实验居里温度测定实验

合集下载

居里温度的测定 实验报告

居里温度的测定 实验报告

居里温度的测定实验报告一、实验目的1.了解居里温度的概念和测量方法;2.掌握居里温度的测量实验方法,学习使用实验仪器测量样品的电容变化值;3.实验中讲解电容变化与相变的关系,了解传统物理学的局限性。

二、实验原理居里温度是材料在物理性质上的一个临界点,其以下推广为:在低于居里温度时,铁磁体材料的磁矩方向是有序排列的,而在高于居里温度时,磁矩方向由有序变为无序。

因此,可以通过测量样品的电容变化值,得到居里温度。

三、实验步骤1.实验前清洗所有试验仪器。

2.准备试验样品,将其放置在试验装置中。

3.使用热水槽进行加热,保持温度平稳,直至100°C。

4.使用温度计测量试验样品的温度。

5.使用电容计测量试验样品的电容变化值,记录数据。

6.以5°C为温度间隔进行多次测量,直到样品的磁性变化稳定。

7.记录数据,绘制样品电容与温度变化曲线。

四、实验结果通过实验测量,我们得出了以下结果:样品的居里温度为:82℃温度(℃)电容变化(pF)70 300我们取样品的温度范围为70℃-100℃,通过测量其电容变化值,得出样品的居里温度为82℃。

五、实验分析通过实验结果,我们可以看到样品的电容变化值随温度的升高而减小,在样品的居里温度范围内发生了明显的变化。

其原因在于,磁性相变时,样品不同部分的电容值不同,导致整个样品的电容值随着温度变化而发生了变化。

通过上述分析,我们可以看到居里温度的测量方法非常简单,只需要测量样品在不同温度下的电容变化即可。

但是,这种传统的测量方法有其局限性,因为它基于经典物理学的理论,没有考虑到量子效应的影响。

六、思考题1.量子效应对居里温度有什么影响?量子效应对居里温度的影响很大,因为量子效应下,物质的行为与经典物理学预测的不同。

例如,当离子化程度高时,电子可能以一种非常奇怪的方式通过晶格进行传递,导致物质在低温下的电阻率异常地高。

2.居里温度与材料的磁矩有什么关系?3.磁相变与其他相变有何不同?磁相变是材料在物理性质上的相变,与正常的从固体到液体的相变不同,它涉及到物质的电磁性质。

实验二十 居里点测定

实验二十  居里点测定

实验二十居里点的测定测量铁磁材料居里温度的方法很多,例如磁称法、感应法、电桥法和差值补偿法等。

它们都是利用铁磁物质磁矩随温度变化的特性,测量自发磁化消失时的温度。

本实验采用感应法。

测量感应电动势随温度变化的规律,从而得到居里点T C。

【实验目的】1.通过实验,对感应电动势随温度升高而下降的现象进行观察,初步了解铁磁材料在居里温度点由铁磁性变为顺磁性的微观机理。

2.用感应法测定磁性材料的曲线ε~T并求出其居里温度。

3.用示波器观测铁磁性材料的磁滞回线和居里温度。

【实验仪器】居里点测定仪附件盒双踪示波器【仪器简介】仪器由加热装置、待测样品、测温部分、加热电源和示波器接口等组成,加热装置由耐高温的石英玻璃罩、瓷柱和镍鉻丝组成,用AD590温度传感器来测量其内的温度,用3位半数字表来显示温度。

测试样品为五种不同居里温度的环形铁氧体件,铁氧体上绕有两组线圈,感应电动势用1999mV的交流数字电压表来显示。

样品的磁滞回线用示波器来形象的显示。

面板上示波器显示框内的X轴接磁场强度H,Y轴接磁感应强度B,X调节用来调节磁场强度H的大小。

面板图见下图。

面板示意图【实验原理】1.基本原理科学实践证明,铁磁物质的磁性主要来源于电子自旋磁矩。

在没有外磁场的条件下,铁磁物质中相邻原子的电子磁矩具有非常强的交换耦合作用,这种相互作用促使相邻原子的电子自旋磁矩平行排列起来,形成一个个自发磁化达到饱和状态的区域,称为磁畴。

磁畴的几何线度可以从微米量级到毫米量级,形状一般很不规则,在不同材料或同一材料的不同区域有很大的不同。

在没有外磁场作用时,不同磁畴的自发磁化方向各不相同,如图(1)所示。

因此,对整个铁磁物质来说,任何宏观区域的平均磁矩为零,铁磁物质不显示磁性。

当有外磁场作用时,不同磁畴的磁矩方向趋于外磁场的方向,宏观区域的平均磁矩不再为零,这时铁磁物质显示出宏观的磁性,这一过程通常称为技术磁化。

宏观区域的平均磁矩随着外磁场的增大而增大,当外磁场增大到一定值时,所有磁畴的磁矩沿外磁场方向整齐排列,如图(2)所示,任何宏观区域的平均磁矩达到最大值,这时铁磁材料的磁化就达到了饱和。

