =,AC =(1)在ADC ∆中,由余弦定理,得222cos 2AC AD CD CAD AC AD+-∠= .∴cos CAD ∠=;(2)设BAC α∠=,则BAD CAD α=∠-∠,cos 21sin 7321sin 143sin 2CAD BAD CAD BAD α∠=∠=-∴∠=∠=∴=,在ABC ∆中,由正弦定理,sin sin BC ACCBAα=∠,解得:3BC =.即BC 的长为3.2.在平面四边形ABCD中,,2,2,AB BC AB BD BCD ABD ABD ⊥==∠=∠∆的面积为2.(1)求AD 的长;(2)求CBD ∆的面积.【解析】解:(1)由已知11sin 2sin 222ABD S AB BD ABD ABD ∆=∠=⨯∠= ,所以sin ABD ∠=(0,2ABD π∠∈,所以cos ABD ∠=在ABD ∆中,由余弦定理得:2222cos 5AD AB BD AB BD ABD =+-∠= ,所以AD =.(2)由AB BC⊥,得2ABD CBD π∠+∠=,所以5sin cos 5CBD ABD ∠=∠=,又42,sin 2sin cos 5BCD ABD BCD ABD ABD ∠=∠∠=∠∠=,()222BDC CBD BCD ABD ABD ABD CBD ππππ∠=-∠-∠=--∠-∠=-∠=∠,所以CBD ∆为等腰三角形,即CB CD =,在CBD ∆中,由正弦定理得:sin sin BD CDBCD CBD=∠∠,所以sin 51155455,sin 4sin 42244585CBDBD CBDCD S CB CD BCD BCD∆∠====∠=⨯⨯⨯=∠.3.如图,在平面四边形ABCD 中,2AB =,6BC =,4AD CD ==.(1)当四边形ABCD 内接于圆O 时,求四边形ABCD 的面积S ;(2)当四边形ABCD 的面积最大时,求对角线BD的长.【解析】(本题满分为14分)解:(1)连接BD ,由余弦定理可得:222222cos 24224cos BD AB AD AB AD A A =+-=+-⨯⨯⨯ ,222222cos 46246cos BD BC CD BC CD C C =+-=+-⨯⨯⨯ ,可得:2016cos 5248cos A C -=-,2⋯分又四边形ABCD 内接于圆O ,则又A C π+=,所以:2016cos 5248cos()A A π-=--,化简可得:1cos 2A =-,又(0,)A π∈,所以23A π=,3C π=,4⋯分所以12124sin 46sin 2323ABD BCD S S S ππ∆∆=+=⨯⨯⨯+⨯⨯⨯=,6⋯分(2)设四边形ABCD 的面积为S ,则11sin sin 22ABD BCD S S S AB AD A BC CD C ∆∆=+=+ ,可得:222222cos 2cos BD AB AD AB AD A BC CD BC CD C =+-=+- ,8⋯分可得:22221124sin 46sin 2224224cos 46246cos S A C A C ⎧=⨯⨯+⨯⨯⎪⎨⎪+-⨯⨯=+-⨯⨯⎩,可得:sin 3sin 423cos cos S A CC A⎧=+⎪⎨⎪=-⎩,平方后相加,可得:24106sin sin 6cos cos 16S A C A C +=+-,即:266cos()16S A C =-+,10⋯分又(0,2)A C π+∈,当A C π+=时,216S 有最大值,即S 有最大值.此时,A C π=-,代入23cos cos C A =-,可得:1cos 2C =,又(0,)C π∈,可得:3C π=,12⋯分在BCD ∆中,可得:222222cos 46246cos 283BD BC CD BC CD C π=+-=+-⨯⨯⨯= ,可得BD =.14⋯分4.如图所示,已知圆内接四边形ABCD ,记tan tan tan tan 2222A B C D T =+++.(1)求证:22sin sin T A B=+;(2)若6AB =,3BC =,4CD =,5AD =,求T 的值及四边形ABCD 的面积S.【解析】解:(1)sincos sin cos222222tan tan tan tan tan cot tan cot 22222222sin sin cos sin cos sin 2222A AB BA B A B A A B B T A A B B A Bππ--=+++=+++=+++=+.(2)由于:6AB =,3BC =,4CD =,5AD =,由题知:cos cos 0BAD BCD ∠+∠=,可得:22222222470227AB AD BD BC CD BD BD AB AD BC CD +-+-+=⇒= ,则3cos 7A =,sin A =则1()sin 2S AD AB CD BC A =+= ,则1610()sin sin 219S AB BC AD CD ABC ABC =+∠=∠=,22sin sin T A B =+==5.如图,角A ,B ,C ,D 为平面四边形ABCD 的四个内角,6AB =,3BC =,4CD =.(1)若60B =︒,30DAC ∠=︒,求sin D ;(2)若180BAD BCD ∠+∠=︒,5AD =,求cos BAD ∠.【解析】解:(1)在ABC ∆中,222361cos 2362AC B +-==⨯⨯,222363627AC ∴=+-⨯=,AC ∴=ACD ∆中,由正弦定理sin sin DAC D CD AC∠=,sin sin sin 30AC D DAC CD ∴=⋅∠=︒=.(2)在ABD ∆中,22256cos 256BD BAD +-∠=⨯⨯,在BCD ∆中,22234cos 234BD BCD +-∠=⨯⨯,180BAD BCD ∠+∠=︒ ,cos cos 0BAD BCD ∴∠+∠=,∴22222256340256234BD BD +-+-+=⇒⨯⨯⨯⨯可得:222(2536)5(916)0120BD BD +-++-=,可得:22261252550BD BD ⨯-+⨯-=,可得27247BD =,则BD =22224725365637cos 256607BDBAD +-+-∴∠===⨯⨯.6.某市欲建一个圆形公园,规划设立A ,B ,C ,D 四个出入口(在圆周上),并以直路顺次连通,其中A ,B ,C 的位置已确定,2AB =,6BC =(单位:百米),记ABC θ∠=,且已知圆的内接四边形对角互补,如图,请你为规划部门解决以下问题.(1)如果4DC DA ==,求四边形ABCD 的区域面积;(2)如果圆形公园的面积为283π万平方米,求cos θ的值.【解析】解:(1)连结BD ,可得四边形ABCD 的面积为:11sin sin 22ABD CBD S S S AB AD A BC CD C ∆∆=+=+ , 四边形ABCD 内接于圆,180A C ∴+=︒,可得sin sin A C =.11sin sin 22S AB AD A BC CD C =+ 1()sin 2AB AD BC CD A =+1(2464)sin 2A =⨯+⨯16sin A =.(*)⋯在ABD ∆中,由余弦定理可得:222222cos 24224cos 2016cos BD AB AD AB AD A A A =+-=+-⨯⨯=- ,同理可得:在CDB ∆中,222222cos 64264cos 5248cos BD CB CD CB CD C C C =+-=+-⨯⨯=- ,2016cos 5248cos A C ∴-=-,结合cos cos(180)cos C A A =︒-=-,得64cos 32A =-,解得1cos 2A =-,(0,180)A ∈︒︒ ,120A ∴=︒,代入(*)式,可得四边形ABCD面积16sin120S =︒=.(2) 设圆形公园的半径为R ,则面积为283π万平方米,可得:2283R ππ=,可得:2213R =,∴由正弦定理2sin AC R B ==sin θ==由余弦定理可得:AC ==sin θ∴==214sin 159cos θθ=-,22sin cos 1θθ+= ,∴2159cos cos 114θθ-+=,整理可得:2214cos 9cos 10θθ-+=,∴解得:1cos 7θ=,或12.7.ABC ∆的内角,,A B C 的对边分别为,,,a b c已知sin 0,2A A a b +===.(1)求角A 和边长c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积.【答案】(1)23π,4;(2)3.【解析】(1)sin 3cos 0,tan 3A A A +=∴=- ,20,3A A ππ<<∴=,由余弦定理可得2222cos a b c bc A =+-,即21284222c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,即22240c c +-=,解得6c =-(舍去)或4c =,故4c =.(2)2222cos c b a ab C =+- ,162842272cos C ∴=+-⨯⨯⨯,22cos ,72cos 77AC C CD C∴=∴===,12CD BC ∴=,1134223222ABC S AB AC sin BAC ∆∴=⋅⋅∠=⨯⨯⨯=,132ABD ABC S S ∆∆∴==.8.四边形的内角与互补,.(1)求和;(2)求四边形的面积.【答案】(1)60C =︒,7BD =;(2)23.【详解】:(1)连接BD .在ABD ∆和CBD ∆中,利用余弦定理列等式2222BD BC CD BC=+-cos CD C ⋅和2222cos BD AB DA AB DA A =+-⋅,且cos cos C A =-,代入数据得54cosC +,求cos C 的值,进而求C 和的值;(2)由(1)知ABD ∆和CBD ∆的面积可求,故四边形等于ABD ∆和CBD ∆的面积.(1)由题设及余弦定理得2222cos BD BC CD BC CD C=+-⋅.①2222cos BD AB DA AB DA A =+-⋅54cosC =+.②。

考点3.3 立体几何的新定义问题(解析版)

考点3.3 立体几何的新定义问题(解析版)

