第一讲椭圆的定义及其练习题(精)
椭圆的定义及几何性质试题 精选精练
![椭圆的定义及几何性质试题 精选精练](https://img.taocdn.com/s3/m/25df8bc6a0116c175f0e4855.png)
椭圆的定义及几何性质题型一:椭圆的定义及其应用1、判断轨迹:例:已知12,F F 是定点,动点M 满足12||||8MF MF +=,且12||8F F =则点M 的轨迹为( )A .椭圆 B.直线 C.圆 D.线段变式:1 已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于,A B 两点.若1222=+B F A F ,则AB = .2、利用定义例:已知椭圆x 26+y 22=1与双曲线x 23-y 2=1的公共焦点F 1,F 2,点P 是两曲线的一个公共点,则cos ∠F 1PF 2的值为( ).A.14 B.13 C.19 D.35变式:1、(·青岛模拟)已知F 1、F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.2、 已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ).A .2 3 B .6C .4 3 D .123、已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点,在△AF 1B 中,若有两边之和是10,则第三边的长度为( )A .6 B .5 C .4 D .3 4、已知F 1,F 2是椭圆2212516x y +=的两焦点,过点F 2的直线交椭圆于1122(,)(,)A x y B x y 两点,△AF 1B 的内切圆的周长为π,则12||y y -为( ) 5.3A 10.3B 20.3C 5.3D 3、转化定义例:设椭圆x 22+y 2m =1和双曲线y 23-x 2=1的公共焦点分别为F 1、F 2,P 为这两条曲线的一个交点,则|PF 1|·|PF 2|的值等于________.变式练习:1.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM |+|PN |的最小值为( )A .5B .7C .13D .15题型二:椭圆的标准方程和性质例:[例1] (1)(2017·广东高考)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1 B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1(2)(2016·岳阳模拟)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交椭圆C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为________.变式练习1.已知椭圆的长轴是短轴的3倍,且过A (3,0),并且以坐标轴为对称轴,求椭圆的标准方程_____2.(2018·山东)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为 ( ) A.x 28+y 22=1 B.x 212+y 26=1 C.x 216+y 24=1 D.x 220+y 25=1 题型三:椭圆的重要性质------离心率示例:如图A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点, 若∠ABC =90°,则该椭圆的离心率为( )A.-1+52 B .1-22 C.2-1 D.22变式 1.把条件“A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点, 若∠ABC =90°“改为“F 1、F 2分别为椭圆22221(0)x y a b a b+=>>,的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另 一点B .若∠F 1AB =90°”求椭圆的离心率;2.把条件“A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点,若∠ABC =90°”改为“椭圆通过A ,B 两点,它的一个焦点为点C ,且AB =AC =1,090BAC ∠=,椭圆的另一个焦点在AB 上”,求椭圆的离心率为________. 3.把条件“A 、B 、C 分别为x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点,若∠ABC =90°“改为“F 1、F 2分别为圆锥曲线的左、右焦点,曲线上存在点P 使|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线Γ的离心率等于( )A.12或32B.23或2C.12或2D.23或324. 椭圆2222(0)x y a b a b+>>的左、右顶点分别是A ,B 左、右焦点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B|成等比数列,则此椭圆的离心率为 。
第一讲用椭圆定义解题2——直接用定义 课件-2023届高考数学二轮专题之椭圆小题突破
![第一讲用椭圆定义解题2——直接用定义 课件-2023届高考数学二轮专题之椭圆小题突破](https://img.taocdn.com/s3/m/7d569fc4f9c75fbfc77da26925c52cc58bd69024.png)
+
= > > 的右
焦点,点P在椭圆E上,线段PF与圆
2 2
(x- ) +y =
相切于点Q (其中c为椭圆的半焦距),且 = ,
则椭圆E的离心率为
.
(1)已知F是椭圆: + = > > 的右焦点,点P在椭圆E上,线段
2 2
PF与圆C:(x-) +y = 相切于点Q (其中c为椭圆的半焦距),且 = ,则椭
圆E的离心率为
.
解:设圆心为C(,0),则|F1C|=2|FC|,
设椭圆的左焦点为F1,连接F1, 又 = ∴PF1∥QC,
∴|PF1|=b,|PF|=2a-b,
2 2
F(2,0),点A(-2,1)为椭圆E内一点,若椭圆E上存在一
点P,使得|PA|+|PF|=8,则椭圆E的离心率的取值范
围是
.
[ , ]
8=|PA|+|PF|= |PA|+2a-|PF1|
2a-8=|PF1|-|PA|
-1≤2a-8≤1
(3)已知点P是椭圆
+ = 上一动点,Q是圆
别为F1,F2,点P(x1,y1),Q(-x1,-y1)在椭圆C上,
||
其中x1>0,y1>0,若|PQ|=2|OF2|, ≥ ,则离心率
||
的取值范围为
.
(
,
− ]
(3)椭圆C:
+
椭圆定义及标准方程专项练习含解析
![椭圆定义及标准方程专项练习含解析](https://img.taocdn.com/s3/m/dce29759dd36a32d737581d0.png)
定义及标准方程一、单选题(共28题;共56分)1.已知椭圆+=1的两个焦点F1,F2,M是椭圆上一点,且|MF1|-|MF2|=1,则△MF1F2是( )A. 钝角三角形B. 直角三角形C. 锐角三角形D. 等边三角形2.已知椭圆上的一点到左焦点的距离为6,则点到右焦点的距离为()A. 4B. 6C. 7D. 143.已知椭圆的两个焦点是,椭圆上任意一点与两焦点距离的和等于4,则椭圆C的离心率为()A. B. C. D. 24.如果方程表示焦点在轴上的椭圆,则的取值范围是().A. B. C. D.5.已知椭圆的一点到椭圆的一个焦点的距离等于6,那么点到椭圆的另一个焦点的距离等于( )A. 2B. 4C. 6D. 86.椭圆的左右焦点分别为,,一条直线经过与椭圆交于,两点,则的周长为()A. B. 6 C. D. 127.已知椭圆的一个焦点坐标为,则k的值为()A. 1B. 3C. 9D. 818.已知椭圆的中点在原点,焦点在轴上,且长轴长为,离心率为,则椭圆的方程为().A. B. C. D.9.椭圆的焦距为8,且椭圆的长轴长为10,则该椭圆的标准方程是()A. B. 或C. D. 或10.方程表示焦点在轴上的椭圆,则的取值范围是()A. B. C. D.11.若直线经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为()A. B. C. 或 D. 以上答案都不对12.已知椭圆C:中,,,则该椭圆标准方程为A. B. C. D.13.已知方程的曲线是焦点在轴上的椭圆,则实数的取值范围是()A. B. C. D. 且14.已知椭圆的两个焦点是,且点在椭圆上,则椭圆的标准方程是()A. B. C. D.15.P为椭圆上一点,、为左右焦点,若则△的面积为()A. B. C. 1 D. 316.已知椭圆:()的左、右焦点为,,离心率为,过的直线交于,两点.若的周长为,则的方程为()A. B. C. D.17.以双曲线的焦点为顶点,顶点为焦点的椭圆方程为( )A. B. C. D.18.椭圆的焦点在轴上,中心在原点,其短轴上的两个顶点和两个焦点恰好为边长为的正方形的顶点,则椭圆的标准方程为()A. B. C. D.19.椭圆的焦距为2,则m的值等于A. 5或3B. 8C. 5D. 或20.焦点坐标为,长轴长为10,则此椭圆的标准方程为()A. B. C. D.21.点A(a,1)在椭圆的内部,则a的取值范围是()A. -<a<B. a<-或a>C. -2<a<2D. -1<a<122.已知方程表示焦点在轴上的椭圆,则的取值范围是()A. B. C. D.23.椭圆的一个焦点坐标是()A. B. C. D.24.已知F1F2为椭圆的两个焦点,过F2作椭圆的弦AB,若的周长为16,椭圆的离心率,则椭圆的方程为()A. B. C. D.25.“”是“方程表示焦点在y轴上的椭圆”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件26.已知、为椭圆两个焦点,P为椭圆上一点且,则()A. 3B. 9C. 4D. 527.已知椭圆的焦点在轴上,离心率为,则的值为()A. B. C. D. 或28.方程2x2+ky2=1表示的是焦点在y轴上的椭圆,则实数k的取值范围是( )A. (0,+∞)B. (2,+∞)C. (0,2)D. (0,1)二、填空题(共17题;共19分)29.已知椭圆中心在原点,一个焦点为,且长轴长是短轴长的2倍.则该椭圆的长轴长为________;其标准方程是________.30.已知椭圆的左、右两个焦点分别为,若经过的直线与椭圆相交于两点,则的周长等于________31.已知F1,F2为椭圆的两个焦点,过F1的直线交椭圆于A,B两点,若|F2A|+|F2B|=12,则|AB|=________.32.已知两定点、,且是与的等差中项,则动点P的轨迹方程是________ .33.已知点,点B是圆F:(F为圆心)上一动点,线段AB的垂直平分线交于点,则动点的轨迹方程为________.34.已知椭圆C:,点M与C的焦点不重合,若M关于C的焦点的对称点分别为A,B,线段MN的中点在C上,则________.35.已知椭圆:的左、右焦点分别为、,以为圆心作半经为1的圆,为椭圆上一点,为圆上一点,则的取值范围为________.36.焦点在x轴上,短轴长等于16,离心率等于的椭圆的标准方程为________.37.椭圆的焦点为,点P在椭圆上,若,则的大小为________.38.P是椭圆上的点,F1和F2是该椭圆的焦点,则k=|PF1|·|PF2|的最大值是________。
备战高考数学(精讲+精练+精析)专题10.1椭圆试题文(含解析)
![备战高考数学(精讲+精练+精析)专题10.1椭圆试题文(含解析)](https://img.taocdn.com/s3/m/945394d9e87101f69e3195f1.png)
专题10.1 椭圆试题 文【三年高考】1. 【2016高考新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) (A )13 (B )12 (C )23 (D )34【答案】B2. 【2016高考新课标Ⅲ文数】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12(C )23(D )34【答案】A3.【2016高考新课标2文数】已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当AM AN =时,求AMN ∆的面积;(Ⅱ)当AM AN =时,证明:32k <<.【解析】(Ⅰ)设11(,)M x y ,则由题意知10y >.由已知及椭圆的对称性知,直线AM 的倾斜角为4π,又(2,0)A -,因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=,解得0y =或127y =,所以1127y =.因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=. (2)将直线AM 的方程(2)(0)y k x k =+>代入22143x y +=得2222(34)1616120k x k x k +++-=.由2121612(2)34k x k -⋅-=+得2122(34)34k x k -=+,故2212121||1|2|34k AM k x k +=++=+.由题设,直线AN 的方程为1(2)y x k =-+,故同理可得22121||43k k AN k +=+.由2||||AM AN =得2223443kk k =++,即3246380k k k -+-=.设32()4638f t t t t =-+-,则k 是()f t 的零点,22'()121233(21)0f t t t t =-+=-≥,所以()f t 在(0,)+∞单调递增,又(3)153260,(2)60f f =-<=>,因此()f t 在(0,)+∞有唯一的零点,且零点k 在(3,2)内,所以32k <<.4.【2016高考北京文数】已知椭圆C :22221x y a b+=过点A (2,0),B (0,1)两点.(I )求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值.5.【2016高考天津文数】设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率. 【解析】(1)设(,0)F c ,由113||||||c OF OA FA +=,即113()cc a a a c +=-,可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=.6. 【2015高考广东,文8】已知椭圆222125x y m +=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .2 【答案】C【解析】由题意得:222549m =-=,因为0m >,所以3m =,故选C .7.【2015高考福建,文11】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A . 3(0,]2 B .3(0,]4 C .32 D .3[,1)4【答案】A【解析】设左焦点为F ,连接1AF ,1BF .则四边形1BF AF 是平行四边形,故1AF BF =,所以142AF AF a +==,所以2a =,设(0,)M b ,则4455b ≥,故1b ≥,从而221a c -≥,203c <≤, 03c <≤,所以椭圆E 的离心率的取值范围是3(0,]2,故选A .8.【2015高考浙江,文15】椭圆22221x y a b +=(0a b >>)的右焦点()F ,0c 关于直线by x c=的对称点Q在椭圆上,则椭圆的离心率是 . 【答案】229. 【2015高考安徽,文20】设椭圆E 的方程为22221(0),x y a b a b+=>>点O 为坐标原点,点A 的坐标为(,0)a ,点B 的坐标为(0,b ),点M 在线段AB 上,满足2,BM MA =直线OM 5(Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB . 【解析】(Ⅰ)由题设条件知,点)31,32(b a M ,又105=OM k 从而1052=a b .进而b b ac b a 2,522=-==,故552==a c e . (Ⅱ)证:由N 是AC 的中点知,点N 的坐标为⎪⎭⎫⎝⎛-2,2b a ,可得⎪⎭⎫⎝⎛=65,6b a NM .又()b a ,-=,从而有()22225616561a b b a -=+-=⋅,由(Ⅰ)得计算结果可知,522b a =所以0=⋅,故AB MN ⊥.10. 【2014大纲,文9】已知椭圆C:22221(0)x y a b a b +=>>的左右焦点为F 1,F 2离心率为33,过F 2的直线l 交C 与A 、B 两点,若△AF 1B 的周长为43,则C 的方程为( )A. 22132x y +=B. 2213x y += C. 221128x y += D. 221124x y +=【答案】A11.【2014辽宁,文15】 已知椭圆C :22194x y +=,点M 与C 的焦点不重合,若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则||||AN BN += . 【答案】12【解析】设MN 的中点为G ,则点G 在椭圆C 上,设点M 关于C 的焦点F 1的对称点为A ,点M 关于C 的焦点F 2的对称点为B ,则有|GF 1|=12·|AN |,|GF 2|=12|BN |,所以|AN |+|BN |=2(|GF 1|+|GF 2|)=4a =12.12.【2014新课标2,文20】设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直.直线1MF 与C 的另一交点为N . (Ⅰ)若直线MN 的斜率为34,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a ,b【解析】(Ⅰ)由题意得:1(,0)F c -,2(,)b M c a ,∵MN 的斜率为34, ∴2324b ac =,又222a b c =+,解之:12c e a ==或2-(舍), 故:直线MN 的斜率为34时,C 的离心率为12;(Ⅱ)由题意知:点M 在第一象限,1(,0)F c -,2(,)b M c a,∴直线MN 的斜率为:22b ac ,则MN :222b y x ac =+;∵1(,0)F c -在直线MN 上,∴20()22b c ac=⨯-+,得24b a =……①∵15MN F N =,∴114MF F N =,且21(2,)b MF c a =--,∴21(,)24c b F N a =--,∴23(,)24c b N a--,又∵23(,)24c b N a --在椭圆C 上,∴4222291641b c a a b+=……② 联立①、②解得:7a =,27b =. 【三年高考命题回顾】纵观前三年各地高考试题, 对椭圆的考查,重点考查椭圆的定义、标准方程、几何性质及直线与椭圆的位置关系,高考中以选择题、填空、解答题的第一小题的形式考查椭圆的定义、标准方程及椭圆的几何性质,为容易题或中档题,以解答题的第二问的形式考查直线与椭圆的位置关系,一般是难题,分值一般为5-12分.【2017年高考复习建议与高考命题预测】由前三年的高考命题形式可以看出 , 椭圆的定义、标准方程、几何性质及直线与椭圆的位置关系是高考考试的热点,考查方面离心率是重点,其它利用性质求椭圆方程,求焦点三角形的周长与面积,求弦长,求椭圆的最值或范围问题,过定点问题,定值问题等.预测2017年高考,对椭圆的考查,仍重点考查椭圆的定义、标准方程、几何性质及直线与椭圆的位置关系,仍以选择题、填空、解答题的第一小题的形式考查椭圆的定义、标准方程及椭圆的几何性质,难度仍为容易题或中档题,以解答题的第二问的形式考查直线与椭圆的位置关系,难度仍难题,分值保持在5-12分.在备战2017年高考中,要熟记椭圆的定义,会利用定义解决椭圆上一点与椭圆的焦点构成的三角形问题,会根据题中的条件用待定系数法、定义法等方法求椭圆的标准方程,会根据条件研究椭圆的几何性质,会用设而不求思想处理直线与椭圆的位置关系,重点掌握与椭圆有关的最值问题、定点与定值问题、范围问题的处理方法,注意题中向量条件的转化与向量方法应用.【2017年高考考点定位】高考对椭圆的考查有三种主要形式:一是直接考查椭圆的定义与标准方程;二是考查椭圆的几何性质;三是考查直线与椭圆的位置关系,从涉及的知识上讲,常平面几何、直线方程与两直线的位置关系、圆、平面向量、函数最值、方程、不等式等知识相联系,字母运算能力和逻辑推理能力是考查是的重点. 【考点1】椭圆的定义与标准方程【备考知识梳理】1.椭圆的定义:把平面内与两定点12,F F 的距离之和等于常数(大于12||F F )的点的轨迹叫做椭圆,这两个定点叫椭圆的焦点,两焦点之间的距离叫焦距,符号表述为:12||||2PF PF a +=(122||a F F >). 注意:(1)当122||a F F =时,轨迹是线段12F F .(2)当122||a F F <时,轨迹不存在.2.椭圆的标准方程:(1) 焦点在x 轴上的椭圆的标准方程为22221(0)x y a b a b +=>>;焦点在y 轴上的椭圆的标准方程为22221(0)y x a b a b +=>>.给定椭圆22221(0,0)x y m n m n+=>>,要根据,m n 的大小判定焦点在那个坐标轴上,焦点在分母大的那个坐标轴上.(2)椭圆中,,a b c 关系为:222a b c =+. 【规律方法技巧】1.利用椭圆的定义可以将椭圆上一点到两焦点的距离进行转化,对椭圆上一点与其两焦点构成的三角形问题,常用椭圆的定义与正余弦定理去处理.2.求椭圆的标准方程方法(1)定义法:若某曲线(或轨迹)上任意一点到两定点的距离之和为常数(常数大于两点之间的距离),符合椭圆的定义,该曲线是以这两定点为焦点,定值为长轴长的椭圆,从而求出椭圆方程中的参数,写出椭圆的标准方程.(2)待定系数法,用待定系数法求椭圆标准方程,一般分三步完成,①定性-确定它是椭圆;②定位判定中心在原点,焦点在哪条坐标轴上;③定量-建立关于基本量,,,a b c e 的关系式,解出参数即可求出椭圆的标准方程.3.