大学物理实验 居里温度的测量

大学物理实验 居里温度的测量

实验十一 居里温度的测量居里温度是表征磁性材料性质和特征的重要参量,测量磁导率和居里温度的仪器很多,例如磁天平、振动样品磁强计、磁化强度和居里温度测试仪等,测量方法有感应法、谐振法、电桥法等.【实验目的】1. 初步了解铁磁性物质由铁磁性转变为顺磁性的微观机理.2. 学习JZB-1型居里温度测试仪测定居里温度的原理和方法.3. 学会测量不同铁磁样品居里点的方法.【实验原理】磁性是物质的一种基本属性,从微观粒子到宏观物体,以至宇宙天体,无不具有某种程度的磁性,只是其强弱程度不同而已,这里说的磁性是指物质在磁场中可以受到力或力矩作用的一种物理性质。

使物质具有磁性的物理过程叫做磁化,一切可以被磁化的物质都叫做磁介质.磁介质的磁化规律可用磁感应强度B 、磁化强度M 、磁场强度H 来描述,当介质为各向同性时,它们满足下列关系:()()H H H M H B r m μμμχμμ==+=+=0001 (1)其中m r χμ+=1,r μ称为相对磁导率,是个无量纲的量.为了简便,常把r μ简称为介质磁导率,m χ称为磁化率,m H /10470-⨯=πμ称为真空磁导率,r μμμ0=称为绝对磁导率.H M m χ=.在真空中时0=M ,H 和B 中只需一个便可完全描述场的性质.但在介质内部,H 和B 是两个不同的量,究竟用H 还是用B 来作为描述磁场的本征量,根据磁场的性质有各种不同的表现来选择.因为H 和B 两者描述了不同情况下磁场的性质,它们都是描述磁场性质的宏观量,都是真正的物理量.在某些问题中,比如在电磁感应、霍尔效应、测量地磁水平分量等问题中,由于起作用的是磁通量的时间变化率,牵涉到的是B ;而如果考虑材料内部某处磁矩所受的作用时,起作用的就是H ,比如求退磁能及磁矩所做的功等。

从H B r μμ0=的关系看,表面上B 与H 是线性的,但实际上,由于r μ是一个与m χ值有关的量,而m χ值又与温度、磁化场有关,所以r μ是一个复杂的量,不能简单地从B 与H 的形式上来判断它们之间是线性的,或是非线性的关系.磁体在磁性质上有很大的不同,从实用的观点,可以根据磁体的磁化率大小和符号来分为五个种类。

铁磁材料居里温度测试实验

铁磁材料居里温度测试实验

铁磁材料居里温度测试实验【实验目的】1.了解铁磁物质由铁磁性转变为顺磁性的微观机理。

2.利用交流电桥法测定铁磁材料样品的居里温度。

3.分析实验时加热速率和交流电桥输入信号频率对居里温度测试结果的影响。

【实验仪器】FD-FMCT-A铁磁材料居里温度测试实验仪,示波器检【实验原理】一、概述:磁性材料在电力、通讯、电子仪器、汽车、计算机和信息存储等领域有着十分广泛的应用,近年来已成为促进高新技术发展和当代文明进步不可替代的材料,因此在大学物理实验开设关于磁性材料的基本性质的研究显得尤为重要。

铁磁性物质的磁特性随温度的变化而改变,当温度上升至某一温度时,铁磁性材料就由铁磁状态转变为顺磁状态,即失掉铁磁性物质的特性而转变为顺磁性物质,这个温度称为居里温度,居里温度是表征磁性材料基本特性的物理量,它仅与材料的化学成分和晶体结构有关,几乎与晶粒的大小、取向以及应力分布等结构因素无关,因此又称它为结构不灵敏参数。

测定铁磁材料的居里温度不仅对磁材料、磁性器件的研究和研制,而且对工程技术的应用都具有十分重要的意义。

本实验仪根据铁磁物质磁矩随温度变化的特性,采用交流电桥法测量铁磁物质自发磁化消失时的温度,该方法具有系统结构简单,性能稳定可靠等优点,通过对软磁铁氧体材料居里温度的测量,加深对这一磁性材料基本特性的理解。

仪器配有自动采集系统,可以通过计算机自动扫描分析,二、实验原理1.铁磁质的磁化规律由于外加磁场的作用,物质中的状态发生变化,产生新的磁场的现象称为磁性,物质的磁性可分为反铁磁性(抗磁性)、顺磁性和铁磁性三种,一切可被磁化的物质叫做磁介质,在铁磁质中相邻电子之间存在着一种很强的”交换耦合“作用,在无外磁场的情况下,它们的自旋磁矩能在一个个微小区域内“自发地”整齐排列起来而形成自发磁化小区域,称为磁畴。