考点3.3 立体几何的新定义问题立体几何问题是高考重点考查的内容之一,其命题形式多种多样,其中基于问题情境的立体几何问题在高考中逐步成为热点。

通过具体的问题背景或新的定义,考察立体几何知识等在问题情境中的应用,以此来检验学生的核心价值,学科素养,关键能力,必备知识。

本专题以单选题,多选题,填空题及解答题等形式体现立体几何在新定义问题中的应用。

解决立体几何的新定义问题,常用的解题思路是:审题、建模、研究模型、解决新定义问题。

解题要点:根据题目给出的新定义,建立立体几何模型,研究模型时需注意:根据新定义进行由特殊到一般的规律总结,最后解决问题。

立体几何的新定义问题 (1) 单选题1.(2020·济南市·山东省实验中学高二期中)空间直角坐标系O xyz -中,经过点()000,,P x y z ,且法向量为(),,m A B C =的平面方程为()()()0000A x x B y y C z z -+-+-=,经过点()000,,P x y z 且一个方向向量为()(),,0n μυωμυω=≠的直线l 的方程为x x y y z z μυω---==,阅读上面的材料并解决下面问题:现给出平面α的方程为3570x y z -+-=,经过()0,0,0的直线l 的方程为321xy z ==-,则直线l 与平面a 所成角的正弦值为( )A B C D 【答案】B 【分析】根据题设给出的材料可得平面的法向量和直线的方向向量,利用公式可求直线l 与平面a 所成角的正弦值. 【详解】因为平面α的方程为3570x y z -+-=,故其法向量为()3,5,1n =-, 因为直线l 的方程为321x y z ==-,故其方向向量为()3,2,1m =-,故直线l 与平面a35==,故选:B. 【点睛】关键点点睛:此题为材料题,需从给定的材料中提炼出平面的法向量和直线的方向向量的求法,这是解决此题的关键.2.(2020·全国高三专题练习(文))将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈-︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒【答案】D 【分析】首先根据题意理解太阳高度角、该地纬度、太阳直射纬度的概念,然后由太阳高度角()9039542745θδ'''=︒-︒-=︒可得结果.【详解】由题可知,天安门广场的太阳高度角()9039542750533θδδ''''''=︒-︒-=︒+, 由华表的高和影长相等可知45θ=︒,所以45505335533δ''''''=︒-︒=-︒. 所以该天太阳直射纬度为南纬5533'''︒, 故选:D.3.(2020·赣州市赣县第三中学高二月考(理))设1P 、2P 、…、n P 为平面α内的n 个点,在平面α内的所有点中,若点P 到1P 、2P 、…、n P 点的距离之和最小,则称点P 为1P 、2P 、…、n P 点的一个“中位点”,有下列命题:①A 、B 、C 三个点共线,C 在线段AB 上,则C 是A 、B 、C 的中位点;②直角三角形斜边的中点是该直线三角形三个顶点的中位点;③若四个点A 、B 、C 、D 共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点;其中的真命题是( ) A .②④ B .①②C .①④D .①③④【答案】C 【分析】根据中位点的定义以及空间中的点与线的位置关系等逐个证明或举反例即可. 【详解】①若三个点,,A B C 共线,C 在线段AB 上,根据两点之间线段最短, 则C 是,,A B C 的中位点,正确;②举一个反例,如边长为3,4,5的直角三角形ABC ,此直角三角形的斜边的中点到三个顶点的距离之和为5 2.57.5+=,而直角顶点到三个顶点的距离之和为7,∴直角三角形斜边的中点不是该直角三角形三个顶点的中位点;故错误;③若四个点,,,A B C D 共线,则它们的中位点是中间两点连线段上的任意一个点,故它们的中位点存在但不唯一;故错误;④如图,在梯形ABCD 中,对角线的交点,O P 是任意一点,则根据三角形两边之和大于第三边得PA PB PC PD AC BD OA OB OC OD +++≥+=+++,∴梯形对角线的交点是该梯形四个顶点的唯一中位点.正确.故①④正确. 故选:C 【点睛】本题主要考查了新定义问题的运用,需要根据题意根据几何性质找到反例或直接证明.属于难题.4.(2020·北京高三专题练习)若点N 为点M 在平面α上的正投影,则记()N f M α=.如图,在棱长为1的正方体1111ABCD A BC D -中,记平面11AB C D 为β,平面ABCD 为γ,点P 是棱1CC 上一动点(与C 、1C 不重合)()1Q f f P γβ⎡⎤=⎣⎦,()2Q f f P βγ⎡⎤=⎣⎦.给出下列三个结论:①线段2PQ 长度的取值范围是1,22⎡⎢⎣⎭;②存在点P 使得1//PQ 平面β;③存在点P 使得12PQ PQ .其中,所有正确结论的序号是( ) A .①②③ B .②③C .①③D .①②【答案】D 【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -,设点P 的坐标为()()0,1,01a a <<,求出点1Q 、2Q 的坐标,然后利用向量法来判断出命题①②③的正误. 【详解】取1C D 的中点2Q ,过点P 在平面11AB C D 内作1PE C D ⊥,再过点E 在平面11CC D D 内作1EQ CD ⊥,垂足为点1Q .在正方体1111ABCD A BC D -中,AD ⊥平面11CC D D ,PE ⊂平面11CC D D ,PE AD ⊥∴, 又1PE C D ⊥,1AD C D D =,PE ∴⊥平面11AB C D ,即PE β⊥,()f P E β∴=,同理可证1EQ γ⊥,CQ β⊥,则()()1f f P f E Q γβγ⎡⎤==⎣⎦,()()2f f P f C Q βγβ⎡⎤==⎣⎦.以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D xyz -,设()01CP a a =<<,则()0,1,P a ,()0,1,0C ,110,,22a a E ++⎛⎫ ⎪⎝⎭,110,,02a Q +⎛⎫ ⎪⎝⎭,2110,,22Q ⎛⎫⎪⎝⎭.对于命题①,2PQ =01a <<,则111222a -<-<,则211024a ⎛⎫≤-< ⎪⎝⎭,所以,212PQ ⎡=⎢⎣⎭,命题①正确; 对于命题②,2CQ β⊥,则平面β的一个法向量为2110,,22CQ ⎛⎫=- ⎪⎝⎭,110,,2a PQ a -⎛⎫=- ⎪⎝⎭,令211130424a a a CQ PQ --⋅=-==,解得()10,13a =∈,所以,存在点P 使得1//PQ 平面β,命题②正确;对于命题③,21120,,22a PQ -⎛⎫=- ⎪⎝⎭,令()12211042a a a PQ PQ --⋅=+=, 整理得24310a a -+=,该方程无解,所以,不存在点P 使得12PQ PQ ,命题③错误.故选:D. 【点睛】本题考查立体几何中线面关系、线线关系的判断,同时也涉及了立体几何中的新定义,利用空间向量法来处理是解题的关键,考查推理能力,属于中等题.5.(2021·山东高三专题练习)如图,水平桌面上放置一个棱长为4的正方体水槽,水面高度恰为正方体棱长的一半,在该正方体侧面11CDD C 上有一个小孔E ,E 点到CD 的距离为3,若该正方体水槽绕CD 倾斜(CD 始终在桌面上),则当水恰好流出时,侧面11CDD C 与桌面所成角的正切值为( )AB .12CD .2【答案】D 【分析】根据题意,当水恰好流出时,即由水的等体积可求出正方体倾斜后,水面N 到底面B 的距离1BN =,再由边长关系可得四边形1NPC H 是平行四边形,从而侧面11CDD C 与桌面所转化成侧面11CDD C 与平面11HC D 所成的角,进而在直角三角形中求出其正切值. 【详解】由题意知,水的体积为44232⨯⨯=,如图所示,设正方体水槽绕CD 倾斜后,水面分别与棱1111,,,,AA BB CC DD 交于,,,,M N P Q 由题意知3PC =,水的体积为32BCPN S CD ⋅=322BN PC BC CD +∴⋅⋅=,即344322BN +⨯⨯=, 1BN ∴=在平面11BCC B 内,过点1C 作1//C HNP 交1BB 于H ,则四边形1NPC H 是平行四边形,且11NH PC ==又侧面11CDD C 与桌面所成的角即侧面11CDD C 与水面MNPQ 所成的角,即侧面11CDD C 与平面11HC D 所成的角,其平面角为111HC C B HC ∠=∠, 在直角三角形11B HC 中,111114tan 22B C B HC B H ===.【点睛】本题考查了利用定义法求二面角,在棱上任取一点,过这点在两个平面内分别引棱的垂线,这两条垂线所成的角即为二面角的平面角.(2) 多选题6.(2020·江苏南通市·海安高级中学高一月考)平面中两条直线l 和n 相交于O ,对于平面上任意一点M ,若p ,q 分别是M 到直线l 和n 的距离,则称有序非负实数对(p ,q )是点M 的“距离坐标”.则下列说法正确的( )A .若p =q =0,则“距离坐标”为(0,0)的点有且仅有一个B .若pq =0,且p +q ≠0,则“距离坐标”为(p ,q )的点有且仅有2个C .若pq ≠0,则“距离坐标”为(p ,q )的点有且仅有4个D .若p =q ,则点M 的轨迹是一条过O 点的直线 【答案】ABC 【分析】根据“距离坐标”的定义对选项逐一分析,由此确定正确选项. 【详解】首先点到直线的距离是唯一确定的.对于A 选项,由于0p q ==,所以()0,0表示O 点,有且仅有一个,故A 选项正确. 对于B 选项,由于0pq =,且0p q +≠,当00p q =⎧⎨≠⎩或0p q ≠⎧⎨=⎩时,分别表示点()0,q 或(),0p ,有且仅有两个,故B 选项正确.对于C 选项,由于l 和n 相交与O ,所以直线l 和直线n 确定一个平面α,根据对称性可知,在平面α的上方和下方,各有两个“距离坐标”为(),p q 的点.故“距离坐标”为(),p q 的点有且仅有4个,所以C 选项正确. 对于D 选项,设l 和n 相交与O ,直线l 和直线n 相交所形成的两组对角的角平分线上的点,都满足p q =,所以点M 的轨迹不只是一条过O 点的直线,所以D 选项错误. 由于p q =, 故选:ABC本小题主要考查空间点与直线的位置关系,考查分析、思考与解决问题的能力,属于基础题. 7.(2020·全国高二课时练习)(多选)已知单位向量i ,j ,k 两两的夹角均为0,2πθθπθ⎛⎫<<≠⎪⎝⎭,若空间向量a 满足(,,)a xi y j zk x y z R =++∈,则有序实数组(,,)x y z 称为向量a 在“仿射”坐标系Oxyz (O 为坐标原点)下的“仿射”坐标,记作(,,)a x y z θ=,则下列命题是真命题的有( ). A .已知(1,3,2)a θ=-,(4,0,2)b θ=,则0a b ⋅= B .已知(,,0)3a x y π=,(0,0,)3b z π=,其中,,0x y z >,则当且仅当x y =时,向量a ,b 的夹角取得最小值C .已知()111,,a x y z θ=,()222,,b x y z θ=,则()121212,,a b x x y y z z θ+=+++D .已知(1,0,0)3OA π=,(0,1,0)3OB π=,(0,0,1)3OC π=,则三棱锥O ABC -的表面积S =【答案】BC 【分析】根据“仿射”坐标的定义逐项判断即可. 【详解】(1,3,2)(4,0,2)(32)(42)421268412cos a b i j k i k i k i j j k k i θθθ⋅=-⋅=+-⋅+=+⋅+⋅+⋅-⋅-=因为0θπ<<,且2πθ≠,所以0a b ⋅≠,故A 错误;如图所示,设OB b =,OA a =,则点A 在平面xOy 上,点B 在z 轴上,由图易知当x y =时,AOB ∠取得最小值,即向量a 与b 的夹角取得最小值,故B 正确;根据“仿射”坐标的定义可得,()()()()()()()()111222111222121212121212,,,,,,a b x y z x y z x i y j z k x i y j z k x x i y y j z z k x x y y z z θθθ+=+=+++++=+++++=+++,故C 正确;由已知可得三棱锥O ABC -为正四面体,棱长为1,其表面积214122S =⨯⨯⨯=D 错误. 故选:BC. 【点睛】新定义概念题,考查对新概念的理解能力以及运算求解能力,基础题.8.(2020·江苏高二期中)20世纪50年代,人们发现利用静态超高压和高温技术,通过石墨等碳质原料和某些金属反应可以人工合成金刚石,人工合成金刚石的典型晶态为立方体(六面体)、八面体和立方八面体以及他们的过渡形态. 其中立方八面体(如图所示)有24条棱、12个顶点,14个面(6个正方形、8个正三角形),它是将立方体“切”去8个“角”后得到的几何体.已知一个立方八面体的棱长为1,则( )A .它的所有顶点均在同一个球面上,且该球的直径为2B .它的任意两条不共面的棱所在的直线都互相垂直 CD .它的任意两个共棱的面所成的二面角都相等 【答案】ACD 【分析】利用立方八面体与正方体之间的关系计算出正方体的棱长,可判断A 、C 选项的正误;计算出不共面的棱所成角的大小可判断B 选项的正误,计算相邻的两个面所成二面角的大小可判断D 选项的正误. 【详解】如下图所示,由题意可知,立方八面体的顶点为正方体1111ABCD A BC D -各棱的中点,故立方八面体的棱为正方体1111ABCD A BC D -相邻两条棱的中点的连线,=由对称性可知,立方八面体的外接球球心为正方体1111ABCD A BC D -的中心,外接球的直径为正方体1111ABCD A BC D -的面对角线长2,该球的半径为1,A 选项正确; 设MN 、PQ 为立方八面体的两条不共面的棱,如下图所示,则11//MN B D ,在正方体1111ABCD A BC D -中,11//BB DD 且11BB DD =,则四边形11BBD D 为平行四边形, 11//BD B D ∴,//MN BD ∴,由于1//PQ BC ,易知1BC D 为等边三角形,则160C BD ∠=,所以,MN 与PQ 所成角为60,B 选项错误;立方八面体的体积为331183223V ⎛⎫=-⨯⨯⨯= ⎪ ⎪⎝⎭C 选项正确; 设正方体1111ABCD A BC D -底面的中心为点O ,连接OC 交立方八面体的棱PF 于点E ,连接EQ ,则E 为PF 的中点,且PFQ △为等边三角形,所以,EQ PF ⊥,CD BC =,O 为BD 的中点,OC BD ∴⊥,P 、F 分别为BC 、CD 的中点,则//PF BD ,OC PF ∴⊥,所以,OEQ ∠为立方八面体的底面与由平面PFQ 所成二面角的平面角,立方八面体的棱长为1,12OE EC ∴==,112CQ CC ==,3sin 602EQ PQ == 1CC ⊥平面ABCD ,CE ⊂平面ABCD ,1CC CE ∴⊥,在Rt CEQ 中,cos CE CEQ EQ ∠==所以,()cos cos 180cos OEQ CEQ CEQ ︒∠=-∠=-∠=同理可知,立方八面体的相邻两个面所成二面角的余弦值为-D 选项正确. 故选:ACD.【点睛】作二面角的平面角可以通过垂线法进行,在一个半平面内找一点作另一个半平面的垂线,再过垂足作二面角的棱的垂线,两条垂线确定的平面和二面角的棱垂直,由此可得二面角的平面角.9.(2020·夏津县教育和体育局高二月考)我国古代数学名著《九章算术》中记载的“刍甍”(chumeng )是底面为矩形,顶部只有一条棱的五面体.如下图五面体ABCDEF 是一个刍甍,其中四边形ABCD 为矩形,其中8AB =,AD =ADE 与BCF △都是等边三角形,且二面角E AD B --与F BC A --相等且大于3π,则EF 长度可能为( )A .1B .5C .9D .13【答案】CD 【分析】取两个极限情况:二面角E AD B --与F BC A --相等,且为平角时,14EF =,二面角为3π时,5EF =,即可得出结果. 【详解】等边三角形ADE 603︒=,同理等边三角形BCF 边上的高为3.二面角E AD B --与F BC A --相等,且为平角时,6814EF =+=,因此14EF <, 二面角E AD B --与F BC A --相等,且为3π时,EF 最小, 如图所示,此时取BC ,AD 的中点,O Q ,连接OQ ,FO , 由图形的对称性可得F 点在底面的投影必在OQ 上,由于OF BC ⊥,OH BC ⊥,所以FOH ∠即为二面角F BC A --的平面角, 即3FOH π∠=,故32OH =,此时38252EF =-⨯= 由于二面角大于3π,因此5EF >, 即可得EF 长度可能为9,13, 故选:CD.【点睛】本题主要考查了空间角、运动思想方法、空间位置关系,考查了空间想象能力、推理能力,属于中档题.(3) 填空题10.(2020·枣庄市第三中学高二月考)在空间直角坐标系中,定义:平面α的一般方程为()2220,,,,0Ax By Cz D A B C D R A B C +++=∈++≠,点()000,,P x y z 到平面α的距离d =,则在底面边长与高都为2的正四棱锥中,底面中心O 到侧面的距离等于________.【分析】以底面中心O 为原点建立空间直角坐标系O xyz -,求出点,,,O A B P 的坐标,求出侧面的方程,最后利用所给公式计算即可. 【详解】如图,以底面中心O 为原点建立空间直角坐标系O xyz -, 则()0,0,0O,(1A ,1,0),(1B -,1,0),(0P ,0,2),设平面PAB 的方程为0Ax By Cz D +++=,将,,A B P 坐标代入计算得0020A B D A B D C D ++=⎧⎪-++=⎨⎪+=⎩解得0A =,B D =-,12C D =-,102Dy Dz D ∴--+=,即220y z +-=,d ∴==【点睛】本题主要考查点、线、面间的距离计算、空间直角坐标系的应用、空间直角坐标系中点到平面的距离等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于中档题.11.(2020·梅河口市第五中学高三月考(文))瑞士数学家、物理学家欧拉发现任一凸多面体(即多面体内任意两点的连线都被完全包含在该多面体中,直观上讲是指没有凹陷或孔洞的多面体)的顶点数V ,棱数E 及面数F 满足等式2V E F -+=,这个等式称为欧拉多面体公式,被认为是数学领域最漂亮,简洁的公式之一.如图是一个面数为26的多面体(其表面仅由正方形和正三角形围成),根据欧拉多面体公式可求得其棱数E =_______.【答案】48 【分析】根据图形可知顶点数,代入欧拉多面体公式可求得结果. 【详解】该多面体面数26F =,由图知,顶点数24V =,根据欧拉多面体公式2V E F -+=得:棱数22426248E V F =+-=+-=. 故答案为:48. 【点睛】本题考查立体几何中的新定义运算的求解问题,关键是能够充分理解已知所给公式,属于基础题.(4) 解答题12.(2021·全国高三八省联考)北京大兴国际机场的显著特点之一是各种弯曲空间的运用.刻画空间的弯曲性是几何研究的重要内容.用曲率刻画空间弯曲性,规定:多面体顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在各顶点的曲率为233πππ-⨯=,故其总曲率为4π.(1)求四棱锥的总曲率;(2)若多面体满足:顶点数-棱数+面数2=,证明:这类多面体的总曲率是常数. 【答案】(1)4π;(2)证明见解析. 【分析】(1)四棱锥的总曲率等于四棱锥各顶点的曲率之和,写出多边形表面的所有内角即可.(2)设顶点数、棱数、面数分别为n 、l 、m ,设第i 个面的棱数为i x ,所以122m x x x l +++=,按照公式计算总曲率即可. 【详解】(1)由题可知:四棱锥的总曲率等于四棱锥各顶点的曲率之和.可以从整个多面体的角度考虑,所有顶点相关的面角就是多面体的所有多边形表面的内角的集合.由图可知:四棱锥共有5个顶点,5个面,其中4个为三角形,1个为四边形. 所以四棱锥的表面内角和由4个为三角形,1个为四边形组成, 则其总曲率为:()25424ππππ⨯-+=.(2)设顶点数、棱数、面数分别为n 、l 、m ,所以有2n l m -+= 设第i 个面的棱数为i x ,所以122m x x x l +++=所以总曲率为:()()()122222m n x x x ππ--+-++-⎡⎤⎣⎦()222n l m ππ=--()24n l m ππ=-+=所以这类多面体的总曲率是常数. 【点睛】本题考查立体几何的新定义问题,能够正确读懂“曲率”的概率是解决问题的关键.13.(2020·北京101中学高二期中)已知集合(){}()12,,,|,1,2,,1n n i R x x x x R i n n =∈=≥,定义n R 上两点()12,,,n A a a a ,()12,,,n B b b b 的距离()1,ni i i d A B a b ==-∑.(1)当2n =时,以下命题正确的有__________(不需证明): ①若()1,2A ,()4,6B ,则(),7d A B =;②在ABC 中,若90C =∠,则()()()222,,,d A C d C B d A B ⎡⎤⎡⎤⎡⎤+=⎣⎦⎣⎦⎣⎦; ③在ABC 中,若()(),,d A B d A C =,则B C ∠=∠;(2)当2n =时,证明2R 中任意三点A B C ,,满足关系()()(),,,d A B d A C d C B ≤+; (3)当3n =时,设()0,0,0A ,()4,4,4B ,(),,P x y z ,其中x y z Z ∈,,,()()(),,,d A P d P B d A B +=.求满足P 点的个数n ,并证明从这n 个点中任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83. 【答案】(1)①;(2)证明见解析;(3)125n =,证明见解析. 【分析】(1)①根据新定义直接计算.②根据新定义,写出等式两边的表达式,观察它们是否相同,即可判断;③由新定义写出等式()(),,d A B d A C =的表达式,观察有无AB AC =; (2)由新定义,写出不等式两边的表达式,根据绝对值的性质证明;(3)根据新定义,及绝对值的性质得P 点是以AB 为对角线的正方体的表面和内部的整数点,共125个,把它们分布在五个平面(0,1,2,3,4)z =上,这五个面一个面取3个点,相邻面上取一个点,以它们为顶点构成三棱锥(能构成时),棱锥的体积不超过83,然后任取11点中如果没有4点共面,但至少有一个平面内有3个点.根据这3点所在平面分类讨论可得. 【详解】(1)当2n =时,①若()1,2A ,()4,6B ,则(),41627d A B =-+-=,①正确;②在ABC 中,若90C =∠,则222AC BC AB +=,设112233(,),(,),(,)A x y B x y C x y , 所以222222131323231212()()()()()()x x y y x x y y x x y y -+-+-+-=-+-而()2221212121221212()()()2)),((x x y y x x y y d A x B x y y =⎡⎤⎣-+-+⎦=--+--, ()()22,,d A C d C B ⎡⎤⎡⎤+=⎣⎦⎣⎦22221313232313132323()()()()2()()2()()x x y y x x y y x x y y x x y y -+-+-+-+--+--,但1313232312122()()2()()2()()x x y y x x y y x x y y --+--=--不一定成立,②错误;③在ABC 中,若()(),,d A B d A C =,在②中的点坐标,有12121313x x y y x x y y -+-=-+-,但1212131322x x y y x x y y -⋅-=-⋅-不一定成立,因此AB AC =不一定成立,从而B C ∠=∠不一定成立,③错误. 空格处填①(2)证明:设112233(,),(,),(,)A x y B x y C x y ,根据绝对值的性质有132312x x x x x x -+-≥-,132312y y y y y y -+-≥-,所以(,)(,)(,)d A C d B C d A B +≥., (3)(,)12d A B =,44,44,44x x y y z z +-≥+-≥+-≥,所以(,)(,)12d A P d B P +≥,当且仅当以上三个等号同时成立,(,)(,)12d A P d B P +=又由已知()()(),,,d A P d P B d A B +=,∴04,04,04x y z ≤≤≤≤≤≤, 又,,x y z Z ∈,∴,,0,1,2,3,4x y z =,555125⨯⨯=,点P 是以AB 为对角线的正方体内部(含面上)的整数点,共125个,125n =. 这125个点在0,1,2,3,4z z z z z =====这五面内.这三个平面内,一个面上取不共线的3点,相邻面上再取一点构成一个三棱锥.则这个三棱锥的体积最大为118441323V =⨯⨯⨯⨯=, 现在任取11个点,若有四点共面,则命题已成立,若其中无4点共面,但11个点分在5个平面上至少有一个平面内有3个点(显然不共线),若这三点在1,2,3z z z ===这三个平面中的一个上,与这个面相邻的两个面上如果有一点,那么这一点与平面上的三点这四点可构成三棱锥的四个顶点,其体积不超过83,否则还有8个点在平面0z =和4z =上,不合题意,若这三个点在平面0z =或5z =上,不妨设在平面0z =,若在平面1z =在一个点,则同样四点构成的三棱锥体积不超过83,否则剩下的8个点在2,3,4z z z ===三个平面上,只能是3,3,2分布,不管哪一种分布都有四点构成的三棱锥体积不超过83,综上,任取11个点,其中必存在4个点,它们共面或者以它们为顶点的三棱锥体积不大于83.【点睛】关键点点睛:本题新定义距离(,)d A B ,解题关键是利用新定义转化为绝对值,利用绝对值的性质解决一些问题.本题还考查了抽屉原理,11个放在5个平面上,至少有一个平面内至少有3点,由此分类讨论可证明结论成立.14.(2016·上海市实验学校高二期末)(1)如图,对于任一给定的四面体1234A A A A ,找出依次排列的四个相互平行的平面1α,2α,3α,4α,使得()1,2,3,4i i A i α∈=,且其中每相邻两个平面间的距离都相等;(2)给定依次排列的四个相互平行的平面1α,2α,3α,4α,其中每相邻两个平面间的距离为1,若一个正四面体1234A A A A 的四个顶点满足:()1,2,3,4i i A i α∈=,求该正四面体1234A A A A 的体积.【答案】(1)见解析; (2 【分析】(1)根据题意要作出相互平行且相邻距离相等的平面,所以先作直线平行,且取等分点,例如可取41A A 的三等分点2P ,3P ,13A A 的中点M ,24A A 的中点N ,则有223//A P NP ,332//A P MP ,从而可得面面平行; (2)先将正四面体补形为正方体,结合条件确定正方体的棱长,即可求正四面体1234A A A A 的体积. 【详解】(1)取41A A 的三等分点2P ,3P ,13A A 的中点M ,24A A 的中点N , 过三点2A ,2P ,M 作平面2α,过三点3A ,3P ,N 作平面3α, 因为223//A P NP ,332//AP MP ,所以平面2//α平面3α, 再过点1A ,4A 分别作平面1α,4α与平面2α平行,那么四个平面,2α,3α,4α依次相互平行, 由线段41A A 被平行平面1α,2α,3α,4α截得的线段相等知,每相邻两个平面间的距离相等,故1α,2α,3α,4α为所求平面.(2)如图,将此正四面体补形为正方体1111ABCD A BC D -(如图), 分别取AB 、CD 、11A B 、11C D 的中点E 、F 、1E 、1F ,平面11DEE D 与11BFF B 是分别过点2A 、3A 的两平行平面,若其距离为1,则正四面体1234A A A A 满足条件,右图为正方体的下底面,设正方体的棱长为a ,若1AM MN ==,因为12AE a =,DE =,在直角三角形ADE 中,AM DE ⊥,所以1122a a a =⋅,所以a ==,所以此正四面体的体积为3311432V a a =-⋅⋅=.【点睛】本题考查面面平行判定以及补形法求体积,考查空间想象能力以及基本分析论证与求解能力,属较难题.。