若若椭圆的焦点位置不定,应分焦点在x 轴上和焦点在y 轴上,也可设椭圆方程为221(0,0)Ax By A B +=>>,可避免分类讨论和繁琐的计算.【考点针对训练】1. 【2016届淮南市高三第二次模】以双曲线2213x y -=的左右焦点为焦点,离心率为12的椭圆的标准方程为( )A .2211216x y += B .221128x y += C .2211612x y += D .221812x y +=【答案】C【解析】由题意得,双曲线的焦点坐标为12(2,0),(2,0)F F -,即2c =,又离心率为12,即12c a =,解得4a =,所以2223b a c =-=,所以椭圆的方程为2211612x y +=,故选C . 2. 【2016届广西柳州高中高三4月高考模拟】已知12(,0),(,0)F c F c -为椭圆22221(0)x y a b a b+=>>的两个焦点,点P 在椭圆上,且12PF F ∆的面积为222b ,则12cos F PF ∠= . 【答案】13.【考点2】椭圆的几何性质 【备考知识梳理】 1.椭圆的几何性质 焦点在x 轴上焦点在y 轴上图形标准方程22221(0)x y a b a b +=>> 22221(0)y x a b a b +=>>焦点 (±c,0)(0,±c )焦距 |F 1F 2|=2c (c 2=a 2-b 2) 范围 |x |≤a ;|y |≤b|x |≤b ;|y |≤a顶点长轴顶点(±a,0),短轴顶点(0,±b )长轴顶点(0,±a ),短轴顶点(±b,0)对称性 曲线关于x 轴、y 轴、原点对称曲线关于x 轴、y 轴、原点对称 离心率e =ca∈(0,1),其中c =a 2-b 2 2.点00(,)P x y 与椭圆22221x y a b +=关系(1)点00(,)P x y 在椭圆内⇔2200221x y a b +<;(2)点00(,)P x y 在椭圆上⇔2200221x y a b +=;(3)点00(,)P x y 在椭圆外⇔2200221x y a b+>.【规律方法技巧】1.求解与椭圆性质有关的问题时要结合图像进行分析,即使不画图形,思考时也要联想到图像.当涉及到顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.2.椭圆取值范围实质实质是椭圆上点的横坐标、纵坐标的取值范围,在求解一些最值、取值范围以及存在性、判断性问题中有着重要的应用.3.求离心率问题,关键是先根据题中的已知条件构造出,,a b c 的等式或不等式,结合222a b c =+化出关于,a c 的式子,再利用ce a=,化成关于e 的等式或不等式,从而解出e 的值或范围.离心率e 与,a b 的关系为:222222c a b e a a -===221b a -⇒21b e a=-. 4.椭圆上一点到椭圆一个焦点的距离的取值范围为[,a c a c -+].4.椭圆的通径(过焦点垂直于焦点所在对称轴的直线被椭圆截得的弦叫通径)长度为22b a,是过椭圆焦点的直线被椭圆所截得弦长的最小值. 【考点针对训练】1. 【2016届湖北省级示范高中联盟高三模拟】椭圆()22211y x b b+=<的左焦点为,F A 为上顶点,B 为长轴上任意一点,且B 在原点O 的右侧,若FAB ∆的外接圆圆心为(),P m n ,且0m n +>,椭圆离心率的范围为( ) A .20,⎛⎫ ⎪ ⎪⎝⎭ B .10,2⎛⎫ ⎪⎝⎭ C .1,12⎛⎫⎪⎝⎭ D .2,1⎛⎫ ⎪ ⎪⎝⎭【答案】A2. 【2016届福建福州三中高三最后模拟】椭圆2222:1x y C a b+=(0)a b >>的左、右焦点为2,1F F ,过2F 作直线l 垂直于x 轴,交椭圆C 于A ,B 两点,若若1F AB ∆为等腰直角三角形,且0190=∠B AF ,则椭圆C 的离心率为( )A 21B .212-C .22.22【答案】A【解析】∵2AF x ⊥ 轴,∴2b A c a ⎛⎫⎪⎝⎭, .∵1F AB 为等腰直角三角形,∴122||F F AF = ,∴222222221b c ac b a c e e a=∴==-∴=-,, ,化为()22100e e e +-=>, .解得22212e -+== .故选:A .【考点3】直线与椭圆的位置关系 【备考知识梳理】直线方程与椭圆方程联立,消元后得到一元二次方程,若判别式Δ>0,则直线与椭圆交;若△=0,则直线与椭圆相切;若△<0,则直线与椭圆相离.【规律方法技巧】1. 直线方程与椭圆方程联立,消元后得到一元二次方程,则一元二次方程的根是直线和椭圆交点的横坐标或纵坐标,常设出交点坐标,用根与系数关系将横坐标之和与之积表示出来,这是进一步解题的基础. 2.直线y =kx +b (k ≠0)与圆锥曲线相交于A (x 1,y 1),B (x 2,y 2)两点,则弦长|AB |= 1+k 2|x 1-x 2|= 1+k 2·x 1+x 22-4x 1x 2=1+1k2·|y 1-y 2|=1+1k2·y 1+y 22-4y 1y 2.3.对中点弦问题常用点差法和参数法. 【考点针对训练】1. 【2016届广东省华南师大附中高三5月测试】已知椭圆C:22193x y +=,直线:l 2y kx =-与椭圆C 交于A ,B 两点,点()0,1P ,且PA =PB ,则直线l 的方程为 . 【答案】20x y --=或20x y ++=2. 【2016届湖北省八校高三二联】定义:在平面内,点P 到曲线Γ上的点的距离的最小值称为点P 到曲线Γ的距离.在平面直角坐标系xOy 中,已知圆M :(22212x y -+=及点()2,0A -,动点P 到圆M 的距离与到A 点的距离相等,记P 点的轨迹为曲线W . (Ⅰ)求曲线W 的方程;(Ⅱ)过原点的直线l (l 不与坐标轴重合)与曲线W 交于不同的两点,C D ,点E 在曲线W 上,且CE CD ⊥,直线DE 与x 轴交于点F ,设直线,DE CF 的斜率分别为12,k k ,求12.k k【应试技巧点拨】1.焦点三角形问题的求解技巧(1)所谓焦点三角形,就是以椭圆的焦点为顶点,另一个顶点在椭圆上的三角形.(2)解决此类问题要注意应用三个方面的知识:①椭圆的定义;②勾股定理或余弦定理;③基本不等式与三角形的面积公式.2.离心率的求法椭圆的离心率就是ca的值,有些试题中可以直接求出,a c的值再求离心率,在有些试题中不能直接求出,a c的值,由于离心率是个比值,因此只要能够找到一个关于,a c或,a b的方程,通过这个方程解出ca或b a ,利用公式cea=求出,对双曲线来说,221bea=+,对椭圆来说,221bea=-.3.有关弦的问题(1)有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视椭圆定义的运用,以简化运算.①斜率为k 的直线与圆锥曲线交于两点111(,)P x y ,222(,)P x y ,则所得弦长21212||1||PP k x x =+-或122121||1||P P y y k=+-,其中求12||x x -与21||y y -时通常使用根与系数的关系,即作如下变形: ()2121212||4x x x x x x -=+-,()2211212||4y y y y y y -=+-.②当斜率k 不存在时,可求出交点坐标,直接运算(利用两点间距离公式). (2)弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算. 4.直线与椭圆的位置关系在直线与椭圆的位置关系问题中,一类是直线和椭圆关系的判断,利用判别式法.另一类常与“弦”相关:“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式.在求解弦长问题中,要注意直线是否过焦点,如果过焦点,一般可采用焦半径公式求解;如果不过,就用一般方法求解.要注意利用椭圆自身的范围来确定自变量的范围,涉及二次方程时一定要注意判别式的限制条件. 5.避免繁复运算的基本方法可以概括为:回避,选择,寻求.所谓回避,就是根据题设的几何特征,灵活运用曲线的有关定义、性质等,从而避免化简方程、求交点、解方程等繁复的运算.所谓选择,就是选择合适的公式,合适的参变量,合适的坐标系等,一般以直接性和间接性为基本原则.因为对普通方程运算复杂的问题,用参数方程可能会简单;在某一直角坐标系下运算复杂的问题,通过移轴可能会简单;在直角坐标系下运算复杂的问题,在极坐标系下可能会简单“所谓寻求”.6.注意椭圆的范围,在设椭圆)0(12222>>=+b a by a x 上点的坐标(),P x y 时,则x a ≤,这往往在求与点P 有关的最值问题中特别有用,也是容易忽略导致求最值错误的原因.7.注意椭圆上点的坐标范围,特别是把椭圆上某一点坐标视为某一函数问题求解,求函数的单调区间,最值有重要意义. 二年模拟1. 【2016届海南省农垦中学高三第九次月考】设斜率为22的直线l 与椭圆)0(12222>>=+b a by a x 交于不同的两点P,Q ,若点P 、Q 在x 轴上的射影恰好为椭圆的两个焦点,则该椭圆的离心率为( ) A 、22 B 、23 C 、21 D 、31【答案】B2. 【2016届河南省新乡卫辉一中高考押题一】已知某椭圆的方程为()22211x y a a+=>,上顶点为A ,左顶点为B ,设P 是椭圆上的任意一点,且PAB ∆21,若已知()3,0M -,)3,0N ,点Q 为椭圆上的任意一点,则14QN QM+的最小值为( ) A .2 B .94C .3D .322+【答案】B【解析】设(cos ,sin ),AB:1xP a y aθθ+=-,因此PAB ∆面积为221|cos sin 1|211221a a aθθ--++=≤+2a =,24QM QN a +==,1414()14149=()(5)(52)4444QM QN QN QM QN QM QN QM QN QM QM QN QM QN +++=++≥+⋅=,当且仅当2QM QN =时取等号,选B.3. 【2016届河北省衡水中学高三下练习五】椭圆()222:106x y C a a +=>6则实数a 为( )A .6555.6555.555【答案】C4. 【2016届福建省厦门市高三5月月考】已知点(1,0)M ,,A B 是椭圆2214x y +=上的动点,且0MA MB ⋅=,则MA BA ⋅的取值范围是( )A .2[,1]3 B .[1,9] C .2[,9]3 D .6[,3]3【答案】B【解析】设),(00y x A ,因22200()(1)MA BA MA BM MA MA x y ⋅=⋅+==-+,且2020411x y -=,故2000322(11)4MA BA x x x ⋅=-+-≤≤,所以min 342()221493MA BA ⋅=⨯-⨯+=, max 3()42(2)294MA BA ⋅=⨯--+=,故应选B.5. 【2016届福建省泉州市高三5月质检】已知椭圆()22122:10x y C a b a b +=>>,其长轴长为4且离心率为32,在椭圆1C 上任取一点P , 过点P 作圆()222:32C x y ++=的两条切线,PM PN ,切点分别为,M N ,则22C M C N ⋅的最小值为( ) A .2- B .32- C .1813- D .0 【答案】B6. 【2016届河南省郑州一中高三考前冲刺四】若P 为椭圆1151622=+y x 上任意一点,EF 为圆4)1(22=+-y x 的任意一条直径,则PE PF ⋅的取值范围是______.【答案】[]215,【解析】因为()()PE PF NE NP NF NP ⋅=-⋅-()2NE NF NP NE NF NP =⋅-⋅++22cos 04NE NF NP NP π=-⋅-+=-+.又因为椭圆2211615x y +=的4,15,1a b c ===,()10N ,为椭圆的右焦点,∴[][],3,5NP a c a c ∈-+=∴[]521PE PF ⋅∈,.故答案为:[]521,. 7. 【2016届河南省禹州市名校高三三模】已知2F 为椭圆()22401mx y m m +=<<的右焦点, 点()0,2A ,点P 为椭圆上任意一点, 且2PA PF -的最小值为43-,则m = . 【答案】29【解析】由224mx y m +=,得22144x y m+=,由于01m <<,所以椭圆的焦点在x 轴上.设椭圆的左焦点为1F ,则()1214,44,0PF PF F m +=--,那么21144PA PF PA PF AF -=+-≥-42243m =-=-,解得29m =.8. 【2016届四川南充高中高三4月模拟三】如图,12,A A 为椭圆22195x y +=的长轴的左、右端点,O 为坐标原点,,,S Q T 为椭圆上不同于12,A A 的三点,直线12,Q ,,QA A OS OT 围成一个平行四边形OPQR ,则22OS OT+= .【答案】149. 【2016届湖北省黄冈中学高三5月一模】已知椭圆2222:1(0)x y C a b a b +=>>的左焦点为F ,离心率为12,直线l 与椭圆相交于,A B 两点,当AB x ⊥轴时,ABF ∆的周长最大值为8. (1)求椭圆的方程;(2)若直线l 过点(4,0)M -,求当ABF ∆面积最大时直线AB 的方程.【解析】(1)设椭圆的右焦点为'F ,由椭圆的定义,得''||||||||2AF AF BF BF a +=+=,而ABF ∆的周长为''||||||||||||||4AF BF AB AF BF AF BF a ++≤+++=,当且仅当AB 过点'F 时,等号成立,所以48a =,即2a =,又离心率为12,所以1,3c b ==22143x y +=. (2)设直线AB 的方程为4x my =-,与椭圆方程联立得22(34)24360m y my +-+=.设1122(,),(,)A x y B x y ,则222576436(34)144(4)0m m m ∆=-⨯+=->,且1222434my y m +=+,1223634y y m =+,所以212211843||234ABF m S y y m ∆-=⋅-=+②,令24(0)t m t =->,则②式可化为21818331631616323ABF t S t t t t t∆==≤=++⋅.当且仅当163t t =,即221m =±时,等号成立. 所以直线AB 的方程为22143x y =-或22143x y =--. 10. 【2016届天津市和平区高三第四次模拟】椭圆()2222:10x y C a b a b +=>>的上顶点为()40,,,33b A b P ⎛⎫⎪⎝⎭是椭圆C 上一点,以AP 为直径的圆经过椭圆C 的右焦点F .(Ⅰ)求椭圆C 的方程;(Ⅱ)若动直线l 与椭圆C 只有一个公共点,且x 轴上存在着两个定点,它们到直线l 的距离之积等于1,求出这两个定点的坐标.(Ⅱ)当直线l 的斜率存在时,设其方程为y kx m =+,代入椭圆方程,消去y ,整理,得()222214220kx kmx m +++-=.由2216880k m ∆=-+=,得2221m k =+.假设存在着定点()()1122,0,,0M M λλ满足题设条件.1M 、2M 到直线l 的距离分别为1d 、2d ,则由()()()()2121212122221111k km k m k m d d k k λλλλλλ++++++⋅===++,对于k R ∀∈恒成立,可得121221,0,λλλλ+=⎧⎨+=⎩解得121,1,λλ=⎧⎨=-⎩或121,1.λλ=-⎧⎨=⎩故()()121,0,1,0M M -满足条件.当直线l 的斜率不存在时,经检验,12,M M 仍符合题意.11.【2015届湖北省襄阳市第五中学高三第一学期11月质检】若椭圆的中心在原点,一个焦点为(0,2),直线y=3x+7与椭圆相交所得弦的中点的纵坐标为1,则这个椭圆的方程为( )A .2211220x y += B.221412x y += C .221128x y += D .221812x y += 【答案】D【解析】椭圆的中心在原点,一个焦点为(0,2),所以椭圆的焦点在y 轴上,且422=-b a ,故能排除A ,B ,C 答案为D.12.【2015届黑龙江省哈尔滨市三中高三第四次模拟】设1F 、2F 是椭圆)10(1222<<=+b b y x 的左、右焦点,过1F 的直线l 交椭圆于B A ,两点,若||3||11B F AF =,且x AF ⊥2轴,则=2b ( ) A .41 B .31 C .32 D .43 【答案】C13. 【江苏省启东中学2015届高三下学期期初调研】已知点(,4)P m 是椭圆22221+=x y a b (0)>>a b 上的一点,12,F F 是椭圆的两个焦点,若12∆PF F 的内切圆的半径为32,则此椭圆的离心率为 .1F 2F yxP【答案】35;【解析】一方面12∆PF F的面积为1(22)2a c r+⋅;另一方面12∆PF F的面积为122⋅py c,11(22)222+⋅=⋅pa c r y c,∴()+⋅=⋅pa c r y c,∴+=pya cc r,∴(1)+=pyac r,又4=py ∴4511332pyac r=-=-=,∴椭圆的离心率为35==cea.14.【2015届黑龙江省哈尔滨市三中高三第四次模拟】如图,已知椭圆的中心在坐标原点,焦点在x轴上,它的一个顶点为A(0,2),且离心率等于32,过点M(0,2)的直线l与椭圆相交于P,Q不同两点,点N在线段PQ上.(Ⅰ)求椭圆的标准方程;(Ⅱ)设||||=||||PM MQPN NQλ=,试求λ的取值范围.(Ⅱ)设11(,)P x y,22(,)Q x y,00(,)N x y,若直线l与y轴重合,则00||||22||||22PM MQPN NQ y y===-+,得1y=,得2λ=l与y轴不重合,则设直线l的方程为2y kx=+,与椭圆方程联立消去y得22(14)1680k x kx+++=,得1221614kx xk+=-+①,122814x xk=+②,由|||| |||| PM MQ PN NQ=得12100200x xx x x x--=--,整理得120122()x x x x x=+,将①②代入得1xk=-,又点00(,)N x y在直线l上,所以1()21y kk=⨯-+=,于是有112y<<,因此1111121111111y yy y yλ--+===----,由112y<<得11211y>+-,所以2λ>,综上所述,有2λ≥.15.【2015届清华附中考前适应性练习】已知椭圆C:)0(12222>>=+babyax的上顶点为A,两个焦点为1F、2F,21FAF∆为正三角形且周长为6.(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知圆O:222Ryx=+,若直线l与椭圆C只有一个公共点M,且直线l与圆O相切于点N;求||MN的最大值.拓展试题以及解析1. 已知椭圆22221(0)x yC a ba b+=>>:的离心率为e,直线2y x=与以C的长轴为直径的圆交于A B、两点,且曲线C恰好将线段AB三等分,则2e的值为( )A.12B.18C.1011D.34【答案】C【入选理由】本题考查椭圆的方程、直线和椭圆的位置关系、椭圆的简单几何性质等基础知识,意在考查数形结合思想,转化与化归思想,综合分析问题、解决问题的能力.以及运算求解能力,直线与椭圆的位置关系,是高考考查的热点,故选此题.2.如图,已知椭圆22 221(0)x ya ba b上有一个点A,它关于原点的对称点为B,点F为椭圆的右焦点,且满足AF BF⊥,当π12ABF∠=时,椭圆的离心率为___________.xyOAFB【答案】6【入选理由】本题考查椭圆的方程,椭圆的定义,解直角三角形,三角恒等变形,椭圆的简单几何性质等基础知识,意在考查数形结合思想,转化与化归思想,综合分析问题、解决问题的能力,以及运算求解能力,椭圆的简单几何性质,是高考考查的热点,故选此题.3.已知椭圆22221(0)yx a ba b+=>>2,长轴AB上2016个等分点从左到右依次为点122015,,,M M M,过1M点作斜率为(0)k k≠的直线,交椭圆C于12,P P两点,1P点在x轴上方;过2M点作斜率为(0)k k≠的直线,交椭圆C于34,P P两点,3P点在x轴上方;以此类推,过2015M点作斜率为(0)k k≠的直线,交椭圆C于40294030,P P两点,4029P点在x轴上方,则4030条直线124030,AP AP AP,,的斜率乘积为_______.【答案】20151.2-【解析】因为椭圆的离心率为22,所以22=2a c ,又222=a b c +,所以22=2a b ,设1P ),(11P P y x ,由椭圆对称性知22111222140301111112P P P AP AP AP BP P P P y y y b k k k k x a x a x a a⋅⋅⋅==-=-+--==,从而4030条直线124030,AP AP AP ,,的斜率乘积配成2015组,每组乘积皆为12-,因此结果为20151.2-【入选理由】本题考查椭圆的方程,直线的斜率,椭圆的简单几何性质等基础知识,意在考查数形结合思想,转化与化归思想,综合分析问题、解决问题的能力,以及运算求解能力,本题初看似乎很难,细细分析,利用椭圆的对称性很容易解出,本题构思巧妙,是一个好题,故选此题.4.设椭圆2222:1(0)x y C a b a b +=>>,定义椭圆C 的“隐圆”方程为222222a b x y a b+=+,若抛物线214x y =-的准线恰好过椭圆C 的一个焦点,且椭圆C 短轴的一个端点和其两个焦点构成直角三角形. (Ⅰ)求椭圆C 的方程和“隐圆”E 的方程;(Ⅱ)过“隐圆”E 上任意一点P 作“隐圆”E 的切线l 与椭圆C 交于,A B 两点,O 为坐标原点. (i)证明:AOB ∠为定值;(ii)连接PO 并延长交“隐圆”E 于点Q ,求ABQ 面积的取值范围.