在未经磁化的铁磁质中,虽然每一磁畴内部都有确定的自发磁化方向,有很大的磁性,但大量磁畴的磁化方向各不相同因而整个铁磁质不显磁性。

实验 居里温度测定实验

实验  居里温度测定实验

3.
由居里温度的定义知, 要测定铁磁材料的居里温度,从测量 原理上来讲, 其测定装置必须具备四个功能: 提供使样品磁化的 磁场;改变铁磁物质温度的温控装置; 判断铁磁物质磁性是否消 失的判断装置 ; 测量铁磁物质磁性消失时所对应温度的测温装 置。
JLD-Ⅱ居里温度测试仪是通过如图 3-23-3所示的系统装置 来实现以上四个功能的。待测样品为一环形铁磁材料,其上绕有 两个线圈 L1 和 L2, 其中 L1 为励磁线圈 , 给其通入交变电流 , 提供使 环形样品磁化的磁场。将绕有线圈的环形样品置于温度可控的 加热炉中以改变样品的温度。将集成温度传感器置于样品旁边 以测定样品的温度。
(3) 铁磁质: μr>>1, 如铁、钴、镍等。
2. 铁磁质的磁性主要来源于自由电子的自旋磁矩,在铁磁质中, 相邻原子间存在着非常强的“交换耦合”作用, 使得在没有外 加磁场的情况下,它们的自旋磁矩能在一个个微小的区域内“自 发地”整齐排列起来,这样形成的自发磁化小区域称之为磁畴。 实验证明,磁畴的大小约为10-12~10-8m-3, 包含有1017~1021个原 子。在没有外磁场作用时,不同磁畴的取向各不相同, 如图3-231所示。因此, 对整个铁磁物质来说,任何宏观区域的平均磁矩为 零,铁磁物质不显示磁性。当有外磁场作用时, 不同磁畴的取向 趋于外磁场的方向, 任何宏观区域的平均磁矩不再为零。当外 磁场增大到一定值时 , 所有磁畴沿外磁场方向整齐排列 , 此时铁 磁质达到磁化饱和,如图3-23-2所示。由于每个磁畴已排列整齐, 因此,磁化后的铁磁质具有很强的磁性。
(3) 关闭加热炉上的两风门(旋钮方向和加热炉的轴线方向 垂直), 将温度“测量-设置”开关打向“设置”, 适当设定炉子 能达到的最高温度。 (4) 将“测量-设置”开关打向“测量”, 将“升温-降温”

居里温度的测量

居里温度的测量
居里温度的测量
2015-12-30
一、概述
1.居里温度 居里温度是指铁磁性或亚铁磁性材料由铁磁性或亚铁磁性状态转变
为顺磁性状态的临界温度。 温度对磁性有显著影响。分子热运动,对磁畴磁矩有序排列有破坏
作用,温度升高到一定数值,铁磁性消失。

Fe : Tc 770 C; Ni : Tc 358 C
T
Tc
2
一、概述
3
二、通过测定磁滞回线消失时的温度来测定居里温度
变压器
(降压、
220V 整流、 交流 滤波、
稳压)
1kHz 正弦波 发生器
数显 控温器

加热炉
ACDVM
积分 放大

励磁
感应
B
H
4
二、通过测定磁滞回线消失时的温度来测定居里温度
d k dB
dt
dt
Байду номын сангаас
R1
R2
B


(3)数据记录与数据处理过程中的误差。
10
谢谢聆听
Thank You
1 k


dt
L1
L2
5
1.测试仪器
6
7
8
9
4.误差分析 (1)温度测量受热电偶、水浴的影响,这不可避免的导致了测量
到得温度与样品实际温度间存在差异; (2)由于本实验是动态测量,各仪器的测量并不是完全同步的,
特别是在U和T都有明显变化的区域这一点造成的影响最为明显,而这一 区域恰巧是我们最为关注的区域(斜率);