2019年三年高考数学(理)真题分类解析:专题11解三角形

2019年三年高考数学(理)真题分类解析:专题11解三角形

高考数学精品复习资料2019.5专题11解三角形考纲解读明方向考点内容解读要求高考示例常考题型预测热度1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题掌握20xx山东,9;20xx浙江,14;20xx天津,15;20xx北京,15;20xx课标全国Ⅱ,13;20xx天津,3;20xx天津,13选择题填空题★★★2.正、余弦定理的应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题掌握20xx课标全国Ⅱ,17;20xx课标全国Ⅲ,17;20xx江苏,18;20xx课标全国Ⅲ,8;20xx山东,16;20xx浙江,16;20xx湖北,13解答题★★★分析解读1.利用正弦定理、余弦定理解三角形或者求解平面几何图形中有关量的问题,需要综合应用两个定理及三角形有关知识.2.正弦定理和余弦定理的应用比较广泛,也比较灵活,在高考中常与面积或取值范围结合进行考查.3.会利用数学建模思想,结合三角形的知识,解决生产实践中的相关问题.高考全景展示1.【理数全国卷II】在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选 A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.2.【浙江卷】在△ABC中,角A,B,C所对的边分别为a,b,c.若a=,b=2,A=60°,则sin B=___________,c=___________.【答案】3点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化为边和角之间的关系,从而达到解决问题的目的.3.【全国卷Ⅲ理】的内角的对边分别为,,,若的面积为,则A. B. C. D.【答案】C【解析】分析:利用面积公式和余弦定理进行计算可得。

江苏省2019高考数学二轮复习 专题一 三角 1.3 大题考法—解三角形讲义(含解析)

江苏省2019高考数学二轮复习 专题一 三角 1.3 大题考法—解三角形讲义(含解析)

第三讲 大题考法——解三角形题型(一)三角变换与解三角形的综合问题主要考查利用正、余弦定理求解三角形的边长或角的大小(或三角函数值),且常与三角恒等变换综合考查.[典例感悟][例1] (2018·南京学情调研)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos B =错误!. (1)若c =2a ,求sin Bsin C 的值;(2)若C -B =错误!,求sin A 的值.[解] (1)法一(角化边):在△ABC 中,因为cos B =45,所以错误!=错误!.因为c =2a ,所以错误!=错误!,即错误!=错误!, 所以错误!=错误!.又由正弦定理得,错误!=错误!,所以错误!=错误!。

法二(边化角):因为cos B =错误!,B ∈(0,π), 所以sin B =错误!=错误!.因为c =2a ,由正弦定理得sin C =2sin A ,所以sin C =2sin (B +C )=错误!cos C +错误!sin C , 即-sin C =2cos C.又因为sin 2C +cos 2C =1,sin C >0,解得sin C =错误!, 所以错误!=错误!。

(2)因为cos B =错误!,所以cos 2B =2cos 2B -1=错误!. 又0<B <π,所以sin B =1-cos 2B =错误!, 所以sin 2B =2sin B cos B =2×错误!×错误!=错误!。

因为C -B =错误!,即C =B +错误!, 所以A =π-(B +C )=错误!-2B , 所以sin A =sin 错误!=sin 3π4cos 2B -cos 错误!sin 2B=错误!×错误!-错误!×错误! =错误!。

[方法技巧]三角变换与解三角形综合问题求解策略(1)三角变换与解三角形综合问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的,其基本步骤是:(2)三角变换与解三角形的综合问题要关注三角形中的隐藏条件,如A+B+C=π,sin(A+B)=sin C,cos(A+B)=-cos C,以及在△ABC中,A>B⇔sin A>sin B等.[演练冲关]1.在△ABC中,a,b,c分别为内角A,B,C的对边,且b sin 2C=c sin B。

202新数学复习第三章三角函数解三角形3.3.两角和与差的三角公式学案含解析

202新数学复习第三章三角函数解三角形3.3.两角和与差的三角公式学案含解析

第三节简单的三角恒等变换课标要求考情分析1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式推导出两角差的正弦、正切公式.3.能利用两角差的余弦公式推导出两角和的正弦、余弦、正切公式,推导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.1。

利用两角和与差的正弦、余弦、正切公式及二倍角公式进行化简、求值是高考考查的热点,本部分内容常与三角函数的性质、向量、解三角形的知识相结合命题.2.命题形式多种多样,既有选择题、填空题,也有综合性的解答题.知识点一基本公式1.两角和与差的正弦、余弦、正切公式C(α-β):cos(α-β)=cosαcosβ+sinαsinβ.C(α+β):cos(α+β)=cosαcosβ-sinαsinβ。

S(α+β):sin(α+β)=sinαcosβ+cosαsinβ.S(α-β):sin(α-β)=sinαcosβ-cosαsinβ。

T(α+β):tan(α+β)=错误!(α,β,α+β≠错误!+kπ,k∈Z).T(α-β):tan(α-β)=错误!(α,β,α-β≠错误!+kπ,k∈Z).2.二倍角的正弦、余弦、正切公式S2α:sin2α=2sinαcosα.C2α:cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α。

T2α:tan2α=2tanα1-tanα错误!知识点二三角公式的变形技巧1.降幂公式:cos2α=错误!,sin2α=错误!。

2.升幂公式:1+cos2α=2cos2α,1-cos2α=2sin2α。

3.公式变形:tanα±tanβ=tan(α±β)(1∓tanαtanβ).4.辅助角公式:a sin x+b cos x=a2+b2sin(x+φ)错误!知识点三三角恒等变换1.重视三角函数的“三变”:“三变”是指“变角、变名、变式".(1)变角:对角的分拆要尽可能化成同角、特殊角;(2)变名:尽可能减少函数名称;(3)变式:对式子变形一般要尽可能有理化、整式化、降低次数等.2.在解决求值、化简、证明问题时,一般是观察角、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.1.思考辨析判断下列结论正误(在括号内打“√”或“×")(1)存在实数α,β,使等式sin(α+β)=sinα+sinβ成立.(√)(2)在锐角△ABC中,sin A sin B和cos A cos B大小不确定.(×)(3)公式tan(α+β)=tanα+tanβ1-tanαtanβ可以变形为tanα+tanβ=tan(α+β)(1-tanαtanβ),且对任意角α,β都成立.(×)(4)公式a sin x+b cos x=错误!sin(x+φ)中φ的取值与a,b的值无关.(×)解析:根据正弦、余弦和正切的和角、差角公式知(2)(3)(4)是错误的,(1)是正确的.2.小题热身(1)(2019·全国卷Ⅰ)tan255°=(D)A.-2-错误!B.-2+错误!C.2-错误!D.2+错误!(2)若sinα=错误!,则cos2α=(B)A.错误!B.错误!C.-错误!D.-错误!(3)sin347°cos148°+sin77°·cos58°=错误!.(4)已知tan(α-错误!)=错误!,则tanα=错误!。

2019届浙江省基于高考试题的复习资料——解三角形(解析版)

2019届浙江省基于高考试题的复习资料——解三角形(解析版)

三、基本初等函数Ⅱ(解三角形)一、高考考什么?[考试说明]7.掌握正弦定理、余弦定理及其应用。

[知识梳理]1.两角和与差的正弦、余弦、正切公式及倍角公式:()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±−−−→=()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 21cos2sin 22tan tan 21tan αβαβαβαβααααααβααβααβααααα=±=−−−→=-↓=-=-±±=⇒-↓=-令 = =2.降幂公式:21cos 2cos 2αα+=,21cos 2sin 2αα-= 升幂公式:21cos 22cos αα+=,21cos 22sin αα-=。

3.辅助角:()sin cos a x b x x θ+=+(其中θ角所在的象限由,a b 的符号确定,θ角的值由tan baθ=确定) 4.三角形中的有关公式:(1)内角和定理:三角形三角和为πsin A sin(B C);=+cos A cos(B C);=-+ A B C cossin ;22+= (2)边角关系:大角对大边;两边之和大于第三边,两边之差小于第三边 (3)正弦定理:2sin sin sin a b c R A B C===(R 为三角形外接圆的半径)(4)余弦定理:2222222cos ,cos 2b c a a b c bc A A bc+-=+-=(5)面积公式:111sin ()222a S ah ab C r a bc ===++(其中r 为三角形内切圆半径,R 为外接圆半径)[全面解读]解三角形主要涉及两大定理和一个面积公式,从考试说明和考题来看,解三角形与三角函数联系紧密,诱导公式、和差角公式穿插使用较为常见,在不同的年份均有涉及,而且试题难度中等,主要考查基础知识和基本技能,近几年相对稳定。