(Ⅱ)(i )当直线l 的斜率不存在时,不妨设直线AB 方程为63x =,则6666,,3333A B ⎛⎛- ⎝⎭⎝⎭,所以2AOB π∠=,当直线l 的斜率存在时,设其方程设为y kx m =+,设()()1122,,,A x y B x y ,联立方程组2212y kx m x y ++==⎧⎪⎨⎪⎩得222()2x kx m ++=,即222(12)4220k x kmx m +++-=,△=222222164(12)(22)8(21)0k m k m k m -+-=-+>,即22210(*)k m -+>,12221224122212km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩,因为直线与隐圆相切,所以2222131m m d k k ===++22322m k ∴=+ ,22222221212121222(1)(22)4(1)()1212k m k m x x y y k x x km x x m m k k+-∴+=++++=-+++222322012m k k --==+OA OB ∴⊥2AOB π∴∠=为定值 ; 【入选理由】本题考查椭圆的方程,直线和椭圆的位置关系,椭圆的简单几何性质,新定义,圆的性质,焦三角等基础知识,意在考查数形结合思想,转化与化归思想,综合分析问题、解决问题的能力,以及运算求解能力,本题构思巧妙,是一个好题,故选此题.5.已知椭圆C :22221(0)x y a b a b+=>>的右焦点到直线320x y -+=的距离为5,且椭圆的一个长轴端10 (1)求椭圆C 的方程;M N,与以椭圆短轴为直径的圆分别交于(2)如图,连接椭圆短轴端点A与椭圆上不同于A的两点,P恰好经过圆心O,求AMN,P Q两点,且Q∆面积的最大值.【入选理由】本题考查椭圆的方程,直线和椭圆的位置关系,椭圆的简单几何性质,基本不等式等基础知识,意在考查数形结合思想,转化与化归思想,综合分析问题、解决问题的能力,以及运算求解能力,本题是一个常规题,直线与椭圆的位置关系,是高考考查的热点,故选此题. 6.已知椭圆)0(1:2222>>=+b a by ax C 的离心率为e ,直线:l y ex a =+与,x y 轴分别交于B A 、点.(Ⅰ)求证:直线l 与椭圆C 有且仅有一个交点; (Ⅱ)设T 为直线l 与椭圆C 的交点,若AT eAB =,求椭圆C 的离心率;(Ⅲ)求证:直线:l y ex a =+上的点到椭圆C 两焦点距离和的最小值为2.a【入选理由】本题考查椭圆的方程,直线和椭圆的位置关系,椭圆的简单几何性质, 函数最值基础知识,意在考查数形结合思想,转化与化归思想,综合分析问题、解决问题的能力,以及运算求解能力,本题是一个常规题,第二问出题形式新颖,故选此题.7.已知1F 、2F 分别是离心率为21的椭圆E :)0(12222>>=+b a by a x 的左、右焦点,M 是椭圆E 上一点,线段M F 1的中点为N ,△O NF 1(O 为坐标原点)的周长为3. (Ⅰ)求椭圆E 的标准方程;(Ⅱ)过1F 作与x 轴不垂直的直线l 交椭圆E 于B A ,两点,)0,(m Q ,若||||QB QA =,求实数m 的取值范围.【入选理由】本题考查椭圆的方程,椭圆的定义,直线和椭圆的位置关系,椭圆的简单几何性质基础知识,意在考查数形结合思想,转化与化归思想,综合分析问题、解决问题的能力,以及运算求解能力,本题是一个常规题,求参数范围是高考考试的重点,故选此题.8.椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,P 为椭圆C 上任意一点,12||||PF PF -的最大值4,离心率为22. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知过M (0,1)作一条直线l 与椭圆C 相交于两点B A ,,求△AOB 面积的取值范围.【解析】(Ⅰ)由题知⎪⎩⎪⎨⎧==2242a c c ,解得2,22==c a ,所以222c a b -==4,所以椭圆C 的方程为14822=+y x . (Ⅱ)可设直线AB 的方程为1+=kx y ,代入方程8222=+y x 整理得,064)21(22=-++kx x k ,设直【入选理由】本题考查椭圆的方程,直线和椭圆的位置关系,椭圆的简单几何性质,三角形的面积,函数与导数,函数的单调性,函数的最值基础知识,意在考查数形结合思想,转化与化归思想,综合分析问题、解决问题的能力,以及运算求解能力,本题是一个常规题,但综合性比较强,特别是与导数结合出题,是一个好题,故选此题.。
椭圆周长专项练习60题(有答案)
![椭圆周长专项练习60题(有答案)](https://img.taocdn.com/s3/m/fbf105a49a89680203d8ce2f0066f5335a8167fa.png)
椭圆周长专项练习60题(有答案)
1. 椭圆的定义
椭圆是一个平面上的闭合曲线,其定义是到两个焦点之间的距离之和等于常数2a(椭圆的长轴长度)的点的集合。
2. 椭圆的性质
- 椭圆的最长直径被称为长轴,长度为2a。
- 椭圆的最短直径被称为短轴,长度为2b。
- 焦距是椭圆上离两个焦点最近和最远的两点之间的距离,长度为2c。
- 椭圆的焦距、长轴和短轴满足以下关系:c² = a² - b²。
- 椭圆的离心率e满足以下关系:e = c / a。
3. 椭圆周长计算公式
椭圆的周长C可以通过以下公式计算:
C = 2π√((a² + b²) / 2)
4. 椭圆周长专项练题(共60题)
1. 椭圆的长轴长度为6,短轴长度为4,求椭圆的周长。
答案:C = 2π√((6² + 4²) / 2) ≈ 2π√(52 / 2) ≈ 2π√26
2. 椭圆的长轴长度为10,离心率为0.8,求椭圆的短轴长度。
答案:e = c / a,由此可求得焦距c,再根据焦距和长轴长度可求得短轴b。
3. ...
60. ...
以上是关于椭圆周长的专项练习,希望对你的学习有所帮助!。
椭圆的定义、标准方程与应用(例题详解)
![椭圆的定义、标准方程与应用(例题详解)](https://img.taocdn.com/s3/m/01bdd522974bcf84b9d528ea81c758f5f71f297b.png)
椭圆的定义、标准方程与应用(例题详解)一、定义类:1、椭圆定义:椭圆是一种中心对称的图形,即椭圆的中心点与形状对称,可以通过对称轴对椭圆进行对称变换。
具体而言,当你沿着对称轴将椭圆的一段变换至另一段时,整个椭圆的线段形式都不变。
椭圆也有自己的焦点,它是椭圆的特征,椭圆上每个点到它的焦点之间的距离总是一定的。
如果一个图形有以上特征,那么它就可以称为椭圆。
2、已知点A( -2,0),B(2,0),动点P满足|PA| + |PB| = 4,求点P的轨迹。
3、已知点A( -2,0),B(2,0),动点P满足|PA| - |PB| = 2,求点P的轨迹。
二、椭圆的标准方程:1、椭圆的标准方程是一种二次曲线函数,是用来表达椭圆的函数。
2、椭圆的标准方程有两种形式,一种是椭圆的极坐标方程,一种是椭圆的笛卡尔坐标方程。
3、椭圆的极坐标方程为:①、$$r=frac{acdot b}{sqrt{a^2cdot sin^2theta + b^2cdot cos^2theta}}$$。
②、a和b分别是椭圆的长轴和短轴,$theta$是弧度。
4、椭圆的笛卡尔坐标方程为:$$frac{x^2}{a^2}+frac{y^2}{b^2}=1$$;其中,a和b分别是椭圆的长轴和短轴,$(x,y)$是椭圆上一点的坐标。
三、椭圆的面积和周长:1、椭圆的面积可以使用一下公式来计算:$$S = picdot a cdot b$$;其中,a和b分别是椭圆的长轴和短轴,S是椭圆的面积。
2、椭圆的周长也可以使用一下公式来计算:$$L = picdot sqrt{2a^2+2b^2}$$;其中,a和b分别是椭圆的长轴和短轴,L是椭圆的周长。
四、标准形式类:1、已知椭圆的方程为 + = 1(a > b > 0),过点P(2,1)且与该椭圆有一个交点的直线方程为:y-1=k(x-2),求k的取值范围。
2、已知椭圆的方程为 + = 1(a > b > 0),过点P(0,2)且与该椭圆有一个交点的直线方程为:y=x+2,求k的取值范围。
椭圆的定义和标准方程的基本练习(包括答案).doc
![椭圆的定义和标准方程的基本练习(包括答案).doc](https://img.taocdn.com/s3/m/e6c7904fd5bbfd0a79567388.png)
椭圆的定义和标准方程的基本练习(包括答案)椭圆和标准方程1的定义。
选择题(共19题)1。
如果F1 (3,0),F2 ({3,0),从点p到F1,F2的距离之和是10,那么点p的轨迹方程是()a.b.c.d .或2。
移动圆内接圆x2 y2 6x 5=0,圆x2y2-6x-91=0。
那么运动圆的中心轨迹是()a。
椭圆b。
双曲线c。
抛物线d。
圆3。
从椭圆上的点p到一个焦点的距离是5,那么从点p到另一个焦点的距离是()。
已知坐标平面上的两点a ({1,0)和b (1,0 ),从移动点p到a和b的距离之和为常数2。
那么运动点p的轨迹是()a .椭圆b .双曲线c .抛物线d .线段5。
从椭圆上的移动点p到两个焦点的距离之和为()a. 10b.8c.6d。
已知两点f1 ({1,0),F2 (1,0),并且|f1F2|是|PF1|和|PF2|的等差中值,则移动点p的轨迹方程为()a.b.c.d.7。
已知F1和F2是椭圆的两个焦点=1,并且穿过点F2的直线在点a和b处与椭圆相交。
如果|AB|=5,则|AF1| |BF1|等于()A.16B.11C.8D.3 8。
设a={1,2,3,4,5},A,b∈A,则该方程表示焦点在y轴上的椭圆()A.5 B.10 C.20 D.25 9。
简化的结果是在平面上有一个长度为2的线段AB和一个移动点p(a . b . c . d . 10)。
如果满足|PA| |PB|=8,则|PA|的取值范围为()a. [1,4] b. [2,6] c. [3,5] d. [3,6] 11。
设定点F1(0,651233),F2(0,3)并满足条件|PF1| |PF2|=6,则运动点P的轨迹是()a .椭圆b .线段c .椭圆或线段d .不存在。
12.已知△ABC的周长为20,顶点为B (0,651234),C (0,4),那么顶点a的轨迹方程为()a. (x ≠ 0) b. (x ≠ 0) c. (x ≠ 0) d. (x ≠ 0) 13。
椭圆专题讲解
![椭圆专题讲解](https://img.taocdn.com/s3/m/040f5b8a376baf1ffd4fad73.png)
椭圆第一课时:椭圆标准方程,定义法求轨迹一、知识要点:1.椭圆的定义: 实际上,当2121F F PF PF >+时为 ; 当2121F F PF PF =+时为 ; 当2121F F PF PF <+时 .2.二、典型例题例1、A 、B 两点相距4个单位长度,试求(1)平面内到A 、B 两点距离和为6的所有点组成的集合;(2)平面内到A 、B 两点距离和为4的所有点组成的集合;(3)平面内到A 、B 两点距离和为2的所有点组成的集合。
变式1:已知△ABC 中AB 长为4,周长为10,求C 的轨迹变式2:△ABC 的三边,,a b c 成等差数列,且满足a b c >>,A 、C 两点的坐标分别是)1,0(、)1,0(-,求顶点B 的轨迹方程。
例2、已知圆O 11)2(22=++y x 圆O 2()49222=+-y x ,若动圆P 与一个内切与另一个外切,试求P 轨迹。
变式1:若将上题中圆O 2方程改为()25222=+-y x 呢?变式2:如图,P 为圆B :(x +2)2+y 2=36上一动点,点A 坐标为(2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨迹方程.例3、(1)椭圆焦距为6,且b a 2=,则其标准方程为 ;(2)椭圆方程为1322=+y x ,则其焦点坐标为 ,右顶点坐标为 ; (3)椭圆方程为1222=+y x ,则其焦点坐标为 ,右顶点坐标为 ;变式1:若方程()()15122=-++y k x k 表示焦点在x 轴上的椭圆,则k 需满足 ,若其表示焦点在y 轴上的椭圆,则k 需满足 ,若其表示圆,则k 需满足 ,若其表示椭圆则k 需满足 ,例4、已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点⎝⎛⎭⎫52,-32,求它的标准方程。
(两种方法)变式1:求适合下列条件的椭圆的标准方程: (1) 长轴是短轴的3倍且经过点A (3,0);(2)(3) 经过点P (-,Q 2)-两点;例5、A 为圆422=+y x 上的一点,过A 做AB 垂直于x 轴,交于B ,C 为AB 中点,试求点C 轨迹。
人教版高中数学选择性必修一讲义3.1.1 椭圆(第一课时)(精练)(解析版)
![人教版高中数学选择性必修一讲义3.1.1 椭圆(第一课时)(精练)(解析版)](https://img.taocdn.com/s3/m/28e7ce71ec3a87c24128c4da.png)
3.1.1 椭圆【题组一 椭圆的定义】1.(2020·全国高三其他(理))已知平面内两个定点(3,0)M 和点(3,0)N -,P 是动点,且直线PM ,PN 的斜率乘积为常数(0)a a ≠,设点P 的轨迹为C .① 存在常数(0)a a ≠,使C 上所有点到两点(4,0),(4,0)-距离之和为定值; ② 存在常数(0)a a ≠,使C 上所有点到两点(0,4),(0,4)-距离之和为定值; ③ 不存在常数(0)a a ≠,使C 上所有点到两点(4,0),(4,0)-距离差的绝对值为定值; ④ 不存在常数(0)a a ≠,使C 上所有点到两点(0,4),(0,4)-距离差的绝对值为定值. 其中正确的命题是_______________.(填出所有正确命题的序号) 【正确答案】②④【详细解析】设点P 的坐标为:P (x ,y ), 依题意,有:33y ya x x ⨯=+-, 整理,得:22199x y a-=,对于①,点的轨迹为焦点在x 轴上的椭圆,且c =4,a <0,椭圆在x 轴上两顶点的距离为6,焦点为:2×4=8,不符; 对于②,点的轨迹为焦点在y 轴上的椭圆,且c =4,椭圆方程为:22199y x a +=-,则9916a --=,解得:259a =-,符合;对于③,当79a =时,22197x y -=,所以,存在满足题意的实数a ,③错误;对于④,点的轨迹为焦点在y 轴上的双曲线,即22199y x a +=-,不可能成为焦点在y 轴上的双曲线, 所以,不存在满足题意的实数a ,正确. 所以,正确命题的序号是②④.2.(2018·福建高二期末(理))已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是( )A .2213620x y +=(x≠0)B .2212036x y +=(x≠0)C .221620x y +=(x≠0)D .221206x y +=(x≠0)【正确答案】B【详细解析】∵△ABC 的周长为20,顶点B (0,﹣4),C (0,4), ∴BC =8,AB +AC =20﹣8=12,∵12>8∴点A 到两个定点的距离之和等于定值,∴点A 的轨迹是椭圆, ∵a =6,c =4∴b 2=20,∴椭圆的方程是()22102036x y x +=≠故选B .3.(2020·全国高三其他(文))已知椭圆2212516x y +=,()3,0A ,()2,1B -,点M 是椭圆上的一动点,则MA MB +的最小值为( )A .6B .10C .11D .12-【正确答案】B【详细解析】由题意知A 为椭圆的右焦点,设左焦点为1F ,由椭圆的定义知110MF MA +=, 所以110MA MB MB MF +=+-. 又11MB MF BF -≤,如图,设直线1BF 交椭圆于1M ,2M 两点.当M 为点1M 时,1MB MF -最小,最小值为10故选:B4.(2019·湖北襄阳。
高三数学专题训练- 椭圆的定义、标准方程及性质
![高三数学专题训练- 椭圆的定义、标准方程及性质](https://img.taocdn.com/s3/m/d6e2d45afc4ffe473368abca.png)
高三数学专题练习30 椭圆的定义、标准方程及性质小题基础练○30一、选择题1.椭圆x 24+y 2=1的离心率为( ) A.12 B.32C.52 D .2 答案:B解析:由题意得a =2,b =1,则c =3,所以椭圆的离心率e =c a =32,故选B.2.[2019·佛山模拟]若椭圆mx 2+ny 2=1的离心率为12,则m n =( )A.34B.43C.32或233D.34或43 答案:D解析:若焦点在x 轴上,则方程化为x 21m +y 21n =1,依题意得1m -1n 1m=14,所以m n =34;若焦点在y 轴上,则方程化为y 21n +x 21m=1,同理可得m n =43.所以所求值为34或43.故选D.3.过椭圆4x 2+y 2=1的一个焦点F 1的直线与椭圆交于A ,B 两点,则A 与B 和椭圆的另一个焦点F 2构成的△ABF 2的周长为( )A .2B .4C .8D .2 2答案:B解析:因为椭圆方程为4x 2+y 2=1,所以a =1.根据椭圆的定义,知△ABF 2的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AF 2|+|BF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =4.故选B.4.[2018·全国卷Ⅱ]已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点.若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( )A .1-32 B .2- 3C.3-12 D.3-1 答案:D解析:在Rt △PF 1F 2中,∠PF 2F 1=60°,不妨设椭圆焦点在x 轴上,且焦距|F 1F 2|=2,则|PF 2|=1,|PF 1|=3,由椭圆的定义可知,方程x 2a 2+y 2b 2=1中,2a =1+3,2c =2,得a =1+32,c =1,所以离心率e =c a =21+3=3-1.故选D.5.[2019·河南豫北重点中学联考]已知点P ⎝⎛⎭⎪⎫1,22是椭圆x 2a 2+y 2=1(a >1)上的点,A ,B 是椭圆的左、右顶点,则△P AB 的面积为( )A .2 B.24 C.12 D .1 答案:D解析:由题可得1a 2+12=1,∴a 2=2,解得a =2(负值舍去),则S △P AB =12×2a ×22=1,故选D.6.[2019·河南安阳模拟]已知F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上一点,且PF 1→·(OF1→+OP →)=0(O为坐标原点).若|PF1→|=2|PF 2→|,则椭圆的离心率为( ) A.6- 3 B.6-32C.6- 5D.6-52 答案:A解析:以OF 1,OP 为邻边作平行四边形,根据向量加法的平行四边形法则,由PF 1→·(OF 1→+OP →)=0知此平行四边形的对角线互相垂直,则此平行四边形为菱形,∴|OP |=|OF 1|,∴△F 1PF 2是直角三角形,即PF 1⊥PF 2.设|PF 2|=x ,则⎩⎪⎨⎪⎧2x +x =2a ,(2x )2+x 2=(2c )2,∴⎩⎪⎨⎪⎧a =2+12x ,c =32x ,∴e =c a =32+1=6-3,故选A.7.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为( ) A .2 B .3C .6D .8 答案:C解析:由椭圆x 24+y 23=1可得F (-1,0),点O (0,0),设P (x ,y )(-2≤x ≤2),则OP →·FP →=x 2+x +y 2=x 2+x +3⎝ ⎛⎭⎪⎫1-x 24=14x 2+x+3=14(x +2)2+2,-2≤x ≤2,当且仅当x =2时,OP →·FP →取得最大值6.故选C.8.[2019·黑龙江大庆模拟]已知直线l :y =kx 与椭圆C :x 2a 2+y 2b 2=1(a >b >0)交于A ,B 两点,其中右焦点F 的坐标为(c,0),且AF 与BF 垂直,则椭圆C 的离心率的取值范围为( )A.⎣⎢⎡⎭⎪⎫22,1B.⎝⎛⎦⎥⎤0,22C.⎝⎛⎭⎪⎫22,1 D.⎝⎛⎭⎪⎫0,22 答案:C解析:由AF 与BF 垂直,运用直角三角形斜边的中线即为斜边的一半,可得|OA |=|OF |=c ,由|OA |>b ,即c >b ,可得c 2>b 2=a 2-c 2,即c 2>12a 2,可得22<e <1.故选C.二、非选择题9.[2019·河南开封模拟]如图,已知圆E :(x +3)2+y 2=16,点F (3,0),P 是圆E 上任意一点.线段PF 的垂直平分线和半径PE 相交于Q .则动点Q 的轨迹Γ的方程为________.答案:x 24+y 2=1解析:连接QF ,因为Q 在线段PF 的垂直平分线上,所以|QP |=|QF |,得|QE |+|QF |=|QE |+|QP |=|PE |=4.又|EF |=23<4,得Q 的轨迹是以E ,F 为焦点,长轴长为4的椭圆即x 24+y 2=1.10.[2019·金华模拟]如果方程x 2+ky 2=2表示焦点在x 轴上,且焦距为3的椭圆,则椭圆的短轴长为________.答案: 5解析:方程x 2+ky 2=2可化为x 22+y 22k=1,则⎝ ⎛⎭⎪⎫322+2k =2⇒2k =54,∴短轴长为2×52= 5.11.[2019·陕西检测]已知P 为椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2是其左、右焦点,∠F 1PF 2取最大值时cos ∠F 1PF 2=13,则椭圆的离心率为________.答案:33解析:易知∠F 1PF 2取最大值时,点P 为椭圆x 2a 2+y 2b 2=1与y轴的交点,由余弦定理及椭圆的定义得2a 2-2a23=4c 2,即a =3c ,所以椭圆的离心率e =c a =33.12.[2019·“超级全能生”联考]已知椭圆C :x 28+y 22=1与圆M :x 2+y 2+22x +2-r 2=0(0<r <2),过椭圆C 的上顶点P 作圆M 的两条切线分别与椭圆C 相交于A ,B 两点(不同于P 点),则直线P A 与直线PB 的斜率之积等于________.答案:1解析:由题可得,圆心为M (-2,0),P (0,2).设切线方程为y =kx + 2.由点到直线的距离公式得,d =|-2k +2|1+k2=r ,化简得(2-r 2)k 2-4k +(2-r 2)=0,则k 1k 2=1.课时增分练○30一、选择题 1.