实验报告居里温度

实验报告居里温度

实验报告居里温度实验报告:居里温度引言:居里温度是指物质在该温度以下会发生铁磁性到顺磁性转变的临界温度。

本实验旨在通过测量不同物质的居里温度,探究物质的磁性性质和磁相变现象。

实验材料和方法:1. 实验材料:- 铁磁性材料:铁、镍、钴;- 顺磁性材料:铜、银、铝;- 温度计;- 磁场强度计。

2. 实验方法:- 准备不同材料的样品;- 将样品置于恒温水槽中,并逐渐升温;- 同时测量样品在不同温度下的磁场强度。

实验结果和讨论:1. 铁磁性材料:铁、镍和钴是常见的铁磁性材料。

在实验中,我们发现它们在较低温度下都表现出较强的磁性,但随着温度的升高,磁场强度逐渐减弱,直至在一定温度下完全失去磁性。

这个临界温度就是居里温度。

铁的居里温度为770°C,镍的居里温度为358°C,钴的居里温度为1121°C。

这些数值与文献中报道的数据相吻合。

2. 顺磁性材料:铜、银和铝是典型的顺磁性材料。

与铁磁性材料不同,顺磁性材料在任何温度下都表现出顺磁性。

在实验中,我们发现这些材料的磁场强度随温度的升高而略微增加,但增幅很小。

这是因为顺磁性材料的磁化强度与外加磁场成正比,而与温度关系不大。

3. 磁相变现象:实验结果显示,铁磁性材料在居里温度以下表现为铁磁性,而在居里温度以上则表现为顺磁性。

这种磁相变现象是由于居里温度以下,铁磁性材料的自旋有序排列,形成了宏观磁矩;而在居里温度以上,热运动使得自旋无序排列,磁矩减弱,从而失去磁性。

结论:通过本实验,我们成功测量了不同材料的居里温度,并观察到了铁磁性材料的磁相变现象。

居里温度是物质磁性性质的重要指标,对于了解物质的磁性行为和应用具有重要意义。

此外,通过实验还可以进一步研究不同条件下磁相变的规律,为材料科学和磁性材料的应用提供理论基础。

展望:虽然本实验主要关注了铁磁性和顺磁性材料的磁相变,但实际上还存在其他类型的磁性材料,如反铁磁性和亚稳磁性材料等。

未来的研究可以进一步探究这些材料的磁性性质,并与铁磁性和顺磁性材料进行对比分析,以深入了解不同材料的磁相变机制。

居里温度测定实验报告-南京大学12页

居里温度测定实验报告-南京大学12页

居里温度测定实验报告-南京大学12页前言居里温度测定实验是我们大学中物理实验必做的实验之一,也是我们认识物质热学性质过程的重要实验之一。

本文将详细介绍居里温度测定实验的步骤和结果,希望对大家了解物质热学性质和实验方法有所帮助。

一、实验目的通过本次实验,我们希望达到以下目的:1.掌握居里温度测定实验的基本原理和方法。

2.了解物质的热学性质及其对物质的热学行为的影响。

3.熟悉实验操作流程,培养实验操作能力和数据处理能力。

二、实验原理居里温度测定实验是通过实验测量物质的磁化强度随温度的变化关系,确定物质的居里温度。

物质在居里温度附近,其磁化强度随温度的变化出现极大的变化,这就是居里现象。

根据磁化强度与磁场的关系,将物质放置在恒定磁场中,测量不同温度下磁场中的磁感应强度,即可确定物质的居里温度。

三、实验器材和药品实验器材:1.莫尔电桥2.电源3.桶形磁铁4.JM-10低温恒温槽5.恒温浴6.热电阻温度计7.实验电路板实验药品:钴铁磁体四、实验步骤1.准备工作将钴铁磁体样品悬挂在莫尔电桥中,调节样品电流,使电桥平衡。

2.测量磁矩调节磁场强度,测量不同温度下样品磁矩,记录数据。

3.制作磁矩-温度曲线将测量得到的数据制作成磁矩-温度曲线,从中确定居里温度。

用热电阻温度计测量低温恒温槽中的实际温度,并将实际温度与磁矩-温度曲线中的温度进行比较,检查实验结果是否准确。

五、实验结果与分析本次实验测得钴铁磁体的磁矩随温度变化的曲线如下图所示:the graph was not provided从图中可以看出,在钴铁磁体的居里温度附近,磁矩随温度的变化出现极大的变化。

通过实验测得,钴铁磁体的居里温度约为345K,这与文献值相差不大。

说明实验结果准确可靠。

六、实验总结本次实验通过测量钴铁磁体的磁矩随温度的变化关系,成功地确定了钴铁磁体的居里温度,熟悉了居里温度测定实验的基本原理和方法,掌握了实验操作流程,培养了实验操作能力和数据处理能力。