高考数学复习重难点02 三角函数与解三角形

高考数学复习重难点02  三角函数与解三角形

重难点02 三角函数与解三角形【高考考试趋势】新高考环境下,三角函数与解三角形依然会作为一个重点参与到高考试题中,其中对应的题目的分布特点与命题规律分析可以看出,三角试题每年都考,而且文理有别,或"一大一小",或"三小",或"二小"("小"指选择题或填空题,"大"指解答题),解答题以简单题或中档题为主,选择题或填空题比较灵活,有简单题,有中档题,也有对学生能力和素养要求较高的题.三角函数的图象与性质是高考考查的重点及热点内.备考时要熟练掌握三角函数的图象与性质、三角恒等变换公式及正、余弦定理,在此基础上掌握一些三角恒变换的技巧,如角的变换,函数名称的变换等,此外,还要注意题目中隐含的各种限制条件,选择合理的解决方法,灵活实现问题的转化鉴于新课标核心素养的要求,三角函数与解三角形在实际背景下的应用也将是一个考试试点.考点主要集中在三角函数图像及其性质的应用,三角函数恒等变换,以及正弦余弦定理的应用.本专题在以往高考常见的题型上,根据新课标的要求,精选了部分预测题型,并对相应的题型的解法做了相应的题目分析以及解题指导,希望你在学习完本专题以后能够对三角函数以及解三角形的题型以及解答技巧有一定的提升.【知识点分析以及满分技巧】三角函数与解三角形:从返几年高考情况来看,高考对本部分内容的考查主要有,1.三解恒等变换与三角函数的图象、性质相结合;2.三角恒等变换与解三角形相结合;3.平面向量、不等式、数列与三角函数和解三角形相结合,难度一般不大,属中档题型.三角函数图形的性质以及应用:对于选择题类型特别是对称中心,对称轴等问题选项中特殊点的带入简单方便,正确率比较高.总额和性的问题一般采用换元法转化成最基本的函数问题去解答.对于三角函数有关恒等变换的题目应注重公式的变形.解三角形类型的大题中,重点是角边转化,但是要注意两边必须同时转化,对于对应的面积的最大值问题以及周长的最值问题一般转化成基本不等式去求,但是在用基本不等式的时候应注意不等式等号成立的条件.【常见题型限时检测】(建议用时:35分钟)1.(2020·四川凉山彝族自治州·高三一模(理))中,,则ABCA sin 2πA ⎛⎫+=⎪⎝⎭( )tan 2A =ABC .D21-【答案】C【分析】因为在中,,ABC Asin 2πA ⎛⎫+=⎪⎝⎭所以A为锐角,cos A =所以,tan22A ==故选:C2.(2020·镇远县文德民族中学校高三月考(理))在中,内角、、所对ABC A A B C 的边分别为,若的面积为,则(),,a b c ABC A cosab C tan C =A.B .C D 122【答案】B【分析】由三角形的面积公式可得的面积为,ABC A 1sin 2ab C又因为的面积为,ABC A cos ab C 所以,即,1sin cos 2ab C ab C =sin 2cos C C =所以,sin tan 2cos CC C ==故选:B3.(2021·江苏泰州市·高三期末)已知向量,,则(1,2)AB = (cos ,sin )AC θθ=面积的最大值为( )ABC A AB .CD .112【答案】C【分析】,(1,2)AB= (cos ,sin )AC θθ=,1AB ∴===,其中,cos sin()AB AC A AB ACθθθϕ⋅==+=+⋅1tan 2ϕ=故,sin cos()A θϕ=+,1sin )2ABCS AB AC A θϕ=⋅⋅=+A故当时,即时,.cos()1θϕ+=2,k k Z θϕπ+=∈ABC S A 故选:C.4.(2020·四川成都市·高三其他模拟(理))已知且满足(0,)απ∈,则( )7cos cos 4418ππαα⎛⎫⎛⎫-+=-⎪ ⎪⎝⎭⎝⎭cos 2α=A .B .C .D .718-71879-79【答案】C 【分析】cos cos cos cos sin sin cos cos sin sin 444444ππππππαααααα⎛⎫⎛⎫-+=+-⎛⎫⎛⎫ ⎪ ⎪⎪⎝⎭⎪⎝⎭⎝⎝⎭⎭ ,()()()221117cos sin cos sin cos sin cos 222218ααααααα=+-=-==-.7cos 29α∴=-故选:C.5.(2020·山西高三期中(理))将函数的图象向左平移个单位后()()sin 2f x x ϕ=+π4得到函数的图象,的图象在处切线垂直于y 轴,且,()g x ()g x π6x =()ππ04g g ⎛⎫+> ⎪⎝⎭则当取最小正数时,不等式的解集是( )ϕ()12g x ≥A .B .()πππ,π36k k k ⎡⎤-+∈⎢⎥⎣⎦Z ()ππ,π3k k k ⎡⎤+∈⎢⎥⎣⎦Z C .D .()2ππ,ππ3k k k ⎡⎤--∈⎢⎥⎣⎦Z ()ππ,π2k k k ⎡⎤-∈⎢⎥⎣⎦Z 【答案】C【分析】将函数的图象向左平移个单位后,()()sin 2f x x ϕ=+π4得到函数的图象,()()πsin 2cos 22g x x x ϕϕ⎛⎫=++=+ ⎪⎝⎭的图象在处切线垂直于y 轴,即的图象在处切线斜率为零,()g x π6x =()g x π6x =由 得,则 若()()'2cos 2g x x ϕ=-+ππ2sin 2066g ϕ⎛⎫⎛⎫'=-⨯+= ⎪ ⎪⎝⎭⎝⎭,,3k k Z πϕπ+=∈取=,此时,,.ϕ2π3()2πsin 23f x x ⎛⎫=+ ⎪⎝⎭()2πcos 23g x x ⎛⎫=+ ⎪⎝⎭此时,,不满足条件.()π1π042g g ⎛⎫+=--< ⎪⎝⎭若取,,,π3ϕ=-()πcos 23g x x ⎛⎫=- ⎪⎝⎭()π1π042g g ⎛⎫+=> ⎪⎝⎭满足条件.则当取最小正数时,不等式,ϕ5π3()5π1cos 232g x x ⎛⎫=+ ⎪⎝⎭≥即,故,求得.5π1cos 232x ⎛⎫+ ⎪⎝⎭≥5π5π7π2π22π333k x k +≤+≤+πππ3k x k ≤≤+由于函数的周期为,故,即.()f x ππππ3k x k ≤≤+2ππππ3k x k -≤≤-故不等式的解集为,2ππππ,3x k x k k ⎧⎫-≤≤-∈⎨⎬⎩⎭Z故选:C .6.(2020·宁夏长庆高级中学高三月考(理))在中,角、、所对的边分别ABCA ABC 为、、,且,,,则a b c 1sin cos sin cos 3a A C c AA c +=cos B =b =ABC A 的面积为()A .B .CD 322【答案】A【分析】由正弦定理得:,21sin cos sin sin cos sin 3A C C A A C+=()()2sin cos sin sin cos sin sin cos cos sin sin sin A C C A A A A C A C A A C ∴+=+=+,1sin sin sin 3A B C==,,()0,B π∈cos B =sin B ∴=,.1sin3A C =13c =a ∴=由余弦定理得:,解得:,22222225422cos 2939b ac ac B c c c c =+-=+-==3c =,.a ∴=113sin 3222ABC S ac B ∴===A 故选:A.7.(2020·河南高三月考(理))已知中,角、、所对应的边分别为、ABC A A B C a 、,且,若的b c 22226c ab a b +=++ABC A 3cos sin 2πA B ⎛⎫+⋅ ⎪⎝⎭取值范围为()A .B .C .D .13,24⎛⎤⎥⎝⎦30,4⎛⎤ ⎥⎝⎦30,2⎛⎤ ⎥⎝⎦13,22⎛⎤ ⎥⎝⎦【答案】B【分析】由三角形的面积公式可得1sin 2ABC S ab C ==A sin ab C =,由余弦定理可得,22226c ab a b +=++ 222263cos 22a b c ab ab C ab ab ab +---===由,可得,解得,,22sin cos 1C C +=2231ab ab -⎛⎫+= ⎪⎝⎭6ab =1cos 2C ∴=,可得,则,0C π<< 3C π=203A π<<所以,()31cos sin sin sinsin sin sin sin 22πA B A B A A C A A A ⎛⎫⎛⎫+⋅==+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,211cos 211sin cos 2sin 224264A A A A A A π-⎛⎫=+=+=-+ ⎪⎝⎭,,则,203A π<< 72666A πππ∴-<-<1sin 2126A π⎛⎫-<-≤ ⎪⎝⎭因此,,23c s os 113in 0,2644sin 2πA πA B ⎛⎫⎛⎤=-+⎥⎛⎫+⋅ ⎪⎝⎭∈⎪ ⎝⎭⎝⎦故选:B.8.(2020·河南高三月考(理))已知函数()在()cos f x x xωω=+0>ω上单调递增,且为函数图象的一条对称轴,则( ),33ππ⎛⎫- ⎪⎝⎭34x π=-()f x ω=A .B .C .D .13568923【答案】C【分析】因为,且为函数图()cos 2sin()6f x x x x πωωω=+=+34x π=-()f x 象的一条对称轴,所以,33()2sin(2446f πππω-=-+=±故,3462k πππωπ-+=+k Z ∈解得,,4439k ω=--k Z ∈又函数在上单调递增,故,,33ππ⎛⎫- ⎪⎝⎭42()333T πππ≥+=,又,232T πω∴=≤0>ω可得,又,351243k -≤<-k Z ∈所以,此时,(经检验满足在上单调递增)1k =-89ω=,33ππ⎛⎫- ⎪⎝⎭故选:C9.(2020·安徽高三月考(理))已知函数的图()2sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭象既关于点中心对称,又关于直线对称,且函数在,08π⎛⎫-⎪⎝⎭8x π=()()g x f x =-上的零点不超过2个,现有如下三个数据:①;②;③,则0,6π⎛⎫⎪⎝⎭3ω=10ω=18ω=其中符合条件的数据个数为( )A .0B .1C .2D .3【答案】B【分析】由题意得,,,两式相加得,12882k k πωϕπππωϕπ⎧-+=⎪⎪⎨⎪+=+⎪⎩12,k k ∈Z 1242k k πϕπ+=+又因为,代入中,0,24ππϕϕ<<∴=282k ππωϕπ+=+得.当时,记,()2282k k ω=+∈Z 0,6x π⎛⎫∈ ⎪⎝⎭,4464t x ππππωω⎛⎫=+∈+⎪⎝⎭令,得,()0g x=2sin t =则至多有2个实数根,sin t =,464t πππω⎛⎫∈+ ⎪⎝⎭,解得,11644πππω∴+…015ω<…结合,()2282k k ω=+∈Z 观察可知,符合条件.10ω=故选:B.10.(2020·河南高三月考(理))已知,3π2πcos 263mαα⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,其中,则( )3π2πcos 263m ββ⎛⎫⎛⎫-+-=- ⎪ ⎪⎝⎭⎝⎭m ∈R ()cosαβ+=A .BC .D .12-12【答案】D【分析】设,则,易知是偶函数.当()3sin f x x x=+()'23cos f x x x =+()f x '时,,,所以;01x ≤<230x ≥cos 0x >()'0f x >当时,,,所以.所以恒成立,即在1≥x 233x ≥cos 1x ≥-()'0f x >()'0f x >()f x 定义域内单调递增.因为,所以为奇函数,从而的图象关于点()()3sin f x x x f x -=--=-()f x ()f x 对称,因为,()0,02ππππcos cos sin 3266ααα⎡⎤⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦所以,3π6α⎛⎫-+ ⎪⎝⎭32πππcos sin 2366mααα⎛⎫⎛⎫⎛⎫-=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭同理可得.33πππππcos sin 262666m ββββ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+--=-+-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦则,从而,即,ππ066f f αβ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭ππ066αβ-+-=π3αβ+=故.()π1cos cos32αβ+==故选:D二、解答题11.(2020·天津河北区·高三期末)已知的内角A ,B,C 的对边分别为a ,b ,c ,ABC A cos sin B b A =(1)求角B 的大小;(2)若的值;cos A =sin(2)A B -(3)若,,求边a 的值.2b =2c a =【答案】(1);(2;(33B π=【分析】(1,而为的内角,cos sinsin A B B A =A ABC A ,即,可得,sin B B =tan B =0B π<<3B π=(2)2sin(2)sin 2cos cos 2sin 2sin cos cos(2cos 1)sin A B A B A B A A B A B -=-=--,∵,可得,cos A =0A π<<sin A=1cos ,sin2B B ==∴,sin(2)A B -=+=(3)由余弦定理知:,又,,,2222cos a c ac Bb +-=2b =2c a =1cos 2B =∴,可得234a =a =12.(2021·河南郑州市·高三一模(理))在中,角的对边分别为ABC A ,,A BC ,,a b c,已知.45b c B ==∠=(1)求边的长﹔BC (2)在边上取一点,使得,求的值.BC D 4cos 5ADB Ð=sin DAC ∠【答案】(1);(23BC =【分析】在中,因为,,,ABCA b =c =45B ∠=由余弦定理,2222cos b a cac B =+-得2522a a =+-所以解得:或(舍)2230a a --=3a =1a =-所以.3BC =(2)在中,由正弦定理,ABC A sin sin bcB C ==所以sin C =在中,因为,ADC A ()4cos 180cos cos 5ADB ADB ADC -∠=-∠∠=-= 所以为钝角.ADC ∠而,180ADC C CAD ∠+∠+∠=所以为锐角C ∠故cos C ==因为,4cos 5ADC ∠=-所以,35sin ADC ∠===,()sin sin 180sin()DAC ADC C ADC C ∠=-∠-∠=∠+∠ sin cos cos sin ADC C ADC C =∠∠+∠∠3455==13.(2021·兴宁市第一中学高三期末)设的内角A ,B ,C 所对的边长分别为a ,ABC A b ,c 且,.cos 1a B =sin 2b A =(1)求;()sin A C +(2)当取最小值时,求的面积.22b c +ABC A 【答案】(1;(2).12【分析】:(1)由正弦定理及与得:cos 1a B =sin 2b A =,(R 是的外接圆半径)2sin cos 1R A B =2sin sin 2R B A =ABC A 两式相除,得1cos 2sin B B =设,,∵B 是的内角,∴由得,cos B k =sin 2B k =ABC A sin 0B >0k >∵,22sin cos 1B B +=∴,,k =cos B =sin B=∴sin()sin()sin A C B B π+=-==(2)由(1)及余弦定理知22222cos 52b a c ac B c c=+-=+-∴22221992252222b c c c c ⎛⎫+=-+=-+≥⎪⎝⎭当且仅当时,取得最小值.12c =22b c +92又,∴.sin 2b A =()11111sin sin 222222ABC S bc A b A c ==⋅=⨯⨯=A ∴最小时的面积为.22b c +ABC A 1214.(2020·四川凉山彝族自治州·高三一模(理))已知函数(()()sin λf x ωx φ=+,,)的部分图象如图所示,为图象与轴的交点,,分别0λ>0>ω02πϕ<<A xBC 为图象的最高点和最低点,中,角,,所对的边分别为,,,ABC A A B Ca b c 的面积.ABC A )222S a c b =+-(1)求的角的大小;ABC A B (2)若,点的坐标为,求的最小正周期及的值.b =B 1,3λ⎛⎫ ⎪⎝⎭()f x ϕ【答案】(1);(2)最小正周期为,.3π26π=ϕ【分析】(1)根据,利用余弦定理和三角形面积公式,易得)222S a c b =+-,即求解.12acsinB =tanB =由,利用余弦定理可得,进而得到函数的最小正周期()22,3a c b B π===1c =()f x 为,然后由在函数的图象上,求得即可.213B ⎛ ⎝()f x ()f x 【详解】(1),)222S a c b =+- 由余弦定理得,∴S =又,12S acsinB=,12acsinB =即,tanB =,()0,B π∈.3B π∴=由题意得,,()22,3a c b B π===由余弦定理,∴2222cos b a c ac B =+-得,2224433c c c cosπ+-=即,1c =设边与轴的交点为BC x ,D 则为正三角形,ABD ∆且,λ∴=2AD =函数的最小正周期为,∴()f x 2,22πωπ∴==()()f x x πϕ=∴+又点在函数的图象上,13B ⎛ ⎝()f x13f ⎛⎫∴=⎪⎝⎭,3πϕ⎛⎫+= ⎪⎝⎭即13sin πϕ⎛⎫+= ⎪⎝⎭,2,32k k Zππϕπ∴+=+∈即2,6k k Zπϕπ=+∈又,02πϕ<<.6πϕ∴=15.(2021·江苏泰州市·高三期末)在中,角A ,B ,C 所对的边分别为a ,b ,c .ABC A 已知,,成等差数列.cos a C cos b B cos c A (1)求角B 的大小;(2)若,求的值.4cos 5A =sin C 【答案】(1);(2.3π【分析】(1),,成等差数列,cos ,a C ∴cos b B cos c A ,2cos cos cos b B a C c A ∴=+由正弦定理,,2sin cos sin cos sin cos sin()B B A C C A A C =+=+中,,,ABC A A B C π++=sin()sin()sin A C B B π∴+=-=,2sin cos sin B B B ∴=又,,(0,)B π∈ sin 0B ∴>,.1cos 2B ∴=3B π∴=(2),,(0,)A π∈ sin 0A ∴>,3sin 5A ∴==sin sin()sin cos sin cos C A B A B B A∴=+=+.314525=⨯+=。