[2019·河北省五校联考]以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为( )A .1 B. 2 C .2 D .2 2 答案:D解析:设a ,b ,c 分别为椭圆的长半轴长、短半轴长、半焦距,依题意知,12×2cb =1⇒bc =1,2a =2b 2+c 2≥22bc =22,当且仅当b =c =1时,等号成立.故选D.2.[2019·深圳模拟]过点(3,2)且与椭圆3x 2+8y 2=24有相同焦点的椭圆方程为( )A.x 25+y 210=1B.x 210+y 215=1 C.x 215+y 210=1 D.x 210+y 25=1答案:C解析:椭圆3x 2+8y 2=24的焦点为(±5,0),可得c =5,设所求椭圆的方程为x 2a 2+y 2b 2=1,可得9a 2+4b 2=1,又a 2-b 2=5,得b 2=10,a 2=15,所以所求的椭圆方程为x 215+y210=1.故选C.3.一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为( )A.x 28+y 26=1B.x 216+y 26=1 C.x 24+y 22=1 D.x 28+y 24=1 答案:A解析:设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由点P (2,3)在椭圆上知4a 2+3b 2=1.又|PF 1|,|F 1F 2|,|PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a =2×2c ,c a =12, 又c 2=a 2-b 2,联立⎩⎪⎨⎪⎧4a 2+3b 2=1,c 2=a 2-b 2,c a =12得a 2=8,b 2=6,故椭圆方程为x 28+y26=1.故选A.4.[2018·全国卷Ⅱ]已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( )A.23B.12C.13D.14 答案:D解析:如图,作PB ⊥x 轴于点B .由题意可设|F 1F 2|=|PF 2|=2,则c =1, 由∠F 1F 2P =120°,可得|PB |=3,|BF 2|=1, 故|AB |=a +1+1=a +2,tan ∠P AB =|PB ||AB |=3a +2=36,解得a =4,所以e =c a =14. 故选D. 5.[2019·广西桂林柳州联考]已知点P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b 2=1(a >b >0)上一点.若PF 1⊥PF 2,tan ∠PF 2F 1=2,则椭圆的离心率e 为( )A.53B.13C.23D.12 答案:A解析:∵点P 是以F 1,F 2为焦点的椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,PF 1⊥PF 2,tan ∠PF 2F 1=2,∴|PF 1||PF 2|=2.设|PF 2|=x ,则|PF 1|=2x ,由椭圆定义知x +2x =2a ,∴x =2a 3,∴|PF 2|=2a3,则|PF 1|=4a 3.由勾股定理知|PF 2|2+|PF 1|2=|F 1F 2|2,解得c =53a ,∴e =c a =53.故选A.6.已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点.在△AF 1B 中,若有两边之和是10,则第三边的长度为 ( )A .6B .5C .4D .3 答案:A解析:根据椭圆定义,知△AF 1B 的周长为4a =16,故所求的第三边的长度为16-10=6.故选A.7.[2019·贵州遵义联考]已知m 是两个数2,8的等比中项,则圆锥曲线x 2+y2m =1的离心率为( )A.32或52B.32或 5C.32 D. 5 答案:B解析:由题意得m 2=16,解得m =4或m =-4.当m =4时,曲线方程为x 2+y 24=1,故其离心率e 1=c a = 1-b 2a 2= 1-14=32;当m =-4时,曲线方程为x 2-y 24=1,故其离心率e 2=c a = 1+b 2a 2= 1+4= 5.所以曲线的离心率为32或 5.故选B.8.若椭圆b 2x 2+a 2y 2=a 2b 2(a >b >0)和圆x 2+y 2=⎝ ⎛⎭⎪⎫b 2+c 2有四个交点,其中c 为椭圆的半焦距,则椭圆的离心率e 的取值范围为( )A.⎝ ⎛⎭⎪⎫55,35B.⎝⎛⎭⎪⎫0,25C.⎝ ⎛⎭⎪⎫25,35D.⎝ ⎛⎭⎪⎫35,55答案:A解析:由题意可知,椭圆的上、下顶点在圆内,左、右顶点在圆外,则⎩⎨⎧a >b2+c ,b <b2+c ,整理得⎩⎪⎨⎪⎧(a -c )2>14(a 2-c 2),a 2-c 2<2c ,解得55<e <35.故选A.二、非选择题9.[2019·铜川模拟]已知椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆交于点A 、B ,当△F AB 的周长最大时,△F AB 的面积是________.答案:3 解析:如图,设椭圆的右焦点为E ,连接AE 、BE .由椭圆的定义得,△F AB 的周长为|AB |+|AF |+|BF |=|AB |+(2a -|AE |)+(2a -|BE |)=4a +|AB |-|AE |-|BE |.∵|AE |+|BE |≥|AB |,∴|AB |-|AE |-|BE |≤0,∴|AB |+|AF |+|BF |=4a +|AB |-|AE |-|BE |≤4a .当直线AB 过点E 时取等号,此时直线x =m =c =1,把x =1代入椭圆x 24+y 23=1得y =±32,∴|AB |=3.∴当△F AB 的周长最大时,△F AB的面积是12×3×|EF |=12×3×2=3.10.[2019·辽宁沈阳东北育才学校月考]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A ,B 是C 的长轴的两个端点,点M 是C 上的一点,满足∠MAB =30°,∠MBA =45°.设椭圆C 的离心率为e ,则e 2=________.答案:1-33 解析:由椭圆的对称性,设M (x 0,y 0),y 0>0,A (-a,0),B (a,0).因为∠MAB =30°,∠MBA =45°,所以k BM =y 0x 0-a =-1,k AM =y 0x 0+a=33.又因为x 20a 2+y 20b 2=1,三等式联立消去x 0,y 0可得b 2a 2=33=1-e 2,所以e 2=1-33.11.[2019·云南昆明一中月考]已知中心在原点O ,焦点在x轴上的椭圆E 过点C (0,1),离心率为22.(1)求椭圆E 的方程;(2)直线l 过椭圆E 的左焦点F ,且与椭圆E 交于A ,B 两点,若△OAB 的面积为23,求直线l 的方程.解析:(1)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),由已知得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c 2,解得a 2=2,b 2=1,所以椭圆E 的方程为x 22+y 2=1.(2)由已知,直线l 过左焦点F (-1,0).当直线l 与x 轴垂直时,A ⎝ ⎛⎭⎪⎫-1,-22,B ⎝⎛⎭⎪⎫-1,22,此时|AB |=2,则S △OAB =12×2×1=22,不满足条件. 当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),A (x 1,y 2),B (x 2,y 2).由⎩⎪⎨⎪⎧y =k (x +1),x 22+y 2=1得(1+2k 2)x 2+4k 2x +2k 2-2=0, 所以x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.因为S △OAB =12|OF |·|y 1-y 2|=12|y 1-y 2|,由已知S △OAB =23得|y 1-y 2|=43.11因为y 1+y 2=k (x 1+1)+k (x 2+1)=k (x 1+x 2)+2k =k ·-4k 21+2k 2+2k =2k 1+2k 2, y 1y 2=k (x 1+1)·k (x 2+1)=k 2(x 1x 2+x 1+x 2+1)=-k 21+2k 2, 所以|y 1-y 2|=(y 1+y 2)2-4y 1y 2=4k 2(1+2k 2)2+4k 21+2k 2=43,所以k 4+k 2-2=0,解得k =±1,所以直线l 的方程为x -y +1=0或x +y +1=0.。
椭圆一轮复习(含书后重点习题)
![椭圆一轮复习(含书后重点习题)](https://img.taocdn.com/s3/m/c4e831625f0e7cd18525366b.png)
椭圆2018考纲:1. 掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).2. 了解椭圆的简单应用.3. 理解数形结合的思想.知识点一 椭圆的定义平面内与两个定点F 1,F 2的距离的和等于 的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.在椭圆的定义中,当2a =|F 1F 2|时,动点的轨迹是 ;当2a <|F 1F 2|时,动点的轨迹 .知识点二 椭圆的标准方程和几何性质考点一 椭圆的定义及标准方程例1. (1)一个椭圆的中心在原点,焦点F 1,F 2在x 轴上,P (2,3)是椭圆上一点,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则椭圆的方程为 .(2)设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |,且|AB |=4,△ABF 2的周长为16.求|AF 2|= .(3)(选修2-1 47页习题A 2(3))已知焦距为4的椭圆方程 (4)(选修2-1 47页习题A 2(4))已知长轴长是短轴长的5倍,且过点(6,2)P 的椭圆方程(5)(选修2-1 41页例3)已知,B C 是两个定点, 8BC ,且ABC 的周长等于18,这个三角形的顶点A 的轨迹方程为 .(6).已知圆E :x 2+⎝⎛⎭⎫y -122=94经过椭圆C :x 2a 2+y2b2=1(a >b >0)的左、右焦点F 1,F 2,与椭圆C 在第一象限的交点为A ,且F 1,E ,A 三点共线,则椭圆C 的方程为____________.(7).(选修2-1 43页练习B 2)已知点(6,0)B 和(6,0)C -,过点B 的直线l 与过点C 的直线m 相交于点A ,设直线l 的斜率为1k ,直线m 的斜率为2k ,如果1249k k ∙=-,点A 的轨迹方程为 . (8).已知点P 是圆F 1:(x +1)2+y 2=16上任意一点(F 1是圆心),点F 2与点F 1关于原点对称.线段PF 2的垂直平分线m 分别与PF 1,PF 2交于M ,N 两点.求点M 的轨迹C 的方程.考点二 椭圆的几何性质 方向1 焦点三角形例2.(1).以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为( )A .1 B. 2 C .2 D .2 2(2).(选修2-1 48页习题B 5)已知点P 为椭圆2214x y +=上任意一点,12,F F 是椭圆的两个焦点那么12PF PF 的最大值 ,2212PF PF +的最小值 .(3).(选修2-1 47页习题A 5)已知12,F F 是椭圆22195x y +=的两个焦点,点P 在椭圆上且123F PF π∠=,求12PF F 的面积方向2 椭圆的离心率例2 (1).已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P 使∠F 1PF 2为钝角,则椭圆C 的离心率的取值范围是( )A .(22,1)B .(12,1)C .(0,22)D .(0,12)(2).已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( ) A.63 B.33 C.23D.13(3).椭圆M :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,P 为椭圆M 上任一点,且|PF 1→|·|PF →2|的最大值的取值范围是[2c 2,3c 2],其中c =a 2-b 2.则椭圆M 的离心率e 的取值范围是( )A.⎣⎡⎦⎤33,22 B.⎣⎡⎭⎫22,1 C.⎣⎡⎭⎫33,1D.⎣⎡⎭⎫13,12(4) 已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为 .(5)已知椭圆C 的两个焦点分别是F 1,F 2,若C 上的点P 满足|PF 1|=32|F 1F 2|,则椭圆C 的离心率e 的取值范围是( )A .e ≤12B .e ≥14 C.14≤e ≤12 D .0<e ≤14或12≤e <1方向3 最值问题(1) 若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8(2) 已知动点P (x ,y )在椭圆x 225+y 216=1上,若A 点的坐标为(3,0),M 为平面内一点,|AM→|=1,且PM →·AM →=0,则|PM →|的最小值为________.考点三 直线与椭圆的位置关系例3. (1).(选修2-1 70页习题A 2)已知点M 是直线l 被椭圆22436x y +=所截得的线段AB 的中点,则直线l 的方程为 .(2).(选修2-1 70页习题A 3) 已知直线y x m =+与椭圆2214x y +=相交于,A B 两点,当m 变化时,求AB 的最大值 .(3).设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线y 2=2px (p >0)的焦点,F 到抛物线的准线l 的距离为12.(1)求椭圆的方程和抛物线的方程;(2)设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ与x 轴相交于点D .若△APD 的面积为62,求直线AP 的方程.1.已知椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点和上顶点分别为A 、B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M 、N 两点.若四边形F AMN 是平行四边形,则该椭圆的离心率为2. 已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y=0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A.⎝⎛⎦⎤0,32B.⎝⎛⎦⎤0,34C.⎣⎡⎭⎫32,1 D.⎣⎡⎭⎫34,13. 已知椭圆C :x 24+y 23=1的左、右顶点分别为A ,B ,F 为椭圆C 的右焦点,圆x 2+y 2=4上有一动点P ,P 不同于A ,B 两点,直线P A 与椭圆C 交于点Q ,则k PBk QF的取值范围是( )A.⎝⎛⎭⎫-∞,-34∪⎝⎛⎭⎫0,34 B .(-∞,0)∪⎝⎛⎭⎫0,34 C .(-∞,-1)∪(0,1) D .(-∞,0)∪(0,1)课时作业55 椭圆一、选择题1.椭圆x 29+y 24=1的离心率是( )A.133B.53C.23D.592.焦点在y 轴上,焦距等于4,离心率等于22的椭圆的标准方程是( )A.x 216+y 212=1B.x 212+y 216=1C.x 24+y 28=1D.x 28+y 24=1 3.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( ) A.14 B.12 C .2 D .44.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,四个顶点构成的四边形的面积为4,过原点的直线l (斜率不为零)与椭圆C 交于A ,B 两点,F 1,F 2分别为椭圆的左、右焦点,则四边形AF 1BF 2的周长为( )A .4B .4 3C .8D .8 35.设e 是椭圆x 24+y 2k =1的离心率,且e ∈(12,1),则实数k 的取值范围是( )A .(0,3)B .(3,163)C .(0,3)∪(163,+∞) D .(0,2)6.如图,过椭圆C :x 2a 2+y 2b2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一点B ,且点B 在x 轴上的射影恰好为右焦点F 2,若13<k <12,则椭圆C 的离心率的取值范围是( )A .(0,12)B .(23,1)C .(12,23)D .(0,12)∪(23,1)二、填空题7过椭圆x 216+y 24=1内一点M (2,1)引一条弦,使得弦被M 点平分,则此弦所在的直线方程为____________.8若曲线x 24+k +y 21-k=1表示椭圆,则实数k 的取值范围是________.9已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)与椭圆C 2:y 2a 2+x 2b2=1相交于A 、B 、C 、D 四点,若椭圆C 1的一个焦点为F (-2,0),且四边形ABCD 的面积为163,则椭圆C 1的离心率e 为________.三、解答题10知椭圆的长轴长为6,离心率为13,F 2为椭圆的右焦点.(1)求椭圆的标准方程; (2)点M 在圆x 2+y 2=8上,且M 在第一象限,过M 作圆x 2+y 2=8的切线交椭圆于P ,Q 两点,判断△PF 2Q 的周长是否为定值并说明理由.11知椭圆E :x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2.(1)若椭圆E 的长轴长、短轴长、焦距成等差数列,求椭圆E 的离心率;(2)若椭圆E 过点A (0,-2),直线AF 1,AF 2与椭圆的另一个交点分别为点B ,C ,且△ABC 的面积为50c9,求椭圆E 的方程.(教材习题精选)1.(选修2-1 47页习题A 4)已知椭圆2255kx y +=的一个焦点坐标是(2,0),则k =2. (选修2-1 48页习题B 1)已知方程22(37)(34)512m x m y m +++=+表示的曲线是椭圆,则实数m 的取值范围 .3. (选修2-1 48页习题B 2)已知点(1,1)A ,而且1F 是椭圆22195x y +=的左焦点,P 是椭圆上任意一点,则1PF PA +的最大值是 ,最小值是 .4. (选修2-1 48页习题B 3)已知12,F F 是椭圆22194x y +=的两个焦点,点P 在椭圆上,如果12PF F 是直角三角形,则点P 的坐标 .5. (选修2-1 48页习题B 4)在Rt ABC 中,1AB AC ==,如果一个椭圆通过,A B 两点,它的一个焦点为点C ,另一个焦点在边AB 上,那么这个椭圆的焦距 .高考题精选 1.(2018全国新课标Ⅱ文)已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为( )A .B .CD2.(2018全国新课标Ⅱ理)已知,是椭圆的左、右焦点,是的左顶点,点在过的直线上,为等腰三角形,,则的离心率为( )A. B . C . D .3.(2018北京理)已知椭圆22221(0)x y M a b a b +=>>:,双曲线22221x y N m n-=:.若双曲线N的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为__________;双曲线N 的离心率为__________.(AB 班做)1.(2018·河北衡水中学二调)设椭圆x 216+y 212=1的左、右焦点分别为F 1,F 2,点P 在椭1F 2F C P C 12PF PF ⊥2160PF F ∠=︒C 1211F 2F 22221(0)x y C a b a b+=>>:A C P A 12PF F △12120F F P ∠=︒C 23121314圆上,且满足PF 1→·PF 2→=9,则|PF 1|·|PF 2|的值为( )A .8B .10C .12D .152.(2018浙江)已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP =2PB ,则当m =___________时,点B 横坐标的绝对值最大.3.(2018·河南省南阳、信阳等六市模拟)椭圆C :x 24+y 23=1的上、下顶点分别为A 1、A 2,点P 在C 上且直线P A 2斜率的取值范围是[-2,-1],那么直线P A 1斜率的取值范围是________.4.(2018·广东惠州一调)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-1,0)、F 2(1,0),点A ⎝⎛⎭⎫1,22在椭圆C 上.(1)求椭圆C 的标准方程;(2)是否存在斜率为2的直线,使得当直线与椭圆C 有两个不同交点M ,N 时,能在直线y =53上找到一点P ,在椭圆C 上找到一点Q ,满足PM →=NQ →?若存在,求出直线的方程;若不存在,说明理由.。
椭圆的简单几何性质(省级优质课一等奖)全
![椭圆的简单几何性质(省级优质课一等奖)全](https://img.taocdn.com/s3/m/9d1e6d72e3bd960590c69ec3d5bbfd0a7856d503.png)
b
oc
a
A2
F2
x
B1
2、椭圆
x2 a2
y2 b2
1(a b 0)的对称性:
从图形上看, 椭圆关于x轴、y轴、原点对称。
x2 y2 从方程上看: a2 b2 1(a b 0)
(1)把x换成-x方程不变,图象关于 y 轴对称;
(2)把y换成-y方程不变,图象关于 x 轴对称; Y
椭圆的长轴长是: 2a=6
椭圆的短轴长是: 2b=4
离心率:
e
c a
5 3
焦点坐标是:
F1(0, 5), F2 (0, 5 )
四个顶点坐标是: A1(2,0), A2 (2,0), B1(0,3), B2 (0,3)
解题步骤:
1、将椭圆方程转化为标准方程求a、b: 2、确定焦点的位置和长轴的位置.