铁磁材料居里温度测试实验报告

铁磁材料居里温度测试实验报告

铁磁材料居里温度测试实验报告铁磁材料居里温度测试实验报告一、引言铁磁材料是一类具有磁性的材料,其磁性来源于材料内部的磁性离子或原子。

居里温度是描述铁磁材料磁性变化的重要参数,它决定了材料在不同温度下的磁性行为。

本实验旨在通过实验方法测定铁磁材料的居里温度,并探讨其对材料磁性的影响。

二、实验原理铁磁材料在一定温度范围内具有明显的磁性,而在超过一定温度后,磁性会逐渐减弱直至消失。

这个临界温度就是居里温度,用符号TC表示。

居里温度与铁磁材料的晶体结构、磁矩排列和外加磁场等因素有关。

在实验中,我们通过测量铁磁材料的磁化强度随温度的变化,来确定其居里温度。

三、实验步骤1. 实验材料准备:选择一种铁磁材料样品,如铁氧体、镍铁合金等,并将其切割成适当大小的块状。

2. 实验装置搭建:将样品放置在一块绝缘材料上,使用铜线连接到电源和电流表上,形成一个电路。

3. 实验参数设置:调节电流表的电流大小,保持一定的电流通过样品,使其处于饱和磁化状态。

4. 温度控制与测量:使用温度计或热敏电阻等温度传感器,测量样品的温度,并记录下来。

5. 磁化强度测量:使用磁力计或霍尔效应传感器等磁场传感器,测量样品的磁化强度,并记录下来。

6. 实验数据处理:将测得的温度和磁化强度数据绘制成曲线图,分析曲线的特征,确定居里温度。

四、实验结果与分析通过实验测量得到的温度-磁化强度曲线显示出了明显的特征。

在低温区,磁化强度随温度的下降而增加,呈现出铁磁性的特征。

然而,在超过一定温度后,磁化强度开始下降,并最终趋于零。

根据曲线的变化趋势,我们可以确定样品的居里温度。

五、讨论与结论本实验成功测定了铁磁材料的居里温度,并通过实验数据分析和曲线绘制得出了明确的结论。

居里温度是铁磁材料磁性变化的关键参数,它对材料的磁性行为起到了重要的调控作用。

实验结果对于深入理解铁磁材料的磁性特性以及其在实际应用中的应用具有重要的意义。

六、实验中的问题与改进在实验过程中,我们发现了一些问题,并提出了改进的方案。

铁磁材料居里温度测试实验报告

铁磁材料居里温度测试实验报告

一、实验目的1. 了解铁磁材料居里温度的基本概念和测定方法。

2. 掌握使用实验仪器测量铁磁材料居里温度的原理和操作步骤。

3. 通过实验,验证居里温度的测定结果,并分析实验误差。

二、实验原理居里温度(Curie Temperature,Tc)是指铁磁性物质中自发磁化强度降到零时的温度。

当温度低于居里温度时,铁磁性物质表现为铁磁性,磁化强度随外磁场增强而增强;当温度高于居里温度时,铁磁性物质转变为顺磁性,磁化强度随外磁场变化而变化。

本实验采用热磁法测定铁磁材料的居里温度。

通过加热样品,记录样品电阻随温度的变化,利用居里温度时电阻发生突变的原理,确定样品的居里温度。

三、实验仪器与材料1. 铁磁材料样品:NiFe合金片。

2. 居里温度测试仪:FD-FMCT-A型。

3. 电阻测量仪:RJ-45型。

4. 稳压电源:ST-1000型。

5. 热电偶温度计:K型。

6. 保温箱:不锈钢保温箱。

7. 热水浴:电热恒温水浴锅。

四、实验步骤1. 将NiFe合金片样品放入保温箱中,用热电偶温度计测量样品的初始温度。

2. 将保温箱放入居里温度测试仪中,设定加热速率和温度范围。

3. 启动居里温度测试仪,开始加热样品。

4. 在加热过程中,实时记录样品电阻随温度的变化。

5. 当样品电阻发生突变时,记录此时的温度,即为样品的居里温度。

五、实验结果与分析1. 实验数据:| 温度(℃) | 电阻(Ω) | | :--------: | :--------: | | 20.0 | 0.053 | | 40.0 | 0.051 | | 60.0 | 0.049 | | 80.0 | 0.046 | | 100.0 | 0.043 | | 120.0 | 0.041 | | 140.0 | 0.039 | | 160.0 | 0.037 | | 180.0 | 0.035 | | 200.0 | 0.033 | | 220.0 | 0.031 | | 240.0 | 0.029 | | 260.0 | 0.027 | | 280.0 | 0.025 | | 300.0 | 0.023 | | 320.0 | 0.021 | | 340.0 | 0.019 | | 360.0 | 0.017 | | 380.0 | 0.015 || 400.0 | 0.013 || 420.0 | 0.011 || 440.0 | 0.009 || 460.0 | 0.007 || 480.0 | 0.005 || 500.0 | 0.003 || 520.0 | 0.001 |2. 结果分析:根据实验数据,在温度达到350℃左右时,样品电阻发生突变,说明此时样品的居里温度约为350℃。

居里温度测定实验报告 南京大学

居里温度测定实验报告 南京大学

南京大学近代物理实验报告12.6 钙钛矿锰氧化合物居里温度的测量学号: 111120230姓名: 朱瑛莺2014年5月9日南京大学近代物理实验报告摘要钙钛矿锰氧化合物在温度处于或高于居里温度时,原子的热运动能大于自旋交换作用能,原子磁矩有序排列不复存在,呈现顺磁性。

本实验通过测量样品磁化强度随M T曲线,得到材料的居里温度。

温度的变化并绘制关键词:居里温度钙钛矿锰氧化物磁化强度补偿线圈南京大学近代物理实验报告1 引言1、磁性材料的自发磁化来自磁性电子间的交换作用。

在磁性材料内部,交换作用总是力图使原子磁矩呈有序排列:平行取向或反平行取向。

但是随着温度升高,原子热运动能量增大,逐步破坏磁性材料内部的原子磁矩的有序排列,当升高到一定温度时,热运动能和交换作用能量相等,原子磁矩的有序排列不复存在,强磁性消失,材料呈现顺磁性,此即居里温度。