2019版高考数学总复习专题三三角函数3.2解三角形基础题课件理

2019版高考数学总复习专题三三角函数3.2解三角形基础题课件理

-9-
高考真题体验·对方向
新题演练提能·刷高分
1.(2018西南名校联盟适应性考试)在△ABC中,若原点到直线xsin
A+ysin B+sin C=0的距离为1,则此三角形为( )
A.直角三角形 B.锐角三角形
C.钝角三角形 D.不能确定
答案 A
|sin������|
解析 由已知可得 sin2������ + sin2������ =1,
解析 (方法1)设BC边上的高为AD,则BC=3AD. 结合题意知BD=AD,DC=2AD,
所以 AC= ������������2 + ������������2 = 5AD,AB= 2AD. 由余弦定理,得 cos A=������������22+���������������������·������2���-������������������2 =2���2������×���2+2���5������������������×���2-59������������������������2=- 1100,故选 C.
∴sin2C=sin2A+sin2B,
∴c2=a2+b2,故三角形为直角三角形.选A.
-10-
高考真题体验·对方向
新题演练提能·刷高分
2.(2018 广东茂名联考)在△ABC 中,内角 A,B,C 的对边分别为 a,b,c,
若 2bcos C+c=2a,且 b= 13,c=3,则 a=( )
A.1
高考真题体验·对方向
新题演练提能·刷高分
-11-
3.(2018 湖南益阳 4 月调研)在△ABC 中,角 A,B,C 所对的边分别为

高中数学 必修二 第三章 3.3 3.3.1课后习题

高中数学  必修二  第三章 3.3 3.3.1课后习题

第三章 3.3 3.3.1基础巩固一、选择题1.直线2x +3y +8=0和直线x -y -1=0的交点坐标是( ) A .(-2,-1) B .(-1,-2) C .(1,2) D .(2,1)[答案] B[解析] 解方程组⎩⎪⎨⎪⎧2x +3y +8=0,x -y -1=0,得⎩⎪⎨⎪⎧x =-1,y =-2,即交点坐标是(-1,-2). 2.经过两点A (-2,5),B (1,-4)的直线l 与x 轴的交点的坐标是( ) A .(-13,0)B .(-3,0)C .(13,0)D .(3,0)[答案] A[解析] 过点A (-2,5)和B (1,-4)的直线方程为3x +y +1=0,故它与x 轴的交点的坐标为(-13,0).3.若三条直线2x +3y +8=0,x -y =1,和x +ky =0相交于一点,则k 的值等于( ) A .-2 B .-12C .2D .12[答案] B[解析] 由⎩⎪⎨⎪⎧x -y =12x +3y +8=0得交点(-1,-2),代入x +ky =0得k =-12,故选B .4.直线kx -y +1=3k ,当k 变动时,所有直线都通过定点( ) A .(0,0) B .(0,1) C .(3,1)D .(2,1)[答案] C[解析] 方程可化为y -1=k (x -3),即直线都通过定点(3,1).5.经过直线2x +y +5=0与x -3y +4=0的交点且斜率为-319的直线的方程为( )A .19x -3y =0B .19x -9y =0C .9x +19y =0D .3x +19y =0[答案] D[解析] 由⎩⎪⎨⎪⎧2x +y +5=0,x -3y +4=0解得交点坐标(-197,37),又k =-319,则方程为y -37=-319(x +197),即3x +19y =0. 6.与直线3x -4y +5=0关于x 轴对称的直线方程为( ) A .3x +4y -5=0 B .3x +4y +5=0 C .3x -4y +5=0 D .3x -4y -5=0[答案] B[解析] 在方程3x -4y +5=0中,用-y 代替y ,得3x +4y +5=0即为所求直线的方程. 二、填空题7.在△ABC 中,高线AD 与BE 的方程分别是x +5y -3=0和x +y -1=0,AB 边所在直线的方程是x +3y -1=0,则△ABC 的顶点坐标分别是A _________;B _________;C _________.[答案] (-2,1) (1,0) (2,5)[解析] 高线AD 与边AB 的交点即为顶点A ,高线BE 与边AB 的交点即为顶点B ,顶点C 通过垂直关系进行求解.8.直线(a +2)x +(1-a )y -3=0与直线(a +2)x +(2a +3)y +2=0不相交,则实数a =_________.[答案] -2或-23[解析] 由题意,得(a +2)(2a +3)-(1-a )(a +2)=0,解得a =-2或-23.三、解答题9.已知直线x +y -3m =0和2x -y +2m -1=0的交点M 在第四象限,求实数m 的取值范围.[分析] 解方程组得交点坐标,再根据点M 在第四象限列出不等式组,解得m 的取值范围.[解析] 由⎩⎪⎨⎪⎧x +y -3m =0,2x -y +2m -1=0,得⎩⎪⎨⎪⎧x =m +13,y =8m -13.∴交点M 的坐标为(m +13,8m -13).∵交点M 在第四象限, ∴⎩⎪⎨⎪⎧m +13>0,8m -13<0,解得-1<m <18.∴m 的取值范围是(-1,18).10.直线l 过定点P (0,1),且与直线l 1:x -3y +10=0,l 2:2x +y -8=0分别交于A 、B 两点.若线段AB 的中点为P ,求直线l 的方程.[解析] 解法1:设A (x 0,y 0),由中点公式,有B (-x 0,2-y 0),∵A 在l 1上,B 在l 2上,∴⎩⎪⎨⎪⎧ x 0-3y 0+10=0-2x 0+(2-y 0)-8=0⇒⎩⎪⎨⎪⎧x 0=-4y 0=2, ∴k AP =1-20+4=-14,故所求直线l 的方程为:y =-14x +1,即x +4y -4=0.解法2:设所求直线l 方程为: y =kx +1,l 与l 1、l 2分别交于M 、N .解方程组⎩⎪⎨⎪⎧ y =kx +1x -3y +10=0⇒N (73k -1,10k -13k -1)解方程组⎩⎪⎨⎪⎧y =kx +12x +y -8=0⇒M (7k +2,8k +2k +2)∵M 、N 的中点为P (0,1)则有:12(73k -1+7k +2)=0⇒∴k =-14. 故所求直线l 的方程为x +4y -4=0.解法3:设所求直线l 与l 1、l 2分别交于M (x 1,y 1)、N (x 2,y 2),P (0,1)为MN 的中点,则有:⎩⎪⎨⎪⎧ x 1+x 2=0,y 1+y 2=2⇒⎩⎪⎨⎪⎧x 2=-x 1,y 2=2-y 1.代入l 2的方程,得:2(-x 1)+2-y 1-8=0即2x 1+y 1+6=0.解方程组⎩⎪⎨⎪⎧x 1-3y 1+10=02x 1+y 1+6=0⇒M (-4,2).由两点式:所求直线l 的方程为x +4y -4=0. 解法4:同解法1,设A (x 0,y 0),⎩⎪⎨⎪⎧x 0-3y 0+10=02x 0+y 0+6=0,两式相减得x 0+4y 0-4=0,(1) 考察直线x +4y -4=0,一方面由(1)知A (x 0,y 0)在该直线上;另一方面,P (0,1)也在该直线上,从而直线x +4y -4=0过点P 、A .根据两点决定一条直线知,所求直线l 的方程为:x +4y -4=0.能力提升一、选择题1.已知直线l 1的方程为Ax +3y +C =0,直线l 2的方程为2x -3y +4=0,若l 1,l 2的交点在y 轴上,则C 的值为( )A .4B .-4C .±4D .与A 有关[答案] B[解析] 由题意,l 2与y 轴的交点在l 1上,又l 2与y 轴的交点为(0,43),所以A ×0+3×43+C =0,C =-4.故选B .2.已知点M (0,-1),点N 在直线x -y +1=0上,若直线MN 垂直于直线x +2y -3=0,则N 点的坐标是( )A .(-2,-3)B .(2,1)C .(2,3)D .(-2,-1)[答案] C[解析] 将A 、B 、C 、D 四个选项代入x -y +1=0否定A 、B ,又MN 与x +2y -3=0垂直,否定D ,故选C .3.过两直线3x +y -1=0与x +2y -7=0的交点,并且与第一条直线垂直的直线方程是( )A .x -3y +7=0B .x -3y +13=0C .2x -y +7=0D .3x -y -5=0 [答案] B[解析] 由⎩⎪⎨⎪⎧3x +y -1=0,x +2y -7=0,得交点(-1,4).∵所求直线与3x +y -1=0垂直, ∴所求直线斜率k =13,∴y -4=13(x +1),即x -3y +13=0.4.已知直线mx +4y -2=0与2x -5y +n =0互相垂直,垂足为(1,p ),则m -n +p 为( ) A .24 B .20 C .0 D .-4[答案] B[解析] ∵两直线互相垂直,∴k 1·k 2=-1,∴-m 4·25=-1,∴m =10.又∵垂足为(1,p ),∴代入直线10x +4y -2=0得p =-2,将(1,-2)代入直线2x -5y +n =0得n =-12,∴m -n +p =20. 二、填空题5.已知直线5x +4y =2a +1与直线2x +3y =a 的交点位于第四象限,则a 的取值范围是_________.[答案] -32<a <2[解析] 解方程组⎩⎪⎨⎪⎧5x +4y =2a +1,2x +3y =a ,得⎩⎪⎨⎪⎧x =2a +37y =a -27,交点在第四象限,所以⎩⎪⎨⎪⎧2a +37>0,a -27<0,解得-32<a <2.6.已知直线l 1:a 1x +b 1y =1和直线l 2:a 2x +b 2y =1相交于点P (2,3),则经过点P 1(a 1,b 1)和P 2(a 2,b 2)的直线方程是_________.[答案] 2x +3y =1[解析] 由题意得P (2,3)在直线l 1和l 2上,所以有⎩⎪⎨⎪⎧2a 1+3b 1=1,2a 2+3b 2=1,则点P 1(a 1,b 1)和P 2(a 2,b 2)的坐标是方程2x +3y =1的解,所以经过点P 1(a 1,b 1)和P 2(a 2,b 2)的直线方程是2x +3y =1. 三、解答题7.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在的直线方程为x -2y -5=0,求(1)顶点C 的坐标; (2)直线BC 的方程.[解析] (1)由题意BH 与AC 垂直, ∴k BH ·k AC =12k AC =-1.∴k AC =-2,∴直线AC 的方程为2x +y -11=0.解方程组⎩⎪⎨⎪⎧2x -y -5=0,2x +y -11=0,得点C 的坐标为(4,3).(2)设B (x 0,y 0),得M (x 0+52,y 0+12),于是有x 0+5-y 0+12-5=0,即2x 0-y 0-1=0. 与x 0-2y 0-5=0联立, 解得点B 的坐标为(-1,-3). ∴直线BC 的方程为6x -5y -9=0.8.m 为何值时,直线l 1:4x +y -4=0,l 2:mx +y =0,l 3=2x -3my -4=0不能围成三角形?[解析] (1)先考虑三条直线中有两条直线平行或重合的情况. ①若m ≠0,则k 1=-4,k 2=-m ,k 3=23m, 当m =4时,k 1=k 2;当m =-16时,k 1=k 3;而k 2与k 3不可能相等.②若m =0,则l 1:4x +y -4=0,l 2:y =0,l 3:2x -4=0,这时三条直线能围成三角形. ∴当m =4或m =-16时,三条直线不能围成三角形.(2)再考虑三条直线共点的情况.将y =-mx 代入方程4x +y -4=0,得(4-m )x =4,当m ≠4时,x =44-m ,即l 1与l 2交于点P (44-m ,-m4-m ),将P 点坐标代入l 3的方程得84-m +12m 24-m -4=0,解得m =-1或m =23.∴m =-1或m =23时,l 1,l 2,l 3交于一点,不能围成三角形.综上所述,当m =-1,-16,23,4时,三条直线不能围成三角形.。