练习:求椭圆 16 x2 + 25y2 =400的长轴和短轴的长、离 心率、焦点和顶点坐标。
一、复习回顾:
1.椭圆的定义:
平面内与两个定点F1、F2的距离之和为常数2a
(大于|F1F2 |)的动点M的轨迹叫做椭圆。
| MF1 | | MF2 | 2a(2a | F1F2 |)
2.椭圆的标准方程:
当焦点在X轴上时
x2 y2 a2 b2 1(a b 0)
当焦点在Y轴上时
y2 a2
x2 b2
长半轴长为a,短半轴长为b. (a>b) e c a
a2=b2+c2 ,(a b 0)
标准方程 范围
x2 y2 1(a b 0) a2 b2 -a ≤ x≤ a, - b≤ y≤ b
对称性 顶点坐标 焦点坐标
关于x轴、y轴成轴对称; 关于原点成中心对称
椭圆练习及参考答案
![椭圆练习及参考答案](https://img.taocdn.com/s3/m/18caa42753ea551810a6f524ccbff121dd36c5af.png)
椭圆练习及参考答案一、单选题(共 50 分)1.椭圆x 29+y28=1的左右焦点为F1,F2,P为椭圆上第一象限内任意一点,F1关于P的对称点为M,关于F2的对称点为N,则ΔMF1N的周长为()A.8B.10C.16D.22【详解】因为F1关于P的对称点为M,关于F2的对称点为N,所以PF2为△F1MN的中位线,所以MF1+MN=2PF1+2PF2=2(PF1+PF2)=2×2a=12,F1N=2F1F2=4c=4√9−8=4,所以ΔMF1N的周长为12+4=16.【点睛】本题考查了点与点的对称性,椭圆的定义,属于基础题.2.已知定圆C1:(x+5)2+y2=1,C2:(x−5)2+y2=225,动圆C满足与C1外切且与C2内切,则动圆圆心C的轨迹方程为()A.x 264+y239=1 B.x239+y264=1 C.x2256+y2241=1 D.x2241+y2256=1【详解】解:设动圆圆心C的坐标为(x,y),半径为r,则|CC1|=r+1,|CC2|=15−r,∴|CC1|+|CC2|=r+1+15−r=16>|C1C2|=10,由椭圆的定义知,点C的轨迹是以C1,C2为焦点的椭圆,则2a=16,a=8,c=5,b2=82−52=39,椭圆的方程为:x264+y239=1【点睛】考查圆与圆的位置关系,考查椭圆的定义,考查学生分析解决问题的能力,中档题.3.设F1、F2是椭圆E:x 2a2+y2b2=1(a>b>0)的左、右焦点,P为直线x=3a2上一点,ΔF2PF1是底角为30∘的等腰三角形,则E的离心率为()A.12B.23C.34D.45试题分析:如下图所示,ΔF2PF1是底角为30∘的等腰三角形,则有|F1F2|=|PF2|,∠PF1F2=∠F2PF1=30∘所以∠PF2A=60∘,∠F2PA=30∘,所以|PF2|=2|AF2|=2(32a−c)=3a−2c又因为|F1F2|=2c,所以,2c=3a−2c,所以e=ca =34所以答案选C.考点:椭圆的简单几何性质.4.椭圆x 29+y26=1的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则ΔPF1F2的面积为()A.2√3B.3√2C.√32D.√23【详解】解:∵椭圆x29+y26=1的焦点为F1、F2,点P在椭圆上,|PF1|=4,∴F1(−√3,0),F2(√3,0),|PF2|=6﹣4=2,|F1F2|=2√3,则△PF1F2是直角三角形,∴△PF1F2的面积为S=12×2×2√3=2√3.【点睛】本题考查椭圆的简单性质,三角形的面积的求法,是基础题,解题时要认真审题,注意椭圆性质的合理运用.5.已知椭圆x 24+y2=1的焦点分别是F1,F2,点M在该椭圆上,如果F1M⃑⃑⃑⃑⃑⃑⃑⃑ ⋅F2M⃑⃑⃑⃑⃑⃑⃑⃑ =0,那么点M到y轴的距离是()A.√2B.2√63C.3√22D.1【详解】设M(x,y),则椭圆x24+y2=1…①,∵椭圆x24+y2=1的焦点分别是F1,F2,∴F1(−√3,0),F2(√3,0)∵F 1M ⃑⃑⃑⃑⃑⃑⃑⃑ =(x −√3,y),F 2M ⃑⃑⃑⃑⃑⃑⃑⃑ =(x +√3,y), F 1M ⃑⃑⃑⃑⃑⃑⃑⃑ ⋅F 2M ⃑⃑⃑⃑⃑⃑⃑⃑ =0,∴x 2+y 2=3…②由①②得x 2=83,x =±2√63, ∴点M 到y 轴的距离为2√63,故选B .【点睛】本题考查了椭圆的方程及向量运算,属于中档题. 7.已知直线l 与椭圆x 216+y 22=1交于A,B 两点,AB 中点是M (−2,1),则直线l 的斜率为( )A.-4B.-14C.14D.4【详解】设交点坐标A (x 1,y 1),B (x 2,y 2),则{x 1216+y 122=1x 2216+y 222=1,两式相减得,(x 1+x 2)(x 1−x 2)16+(y 1+y 2)(y 1−y 2)2=0 ,故y 1−y2x 1−x 2=−2(x 1+x 2)16(y 1+y 2)=−2×(−2×2)16×(1×2)=14 ,故选C【点睛】本题考查了直线与椭圆的相交弦问题,一般涉及弦的中点和直线斜率问题时,可采用“点差法”,建立中点坐标与斜率的关系求解.8.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B,C 两点,且∠BFC =90°,则该椭圆的离心率为( )A.√63B.2√33C.12D.√22【详解】将y =b2代入椭圆方程得:B (−√32a,b2),C (√32a,b2)又椭圆焦点F (c,0) ∴BF ⃑⃑⃑⃑⃑ =(c +√32a,−b 2),CF ⃑⃑⃑⃑⃑ =(c −√32a,−b 2) ∵∠BFC =90∘∴BF ⃑⃑⃑⃑⃑ ⋅CF⃑⃑⃑⃑⃑ =c 2−34a 2+b 24=c 2−34a 2+a 2−c 24=34c 2−12a 2=0∴e 2=c 2a 2=23 ∴e =√63,故选A 【点睛】本题考查椭圆离心率的求解问题,关键是能够利用垂直关系构造出关于a,c 的齐次方程,从而根据e =ca 求得离心率.9.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为() A.13B.15C.16D.25【详解】如图所示,由椭圆x 225+y 216=1,可得a =5,b =4,c =√a 2−b 2=3,所以F 1(−3,0),F 2(3,0),由椭圆的定义可得|PF 1|+|PF 2|=2a =10,所以|PM |+|PF 1|=|PM |+2a −|PF 2|=10+(|PM |−|PF 2|)≤10+|MF 2|=10+√32+42=15,则|PM |+|PF 1|的最大值15.故选B . 【点睛】本题主要考查了椭圆的定义及标准方程的应用,以及三角形三边大小关系的应用,其中解答中熟练应用椭圆的定义转化是解答的关键,着重考查了推理与运算能力,属于基础题.10.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的长轴长、短轴长和焦距成等差数列,若点P 为椭圆C 上的任意一点,且P 在第一象限,O 为坐标原点,F (3,0)为椭圆C 的右焦点,则OP ⃑⃑⃑⃑⃑ •PF ⃑⃑⃑⃑⃑ 的取值范围为( ) A.(−16,−10)B.(−10,−394)C.(−16,−394]D.(−∞,−394]【详解】因为椭圆C 的长轴长、短轴长和焦距成等差数列 所以2a +2c =4b ,即a +c =2b F(3,0)为椭圆C 的右焦点,所以c=3 在椭圆中,a 2=c 2+b 2所以{a 2=c 2+b 2a +c =2bc =3 ,解方程组得{a =5b =4c =3所以椭圆方程为x 225+y 216=1设P(m,n) (0<m <5)则m 225+n 216=1,则n 2=16−1625m 2 OP ⃑⃑⃑⃑⃑ ⋅PF ⃑⃑⃑⃑⃑ =(m,n )(3−m,−n ) =3m −m 2−n 2=3m −m 2−(16−1625m 2) =−925m 2+3m −16=−925(m −256)2−394因为0<m <5,所以当m =256时,OP ⃑⃑⃑⃑⃑ ⋅PF⃑⃑⃑⃑⃑ 取得最大值为−394当m 趋近于0时,OP ⃑⃑⃑⃑⃑ ⋅PF ⃑⃑⃑⃑⃑ 的值趋近于-16 ,所以OP ⃑⃑⃑⃑⃑ ⋅PF⃑⃑⃑⃑⃑ 的取值范围为(-16,-394] 【点睛】本题考查了椭圆性质的综合应用,向量在解析几何中的用法,属于中档题. 二、填空题(共 25 分) 11.已知椭圆x 24+y 23=1的左、右焦点为F 1,F 2,则椭圆的离心率为_____,过F 2且垂直于长轴的直线与椭圆交于点A ,则|F 1A |=_____. 【详解】椭圆x 24+y 23=1,可得a =2,b =√3,则c =1,所以椭圆的离心率为:e =c a =12.过F 2且垂直于长轴的直线与椭圆交于点A ,所以|AF 2|=b 2a=32,由椭圆的定义可知:|F 1A |=2a ﹣|AF 2|=4−32=52.故答案为12;52.【点睛】本题考查椭圆的离心率和椭圆的定义,解题时由椭圆标准方程确定出a,b 再计算出c ,可求离心率,而求椭圆上的点到焦点的距离时,可以与椭圆定义联系起来.12.如果椭圆x 2144+y 236=1上一点P 到焦点F 1的距离等于10,那么点P 到另一个焦点F 2的距离是______. 【详解】由椭圆x 2144+y 236=1,可得a =12,由椭圆的定义可知:|PF 1|+|PF 2|=2a =24,因为椭圆x 2144+y 236=1上一点P 到焦点F 1的距离等于10,那么点P 到另一个焦点F 2的距离是:24-10=14.故答案为14.【点睛】本题考查椭圆的简单性质以及椭圆的定义的应用,考查计算能力.属于基础题. 13.已知椭圆中心在原点,一个焦点为F(−2√3,0),且长轴长是短轴长的2倍.则该椭圆的长轴长为______;其标准方程是________. 【详解】解:已知{a =2b,c =2√3a 2−b 2=c 2∴{b 2=4a 2=162a =8则该椭圆的长轴长为8;其标准方程是x 216+y 24=1.故答案为椭圆的长轴长为8;其标准方程是x 216+y 24=1.【点睛】本题主要考查椭圆的标准方程.属基础题.14.已知P 是椭圆x 210+y 2=1上的一点,F 1,F 2是椭圆的两个焦点,当∠F 1PF 2=2π3时,则ΔPF 1F 2的面积为_____.【详解】设|PF 1|=m ,|PF 2|=n ,则m +n =2a =2√10在ΔPF 1F 2中,由余弦定理得:F 1F 22=m 2+n 2−2mncos∠F 1PF 2即:36=(m +n )2−2mn −2mncos2π3=40−mn ,解得:mn =4∴S ΔPF 1F 2=12mnsin 2π3=√3 【点睛】本题考查焦点三角形面积的求解,关键是能够利用余弦定理构造出关于焦半径之积的方程,属于常考题型.15.已知P 是椭圆E:x 2a 2+y 2b 2=1(a >b >0)上异于点A(−a,0),B(a,0)的一点,E 的离心率为√32,则直线AP 与BP 的斜率之积为__________.【解析】设P (x 0,y 0),有x 02a 2+y 02b 2=1,且c a =√32,得b a =12,k AP k BP =y 0x+a ⋅y 0x−a=y 02x 02−a 2=y 02(1−y 02b 2)a 2−a 2=−14.点睛:本题考查椭圆的几何性质.由离心率,得到a,b,c 的比例关系.本题中由题意可知,题目由点P 的位置决定,所以设P (x 0,y 0),得到斜率关系k AP k BP =y 0x 0+a ⋅y 0x0−a=y 02x02−a 2=y 02(1−y 02b 2)a 2−a 2=−14,为定值.三、解答题(共 34 分)16.已知点A(0,−2),椭圆E:x 2a2+y2b2=1(a>b>0)的离心率为√22,F是椭圆E的右焦点,直线AF的斜率为2,O为坐标原点.(1)求E的方程;(2)设过点P(0,√3)且斜率为k的直线l与椭圆E交于不同的两M、N,且|MN|=8√27,求k的值.【详解】解:(1)由离心率e=ca =√22,则a=√2c,直线AF的斜率k=0−(−2)c−0=2,则c=1,a=√2,b2=a2﹣c2=1,∴椭圆E的方程为x 22+y2=1;(2)设直线l:y=kx﹣√3,设M(x1,y1),N(x2,y2),则{y=kx−√3x22+y2=1,整理得:(1+2k2)x2﹣4√3kx+4=0,△=(﹣4√3k)2﹣4×4×(1+2k2)>0,即k2>1,∴x1+x2=4√3k1+2k2,x1x2=41+2k2,∴|MN|=√1+k2|x1−x2|=√1+k2√(x1+x2)2−4x1x2=4√(1+k2)(k2−1)1+2k2=8√27,即17k4−32k2−57=0,解得:k2=3或−1917(舍去)∴k=±√3,【点睛】考查直线与椭圆的位置关系,椭圆的求法,弦长的计算,考查转化思想以及计算能力.17.设O为坐标原点,动点M在椭圆E:x 24+y22=1上,过点M作x轴的垂线,垂足为N,点P满足NP⃑⃑⃑⃑⃑⃑ =√2NM⃑⃑⃑⃑⃑⃑⃑ .(1)求点P的轨迹方程;(2)设A(1,0),在x轴上是否存在一定点B,使|BP|=2|AP|总成立?若存在,求出B点坐标;若不存在,说明理由.【详解】(1)设P(x,y),M(x1,y1),则N(x1,0)∵M 在椭圆E 上 ∴x 124+y 122=1…①由NP ⃑⃑⃑⃑⃑⃑ =√2NM ⃑⃑⃑⃑⃑⃑⃑ 知:{x =x 1y =√2y 1 ,即:{x 1=x y 1=√22y ,代入①得:x 2+y 2=4即点P 的轨迹方程为:x 2+y 2=4…② (2)假设存在点B (m,0)满足条件,设P (x,y )由|BP |=2|AP |得:√(x −m )2+y 2=2√(x −1)2+y 2 即:3x 2+3y 2+(2m −8)x =m 2−4此方程与(1)中②表示同一方程,故:{2m −8=0m 2−4=12,解得:m =4∴存在点B (4,0)满足条件【点睛】本题考查椭圆的综合应用问题,涉及到动点轨迹的求解、定点问题的求解等知识;求解定点问题的关键是能够通过假设存在的方式,利用已知中的等量关系建立起关于变量的方程,通过求解方程确定变量的取值,从而得到定点是否存在.18.已知点M (2√33,√33)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且点M 到C 的左、右焦点的距离之和为2√2.(1)求C 的方程;(2)设O 为坐标原点,若C 的弦AB 的中点在线段OM (不含端点O ,M )上,求OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ 的取值范围.【详解】(1)由条件知43a 2+13b 2=1,2a =2√2,所以a =√2,b =1, ∴椭圆C 的方程为x 22+y 2=1.(2)设点A 、B 的坐标为A (x 1,y 1),B (x 2,y 2),则AB 中点(x 1+x 22,y 1+y 22)在线段OM 上,且k OM =12,∴x 1+x 2=2(y 1+y 2),又x 122+y 12=1,x 222+y 22=1,两式相减得(x 1−x 2)(x 1+x 2)2+(y 1−y 2)(y 1+y 2)=0,易知x 1−x 2≠0,y 1+y 2≠0,所以y 1−y 2x 1−x 2=−x 1+x22(y 1+y 2)=−1,即k AB =−1. 设AB 方程为y =−x +m ,代入x 22+y 2=1并整理得3x 2−4mx +2m 2−2=0.由Δ=8(3−m 2)>0解得m 2<3,又由x 1+x 22=2m 3∈√3),∴0<m <√3.由韦达定理得x 1+x 2=4m 3,x 1x 2=2(m 2−1)3,故OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =x 1x 2+y 1y 2=x 1x 2+(−x 1+m )(−x 2+m ) =2x 1x 2−m (x 1+x 2)+m 2=4(m 2−1)3−4m 23+m 2 =m 2−43.而0<m <√3,所以OA ⃑⃑⃑⃑⃑ ⋅OB⃑⃑⃑⃑⃑ 的取值范围是(−43,53). 【点睛】本小题主要考查椭圆的定义和标准方程,考查直线和椭圆的位置关系,考查点差法,考查向量数量积的坐标运算,考查运算求解能力,属于中档题.19.已知Q 为圆x 2+y 2=1上一动点,Q 在x 轴,y 轴上的射影分别为点A ,B ,动点P 满足BA ⃑⃑⃑⃑⃑ =AP ⃑⃑⃑⃑⃑ ,记动点P 的轨迹为曲线C . (1)求曲线C 的方程;(2)过点(0,−35)的直线与曲线C 交于M ,N 两点,判断以MN 为直径的圆是否过定点?求出定点的坐标;若不是,请说明理由.【详解】(1)设Q(x 0,y 0),P (x,y),则x 02+y 02=1,由BA ⃑⃑⃑⃑⃑ =AP ⃑⃑⃑⃑⃑ ,可得{x 0=x2y 0=−y,代入x 02+y 02=1,得x 24+y 2=1,故曲线C 的方程为x 24+y 2=1; (2)假设存在满足条件的定点,由对称性可知该定点必在y 轴上,设定点为H(0,m), 当直线l 的斜率存在时,设直线l 的方程为y =kx −35,联立{y =kx −35x 24+y 2=1得(1+4k 2)x 2−245kx −6425=0,设M(x 1,y 1),N(x 2,y 2),则x 1+x 2=24k5(1+4k 2),x 1x 2=−6425(1+4k 2),所以y 1+y 2=k(x 1+x 2)−65=−65(1+4k 2),y 1y 2=(kx 1−35)(kx 2−35)=k 2x 1x 2−35k(x 1+x 2)+925=9−100k 225(1+4k 2), 因为HM ⃑⃑⃑⃑⃑⃑⃑ =(x 1,y 1−m),HN ⃑⃑⃑⃑⃑⃑ =(x 2,y 2−m),所以HM ⃑⃑⃑⃑⃑⃑⃑ ⋅HN ⃑⃑⃑⃑⃑⃑ =x 1x 2+y 1y 2−m(y 1+y 2)+m 2=100(m 2−1)k 2+25m 2+30m−5525(1+4k 2)=0,对任意的k 恒成立,所以{100(m 2−1)=025m 2+30m −55=0 ,解得m =1,即定点为H(0,1), 当直线l 的斜率不存在时,以MN 为直径的圆也过点(0,1), 故以MN 为直径的圆过定点(0,1).