不同材料的居里温度是不同的。

材料居里温度的高低反映了材料内部磁性原子之间的直接交换作用、超交换作用、双交换作用。

因此,深入研究和测定材料的居里温度有着重要意义。

居里温度的测量方法(1)通过测定材料的饱和磁化强度和温度依赖性得到Ms—T曲线,从而得打Ms降为零时所对应的居里温度。

这种方法适用于那些可以用来在变温条件下直接测量样品饱和磁化强度的装置,例如磁天平、振动样品磁强计以及SQUID等。

图1示出了纯Ni的饱和磁化强度的度依赖性。

由图可以确定Ni的居里温度。

—T曲线曲线图2 镍锌铁氧体的μi 图1 Ni的Ms—T 的温度依赖性,利用霍普金森效)通过测定材料在弱磁场下的初始磁导率μi (2应,确定居里温度。

霍普金森效应指的是一些软磁材料的初始磁导率在居里点附近,随温度升高而趋于零的速度远快于饱和磁化强度随温度由于磁晶各向异性常数K1会显示一最大值,μi 的变化,而初始磁导率μi∝Ms2/K1,因此在局里温度附近,示出了不同成分的镍锌铁氧体的初始磁导率随温度的图2随后快速趋于零的现象。

居里点的测定实验报告

居里点的测定实验报告

居里点的测定实验报告居里点的测定实验报告引言:居里点是指物质在经历温度变化时,磁性发生改变的临界温度。

该现象被发现于1895年,由法国科学家居里夫妇首次提出并命名。

居里点的测定对于研究物质的磁性性质以及应用于磁性材料的制备具有重要意义。

本实验旨在通过实验方法测定给定物质的居里点,并探讨其与物质的磁性性质之间的关系。

实验材料与方法:实验所用材料为一块未知物质的样品,实验仪器包括热电偶温度计、热电偶电压计、恒温槽、磁场强度计等。

实验步骤如下:1. 将待测物质样品放置在恒温槽中,并设置初始温度为室温。

2. 通过热电偶温度计测量样品温度,并记录下来。

3. 逐渐升高恒温槽的温度,同时记录样品温度和热电偶电压计的读数。

4. 当样品的磁性发生改变时,即出现磁场强度的明显变化,记录下此时的温度,并作为居里点的测定值。

结果与讨论:根据实验测得的数据,我们可以绘制出样品温度与热电偶电压计读数的关系曲线。

根据该曲线,我们可以确定样品的居里点。

在实验中,我们发现样品的磁性在温度达到某一临界值时发生了明显的变化。

这表明样品的居里点在该温度附近。

通过对曲线的分析,我们可以精确地确定该临界温度,即居里点。

居里点的测定结果对于了解物质的磁性性质具有重要意义。

一般来说,当物质的居里点较高时,其磁性较强。

而当居里点较低时,物质的磁性较弱。

这与物质内部的磁性相互作用有关。

此外,居里点的测定还可以应用于磁性材料的制备。

通过调控材料的成分和结构,可以实现对居里点的调控。

这对于开发具有特定磁性性质的材料具有重要意义。

例如,通过调节居里点,可以制备出具有高磁饱和磁感应强度和低磁滞回线损耗的磁性材料,广泛应用于电力传输、电动机和磁存储等领域。

结论:通过实验测定,我们成功地确定了给定物质的居里点,并探讨了居里点与物质磁性性质之间的关系。

居里点的测定对于研究物质的磁性性质以及应用于磁性材料的制备具有重要意义。

希望通过本实验的学习,能够加深对居里点及其应用的理解,并为相关领域的研究和应用提供参考。

大学物理实验 居里温度的测量

大学物理实验 居里温度的测量

实验十一 居里温度的测量居里温度是表征磁性材料性质和特征的重要参量,测量磁导率和居里温度的仪器很多,例如磁天平、振动样品磁强计、磁化强度和居里温度测试仪等,测量方法有感应法、谐振法、电桥法等.【实验目的】1. 初步了解铁磁性物质由铁磁性转变为顺磁性的微观机理.2. 学习JZB-1型居里温度测试仪测定居里温度的原理和方法.3. 学会测量不同铁磁样品居里点的方法.【实验原理】磁性是物质的一种基本属性,从微观粒子到宏观物体,以至宇宙天体,无不具有某种程度的磁性,只是其强弱程度不同而已,这里说的磁性是指物质在磁场中可以受到力或力矩作用的一种物理性质。

使物质具有磁性的物理过程叫做磁化,一切可以被磁化的物质都叫做磁介质.磁介质的磁化规律可用磁感应强度B 、磁化强度M 、磁场强度H 来描述,当介质为各向同性时,它们满足下列关系:()()H H H M H B r m μμμχμμ==+=+=0001 (1)其中m r χμ+=1,r μ称为相对磁导率,是个无量纲的量.为了简便,常把r μ简称为介质磁导率,m χ称为磁化率,m H /10470-⨯=πμ称为真空磁导率,r μμμ0=称为绝对磁导率.H M m χ=.在真空中时0=M ,H 和B 中只需一个便可完全描述场的性质.但在介质内部,H 和B 是两个不同的量,究竟用H 还是用B 来作为描述磁场的本征量,根据磁场的性质有各种不同的表现来选择.因为H 和B 两者描述了不同情况下磁场的性质,它们都是描述磁场性质的宏观量,都是真正的物理量.在某些问题中,比如在电磁感应、霍尔效应、测量地磁水平分量等问题中,由于起作用的是磁通量的时间变化率,牵涉到的是B ;而如果考虑材料内部某处磁矩所受的作用时,起作用的就是H ,比如求退磁能及磁矩所做的功等。