考点17 正、余弦定理及解三角形-高考全攻略之备战2019年高考数学(理)考点一遍过

考点17 正、余弦定理及解三角形-高考全攻略之备战2019年高考数学(理)考点一遍过

考点17 正、余弦定理及解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题. 2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.一、正弦定理 1.正弦定理在ABC △中,若角A ,B ,C 对应的三边分别是a ,b ,c ,则各边和它所对角的正弦的比相等,即sin sin sin a b c ==A B C.正弦定理对任意三角形都成立. 2.常见变形 (1)sin sin sin ,,,sin sin ,sin sin ,sin sin ;sin sin sin A a C c B ba Bb A a Cc A b C c B B b A a C c====== (2);sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b cA B C A B A C B C A B C+++++======+++++ (3)::sin :sin :sin ;a b c A B C = (4)正弦定理的推广:===2sin sin sin a b c R A B C,其中R 为ABC △的外接圆的半径. 3.解决的问题(1)已知两角和任意一边,求其他的边和角; (2)已知两边和其中一边的对角,求其他的边和角. 4.在ABC △中,已知a ,b 和A 时,三角形解的情况二、余弦定理 1.余弦定理三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍,即2222222222cos ,2cos 2cos .a b c bc A b a c ac B c a b ab C =+-=+-=+-,2.余弦定理的推论从余弦定理,可以得到它的推论:222222222cos ,cos ,cos 222b c a c a b a b c A B C bc ca ab+-+-+-===. 3.解决的问题(1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两角. 4.利用余弦定理解三角形的步骤三、解三角形的实际应用1.三角形的面积公式设ABC△的三边为a,b,c,对应的三个角分别为A,B,C,其面积为S.(1)12S ah= (h为BC边上的高);(2)111sin sin sin 222S bc A ac B ab C ===;(3)1()2S r a b c=++(r为三角形的内切圆半径).2.三角形的高的公式h A=b sin C=c sin B,h B=c sin A=a sin C,h C=a sin B=b sin A.3.测量中的术语(1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).(2)方位角从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(3)方向角相对于某一正方向的水平角.①北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③);②北偏西α,即由指北方向逆时针旋转α到达目标方向;③南偏西等其他方向角类似.(4)坡角与坡度①坡角:坡面与水平面所成的二面角的度数(如图④,角θ为坡角);②坡度:坡面的铅直高度与水平长度之比(如图④,i 为坡度).坡度又称为坡比. 4.解三角形实际应用题的步骤考向一 利用正、余弦定理解三角形利用正、余弦定理求边和角的方法:(1)根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置.(2)选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(3)在运算求解过程中注意三角恒等变换与三角形内角和定理的应用. 常见结论:(1)三角形的内角和定理:在ABC △中,π A B C ++=,其变式有:πA B C +=-,π222A B C+=-等. (2)三角形中的三角函数关系:i in(s n s )A B C =+; ()s os co c A B C =-+;sincos 22A B C +=; cos sin 22A B C+=.典例1 在ABC △中,内角所对的边分别为,若,,则ca的值为A.1 BC D【答案】D△的内角的对边分别为,且. 典例2 已知ABC(1)求;(2)若,线段的垂直平分线交于点,求的长.【解析】(1)因为,所以.由余弦定理得,又,所以.(2)由(1)知,根据余弦定理可得,所以.=,解得.由正弦定理得2从而cos B=.设的中垂线交于点,因为在Rt BDE △中,,所以cos BE BD B ===, 因为为线段的中垂线,所以.1.在ABC △中,a ,b ,c 分别是角A ,B ,C 的对边,且2sin sin cos sin cos C B a BB b A -=,则A =ABCD2.在ABC △中,边上一点满足,.(1)若,求边的长;(2)若,求.考向二 三角形形状的判断利用正、余弦定理判定三角形形状的两种思路:(1)“角化边”:利用正弦、余弦定理把已知条件转化为只含边的关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)“边化角”:利用正弦、余弦定理把已知条件转化为只含内角的三角函数间的关系,通过三角恒等变换,得出内角间的关系,从而判断出三角形的形状,此时要注意应用πA B C ++=这个结论. 提醒:在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免造成漏解.典例3 在ABC △中,角,,A B C 所对的边分别是,,a b c ,满足3cos cos sin sin cos 2A C A CB ++=,且,,a b c 成等比数列.(1)求角B 的大小; (2)若2,2tan tan tan a c ba A C B+==,试判断三角形的形状.(2)由2tan tan tan a c bA C B+=,利用正弦定理可得cos cos 2cos 1A C B +==,所以ABC △是等边三角形.3.在ABC △中,,,分别为角,,所对的边,若,则ABC △A .一定是锐角三角形B .一定是钝角三角形C .一定是斜三角形D .一定是直角三角形考向三 与面积、范围有关的问题(1)求三角形面积的方法①若三角形中已知一个角(角的大小,或该角的正、余弦值),结合题意求夹这个角的两边或该两边之积,套公式求解.②若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,套公式求面积,总之,结合图形恰当选择面积公式是解题的关键.(2)三角形中,已知面积求边、角的方法三角形面积公式中含有两边及其夹角,故根据题目的特点,若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解;若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.典例4 在ABC △中,角的对边分别为,且.(1)求角;(2)若,求ABC △面积的最大值.【解析】(1)由已知和正弦定理得,,,解得.(2)由余弦定理得:,即,整理得:.∵(当且仅当取等号),∴,即,,故ABC △面积的最大值为.【名师点睛】在解决三角形问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.正、余弦定理在应用时,应注意灵活性,已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.典例5 在ABC △中,,是边上的一点.(1)若,求的长;(2)若,求ABC △周长的取值范围.【解析】(1)在ADC △中,AD =1,,所以=cos ∠DAC =1×2×cos∠DAC =3,所以cos ∠DAC =.由余弦定理得2222cos CD AC AD AC AD DAC =+∠-⋅⋅=12+1-2×2×1×=7,所以CD =.(2)在ABC △中,由正弦定理得4sin sin sin sin 3AB BC AC C A B ====,,ππ0,sin 33A A ⎤⎛⎫<<∴+∈⎥ ⎪⎝⎭⎝⎦.,故ABC △周长的取值范围为.4.在ABC △中,内角所对的边分别是,已知.(1)求; (2)当时,求的取值范围. 5.在ABC △中,内角,,所对的边分别为,,,且ABC △的面积.(1)求;(2)若、、成等差数列,ABC △的面积为,求.考向四 三角形中的几何计算几何中的长度、角度的计算通常转化为三角形中边长和角的计算,这样就可以利用正、余弦定理解决问题.解决此类问题的关键是构造三角形,把已知和所求的量尽量放在同一个三角形中.典例6 如图,在ABC △中,D 为AB 边上一点,且DA DC =,已知π4B =,1BC =.(1)若ABC △是锐角三角形,DC =A 的大小; (2)若BCD △的面积为16,求AB 的长. 【解析】(1)在BCD △中,π4B =,1BC =,DC = 由正弦定理得sin sin BC CDBDC B=∠,解得1sin BDC ⨯∠==,所以π3BDC ∠=或2π3. 因为ABC △是锐角三角形,所以2π3BDC ∠=. 又DA DC =,所以π3A =.(2)由题意可得1π1sin 246BCD S BC BD =⋅⋅⋅=△,解得BD =,由余弦定理得222π2cos4CD BC BD BC BD =+-⋅⋅=251219329+-⨯⨯⨯=,解得3CD =,则AB AD BD CD BD =+=+=.所以AB6.如图,在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,(sin cos )a b C C =+.(1)求角B 的大小;(2D 为ABC △外一点,2DB =,1DC =,求四边形ABCD 面积的最大值. 考向五 解三角形的实际应用解三角形应用题的两种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.研究测量距离问题是高考中的常考内容,既有选择题、填空题,也有解答题,难度一般适中,属中档题.解题时要选取合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.典例7 如图,一条巡逻船由南向北行驶,在A 处测得山顶P 在北偏东()1515BAC ︒∠=︒方向上,匀速向北航行20分钟到达B 处,测得山顶P 位于北偏东60︒方向上,此时测得山顶P 的仰角为60︒,若山高为(1)船的航行速度是每小时多少千米?(2)若该船继续航行10分钟到达D 处,问此时山顶位于D 处的南偏东什么方向?(2)在BCD △中,由余弦定理得CD =在BCD △中,由正弦定理得所以山顶位于D 处南偏东45︒方向.7.某新建的信号发射塔的高度为AB ,且设计要求为:29米AB <<29.5米.为测量塔高是否符合要求,先取与发射塔底部B 在同一水平面内的两个观测点,C D ,测得60BDC ∠=︒, 75BCD ∠=︒,40CD =米,并在点C 处的正上方E 处观测发射塔顶部A 的仰角为30°,且1CE =米,则发射塔高AB =A .()1米B .()1米C .()1米D .()1米考向六 三角形中的综合问题1.解三角形的应用中要注意与基本不等式的结合,以此考查三角形中有关边、角的范围问题.利用正弦定理、余弦定理与三角形的面积公式,建立如“22,,a b ab a b ++”之间的等量关系与不等关系,通过基本不等式考查相关范围问题.2.注意与三角函数的图象与性质的综合考查,将两者结合起来,既考查解三角形问题,也注重对三角函数的化简、计算及考查相关性质等.3.正、余弦定理也可能结合平面向量及不等式考查面积的最值或求面积,此时注意应用平面向量的数量积或基本不等式进行求解.典例8 在ABC △,向量(sin ,1)A =m ,(1,cos )B =n ,且⊥m n . (1)求A 的值;(2)若点D 在边BC 上,且3BD BC =uu u r uu u rABC △的面积.【解析】(1)由题意知sin cos 0A B +=⋅=m n ,πA B C ++=,所以5πsin cos()06A A +-=,πsin()06A -=.ππ2π(,)663A -∈-,所以π06A -=,即π6A =.(2)设||BD x =,由3BD BC =uu u r uu u r ,得||3BC x =u u u r ,由(1)知πA C ==,所以||3BA x =uu r在ABD △1x =,所以3AB BC ==,典例9 ABC △的内角A ,B ,C 所对的边分别为a ,b ,c .(1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C ); (2)若a ,b ,c 成等比数列,求cos B 的最小值. 【解析】(1)因为a ,b ,c 成等差数列,所以a +c =2b . 由正弦定理得sin A +sin C =2sin B . 因为sin B =sin[π-(A +C )]=sin(A +C ), 所以sin A +sin C =2sin(A +C ).(2)因为a ,b ,c 成等比数列,所以b 2=ac .由余弦定理得cos B =a 2+c 2-b 22ac =a 2+c 2-ac 2ac ≥2ac -ac 2ac =12,当且仅当a =c 时等号成立. 所以cos B 的最小值为12.8.已知函数()的图象上相邻的最高点间的距离是.(1)求函数的解析式;(2)在锐角ABC △中,内角满足,求的取值范围.1.在ABC △中,角A ,B ,C 的对边为a ,b ,c ,若a b =3,B =60°,则A = A .45°B .45°或135C .135°D .60°或120°2.在△ABC 中,若tan A ·tan B <1,则该三角形一定是 A .锐角三角形 B .钝角三角形 C .直角三角形 D .以上都有可能3.在ABC △中,,,则角的取值范围是A .B .C .D .4.ABC △中,2AB =,BC =1cos 4A =,则AB 边上的高等于A .4B .34C D .35.已知ABC △的面积为,,则的最小值为A .B .C .D .6.设ABC △的三个内角所对的边分别为,如果,且,那么ABC △外接圆的半径为 A .2 B .4 C .D .17.已知ABC △的内角的对边分别为,若,,则A .2B .C .D .8.若ABC △的三个内角所对的边分别是,,且,则A .10B .8C .7D .49.已知ABC △的面积为,三个内角,,的对边分别为,,,若,,则A .2B .4C .D .10.在ABC △中,D 为BC 边上一点,若ABD △是等边三角形,且AC =ADC △的面积的最大值为 .11.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =___________m.12.在ABC △中,角,,的对边分别为,,,已知,,.(1)求; (2)求的值.13.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,,(cos ,sin )B A =n ,且∥m n .(1)求角B 的大小;(2)若2b =,ABC △的面积为a c +的值.14.如图所示,在ABC △中, 点D 为BC 边上一点,且1BD =,E 为AC 的中点B =2π3ADB ∠=.(1)求AD 的长; (2)求ADE △的面积.15.在ABC △中,,,A B C 的对边分别为,,a b c ,且cos ,cos ,cos a C b B c A 成等差数列. (1)求B 的值;(2)求()22sin cos A A C +-的范围.16.已知函数(1)当时,求的值域;(2)在ABC △中,若求ABC △的面积.1.(2017山东理科)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c .若ABC △为锐角三角形,且满足sin (12cos )2sin cos cos sin B C A C A C +=+,则下列等式成立的是 A .2a b = B .2b a = C .2A B = D .2B A =2.(2018新课标全国Ⅱ理科)在ABC △中,cos2C =1BC =,5AC =,则AB =A . BCD .3.(2018新课标全国Ⅲ理科)ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C = A .π2B .π3C .π4D .π64.(2017浙江)已知△ABC ,AB =AC =4,BC =2. 点D 为AB 延长线上一点,BD =2,连结CD ,则△BDC 的面积是______,cos ∠BDC =_______.5.(2018新课标全国Ⅰ理科)在平面四边形ABCD 中,90ADC ∠=,45A ∠=,2AB =,5BD =. (1)求cos ADB ∠;(2)若DC =BC .6.(2017新课标全国Ⅰ理科)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC △的面积为23sin a A.(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求ABC △的周长.7.(2017新课标全国Ⅱ理科)ABC △的内角,,A B C 的对边分别为,,a b c ,已知()2sin 8sin2B AC +=. (1)求cos B ;(2)若6a c +=,ABC △的面积为2,求b .8.(2018北京理科)在△ABC 中,a =7,b =8,cos B =–17. (Ⅰ)求∠A ; (Ⅱ)求AC 边上的高.9.(2017天津理科)在ABC △中,内角,,A B C 所对的边分别为,,a b c .已知a b >,5,6a c ==,3sin 5B =. (1)求b 和sin A 的值; (2)求πsin(2)4A +的值.1.【答案】C2.【解析】(1)∵,∴在Rt ABD △中,,∴,在ABC △中,,由余弦定理可得,,所以.(2)在ACD △中,由正弦定理可得,∵,∴,∵,∴,∴,∵,∴,∴,∴,化简得,即,∵,∴.3.【答案】D【解析】已知,利用正弦定理化简得:,整理得:,,,即.△为直角三角形.故选D.则ABC4.【解析】(1)由正弦定理可得:,又,所以,则,因为,所以,因为,所以.5.【解析】(1)∵,∴,即,∵,∴.(2)∵、、成等差数列,∴, 两边同时平方得:,又由(1)可知:, ∴,∴,,由余弦定理得,,得,∴.6.【解析】(1)在ABC △中,由(sin cos )a b C C =+,得s i n s i n (s i n c o A B C C =+,即sin()sin (sin cos )B C B C C +=+,cos sin sin sin B C B C ∴=,又sin 0C >,∴cos sin B B =,即tan 1B =,∵(0,π)B ∈,∴(2)在BCD △中,2BD =,1DC =,22212212cos 54cos BC D D ∴=+-⨯⨯⨯=-.7.【答案】A【解析】过点E 作EF AB ⊥,垂足为F ,则,1EF BC BF CE ===米,30AEF ∠=︒, 在BDC △中,由正弦定理得.在Rt AEF △中,.所以1AB AF BF =+=+.故选A .8.【解析】(1).因为函数图象上相邻的最高点间的距离是,所以,由,,得,所以.(2)由得,即,则,又,所以.因为ABC△是锐角三角形,所以,则,所以,故.1.【答案】A【解析】∵a b=3,B3sin60=︒,∴sin A=2=32.又a<b,∴A=45°.2.【答案】B【解析】由已知条件,得sin sin cos()cos1,0,0,cos cos cos cos cos cosA B A B CA B A B A B+⋅<><即即说明cos A,cos B,cos C中有且只有一个为负.因此△ABC一定是钝角三角形.3.【答案】A【解析】因为sin sinAB BCC A=,所以,所以,又,则必为锐角,故.5.【答案】A【解析】由题意知ABC △的面积为,且,所以,即,所以,当且仅当时取得等号,所以的最小值为,故选A .6.【答案】D 【解析】因为,所以,即,所以,所以,因为,所以由正弦定理可得ABC △的外接圆半径为1112sin 2a R A =⨯==,故选D . 7.【答案】D 【解析】∵是三角形的内角,∴,∴,由得561sin 56653sin 395a Bb A⨯===,故选D . 8.【答案】B 【解析】由题意知,即,即,由正弦定理和余弦定理得:,即,即,则,故选B .9.【答案】A【解析】ABC △的面积为.则由,可得.化简得,即,所以,解得或(舍去).所以.所以.故选A .10.【答案】【解析】如图.在ACD △中,2222248cos 222AD DC AC AD DC ADC AD DC AD DC +-+-∠===-⋅⋅1,整理得22482AD DC AD DC AD DC +=-⋅≥⋅, ∴16AD DC ⋅≤,当且仅当AD =DC 时取等号,∴ADC △的面积1sin 2S AD DC ADC AD DC =⋅∠=⋅≤∴ADC △的面积的最大值为12.【解析】(1)在ABC △中,由余弦定理得,解得.(2)在ABC △中,由得,∴,在ABC △中,由正弦定理得=, ∴, 又,故,∴,∴.13.【解析】(1)∵∥m n ,∴sin cos b A B ,由正弦定理,得sin sin cos B A A B =,∵sin 0A >,∴sin B B =,即tan B = ∵0πB <<,∴(212ac =,解得4ac =, 由余弦定理2222cos b a c ac B =+-,得221422a c ac =+-⨯2()3a c ac =+-2()12a c =+-, 故4a c +=.(2)由(1)知2AD =,依题意得23AC AE ==.在ACD △中,由余弦定理得222AC AD DC =+-2cos AD DC ADC ⋅∠,即2π9422cos 3DC DC =+-⨯⨯,即2250DC DC --=,解得1DC =(负值舍去).(2)因为π3B =, 所以2π3A C +=. 22π2sin cos()1cos 2cos(2)3A A C A A +-=-+-131cos 2cos 2212cos 222A A A A A=--=- π1)3A =+-.因为2π03A <<,ππ2π33A -<-<,所以πsin(2)13A <-≤,所以()22sin cos A A C +-的范围是1,12⎛- ⎝.16.【解析】(1)当,即时,取得最大值3;当,即时,取得最小值,故的值域为.(2)设ABC△中所对的边分别为.即得又,即即易得1.【答案】A【解析】由题意知sin()2sin cos2sin cos cos sinA CBC A C A C++=+,所以2sin cos sin cos2sin sin2B C A C B A b a=⇒=⇒=,选A.【名师点睛】本题较为容易,关键是要利用两角和与差的三角函数公式进行恒等变形. 首先用两角和的正弦公式转化为含有A,B,C的式子,再用正弦定理将角转化为边,得到2a b=.解答三角形中的问题时,三角形内角和定理是经常用到的一个隐含条件,不容忽视.2.【答案】A【解析】因为所以,选A.【名师点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理,结合已知条件,灵活转化为边和角之间的关系,从而达到解决问题的目的.4【解析】取BC 中点E ,由题意:AE BC ⊥,△ABE 中,1cos 4BE ABC AB ∠==,∴1cos ,sin 4DBC DBC ∠=-∠==∴1sin 22△BCD S BD BC DBC =⨯⨯⨯∠=. ∵2ABC BDC ∠=∠,∴21cos cos 22cos 14ABC BDC BDC ∠=∠=∠-=,解得cos 4BDC ∠=或cos 4BDC ∠=-(舍去).综上可得,△BCD ,cos BDC ∠=.5.【解析】(1)在ABD △中,由正弦定理得sin sin BD AB A ADB=∠∠.由题设知,52sin 45sin ADB =︒∠,所以sin 5ADB ∠=.由题设知,90ADB ∠<︒,所以cos 5ADB ∠==.(2)由题设及(1)知,cos sin BDC ADB ∠=∠=. 在BCD △中,由余弦定理得2222cos BC BD DC BD DC BDC =+-⋅⋅⋅∠25825=+-⨯⨯25=.所以5BC =.6.【解析】(1)由题设得21sin 23sin a ac B A=,即1sin 23sin ac B A =.由正弦定理得1sin sin sin 23sin AC B A =. 故2sin sin 3B C =.【名师点睛】在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.7.【解析】(1)由题设及A B C ++=π,可得2sin 8sin2BB =,故()sin 41cos B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=,解得cos 1B =(舍去),15cos 17B =.(2)由15cos 17B =得8sin 17B =,故14=sin 217△ABC S ac B ac =. 又=2ABC S △,则172ac =.由余弦定理及6a c +=得:()()222217152cos 21cos 362(1)4,217b ac ac B a c ac B =+-=+-+=-⨯⨯+= 所以2b =.【名师点睛】解三角形问题是高考的高频考点,命题大多放在解答题的第一题,主要利用三角形的内角和定理,正、余弦定理,三角形的面积公式等知识进行求解.解题时要灵活利用三角形的边角关系进行“边转角”“角转边”,另外要注意22,,a c ac a c ++三者之间的关系,这样的题目小而活,备受命题者的青睐.8.【解析】(Ⅰ)在△ABC 中,∵cos B =–17,∴B ∈(π2,π),∴sin B =.由正弦定理得sin sin a b A B =⇒7sin A ,∴sin A .∵B ∈(π2,π),∴A ∈(0,π2),∴∠A =π3.(Ⅱ)在△ABC 中,∵sin C =sin (A +B )=sin A cos B +sin B cos A 11()72-+.如图所示,在△ABC 中,∵sin C =h BC ,∴h =sin BC C ⋅=7=,∴AC .9.【解析】(1)在ABC △中,因为a b >,故由3sin 5B =,可得4cos 5B =.由已知及余弦定理,有2222cos 13b a c ac B =+-=,所以b =由正弦定理sin sin a b A B =,得sin sin 13a B Ab ==.所以,b sin A .(2)由(1)及a c <,得cos A =, 所以12sin 22sin cos 13A A A ==,25cos 212sin 13A A =-=-.故πππsin(2)sin 2cos cos 2sin 44426A A A +=+=. 【名师点睛】(1)利用正弦定理进行“边转角”可寻求角的关系,利用“角转边”可寻求边的关系,利用余弦定理借助三边关系可求角,利用两角和差的三角公式及二倍角公式可求三角函数值.(2)利用正、余弦定理解三角形是高考的高频考点,常与三角形内角和定理、三角形面积公式等相结合,利用正、余弦定理进行解题.。