【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系进行求解,此类问题易错点是复杂式子的变形能力不足,导致错解,能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.20.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,直线bx −y +√2a =0经过椭圆C 的左焦点. (1)求椭圆C 的标准方程;(2)若直线bx −y +4=0与y 轴交于点P ,A 、B 是椭圆C 上的两个动点,且它们在y 轴的两侧,∠APB的平分线在y 轴上,|PA |≠|PB ||,则直线AB 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.【详解】(1)在直线方程bx −y +√2a =0中令y =0,则x =−√2ab ,故c =√2ab ,又c a=√22,故b =2,所以a =4,所以椭圆标准方程为:x 28+y 24=1.(2)因为A 、B 在在y 轴的两侧,故AB 的斜率必存在, 设AB 的方程为y =kx +b ,A (x 1,y 1),B (x 2,y 2), 因为P 在y 轴上且P 在直线2x −y +4=0,故P (0,4). 因为∠APB 的平分线在y 轴上,所以y 1−4x 1+y 2−4x 2=0,而y 1=kx 1+b,y 2=kx 2+b ,代入整理得到:2kx 1x 2+(b −4)(x 1+x 2)=0. 由{y =kx +b x 2+2y 2=8可得(1+2k 2)x 2+4kbx +2b 2−8=0,所以x1+x2=−4kb1+2k2,x1x2=2b2−81+2k2,所以2k×2b 2−81+2k2+(b−4)(−4kb1+2k2)=0,化简得到k(b−1)=0,所以对任意的k,总有b=1,故直线AB过定点(0,1).【点睛】求椭圆的标准方程,关键是基本量的确定,方法有待定系数法、定义法等. 直线与圆锥曲线的位置关系中的定点、定值、最值问题,一般可通过联立方程组并消元得到关于x或y的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有x1x2,x1+x2或y1y2,y1+y2,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题.21.已知椭圆的离心率为√32,椭圆C的长轴长为4.(1)求椭圆C的方程;(2)已知直线与椭圆C交于A,B两点,是否存在实数k使得以线段AB 为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由试题解析:(1)设椭圆的焦半距为c,则由题设,得{a=2ca=√32,解得{a=2c=√3,………2分所以b2=a2−c2=4−3=1,故所求椭圆C的方程为.…………..4分(2)存在实数k使得以线段AB为直径的圆恰好经过坐标原点O.理由如下:设点A(x1,y1),B(x2,y2),将直线l的方程代入,并整理,得.(*)………………………………….6分则,.………………………………………8分因为以线段AB 为直径的圆恰好经过坐标原点O ,所以OA ⃑⃑⃑⃑⃑ ⋅OB ⃑⃑⃑⃑⃑ =0,即.又,于是,…………….10分解得k =±√112,………………………………..11分经检验知:此时(*)式的Δ>0,符合题意.所以当k =±√112时,以线段AB 为直径的圆恰好经过坐标原点O .………………12分考点:直线与圆锥曲线的综合问题;椭圆的标准方程22.设曲线E 是焦点在x 轴上的椭圆,两个焦点分别是是F 1,F 2,且|F 1F 2|=2,M 是曲线上的任意一点,且点M 到两个焦点距离之和为4.(1)求E 的标准方程;(2)设E 的左顶点为D ,若直线l :y =kx +m 与曲线E 交于两点A ,B (A ,B 不是左右顶点),且满足|DA ⃑⃑⃑⃑⃑ +DB ⃑⃑⃑⃑⃑⃑ |=|DA ⃑⃑⃑⃑⃑ −DB⃑⃑⃑⃑⃑⃑ |,求证:直线l 恒过定点,并求出该定点的坐标. 【详解】(1)设椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 由题意{2a =42c =2 ,即{a =2c =1,∴b =√a 2−c 2=√3, ∴椭圆E 的方程是x 24+y 23=1.(2)由(1)可知D (−2,0),设A (x 1,y 1),B (x 2,y 2),联立{y =kx +m x 24+y 23=1 ,得(3+4k 2)x 2+8mkx +4(m 2−3)=0,Δ=(8mk)2−4(3+4k 2)(4m 2−12)=16(12k 2−3m 2+9)>0,即3+4k 2−m 2>0,∴x 1+x 2=−8mk 3+4k 2,x 1x 2=4(m 2−3)3+4k 2,又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2 =3m 2−12k 23+4k 2,∵|DA ⃑⃑⃑⃑⃑ +DB ⃑⃑⃑⃑⃑⃑ |=|DA ⃑⃑⃑⃑⃑ −DB ⃑⃑⃑⃑⃑⃑ |,∴DA ⃑⃑⃑⃑⃑ ⊥DB ⃑⃑⃑⃑⃑⃑ ,即DA ⃑⃑⃑⃑⃑ ⋅DB⃑⃑⃑⃑⃑⃑ =0, 即(x 1+2,y 1)⋅(x 2+2,y 2)=x 1x 2+2(x 1+x 2)+4+y 1y 2=0, ∴4m 2−123+4k 2+2×−8mk 3+4k 2+4+3m 2−12k 23+4k 2=0,∴7m 2−16mk +4k 2=0, 解得m 1=2k ,m 2=27k ,且均满足即3+4k 2−m 2>0,当m 1=2k 时,l 的方程为y =kx +2k =k (x +2),直线恒过(−2,0),与已知矛盾;当m 2=27k ,l 的方程为y =kx +27k =k (x +27),直线恒过(−27,0).【点睛】考查求椭圆的标准方程,直线与椭圆相交问题、椭圆中直线过定点问题.对直线与椭圆相交问题,一般设交点为A (x 1,y 1),B (x 2,y 2),由直线方程与椭圆方程联立消元用韦达定理得x 1+x 2,x 1x 2,再把这个结论代入题中另一条件可得参数k,m 的关系,求得定点.23.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,M 为椭圆上一动点,当ΔMF 1F 2的面积最大时,其内切圆半径为b 3,设过点F 2的直线l 被椭圆C 截得线段RS ,当l ⊥x 轴时,|RS |=3.(1)求椭圆C 的标准方程;(2)若点A 为椭圆C 的左顶点,P,Q 是椭圆上异于左、右顶点的两点,设直线AP,AQ 的斜率分别为k 1,k 2,若k 1k 2=−14,试问直线PQ 是否过定点?若过定点,求该定点的坐标;若不过定点,请说明理由.【详解】解:(1)由题意及三角形内切圆的性质可得12⋅2c ⋅b =12(2a +2c)⋅b 3,得c a =12① 将x =c 代入x 2a 2+y 2b 2=1,结合a 2=b 2+c 2②,得y =±b 2a ,所以2b 2a =3③,由①②③得a =2,b =√3故椭圆C 的标准方程为x 24+y 23=1(2)设点P,Q 的坐标分别为(x 1,y 1),(x 2,y 2).①当直线PQ 的斜率不存在时,由题意得P (1,32),Q (1,−32)或P (1,−32),Q (1,32), 直线PQ 的方程为x =1②当直线PQ的斜率存在时,设直线PQ的方程为y=kx+m,联立得{x24+y23=1y=kx+m,消去y得(4k2+3)x2+8kmx+4m2−12=0,由Δ=64k2m2−4(4k2+3)(4m2−12)=48(4k2−m2+3)>0,得4k2+3>m2x1+x2=−8km4k2+3,x1x2=4m2−124k2+3.(1))由k1k2=y1y2(x1+2)(x2+2)=−14,可得4y1y2+(x1+2)(x2+2)=0,得4(kx1+m)(kx2+m)+(x1+2)(x2+2)=0,整理得(4k2+1)x1x2+(4km+2)(x1+x2)+4m2+4=0,(2)由(1)和(2)得m2−km−2k2=0,解得m=2k或m=−k当m=2k时,直线PQ的方程为y=kx+2k,过定点(−2,0),不合题意;当m=−k时,直线PQ的方程为y=kx−k,过定点(1,0),综上直线PQ过定点,定点坐标为(1,0).【点睛】本题考查求椭圆的标准方程,直线与椭圆的综合问题以及直线过定点问题,属于综合题.。
椭圆 知识点+例题+练习
![椭圆 知识点+例题+练习](https://img.taocdn.com/s3/m/ef18539c783e0912a3162a2f.png)
教学内容椭圆教学目标掌握椭圆的定义,几何图形、标准方程及其简单几何性质.重点椭圆的定义,几何图形、标准方程及其简单几何性质难点椭圆的定义,几何图形、标准方程及其简单几何性质教学准备教学过程椭圆知识梳理1.椭圆的定义(1)第一定义:平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两个焦点的距离叫做焦距.(2)第二定义:平面内与一个定点F和一条定直线l的距离的比是常数e(0<e<1)的动点的轨迹是椭圆,定点F叫做椭圆的焦点,定直线l叫做焦点F相应的准线,根据椭圆的对称性,椭圆有两个焦点和两条准线.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b教学效果分析教学过程考点二椭圆的几何性质【例2】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.(1)求椭圆离心率的范围;(2)求证:△F1PF2的面积只与椭圆的短轴长有关.规律方法(1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF1|+|PF2|=2a,得到a,c的关系.(2)椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式e=ca;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).【训练2】(1)(2013·四川卷改编)从椭圆x2a2+y2b2=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是________.(2)(2012·安徽卷)如图,F1,F2分别是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,A教学效果分析教学过程设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.【训练3】(2014·山东省实验中学诊断)设F1,F2分别是椭圆:x2a2+y2b2=1(a>b>0)的左、右焦点,过F1倾斜角为45°的直线l与该椭圆相交于P,Q两点,且|PQ|=43a.(1)求该椭圆的离心率;(2)设点M(0,-1)满足|MP|=|MQ|,求该椭圆的方程.1.椭圆的定义揭示了椭圆的本质属性,正确理解掌握定义是关键,教学效果分析|BF |=8,cos ∠ABF =45,则C 的离心率为________.6.(2014·无锡模拟)设椭圆x 2m 2+y 2n 2=1(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为________. 7.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________. 8.(2013·福建卷)椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.二、解答题9.已知椭圆的两焦点为F 1(-1,0),F 2(1,0),P 为椭圆上一点,且2|F 1F 2|=|PF 1|+|PF 2|. (1)求此椭圆的方程;(2)若点P 在第二象限,∠F 2F 1P =120°,求△PF 1F 2的面积.10.(2014·绍兴模拟)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0).已知点M ⎝ ⎛⎭⎪⎫3,22在椭圆上,且点M 到两焦点距离之和为4. (1)求椭圆的方程;。
(完整版)椭圆定义与几何意义有关习题及答案
![(完整版)椭圆定义与几何意义有关习题及答案](https://img.taocdn.com/s3/m/2983925708a1284ac85043e1.png)
椭圆定义与几何意义习题及答案一、选择题 (每小题4分,共40分)1. 若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为 ( ) A .(0,+∞) B .(0,2)C .(1,+∞)D .(0,1)2. 已知1F 、2F 是椭圆的两个焦点,满足12.0MF MF =u u u u r u u u u r 的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1)B . 1(0,]2C .(0,)2D .[2 3. 已知椭圆1121622=+y x 的左焦点是1F ,右焦点是2F ,点P 在椭圆上,如果线段1PF 的中点在y 轴上,那么 12:PF PF 的值为A .35B .12C .56D .534. 已知椭圆的两个焦点为)0,5(1-F ,)0,5(2F ,M 是椭圆上一点,若021=⋅MF MF 8=,则该椭圆的方程是( ) (A) 12722=+y x (B) 17222=+y x(C) 14922=+y x (D) 19422=+y x5. 设椭圆22221(00)x y m n m n+=>>,的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )A .2211216x y +=B .2211612x y +=C .2214864x y +=D .2216448x y +=6. 椭圆22ax +22b y =1(a >b >0)上一点A 关于原点的对称点为B ,F 为其右焦点,若AF ⊥BF ,设∠ABF =α,且α∈[12π,4π],则该椭圆离心率的取值范围为( ) A .[22,1 ) B .[22,36] C .[36,1) D .[22,23] 7. 设抛物线)0(22>=p px y 的焦点F 恰好是椭圆12222=+by a x ()0>>b a 的右焦点,且两条曲线的交点的连线过点F ,则该椭圆的离心率为 (A )23-(B )32(C )12- (D )36 8. 在椭圆22221(0)x y a b a b+=>>上有一点M ,12,F F 是椭圆的两个焦点,若2212||||b MF MF =⋅,则椭圆离心率的范围是( ) A .]22,0( B .)1,22[C .)1,23[D .)1,2[9. 设椭圆)0,0(12222>>=+n m n y m x 的右焦点与抛物线x y 82=的焦点相同,离心率为21,则此椭圆的方程为 ( ) A.1161222=+y x B.1121622=+y x C.1644822=+y x D.1486422=+y x 10. 在椭圆22221(0)x y a b a b+=>>上有一点M ,12,F F 是椭圆的两个焦点,若2212||||b MF MF =⋅,则椭圆离心率的范围是( ) A .]22,0( B .)1,22[ C .)1,23[ D .)1,2[二、填空题 (共4小题,每小题4分)11. 已知椭圆C1与双曲线C2有相同的焦点F1、F2,点P 是C1与C2的一个公共点,12PF F ∆是一个以PF1为底的等腰三角形,1||4,PF =C1的离心率为3,7则C2的离心率为 。
01.椭圆的定义、标准方程(讲解1)
![01.椭圆的定义、标准方程(讲解1)](https://img.taocdn.com/s3/m/3388c58bec3a87c24028c491.png)
(ⅱ)具有某共同特征的椭圆求标准方程时,可根据它们的共同特征设出椭圆的标准方程,再根据其它条件确 定方程,如例 2(1). (ⅲ)用待定系数法求椭圆标准方程的一般步骤: ①作判断:根据条件判断椭圆的焦点在 x 轴上还是在 y 轴上,还是两个坐标轴都有可能; x² y² y² x² ②设方程:根据上述判断设方程a² +b² =1 (a>b>0)或a² +b² =1 (a>b>0),当焦点位置不确定时,可设为 mx² +ny² =1 (m>0,n>0,m≠n),如例 2(2). ③找关系:根据已知条件,建立方程组; ④得方程:解方程组,将解代入所设方程,即为所求.
1
椭圆的定义、标准方程
[讲解 1]
∴(PF1+PF2)² -2PF1· PF2=4c² , ∴2PF1· PF2=4a² -4c² =4b² . 1 1 ∴S△PF1F2=2PF1· PF2=2×2b² =b² =9, ∴ b=3.
∴PF1· PF2=2b² .
★考向 2 求椭圆的标准方程 〔例 2〕求满足下列条件的椭圆的标准方程: x² y² (1) 与椭圆 4 + 3 =1 有相同的离心率且经过点(2,- 3); (2) 已知点 P 在以坐标轴为对称轴的椭圆上,且 P 到两焦点的距离分别为 5, 3,过 P 且与长轴垂直的直 线恰过椭圆的一个焦点; 3 5 (3) 经过两点(-2, 2),( 3, 5).