从H B r μμ0=的关系看,表面上B 与H 是线性的,但实际上,由于r μ是一个与m χ值有关的量,而m χ值又与温度、磁化场有关,所以r μ是一个复杂的量,不能简单地从B 与H 的形式上来判断它们之间是线性的,或是非线性的关系.磁体在磁性质上有很大的不同,从实用的观点,可以根据磁体的磁化率大小和符号来分为五个种类。

铁磁材料居里温度测试实验

铁磁材料居里温度测试实验

《磁性材料》实验
南京理工大学材料科学与工程系
磁介质的磁化规律可用磁感应强度B、磁化强度M 和磁场强度H来描述,它们满足以下关系: B = 0 (H+M)= ( Xm+1) 0H= r0H = H 式中,0=4π×10-7亨利/米为真空磁导率,Xm为磁化 率,r为相对磁导率,是一个无量纲的系数,为绝对 磁导率。
《磁性材料》实验
南京理工大学材料科学与工程系

Hale Waihona Puke 3.实验仪器 磁滞回线实验仪、数字万用表、示波器、加热炉、 水银温度计等。 4.实验内容及步骤 1) 电路连接:选择样品,按实验仪上所给的电路 接线图连接好线路。令R1=2.5Ω,置励磁电压U于 0位。UH和UB分别接示波器的“X输入”和“Y输 入”,插孔“⊥”为接地公共端。 2) 样品退磁:开启仪器电源开关,对样品进行退 磁,顺时针方向转动电压U的调节旋钮,观察数字 电压表可看到U从0逐渐增加增至最大,然后逆时针 方向转动电压U的调节旋钮,将U逐渐从最大值调 为0,这样做的目的是消除剩磁,确保样品处于磁 中性状态,即B=H=0。
C 2 R2 B U2 nS
式中U2为积分电容C2两端电压,S为样品的截面积。
《磁性材料》实验 南京理工大学材料科学与工程系
3.实验仪器 磁滞回线实验仪、数字万用表、示波器等。
将图5中的U1(UH)和U2(UB)分别加到示波器的 “X输入”和“Y输入”便可观察样品的动态磁滞回 线;接上数字电压表则可以直接测出U1(UH)和 U2(UB)的值,即可绘制出B-H曲线;通过计算可测 定样品的饱和磁感应强度Bs、剩磁Br、矫顽力HD以 磁导率µ。
2.实验原理 1) 磁滞回线
图1 铁磁质起始磁化 图2 同一铁磁材料的 图3 铁磁材料µ与H 曲线和磁滞回线 一簇磁滞回线 关系曲线

居里温度试验报告

居里温度试验报告

钙钛矿锰氧化物居里温度的测量实验报告摘要:居里温度是指材料可以在铁磁体和顺磁体之间改变的温度,即铁电体从铁磁性(亚铁磁性)转变成顺磁性的相变温度,是一种临界相变现象。

本次实验是通过测定弱交变磁场下磁化强度随温度变化来测定样品的居里温度。

本文阐述了居里温度的物理意义及测量方法,测定了钙钛矿锰氧化物样品在实验条件下的居里温度,最后对实验进行了讨论关键词:居里温度Tc、钙钛矿锰氧化物、磁化强度 M-T曲线。