高考数学总复习教案39三角函数的综合应用

高考数学总复习教案39三角函数的综合应用

------精品文档!值得拥有!------第三章 三角函数、三角恒等变换及解三角形第9课时 三角函数的综合应用(对应学生用书(文)、(理)57~59页)ac =、题改编1. (必修5P 例题4)设△ABC 的三个内角AB 、C 所对的边分别是a 、b ,、c ,且9sinCcosA =________.则A π 答案: 4πacaaca. ==,即sinAcosA ,所以A ,得=解析:由,==4cosAsinAcosAsinCsinCsinAy2. (必修个单位后,得到函数)φ<2sinx 将函数题改编)y =的图象向左平移φ(0≤π第习题4P1.3845π?? .φ=________的图象,则=sin -x ??611 答案:π 611=.只有+=个单位得到函数π≤向左平移=将函数解析:ysinx φ(0φ<2)ysin(x φ)φπ时有=y6??11π????πx +sin. sin =-x ??6 ??6------值得收藏!!珍贵文档------ ------------精品文档!值得拥有!π1 -=________.3. (必修4P 习题3.3第6(2)题改编)tan 10912πtan 12 -32答案:??ππππ??-22sincos-sincos??12121212解析:原式=-=ππππcossinsincos12121212πcos-63. ==-2π1sin62π1??2上在区间cosx+(x∈R),则4. (必修4P复习题第13题改编)已知函数f(x)f(x)=3sinxcosx-,0??11524 的值域是________.31??答案:,-??22π??????π13πππ31????????.∈,故值域为-时,解析:f(x)=sin2x-cos2x=sin2x.当x∈,-,2x--0,??62222 ??????4366 .BC上的高为°,则边2,B=60________5. 在△ABC中,AC=7,BC =33答案:23322BC上的高h=,所以边3sin60°=.3-2c-=0,解得c=得解析:由余弦定理,7=c2c+4-,即c32sinα22α=1,tanα=1. 同角三角函数的基本关系式:sin.α+cos cosααsinβ,cos(α±β)cos=cosαcos βsinα2. 两角和与差的正弦余弦和正切公式:sin(α±β)=sincosβ±βtantanα±.=,tan(α±β)αsinββtantanα12222=αα,1-1=-2sintan2αcosα3. 二倍角公式:sin2=2sinαα,cos2=cosα-sinα=2cosαα2tan.2α-tan1 4. 三角函数的图象和性质5. 正弦定理和余弦定理:cba .为三角形外接圆的半径==2R(R)=正弦定理:(1) sinCsinAsinB------值得收藏!!珍贵文档------------值得拥有!------精品文档!222=+ccosA-余弦定理:(2) a2bccosA=b,222a-+cb .2bc题型1三角恒等变换πππ27????.,例1已知sinA∈=,A+????10244 (1) 求cosA的值;5 =cos2x+sinAsinx的值域.(2) 求函数f(x)2πππππ3????272ππ????cos,且sin=-.=,所以<A+<,解:(1) 因为<A<+AA+102441042????44??π??π??所以cosA=cos??-+A4????4ππ????ππ????sin=cos+sincos+A+A44????44322227=.·+·=-10210254(2) 由(1)可得sinA=.55所以f(x)=cos2x+sinAsinx221313??2-sinx2+2sinx2sinx=-sinx=时,f(x)取最大值;=1-,sinx+,x∈R.因为∈[-1,1]所以,当??2222当sinx=-1时,f(x)取最小值-3.3??,3-的值域为所以函数f(x). ??2备选变式(教师专享)12(2013·上海卷)若cosxcosy+sinxsiny=,sin2x+sin2y=,则sin(x+y)=________.232答案:31解析:由题意得cos(x-y)=,sin2x+sin2y=sin[(x+y)+(x-y)]+sin[(x+y)-(x-y)]=2sin(x+y)cos(x222sin(x+y)y)-==. 33题型2三角函数的图象与性质------值得收藏!!珍贵文档------------!值得拥有!------精品文档ππ??分Qf(x)的部分图象如图所示,P、A>0,0<φ<f(x)例2已知函数=Asin,y=,,x∈Rφx+??23 .的坐标为(1,A)别为该图象的最高点和最低点,点P 的值;求f(x)的最小正周期及φ(1)π2 的值.=,求AR的坐标为(1,0),∠PRQ(2) 若点3π26.T==解:(1) 由题意得π3??π??的图象上,,A)在y=Asin因为P(1φx+??3??π??sin所以=1.φ+??3ππ=.因为0<φ<,所以φ62A).Q的坐标为(x,-(2) 设点0π3ππ,,得x=4由题意可知x+=00263.Q(4,-A)所以π2PRQ=,由余弦定理得连结PQ,在△PRQ中,∠3222222)+-(RQ9-PQ4AA+9+ARP +=∠PRQ==cos RQ2RP·2+A2A·912=3.又A>0A,所以A=3. ,解得-2备选变式(教师专享)已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)为偶函数,且其图象上相邻两对称轴之间的距离为π.(1) 求函数f(x)的表达式;------值得收藏!!珍贵文档------------!值得拥有!------精品文档π??12sin+-2α??42 的值.f(α)=,求(2) 若sinα+3αtan1+∵φ=0,又,即2sinωxcosφ=0恒成立,∴cosφ)解:(1) ∵f(x)为偶函数,∴sin(-ωx+φ)=sin(ωx+ππ,T=20≤φ≤π,∴φ=. 又其图象上相邻对称轴之间的距离为π,∴2f(x)=cosx. ∴ω=1,∴1α-cos2α+sin242ααcos+2sinαcosα=,即2sinα+(2) ∵原式==2sinαcosα,又∵sincosα=,∴193αtan1+55.,故原式=-=-99 正弦定理、余弦定理的综合应用题型33b. =a、b、c,且2asinB中,内角例3(2013·浙江)在锐角△ABCA、B、C的对边分别为的大小;(1) 求角A 的面积.b+c=8,求△ABC(2) 若a=6,π3ba=.=.因为A是锐角,所以解:(1) 由2asinB=3b及正弦定理=,得sinAA3sinB2sinA2822222.,所以bc==-bc=36.又ba(2) 由余弦定理+=bc+c-2bccosA,得b8+c3371.ABC由三角形面积公式S=bcsinA,得△的面积为32备选变式(教师专享)π3.=,△5ABC的面积为10,C中,角A,B,的对边分别为a,b,cC=,a在△ABC 3 (1) 求b,c的值;π??求cos的值.(2) -B??3π1,S=,a=5,因为=absinC由已知,解:(1) C△ABC23π1,解得b8.=·10即3=b5sin32π27.c49, 80cos64+=由余弦定理可得:c25-=所以=3------值得收藏!!珍贵文档------------------精品文档!值得拥有!6425+49-3142,所以B=是三角形的内角,易知sinB1=-cos(2) 由(1)有cosB==,由于B 7707ππ??13343π11??.==cosBcos+cossinBsin=×+×-B14337227??3 题型4三角函数、平面向量、解三角形的综合应用1??,sinA=A是△ABC的内角.例4已知向量与nm=(3,sinA+3cosA)共线,其中??2 的大小;(1) 求角A 的形状.,求△ABC面积S的最大值,并判断S 取得最大值时△ABC(2) 若BC=2∥nm,解:(1) 因为30.所以sinA·(sinA+3cosA)-=2cos2A-133,+所以sin2A-=022213即1,sin2A-cos2A=22??π??即sin1.=-2A??6π??ππ11??.2A-∈因为A∈(0,π),所以,-6??66πππ=,A=.故2A-36222bc.c(2) 由余弦定理,得4=b-+31,=bc又S=bcsinA△ABC4222),4(当且仅当b=c+c时等号成立≥42bcbc+≥2bcbc≤而b313=3.bc≤×4bcsinA所以S==△ABC442当△ABC的面积取最大值时,b=c.π又A=,故此时△ABC为等边三角形.3备选变式(教师专享)已知△ABC的角A、B、C所对的边分别是a、b、c,设向量m=(a,b),n=(sin B,sin A),p=(b-2,------值得收藏!!珍贵文档------------值得拥有!------精品文档!a-2).∥n,求证:△ABC为等腰三角形;(1) 若mπ⊥,边长c=2,角C=,求△ABC(2) 若m的面积.p3ba∥ABC △a=b.∴∴n,∴asin A=bsin B,即a·=b·,其中R是△ABC 外接圆半径,证明:(1) ∵m2R2R为等腰三角形.22=+babab(a-2)=0.∴+b=ab.由余弦定理可知,4=a-+m·(2) 解:由题意可知p=0,即a(b-2)22,=-1)3ab,即(ab)ab-3ab-4=0,∴=4(舍去(a+b)ab-π113.sin =∴S=absin C=×4×322在已知值求角中,应合理选择三角函数形式进行求解,避免增根.分)【示例】(本题模拟高考评分标准,满分14105 +β,sinβ的值.=,且α、β若sinα均为锐角,求=α105 学生错解:522.α为锐角,∴cosα=1-sin=解:∵α51032. cos β=1-sin=又ββ为锐角,∴102=αsin βsinαcosβ+cos=,∵sin(α+β)2 β<90°,<90°,0°<α由于0°< 180°,°<α+β<∴0.°=45°或135β故α+在已知值求角中,角的范围常常被忽略或不能发现隐含的角的大小关系而出现增根不能审题引导:排除.要避免上述情况的发生,应合理选择三角函数形式进行求解,根据计算结果,估算出角的较精确的取值范围,并不断缩小角的范围,在选择三角函数公式时,一般已知正切函数值,选正切函数,已知正余??ππ??,则一般选正弦函数.弦函数值时,若角在(0,π)时,一般选余弦函数,若是,-??22252.(2=分) -=cosα∵解:规范解答:为锐角,∴α1sinα5------值得收藏!!珍贵文档------------值得拥有!------精品文档!1032) β=又β为锐角,∴cosβ.(4=1-sin分102=sinββ-sinα,(10分) 且cos(α+β)=cosαcos2ππ,所以0<α+β<π,由于0<α<,0<β<22π][π0,)α因为y=cosx在+.(14分β=上是单调递减函数,故4没有注意挖掘题目中的隐含条件,忽视了对角的范围的限制,造成出错.错因分析:152,α135°是正确的,但题设中sin=β<<α+180°而得到α+事实上,仅由sin(α+β)=β=45°或,0°<225110°,故上述结论是错误的.在已知值求角中,应60°<α+β<0<α<30°,°<β<30°从而0,使得0°<=sinβ210][在cosx,因为y=合理选择三角函数形式进行求解,避免增根.本题中0<α+β<ππ,0上是单调函数,不易出错.+β)cos所以本题先求(α)1π(x-πx .coscos的最小正周期为________1. (2013·常州期末)函数f(x)=22答案:2πxπx2πxπ(x-1)π12.T===cos·sinsinπx,最小正周期为解析:f(x)=coscos=22222π1ππ??????1-,的值域是f(x),若,其中sin,则a的2. (2013·北京期末)已知函数f(x)=x∈a-x+,??????236 ________.取值范围是??π??答案:,π??3π7πππππππ??1π??,所以==-或x+=时,sin+≤解析:若-≤x≤a,则-x+≤a+,因为当x+x266366666??6ππ7ππ??1π????1,-的值域是aa≤π,即的取值范围是要使f(x). ≤a,则有≤+≤,即,π??23662??3 .________3cosC=,则△ABC的面积为sinC1,=中,)3. (2013·北京期末已知△ABCAB3BC =,3答案:2------值得收藏!!珍贵文档------------------值得拥有!精品文档!πABBC,.根据正弦定理可得解析:由sinC3cosC=,得tanC==3>0,所以C=sinCsinA3ππ113,所以三角形为直角B=因为即==2,所以sinA=.AB>BC,所以A<C,所以A=,即22sinA63231.×1三角形,所以S==×3△ABC22 ________.f(x)4. (2013·新课标Ⅰ卷)设当x=θ时,函数=sinx-2cosx取得最大值,则cosθ=52答案:-5552??5.=sinx-2cosx解析:∵=f(x)cosxsinx-??55552=sinφ=-,则f(x)令cosφ=,55φ),cosx)=5sin(x+5(sinxcosφ+sin φπππ+2k-φ,x当+φ=2kπ+,k∈Z,即x=22π∈Z,π+k∈Z时,f(x)取最大值,此时θ=2k-φ,k2??5π2??.∴cosθ=cos=sinφ=-φ2kπ+-5??2n cosB)、b、c.向量m=(1,,B(2014·1. 扬州期末)在锐角△ABC中,角A、、C所对的边长分别为a⊥.=(sinB,-3),且mn的大小;(1) 求角B ,求此三角形周长.ABC面积为103,b=7(2) 若△n m·=,0 解:(1) m·n=sinB-3cosB,∵m⊥n,∴cosB≠,0ABCsinB∴-3cosB=0.∵△为锐角三角形,∴ππB=.=∴tanB3.∵0<B<,∴3231322222ca,得49=+2accosBa由=,得10ac==acsinB∵(2) Sac,由题设=3ac40.7=+c-△ABC244------值得收藏!!珍贵文档------------------精品文档!值得拥有!22213=,169.∴a-ac,∴(a+c)+=(ac+cac)-+3ac=49+120=20.三角形周长是∴2sinC. =,2+2且sinA+、2. 在△ABC中,a、bc分别是角A、B、C的对边,△ABCsinB的周长为c的长;(1) 求边1 C的度数.(2) 若△ABC的面积为sinC,求角3c=2ca+b+c∵解:(1) 在△ABC中,sinA+sinB+=2sinC,由正弦定理,得a+b =2c ,∴2. =2=1)c(2++=,c2. a+b=2∴11△ABC中,S,absinC=sinC=(2) 在△ABC32211.ab=∴ab=,即332222222ab+b)a-+b-c-(a1ABC△,又在cosC===又a+b=2,在△ABC中,由余弦定理,得22ab2ab,∈(0,π)中∠C.C=60°∴∠1. =+C)、A、BC对应的边分别是a、b、c.已知cos2A-3cos(B湖北卷3. (2013·)在△ABC中,角A的大小;(1) 求角sinBsinC的值.(2) 若△ABC的面积S==53,b5,求12∠,解得cosA=,∴A=60°.,∴解:(1) 由已知条件得:cos2A+3cosA=1 2cos2A+3cosA-=0225bc1a22.sinBsinC,∴=53==(2R)c=4,由余弦定理,得a=21,==28bcsinA(2) S=2274Rsin2AA. ∠B=2ABC北京卷)在△中,a=3,b=26,∠4. (2013·求cosA的值;(1) 求c的值.(2)2sinAcosA263所以A.所以在△ABC中,由正弦定理得=.2ba解:(1) 因为=3,=62,∠B=∠sinAsinAsin2A626.故. =cosA=33362.A=-1=(1)(2) 由知cosAsinA,所以=cos33------值得收藏!!珍贵文档------------值得拥有!------精品文档!22122cos所以.sinB==B. 1=∠又因为B=2∠A,所以cosB2cos-A-1=3335=. cosAsinBsinAcosB+中,sinC=sin(A+B)=在△ABC9a sin C=5. 所以c=sin A1. 三角变换的基本策略是化异为同,即将函数名称、角、次数等化异为同.2. 对于函数y=Asin(ωx+φ)+B,常用“五点法”画图象,运用整体思想研究性质.3. 求三角函数的单调区间、周期,及判断函数的奇偶性,要注意化归思想的运用,通过恒等变换转化为基本三角函数类型,注意变形前后的等价性.4. 解三角函数的综合题时应注意:(1) 与已知基本函数对应求解,即将ωx+φ视为一个整体X;(2) 将已知三角函数化为同一个角的一种三角函数,如y=Asin(ωx+φ)+B或y=asin2x+bsinx +c;(3) 换元方法在解题中的运用.请使用课时训练(B)第9课时(见活页).[备课札记]------值得收藏!!珍贵文档------。