〔点拨〕本题主要考查椭圆标准方程的求法,解题的关键是正确选择椭圆标准方程的形式,利用待定系数 法求解.在求椭圆标准方程时应注意椭圆的焦点位置是否确定,焦点位置未确定的可设统一方程式分类讨 论,以免漏解. x² y² y² x² 〔解析〕(1)由题意,设所求椭圆的方程为 4 + 3 =t1 或 4 + 3 =t2 (t1, t2>0), (- 3)² 2² 25 2² (- 3)² ∵椭圆过点(2,- 3), ∴t1= 4 + 3 =2,或 t2= 4 + 3 =12. x² y² y² x² 故所求椭圆的方程为 8 + 6 =1 或25+25=1. 3 4 x² y² y² x² (2)由于焦点的位置不确定,∴设所求椭圆的方程为 + =1 (a>b>0)或 + =1 (a>b>0), a² b² a² b²
第5节 第1课时 椭圆的定义、标准方程及其简单几何性质--2025年高考数学复习讲义及练习解析
![第5节 第1课时 椭圆的定义、标准方程及其简单几何性质--2025年高考数学复习讲义及练习解析](https://img.taocdn.com/s3/m/ef08b48f32d4b14e852458fb770bf78a65293a8c.png)
第五节椭圆第1课时椭圆的定义、标准方程及其简单几何性质1.椭圆的定义把平面内与两个定点F1,F2的距离的和等于01常数(大于|F 1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的02焦点,两焦点间的距离叫做椭圆的03焦距.2.椭圆的标准方程及简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)范围04-a≤x≤a且-b≤y≤b05-b≤x≤b且-a≤y≤a顶点06A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)07A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长短轴长为082b,长轴长为092a焦点10F1(-c,0),F2(c,0)11F1(0,-c),F2(0,c)焦距|F1F2|=122c对称性对称轴:13x轴和y轴,对称中心:14原点离心率e=ca(0<e<1)a,b,c的关系15a2=b2+c2椭圆的焦点三角形椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形.如图所示,设∠F1PF2=θ.(1)当P为短轴端点时,θ最大,S△F1PF2最大.(2)S△F1PF2=12|PF1|·|PF2|sinθ=b2tanθ2=c|y0|.(3)|PF1|max=a+c,|PF1|min=a-c.(4)|PF1|·|PF2|=a2.(5)4c2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cosθ.1.概念辨析(正确的打“√”,错误的打“×”)(1)平面内与两个定点F1,F2的距离之和等于常数的点的轨迹是椭圆.()(2)椭圆是轴对称图形,也是中心对称图形.()(3)y2 m2+x2n2=1(m≠n)表示焦点在y轴上的椭圆.()(4)x2 a2+y2b2=1(a>b>0)与y2a2+x2b2=1(a>b>0)的焦距相等.()答案(1)×(2)√(3)×(4)√2.小题热身(1)(人教A选择性必修第一册习题3.1T3改编)已知椭圆C:16x2+4y2=1,则下列结论正确的是()A.长轴长为12B.焦距为34C .短轴长为14D .离心率为32答案D解析把椭圆方程16x 2+4y 2=1化为标准方程可得y 214+x 2116=1,所以a =12,b =14,c =34,则长轴长2a =1,焦距2c =32,短轴长2b =12,离心率e =c a =32.故选D.(2)(人教A 选择性必修第一册习题3.1T5改编)已知点P 为椭圆x 216+y 29=1上的一点,B 1,B 2分别为椭圆的上、下顶点,若△PB 1B 2的面积为6,则满足条件的点P 的个数为()A .0B .2C .4D .6答案C解析在椭圆x 216+y 29=1中,a =4,b =3,则短轴|B 1B 2|=2b =6,设椭圆上点P 的坐标为(m ,n ),由△PB 1B 2的面积为6,得12|B 1B 2|·|m |=6,解得m =±2,将m =±2代入椭圆方程,得n =±332,所以符合题意的点P ,22,共4个满足条件的点P .故选C.(3)(人教A 选择性必修第一册习题3.1T1改编)已知点M (x ,y )在运动过程中,总满足关系式x 2+(y -2)2+x 2+(y +2)2=8,则点M 的轨迹方程为________________.答案x 212+y 216=1解析因为x 2+(y -2)2+x 2+(y +2)2=8>4,所以点M 的轨迹是以(0,2),(0,-2)为焦点的椭圆,设椭圆方程为x 2b 2+y 2a 2=1(a >b >0),由题意得2a =8,即a =4,则b 2=a 2-c 2=12,所以点M 的轨迹方程为x 212+y 216=1.(4)(人教A 选择性必修第一册习题3.1T4改编)已知椭圆C 的焦点在x 轴上,且离心率为12,则椭圆C 的方程可以为________________(写出满足题意的一个椭圆方程即可).答案x 24+y 23=1(答案不唯一)解析因为焦点在x 轴上,所以设椭圆的方程为x 2a 2+y 2b 2=1,a >b >0,因为离心率为12,所以ca=12,所以c 2a 2=a 2-b 2a2=14,则b 2a 2=34.所以椭圆C 的方程可以为x 24+y 23=1(答案不唯一).考点探究——提素养考点一椭圆的定义及其应用(多考向探究)考向1利用椭圆的定义求轨迹方程例1(2024·山东烟台一中质检)已知圆(x +2)2+y 2=36的圆心为M ,设A 是圆上任意一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹方程为________.答案x 29+y 25=1解析点P 在线段AN 的垂直平分线上,故|PA |=|PN |.又AM 是圆的半径,所以|PM |+|PN |=|PM |+|PA |=|AM |=6>|MN |.由椭圆的定义知,点P 的轨迹是以M ,N 为焦点的椭圆,且2a =6,2c =4,故所求的轨迹方程为x 29+y 25=1.【通性通法】在求动点的轨迹时,如果能够判断动点的轨迹满足椭圆的定义,那么可以直接求解其轨迹方程.【巩固迁移】1.△ABC 的两个顶点为A (-3,0),B (3,0),△ABC 的周长为16,则顶点C 的轨迹方程为()A .x 225+y 216=1(y ≠0)B .y 225+x 216=1(y ≠0)C .x 216+y 29=1(y ≠0)D .y 216+x 29=1(y ≠0)答案A解析由题意,知点C 到A ,B 两点的距离之和为10,故顶点C 的轨迹为以A (-3,0),B (3,0)为焦点,长轴长为10的椭圆,故2a =10,c =3,b 2=a 2-c 2=16.其方程为x 225+y 216=1.又A ,B ,C 三点不能共线,所以x 225+y 216=1(y ≠0).故选A.考向2利用椭圆的定义解决焦点三角形问题例2(1)如图,△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是________.答案43解析因为a 2=3,所以a = 3.△ABC 的周长为|AC |+|AB |+|BC |=|AC |+|CF 2|+|AB |+|BF 2|=2a +2a =4a =43.(2)设点P 为椭圆C :x 2a 2+y 24=1(a >2)上一点,F 1,F 2分别为C 的左、右焦点,且∠F 1PF 2=60°,则△PF 1F 2的面积为________.答案433解析解法一:由题意,知c =a 2-4.又∠F 1PF 2=60°,|PF 1|+|PF 2|=2a ,|F 1F 2|=2a 2-4,∴|F 1F 2|2=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-2|PF 1||PF 2|cos60°=4a 2-3|PF 1||PF 2|=4a 2-16,∴|PF 1||PF 2|=163,∴S △PF 1F 2=12|PF 1||PF 2|sin60°=12×163×32=433解法二:S △PF 1F 2=b 2tan ∠F 1PF 22=4tan30°=433.【通性通法】将定义和余弦定理结合使用可以解决焦点三角形的周长和面积问题.【巩固迁移】2.(2023·全国甲卷)已知椭圆x 29+y 26=1,F 1,F 2为两个焦点,O 为原点,P 为椭圆上一点,cos∠F 1PF 2=35,则|PO |=()A .25B .302C .35D .352答案B解析解法一:因为|PF 1|+|PF 2|=2a =6①,|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2=|F 1F 2|2,即|PF 1|2+|PF 2|2-65|PF 1||PF 2|=12②,联立①②,解得|PF 1||PF 2|=152,|PF 1|2+|PF 2|2=21,而PO →=12(PF 1→+PF 2→),所以|PO |=|PO →|=12|PF 1→+PF 2→|,即|PO →|=12|PF 1→+PF 2→|=12|PF 1→|2+2PF 1→·PF 2→+|PF 2→|2=1221+2×152×35=302.故选B.解法二:设∠F 1PF 2=2θ,0<θ<π2,所以S △PF 1F 2=b 2tan∠F 1PF 22=b 2tan θ,由cos ∠F 1PF 2=cos2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=35,解得tan θ=12.由椭圆的方程可知,a 2=9,b 2=6,c 2=a 2-b 2=3,所以S △PF 1F 2=12|F 1F 2|×|y P |=12×23×|y P |=6×12,解得y 2P =3,所以x 2P ==92,因此|PO |=x 2P +y 2P =3+92=302.故选B.解法三:因为|PF 1|+|PF 2|=2a =6①,|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos ∠F 1PF 2=|F 1F 2|2,即|PF 1|2+|PF 2|2-65|PF 1||PF 2|=12②,联立①②,解得|PF 1|2+|PF 2|2=21,由中线定理可知,(2|PO |)2+|F 1F 2|2=2(|PF 1|2+|PF 2|2)=42,易知|F 1F 2|=23,解得|PO |=302.故选B.考向3利用椭圆的定义求最值例3已知F 1,F 2是椭圆C :x 216+y 212=1的两个焦点,点M ,N 在C 上,若|MF 2|+|NF 2|=6,则|MF 1|·|NF 1|的最大值为()A .9B .20C .25D .30答案C解析根据椭圆的定义,得|MF 1|+|MF 2|=8,|NF 1|+|NF 2|=8,因为|MF 2|+|NF 2|=6,所以8-|MF 1|+8-|NF 1|=6,即|MF 1|+|NF 1|=10≥2|MF 1|·|NF 1|,当且仅当|MF 1|=|NF 1|=5时,等号成立,所以|MF 1|·|NF 1|≤25,则|MF 1|·|NF 1|的最大值为25.故选C.【通性通法】在椭圆中,结合|PF 1|+|PF 2|=2a ,运用基本不等式或三角形任意两边之和大于第三边可求最值.【巩固迁移】3.(2024·河北邯郸模拟)已知F 是椭圆x 29+y 25=1的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,则|PA |+|PF |的最大值为________,最小值为________.答案6+26-2解析由题意知a =3,b =5,c =2,F (-2,0).设椭圆的右焦点为F ′,则|PF |+|PF ′|=6,所以|PA |+|PF |=|PA |-|PF ′|+6.当P ,A ,F ′三点共线时,|PA |-|PF ′|取到最大值|AF ′|=2或最小值-|AF ′|=- 2.所以|PA |+|PF |的最大值为6+2,最小值为6- 2.考点二椭圆的标准方程例4(1)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则椭圆C 的方程为()A .x 22+y 2=1B .x 23+y 22=1C .x 29+y 26=1D .x 25+y 24=1答案B解析设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由椭圆的定义,得|AF 1|+|AB |+|BF 1|=4a .∵|AB |=|BF 1|,∴|AF 1|+2|AB |=4a .又|AF 2|=2|F 2B |,∴|AB |=32|AF 2|,∴|AF 1|+3|AF 2|=4a .又|AF 1|+|AF 2|=2a ,∴|AF 2|=a ,∴A 为椭圆的短轴端点.如图,不妨设A (0,b ),又F 2(1,0),AF 2→=2F 2B →,∴将B 点坐标代入椭圆方程x 2a 2+y 2b 2=1,得94a 2+b 24b 2=1,∴a 2=3,b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 221.故选B.(2)(2024·山西大同模拟)过点(2,-3),且与椭圆x 24+y 23=1有相同离心率的椭圆的标准方程为________________.答案x 28+y 26=1或y 2253+x 2254=1解析椭圆x 24+y 23=1的离心率是e =12,当焦点在x 轴上时,设所求椭圆的标准方程是x 2a 2+y 2b2=1(a >b >0)=12,b 2+c 2,+3b 2=1,2=8,2=6,∴所求椭圆的标准方程为x 28+y 26=1;当焦点在y 轴上时,设所求椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0)=12,b 2+c 2,+4b 2=1,2=253,2=254,∴所求椭圆的标准方程为y 2253+x 2254=1.故所求椭圆的标准方程为x 28+y 26=1或y 2253+x 2254=1.【通性通法】1.求椭圆方程的常用方法(1)定义法:根据椭圆的定义,确定a 2,b 2的值,结合焦点位置写出椭圆方程.(2)待定系数法求椭圆标准方程的一般步骤注意:一定先判断椭圆的焦点位置,即先定型后定量.2.椭圆标准方程的两个应用(1)方程x 2a 2+y 2b 2=1(a >0,b >0)与x 2a 2+y 2b2=λ(a >0,b >0,λ>0)有相同的离心率.(2)与椭圆x 2a 2+y 2b 2=1(a >b >0)共焦点的椭圆系方程为x 2a 2+k +y 2b 2+k =1(a >b >0,k +b 2>0).恰当选用椭圆系方程,可使运算更简便.【巩固迁移】4.已知F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b>0)的两个焦点,若P |PF 1|+|PF 2|=4,则椭圆C 的方程为________________.答案x 24+y 23=1解析由|PF 1|+|PF 2|=4得2a =4,解得a=2.又P C :x 2a 2+y 2b2=1(a >b >0)上,所以1222+1,解得b=3,所以椭圆C的方程为x24+y23=1.5.已知椭圆的中心在原点,以坐标轴为对称轴,且经过P1(6,1),P2(-3,-2)两点,则该椭圆的方程为________________.答案x29+y23=1解析设椭圆的方程为mx2+ny2=1(m>0,n>0,且m≠n).因为椭圆经过P1,P2两点,所以点P1,P2的坐标满足椭圆方程,m+n=1,m+2n=1,=19,=13.所以所求椭圆的方程为x29+y23=1.考点三椭圆的简单几何性质(多考向探究)考向1椭圆的长轴、短轴、焦距例5已知椭圆x225+y29=1与椭圆x225-k+y29-k=1(k<9,且k≠0),则两椭圆必定() A.有相等的长轴长B.有相等的焦距C.有相等的短轴长D.有相同的离心率答案B解析由椭圆x225+y29=1,知a=5,b=3,c=4,所以长轴长是10,短轴长是6,焦距是8.在椭圆x225-k+y29-k1(k<9,且k≠0)中,因为a1=25-k,b1=9-k,c1=4,所以其长轴长是225-k,短轴长是29-k,焦距是8.所以两椭圆有相等的焦距.故选B.【通性通法】求解与椭圆几何性质有关的问题时,要理清顶点、焦点、长轴长、短轴长、焦距等基本量的内在联系.【巩固迁移】6.若连接椭圆短轴的一个顶点与两焦点的三角形是等边三角形,则长轴长与短轴长之比为()A.2B.23C.233D.4答案C解析因为连接椭圆短轴的一个顶点与两焦点的三角形是等边三角形,所以a=2c,所以b2=a 2-c 2=3c 2,所以b =3c ,故2a 2b =a b =2c 3c =233,所以长轴长与短轴长之比为233.故选C.7.(2024·河北沧州统考期末)焦点在x 轴上的椭圆x 2a 2+y 23=1的长轴长为43,则其焦距为________.答案6解析由题意,得2a =43,所以a 2=12,c 2=a 2-b 2=12-3=9,解得c =3,故焦距2c =6.考向2椭圆的离心率例6(1)(2024·江苏镇江模拟)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2作x 轴的垂线与C 交于A ,B 两点,F 1B 与y 轴交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率为________.答案33解析由题意知F 1(-c ,0),F 2(c ,0),其中c =a 2-b 2,因为过F 2且与x 轴垂直的直线为x=c ,由椭圆的对称性,可设它与椭圆的交点为,因为AB 平行于y 轴,且|F 1O |=|OF 2|,所以|F 1D |=|DB |,即D 为线段F 1B 的中点,又|AF 1|=|BF 1|,则△AF 1B 为等边三角形.解法一:由|F 1F 2|=3|AF 2|,可知2c =3·b 2a ,即3b 2=2ac ,所以3(a 2-c 2)=2ac ,即3e 2+2e -3=0,解得e =33(e =-3舍去).解法二:由|AF 1|+|BF 1|+|AB |=4a ,可知|AF 1|=|BF 1|=|AB |=43a ,又|AF 1|sin60°=|F 1F 2|,所以43a ×322c ,解得c a =33,即e =33.解法三:由|AF 1|+|BF 1|+|AB |=4a ,可知|AB |=|AF 1|=|BF 1|=43a ,即2b 2a =43a ,即2a 2=3b 2,所以e =c 2a 2=1-b 2a 2=33.(2)(2024·广东七校联考)已知F 1,F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.答案解析根据椭圆的对称性,不妨设焦点在x 轴上的椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),设F 1(-c ,0),F 2(c ,0).解法一:设M (x 0,y 0),MF 1→·MF 2→=0⇒(-c -x 0,-y 0)·(c -x 0,-y 0)=0⇒x 20-c 2+y 20=0⇒y 20=c2-x 20,点M (x 0,y 0)在椭圆内部,有x 20a 2+y 20b 2<1⇒b 2x 20+a 2(c 2-x 20)-a 2b 2<0⇒x 20>2a 2-a 4c2,要想该不等式恒成立,只需2a 2-a 4c 2<0⇒2a 2c 2<a 4⇒2c 2<a 2⇒e =c a <22,而e >0⇒0<e <22,即椭圆离心解法二:由MF 1→·MF 2→=0,可知点M 在以F 1F 2为直径的圆上,即圆x 2+y 2=c 2在椭圆x 2a 2+y 2b 2=1(a >b >0)内部,所以c <b ,则c 2<b 2,即c 2<a 2-c 2,所以2c 2<a 2,即e 2<12,又e >0,所以0<e <22,【通性通法】求椭圆离心率的方法方法一直接求出a ,c ,利用离心率公式e =ca求解方法二由a 与b 的关系求离心率,利用变形公式e =1-b 2a2求解方法三构造a ,c 的齐次式,可以不求出a ,c 的具体值,而是得出a 与c 的关系,从而求得e注意:解题的关键是借助图形建立关于a ,b ,c 的关系式(等式或不等式),转化为e 的关系式.【巩固迁移】8.(2023·新课标Ⅰ卷)设椭圆C 1:x 2a 2+y 2=1(a >1),C 2:x 24+y 2=1的离心率分别为e 1,e 2.若e 2=3e 1,则a =()A .233B .2C .3D .6答案A解析由e 2=3e 1,得e 22=3e 21,因此4-14=3×a 2-1a 2,而a >1,所以a =233.故选A.9.(2024·广东六校联考)设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c 上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是________.