引言:众所周知,磁性材料的自发极化来自磁性电子之间的相互作用。

在磁性材料内部,交换作用总是力图使原子磁矩呈有序排列:平行取向或反平行取向。

但是随着温度T的升高,原子的热运动能KT逐渐增加,逐步破坏磁性材料内部的原子磁矩的有序排列。

当材料达到一定温度时,热运动能与交换作用能相等,原子磁矩的有序排列不复存在,强磁性消失,材料显示顺磁性,这时的温度即为居里温度。

因此,居里温度是指铁磁性或亚铁磁性材料由铁磁状态转变成顺铁磁状态的临界温度。

但是,由于铁磁性材料的磁化率大于0,且数值很大(10~105),而顺磁物质的只有10-3到10-5的量级。

所以在转变点附近,材料磁性很弱。

因此,在要求不太严格的情况下,常常把强磁性材料的磁化强度随着温度的升高降为0的温度看成是居里温度。

一,实验目的1,了解磁性材料居里温度的物理意义。

2,测定钙钛矿锰氧化物样品的居里温度。

二,实验原理1,居里温度的测量方法通过测定材料的饱和磁化强度和温度依赖性得到Ms—T曲线,从而得打Ms降为零时所对应的居里温度。

这种方法适用于那些可以用来在变温条件下直接测量样品饱和磁化强度的装置,例如磁天平、振动样品磁强计以及SQUID等。

图1示出了纯Ni的饱和磁化强度的度依赖性。

由图(1)可以确定Ni的居里温度。

图(1),Ni的Ms—T曲线2,钙钛矿锰氧化物钙钛矿锰氧化物指的是成分为(R是二价稀土金属离子,A为一价碱土金属离子)的一大类具有型钙钛矿结构的锰氧化物。

居里点温度的测定实验报告

居里点温度的测定实验报告

居里点温度的测定实验报告居里点是指物质的铁磁性、铁电性和压电性在温度、电场和应力等条件下突然发生变化的临界点,对于铁磁性材料而言,它是铁磁性的临界温度。

测定居里点是很多研究物质性质的实验中必不可少的一项内容。

本实验采用了串联法测定了磁性材料的居里点,并根据实验数据得出了材料的相应性质。

以下是本次实验的详细介绍。

一、实验原理:在相变点附近,物理量的变化快速而明显,从而使得物质的性质发生相应的改变。

居里点是指材料处于不同状态下的相变点,通过测量材料不同状态下的电阻率,可以得到铁磁性材料居里点温度的精确值。

电阻率与温度成均匀关系的材料,其居里点的测定常采用比例板法。

而对于电阻率非线性与温度关系的磁性材料而言,串联法是一种常用的居里点测量方法。

串联法的原理如下,将观测材料放在两个电阻上间接地测定它们之间的电压通过串联电路,电路图如下图所示:此时,磁性材料有一个封闭的磁路,当其微弱磁化时,受磁场作用而发生的温度变化对两个电阻的电压产生影响。

量程的灵敏度S定义为输出电压的变化量与磁性材料的温度变化量之比。

根据经验公式,磁性材料的居里温度TC与磁性材料组成和结构有关。

对于标准的晶体结构为脸心立方体时,可通过下述公式计算出相应的居里温度:TC=θR/ (3.044+1.25N) (T<θR)其中θR是磁矩的韦斯巴格温度,N是格点数。

二、实验仪器与材料:1、高灵敏电压计2、恒温水槽3、1000圈系列接线电流源4、磁性材料5、电导银线6、电阻箱7、电解电容器8、磁铁三、实验步骤:1、安装磁力系统并制定试验计划将磁力系统板放在型材间投出吸气磁力,更换电流同步线圈后将磁力系统固定在试验平台上,进行功能测试和校准。

设定试验计划,如下表所示:温度(℃)电流(A)输出电压(mV)20 0.2 1.0240 0.2 0.9060 0.2 0.6780 0.2 0.42100 0.2 0.172、温度控制将电阻器R1用导银线接到样品S与电压计接线端L1,选择300K以下的温控器,将导银线的另一端连接到恒温水槽的加热电路,控制实验室温度。

居里温度实验数据

居里温度实验数据

居里温度实验数据居里温度实验是一项用来测量物质的电气性质的实验。

居里温度是顾名思义,以发现作出此项实验的诺贝尔奖获得者——居里夫妇的名字命名的。

居里夫妇在研究新发现的放射性元素铀时,发现了一个新现象:当铀受到辐射时,它会自行分解成气体和固体两部分,且这个过程是不可逆的,这也就表明这个反应是放出来了不可恢复的热量的。

居里夫妇认为这是因为铀的放射性是电性的,并且铀的化学以及物理性质与氧化碳酸盐的相似性,这也就表明他们在寻找放射性的物质上找对了方向,他们接下来又开始研究铀的热电性质,希望能够利用热电效应来测量铀的放射性。

在居里夫妇的实验中他们发现,铀和钍都拥有一定的热电效应。

当这些元素受到射线的照射时,它们的热电效应会有所改变。

居里夫妇称这个过程为热电效应的倒转。

他们发现,随着温度的升高,这种热电效应的倒转渐渐消失。

这就是居里温度。

他们想要知道更多关于居里温度的性质,于是进行了一系列实验。

在这些实验中,他们用热电偶接在一组标准化的电路上,把它们放在不同温度的环境下测试电子大小以及偏移程度。

这些实验调查了多种不同类型的金属和陶瓷。

他们发现在一些金属和陶瓷中,热电效应的倒转会随着温度的升高而逐渐消失。

在这些金属和陶瓷中,居里温度就是热电效应的倒转渐渐消失的那个温度。

在实验中,在不同温度下测量的电路的电压值不同,由于我们知道热电偶产生的电势差与温度是成比例的,因此可以得到某个温度将对应一个固定的电势,并且随着温度升高电势越来越小,最终在某个温度归零。

这个温度就是这种材料的居里温度。

居里温度实验数据显示,铜,铝等传统金属材料的居里温度是室温以下的,通常在100-300K之间。

而对于半导体材料,如硅和锗,它们的居里温度通常在600-1200K之间。

当然,所有这些数据都是具有一定误差的,实际上,不同的文献中,甚至同一篇文献中关于不同材料的居里温度也可能存在偏差。

总之,居里温度实验是用来测量物质电气性质的一种方法,可以帮助我们了解不同材料的电学性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档