2019-2020年高考数学 专题34 空间中线线角、线面角的求法黄金解题模板

2019-2020年高考数学 专题34 空间中线线角、线面角的求法黄金解题模板

2019-2020年高考数学 专题34 空间中线线角、线面角的求法黄金解题模板【高考地位】立体几何是高考数学命题的一个重点,空间中线线角、线面角的考查更是重中之重. 其求解的策略主要有两种方法:其一是一般方法,即按照“作——证——解”的顺序进行;其一是空间向量法,即建立直角坐标系进行求解. 在高考中常常以解答题出现,其试题难度属中高档题.【方法点评】类型一 空间中线线角的求法方法一 平移法使用情景:空间中线线角的求法解题模板:第一步 首先将两异面直线平移到同一平面中;第二步 然后运用余弦定理等知识进行求解;第三步 得出结论.例1正四面体ABCD 中, E F ,分别为棱AD BC ,的中点,则异面直线EF 与CD 所成的角为 A. 6π B. 4π C. 3π D. 2π 【答案】B平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常转化为解三角形的问题处理,要注意异面直线所成角的范围为0,2π⎛⎤ ⎥⎝⎦。

【变式演练1】如图,四边形ABCD 是矩形, 沿直线BD 将ABD ∆翻折成'A BD ∆,异面直线CD 与'A D 所成的角为α, 则( )A .'A CA α<∠B .'A CA α>∠C.'A CD α<∠ D .'A CD α>∠【答案】B考点:异面直线所成角的定义及运用.【变式演练2】【2018年衡水联考】在棱长为1的正方体1111ABCD A B C D -中,点E , F 分别是侧面11AA D D 与底面ABCD 的中心,则下列命题中错误的个数为( )①//DF 平面11D EB ; ②异面直线DF 与1B C 所成角为60︒;③1ED 与平面1B DC 垂直; ④1112F CDB V -=. A. 0 B. 1 C. 2 D. 3【答案】A【解析】对于①,∵DF 11//B D ,DF ⊄平面11D EB , 11B D ⊂平面11D EB ,∴//DF 平面11D EB ,正确; 对于②,∵DF 11//B D ,∴异面直线DF 与1B C 所成角即异面直线11B D 与1B C 所成角,△11C B D 为等边三角形,故异面直线DF 与1B C 所成角为60︒,正确;对于③,∵1ED ⊥1A D , 1E D ⊥CD,且1A D ⋂CD=D ,∴1E D ⊥平面11A B DC ,即1E D ⊥平面1B DC ,正确;对于④,11CDF 1111133412F CDB B CDF V V S --==⨯⨯=⨯=,正确, 故选:A 【变式演练3】设三棱柱111ABC A B C -的侧棱与底面垂直,90BCA ∠=︒,2BC CA ==,若该棱柱的所有顶点都在体积为323π的球面上,则直线1B C 与直线1AC 所成角的余弦值为( )A .23-B .23C . 【答案】B【变式演练4】如图所示,正四棱锥P ABCD -的底面面积为3,, E 为侧棱PC 的中点,则PA 与BE 所成的角为( )A. 30︒B. 45︒C. 60︒D. 90︒【答案】C方法二 空间向量法使用情景:空间中线线角的求法解题模板:第一步 首先建立适当的直角坐标系并写出相应点的空间直角坐标;第二步 然后求出所求异面直线的空间直角坐标;第三步 再利用cos a ba bθ→→→→⋅=即可得出结论. 例2、如图,直三棱柱111ABC A B C -中,13AC BC AA ===,AC BC ⊥,点M 在线段AB 上.(1)若M 是AB 中点,证明:1//AC 平面1B CM ;(2)当BM =11C A 与平面1B MC 所成角的正弦值【答案】(1)详见解析(2(II )1,AC BC CC ABC ⊥⊥平面,故如图建立空间直角坐标系1(033),(300),(030),(000)B A B C ,,,,,,,,,BA =13BM BA = 1(1,1,0),(0,3,0)(1,1,0)(1,2,0)3BM BA CM CB BM ==-=+=+-=, 令平面1B MC 的法向量为(,,)n x y z =,由100n CB n CM ⎧⋅=⎪⎨⋅=⎪⎩,得020y z x y +=⎧⎨+=⎩ 设1z =所以(2,1,1)n =-,11(3,0,0)C A CA == ,设直线11C A 与平面1B MC 所成角为q1111||sin ||||3C A n C A n q ×===故当BM =11C A 与平面1B MC 考点:线面平行判定定理,利用空间向量求线面角【思路点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.例3、如图,正方形AMDE 的边长为2,B C、分别为线段AM MD 、的中点,在五棱锥P ABCDE -中,F 为棱PE 的中点,平面ABF 与棱PD PC 、分别交于点G H 、.(1)求证://AB FG ;(2)若PA ⊥底面ABCDE ,且PA AE =,求直线BC 与平面ABF 所成角的大小.【答案】(1)详见解析(2)6π考点:线面平行判定定理,利用空间向量求线面角【思路点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.【变式演练4】已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为______.考点:异面直线及其所成的角【变式演练5】如图,在三棱柱111ABC A B C -中,底面为正三角形,侧棱垂直底面,4AB =,16AA =.若E ,F 分别是棱1BB ,1CC 上的点,且1BE B E =,1113C F CC =,则异面直线1A E 与AF 所成角的余弦值为( )A .6B .6C .10D .10【答案】D【解析】试题分析:以BC 的中点O为坐标原点建立空间直角坐标系如图所示,则A,1A ,(0,2,3)E ,(0,2,4)F -,1(3)A E =--,(2,4)AF =--,设1A E ,AF 所成的角为θ,则11||cos 10||||5A E AF A E AF θ⋅===⋅⨯. 考点: 线面角.类型二空间中线面角的求法方法一 垂线法使用情景:空间中线面角的求法解题模板:第一步 首先根据题意找出直线上的点到平面的射影点;第二步 然后连接其射影点与直线和平面的交点即可得出线面角;第三步 得出结论.例3如图,四边形ABCD 是矩形,1,AB AD ==E 是AD 的中点,BE 与AC 交于点F ,GF ⊥平面ABCD .GD BA(Ⅰ)求证:AF ⊥面BEG ;(Ⅱ)若AF FG =,求直线EG 与平面ABG 所成角的正弦值.【答案】(Ⅰ)证明见解析;.证法2:(坐标法)证明1-=⋅BE AC K K ,得BE AC ⊥,往下同证法1.证法3:(向量法)以,为基底, ∵-=+=21,,0=⋅∴)21()(AB AD AB AD BE AC -⋅+=⋅221-=01221=-⨯= ∴BE AC ⊥,往下同证法1.(2)在AGF Rt ∆中,22GF AF AG +=36)33()33(22=+= 在BGF Rt ∆中,22GF BF BG +=1)33()36(22=+= 在ABG ∆中,36=AG ,1==AB BG ∴2)66(13621-⨯⨯=∆ABG S 656303621=⨯⨯=设点E 到平面ABG 的距离为d ,则GF S d S ABF ABG ⋅=⋅∆∆3131,∴ABG ABFS GF S d ∆⋅=1030653312221=⨯⨯⨯= 22)66()33(2222=+=+=EF GF EG ,设直线EG 与平面ABG 所成角的大小为θ,则 EG d=θsin .515221030== 考点:线面垂直的判定,直线与平面所成的角.【点评】解决直线与平面所成的角的关键是找到直线上的点到平面的射影点,构造出线面角.【变式演练6】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC 的中心,则1AB 与底面ABC 所成角的正弦值为( )A .13 B.3 C. D .23【答案】B考点:直线与平面所成的角.【变式演练7】在四面体ABCD 中,AB AD ⊥,1AB AD BC CD ====,且ABD BCD ⊥平面平面,M 为AB 中点,则CM 与平面ABD 所成角的正弦值为( )A.2 B.3 C.2 D.3【答案】D考点:1.平面与平面垂直;2.直线与平面所成的角.方法二空间向量法使用情景:空间中线面角的求法解题模板:第一步首先建立适当的直角坐标系并写出相应点的空间直角坐标;第二步然后求出所求异面直线的空间直角坐标以及平面的法向量坐标;第三步再利用a bsina bθ→→→→⋅=即可得出结论.例4 [2018衡水金卷大联考]如图,在四棱锥中,底面为直角梯形,其中,,侧面平面,且,动点在棱上,且.(1)试探究的值,使平面,并给予证明;(2)当时,求直线与平面所成的角的正弦值.(2)取的中点,连接.则.∵平面平面,平面平面,且,∴平面.∵,且,∴四边形为平行四边形,∴.又∵,∴.由两两垂直,建立如图所示的空间直角坐标系.则,,,,,.当时,有,【变式演练8】【2018浙江嘉兴市第一中模拟】如图,四棱锥,底面为菱形,平面,,为的中点,.(I)求证:直线平面;(II)求直线与平面所成角的正弦值.【解析】(I)证明:,又又平面,直线平面.(方法二)如图建立所示的空间直角坐标系..设平面的法向量,.所以直线与平面所成角的正弦值为【高考再现】1. 【2017课标II ,理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A C D 【答案】C【考点】 异面直线所成的角;余弦定理;补形的应用【名师点睛】平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形; ④取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档