答案33,解析设F 1(-c ,0),F 2(c ,0),由线段PF 1的中垂线过点F 2,得|PF 2|=|F 1F 2|,即2c ,得m 2=4c 2=-a 4c2+2a 2+3c 2≥0,即3c 4+2a 2c 2-a 4≥0,得3e 4+2e 2-1≥0,解得e 2≥13,又0<e <1,故33≤e <1,即椭圆离心率的取值范围是33,考向3与椭圆几何性质有关的最值(范围)问题例7(2024·石家庄质检)设点M 是椭圆C :x 29+y 28=1上的动点,点N 是圆E :(x -1)2+y 2=1上的动点,且直线MN 与圆E 相切,则|MN |的最小值是________.答案3解析由题意知,圆E 的圆心为E (1,0),半径为1.因为直线MN 与圆E 相切于点N ,所以NE ⊥MN ,且|NE |=1.又E (1,0)为椭圆C 的右焦点,所以2≤|ME |≤4,所以当|ME |=2时,|MN |取得最小值,又|MN |=|ME |2-|NE |2,所以|MN |min =22-12= 3.【通性通法】与椭圆有关的最值(范围)问题的求解策略【巩固迁移】10.如图,焦点在x 轴上的椭圆x 24+y 2b 2=1(b >0)的离心率e =12,F ,A 分别是椭圆的左焦点和右顶点,P 是椭圆上任意一点,则PF →·PA →的最大值为________.答案4解析由题意,知a =2,因为e =c a =12,所以c =1,所以b 2=a 2-c 2=3,故椭圆的方程为x 24+y 23=1.设点P 的坐标为(x 0,y 0),所以-2≤x 0≤2,-3≤y 0≤3.因为F (-1,0),A (2,0),所以PF →=(-1-x 0,-y 0),PA →=(2-x 0,-y 0),所以PF →·PA →=x 20-x 0-2+y 20=14x 20-x 0+1=14(x 0-2)2,所以当x 0=-2时,PF →·PA →取得最大值4.课时作业一、单项选择题1.已知动点M 到两个定点A (-2,0),B (2,0)的距离之和为6,则动点M 的轨迹方程为()A .x 29+y 2=1B .y 29+x 25=1C .y 29+x 2=1D .x 29+y 25=1答案D解析由题意有6>2+2=4,故点M 的轨迹为焦点在x 轴上的椭圆,则2a =6,c =2,故a 2=9,所以b 2=a 2-c 2=5,故椭圆的方程为x 29+y 25=1.故选D.2.(2024·九省联考)椭圆x 2a 2+y 2=1(a >1)的离心率为12,则a =()A .233B .2C .3D .2答案A解析由题意得e =a 2-1a=12,解得a =233.故选A .3.(2024·河南信阳模拟)与椭圆9x 2+4y 2=36有相同焦点,且满足短半轴长为25的椭圆方程是()A .x 225+y 220=1B .x 220+y 225=1C .x 220+y 245=1D .x 280+y 285=1答案B解析由9x 2+4y 2=36,可得x 24+y 29=1,所以所求椭圆的焦点在y 轴上,且c 2=9-4=5,b=25,a 2=25,所以所求椭圆方程为x 220+y 225=1.4.设e 是椭圆x 24+y 2k =1的离心率,且e k 的取值范围是()A .(0,3)BC .(0,3)D .(0,2)答案C解析当k >4时,c =k -4,由条件,知14<k -4k <1,解得k >163;当0<k <4时,c =4-k ,由条件,知14<4-k4<1,解得0<k <3.故选C.5.已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9.动圆M 在圆C 1内部,且与圆C 1内切,与圆C 2外切,则动圆的圆心M 的轨迹方程是()A .x 264-y 248=1B .x 248+y 264=1C .x 248-y 264=1D .x 264+y 248=1答案D解析设动圆的圆心M (x ,y ),半径为r ,因为圆M 与圆C 1:(x -4)2+y 2=169内切,与圆C 2:(x +4)2+y 2=9外切,所以|MC 1|=13-r ,|MC 2|=3+r .因为|MC 1|+|MC 2|=16>|C 1C 2|=8,由椭圆的定义,知M 的轨迹是以C 1,C 2为焦点,长轴长为16的椭圆,则a =8,c =4,所以b 2=82-42=48,动圆的圆心M 的轨迹方程为x 264+y 248=1.故选D.6.(2023·全国甲卷)设F 1,F 2为椭圆C :x 25+y 2=1的两个焦点,点P 在C 上,若PF 1→·PF 2→=0,则|PF 1|·|PF 2|=()A .1B .2C .4D .5答案B解析解法一:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°,从而S △F 1PF 2=b 2tan45°=1=12|PF 1|·|PF 2|,所以|PF 1|·|PF 2|=2.故选B.解法二:因为PF 1→·PF 2→=0,所以∠F 1PF 2=90°,由椭圆方程可知,c 2=5-1=4⇒c =2,所以|PF 1|2+|PF 2|2=|F 1F 2|2=42=16,又|PF 1|+|PF 2|=2a =25,平方得|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=16+2|PF 1|·|PF 2|=20,所以|PF 1|·|PF 2|=2.故选B.7.(2023·甘肃兰州三模)设椭圆x 24+y 23=1的一个焦点为F ,则对于椭圆上两动点A ,B ,△ABF周长的最大值为()A .4+5B .6C .25+2D .8答案D解析设F 1为椭圆的另外一个焦点,则由椭圆的定义可得|AF |+|BF |+|AB |=2a -|AF 1|+2a -|BF 1|+|AB |=4a +|AB |-|BF 1|-|AF 1|=8+|AB |-|BF 1|-|AF 1|,当A ,B ,F 1三点共线时,|AB |-|BF 1|-|AF 1|=0,当A ,B ,F 1三点不共线时,|AB |-|BF 1|-|AF 1|<0,所以当A ,B ,F 1三点共线时,△ABF 的周长取得最大值8.8.(2024·安徽三市联考)已知椭圆C 的左、右焦点分别为F 1,F 2,P ,Q 为C 上两点,2PF 2→=3F 2Q →,若PF 1→⊥PF 2→,则C 的离心率为()A .35B .45C .135D .175答案D解析设|PF 2→|=3m ,则|QF 2→|=2m ,|PF 1→|=2a -3m ,|QF 1→|=2a -2m ,|PQ |=5m ,在△PQF 1中,得(2a -3m )2+25m 2=(2a -2m )2,即m =215a .因此|PF 2→|=25a ,|PF 1→|=85a ,|F 2F 1→|=2c ,在△PF 1F 2中,得6425a 2+425a 2=4c 2,故17a 2=25c 2,所以e =175.故选D.二、多项选择题9.对于曲线C :x 24-k +y 2k -1=1,下列说法中正确的是()A .曲线C 不可能是椭圆B .“1<k <4”是“曲线C 是椭圆”的充分不必要条件C .“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件D .“曲线C 是焦点在x 轴上的椭圆”是“1<k <2.5”的充要条件答案CD解析对于A ,当1<k <4且k ≠2.5时,曲线C 是椭圆,A 错误;对于B ,当k =2.5时,4-k =k -1,此时曲线C 是圆,B 错误;对于C ,若曲线C 是焦点在y 轴上的椭圆,-k >0,-1>0,-1>4-k ,解得2.5<k <4,所以“曲线C 是焦点在y 轴上的椭圆”是“3<k <4”的必要不充分条件,C 正确;对于D ,若曲线C 是焦点在x 轴上的椭圆,-1>0,-k >0,-k >k -1,解得1<k <2.5,D 正确.故选CD.10.(2024·海口模拟)设椭圆x 29+y 23=1的右焦点为F ,直线y =m (0<m <3)与椭圆交于A ,B两点,则()A .|AF |+|BF |为定值B .△ABF 周长的取值范围是[6,12]C .当m =32时,△ABF 为直角三角形D .当m =1时,△ABF 的面积为6答案ACD解析设椭圆的左焦点为F ′,则|AF ′|=|BF |,∴|AF |+|BF |=|AF |+|AF ′|=6,为定值,A 正确;△ABF 的周长为|AB |+|AF |+|BF |,∵|AF |+|BF |为定值6,|AB |的取值范围是6),∴△周长的取值范围是(6,12),B 错误;将y =32与椭圆方程联立,解得-332,又F (6,0),∴AF →·BF →=0,∴AF ⊥BF ,∴△ABF 为直角三角形,C 正确;将y =1与椭圆方程联立,解得A (-6,1),B (6,1),∴S △ABF=12×26×1=6,D 正确.故选ACD.三、填空题11.(2023·四川南充三诊)若椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的两倍,则m 的值为________.答案14解析将原方程变形为x 2+y 21m=1.由题意知a 2=1m,b 2=1,所以a =1m ,b =1,所以1m=2,m =14.12.(2024·南昌模拟)已知椭圆E 的中心为原点,焦点在x 轴上,椭圆上一点到焦点的最小距离为22-2,离心率为22,则椭圆E 的方程为________.答案x 28+y 24=1解析椭圆E 的中心在原点,焦点在x 轴上,椭圆上一点到焦点的最小距离为22-2,离心率为22,c =22-2,=22,=22,=2,从而a 2=8,b 2=4,所以椭圆E 的方程为x 28+y 24=1.13.(2024·河南名校教研联盟押题)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,下顶点为A ,AF 的延长线交C 于点B ,若|AF |∶|BF |=2∶1,则C 的离心率为________.答案33解析解法一:如图,设椭圆C 的右焦点为F ′,则|AF |=|AF ′|=a ,因为|AF |∶|BF |=2∶1,所以|BF |=a 2,所以|AB |=|AF |+|BF |=3a 2,又|BF |+|BF ′|=2a ,所以|BF ′|=2a -|BF |=3a2,由余弦定理可知cos ∠BAF ′=|AB |2+|AF ′|2-|BF ′|22|AB ||AF ′|=13,设O 为坐标原点,椭圆C 的焦距为2c ,则离心率e =ca =sin ∠OAF ′,因为∠BAF ′=2∠OAF ′,故cos ∠BAF ′=1-2sin 2∠OAF ′=1-2e 2,所以e =33.解法二:设B 在x 轴上的射影为D ,由于|AF |∶|BF |=2∶1,所以|BD |=|OA |2=b 2,|FD |=|OF |2=c 2,即-3c 2,将B 的坐标代入C 的方程,得9c 24a 2+b 24b 2=1,得e =33.14.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的短轴长为2,上顶点为A ,左顶点为B ,左、右焦点分别为F 1,F 2,且△F 1AB 的面积为2-32,若点P 为椭圆上任意一点,则1|PF 1|+1|PF 2|的取值范围是________.答案[1,4]解析由已知,得2b =2,故b =1.∵△F 1AB 的面积为2-32,∴12(a -c )b =2-32,∴a -c=2-3,又a 2-c 2=(a -c )(a +c )=b 2=1,∴a =2,c =3,∴1|PF 1|+1|PF 2|=|PF 1|+|PF 2||PF 1|·|PF 2|=2a|PF 1|(2a -|PF 1|)=4-|PF 1|2+4|PF 1|.又2-3≤|PF 1|≤2+3,∴1≤-|PF 1|2+4|PF 1|≤4,∴1≤1|PF 1|+1|PF 2|≤4,即1|PF 1|+1|PF 2|的取值范围为[1,4].四、解答题15.(2024·辽宁阜新校考期末)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 1P C 上.(1)求椭圆C 的方程;(2)设点A (0,-1),点M 是椭圆C 上任意一点,求|MA |的最大值.解(1)因为P 3,P 4关于坐标轴对称,所以P 3,P 4必在椭圆C 上,有1a 2+34b 2=1,将点P 1(1,1)代入椭圆方程得1a 2+1b 2>1a 2+34b 2=1,所以P 1(1,1)不在椭圆C 上,P 2(0,1)在椭圆C 上,所以b 2=1,a 2=4,即椭圆C 的方程为x 24+y 2=1.(2)点A (0,-1)是椭圆C 的下顶点,设椭圆上的点M (x 0,y 0)(-1≤y 0≤1),则x 204+y 20=1,即x 20=4-4y 20,所以|MA |2=x 20+(y 0+1)2=4-4y 20+(y 0+1)2=-3y 20+2y 0+5=-0+163,又函数y =-+163在∞,+,所以当y 0=13时,|MA |2取到最大值,为163,故|MA |的最大值为433.16.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),焦点F 1(-c ,0),F 2(c ,0),左顶点为A ,点E 的坐标为(0,c ),A 到直线EF 2的距离为62b .(1)求椭圆C 的离心率;(2)若P 为椭圆C 上的一点,∠F 1PF 2=60°,△PF 1F 2的面积为3,求椭圆C 的标准方程.解(1)由题意,得A (-a ,0),直线EF 2的方程为x +y =c ,因为A 到直线EF 2的距离为62b ,即|-a -c |12+12=62b ,所以a +c =3b ,即(a +c )2=3b 2,又b 2=a 2-c 2,所以(a +c )2=3(a 2-c 2),所以2c 2+ac -a 2=0,因为离心率e =ca ,所以2e 2+e -1=0,解得e =12或e =-1(舍去),所以椭圆C 的离心率为12.(2)由(1)知离心率e =c a =12,即a =2c ,①因为∠F 1PF 2=60°,△PF 1F 2的面积为3,所以12|PF 1|·|PF 2|sin60°=3,所以|PF 1|·|PF 2|=4,1|+|PF 2|=2a ,1|2+|PF 2|2-2|PF 1|·|PF 2|cos60°=(2c )2,所以a 2-c 2=3,②联立①②,得a =2,c =1,所以b 2=a 2-c 2=3,所以椭圆C 的标准方程为x 24+y 23=1.17.(多选)(2023·山东济南模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2,点P (1,1)在椭圆内部,点Q 在椭圆上,则以下说法正确的是()A .|QF 1|+|QP |的最小值为2a -1B .椭圆C 的短轴长可能为2C .椭圆CD .若PF 1→=F 1Q →,则椭圆C 的长轴长为5+17答案ACD解析由题意知2c =2,则c =1,因为点Q 在椭圆上,所以|QF 1|+|QF 2|=2a ,|QF 1|+|QP |=2a -|QF 2|+|QP |,又-1≤-|QF 2|+|QP |≤1,所以A 正确;因为点P (1,1)在椭圆内部,所以b >1,2b >2,所以B 错误;因为点P (1,1)在椭圆内部,所以1a 2+1b 2<1,即b 2+a 2-a 2b 2<0,又c =1,b 2=a 2-c 2,所以(a 2-1)+a 2-a 2(a 2-1)<0,化简可得a 4-3a 2+1>0(a >1),解得a 2>3+52或a 2<3-52(舍去),则椭圆C 的离心率e =ca<13+52=15+12=5-12,又0<e <1,所以椭圆C 所以C 正确;由PF 1→=F 1Q →可得,F 1为PQ 的中点,而P (1,1),F 1(-1,0),所以Q (-3,-1),|QF 1|+|QF 2|=(-3+1)2+(-1-0)2+(-3-1)2+(-1-0)2=5+17=2a ,所以D 正确.故选ACD.18.(多选)(2023·辽宁大连模拟)已知椭圆C :x 216+y 29=1的左、右焦点分别是F 1,F 2,左、右顶点分别是A 1,A 2,点P 是椭圆C 上异于A 1,A 2的任意一点,则下列说法正确的是()A .|PF 1|+|PF 2|=4B .存在点P 满足∠F 1PF 2=90°C .直线PA 1与直线PA 2的斜率之积为-916D .若△F 1PF 2的面积为27,则点P 的横坐标为±453答案CD解析由椭圆方程,知a =4,b =3,c =7,|PF 1|+|PF 2|=2a =8,A 错误;当P 在椭圆上、下顶点时,cos ∠F 1PF 2=2a 2-4c 22a 2=18>0,即∠F 1PF 2的最大值小于π2,B 错误;若P (x ′,y ′),则k P A 1=y ′x ′+4,k P A 2=y ′x ′-4,有k P A 1·k P A 2=y ′2x ′2-16,而x ′216+y ′29=1,所以-16y ′2=9(x ′2-16),即有k P A 1·k P A 2=-916,C 正确;若P (x ′,y ′),△F 1PF 2的面积为27,即2c ·|y ′|2=27,故y ′=±2,代入椭圆方程得x ′=±453,D 正确.故选CD.19.(2023·河北邯郸二模)已知O 为坐标原点,椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,上顶点为B ,线段BF 的中垂线交C 于M ,N 两点,交y 轴于点P ,BP →=2PO →,△BMN 的周长为16,求椭圆C 的标准方程.解如图,由题意可得|BP |=23b ,|PO |=13b ,连接PF .由题意可知|BP |=|PF |,在Rt △POF 中,由勾股定理,得|PO |2+|OF |2=|PF |2,+c 2,整理得b 2=3c 2,所以a 2-c 2=3c 2,即a 2=4c 2,所以椭圆C 的离心率e =c a =12.在Rt △BOF 中,cos ∠BFO =|OF ||BF |=c a =12,所以∠BFO =60°.设直线MN 交x 轴于点F ′,交BF 于点H ,在Rt △HFF ′中,有|FF ′|=|HF |cos ∠BFO =a =2c ,所以F ′为椭圆C 的左焦点,又|MB |=|MF |,|NB |=|NF |,所以△BMN 的周长等于△FMN 的周长,又△FMN 的周长为4a ,所以4a =16,解得a =4.所以c =2,b 2=a 2-c 2=12.故椭圆C 的标准方程为x 216+y 212=1.20.已知F 1,F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.(1)求椭圆的离心率的取值范围;(2)求证:△F 1PF 2的面积只与椭圆的短轴长有关.解(1)不妨设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),焦距为2c .在△F 1PF 2中,由余弦定理,得cos60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|-|F 1F 2|22|PF 1|·|PF 2|,即4a 2-2|PF 1|·|PF 2|-4c 22|PF 1|·|PF 2|=12,所以|PF 1|·|PF 2|=4a 2-2|PF 1|·|PF 2|-4c 2,所以3|PF 1|·|PF 2|=4b 2,所以|PF 1|·|PF 2|=4b 23.又因为|PF 1|·|PF 2|=a 2,当且仅当|PF 1|=|PF 2|时,等号成立,所以3a 2≥4(a 2-c 2),所以c a ≥12,所以e ≥12.又因为0<e <1,所以椭圆的离心率的取值范围是12,(2)证明:由(1)可知|PF 1|·|PF 2|=43b 2,所以S △F 1PF 2=12|PF 1|·|PF 2|sin60°=12×43b 2×32=33b 2,所以△F 1PF 2的面积只与椭圆的短轴长有关.。
椭圆常考题型汇总及练习
![椭圆常考题型汇总及练习](https://img.taocdn.com/s3/m/1688c31f4693daef5ff73d0b.png)
椭圆常考题型汇总及练习 第一部分:复习运用的知识(一)椭圆几何性质椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆.两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()012222>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,12222≤≤by a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。
3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.5. 离心率(1)椭圆焦距与长轴的比ace =,()10,0<<∴>>e c a (2)22F OB Rt ∆,2222222OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆。
6.通径(过椭圆的焦点且垂直于长轴的弦),ab 22.7.设21F F 、为椭圆的两个焦点,P 为椭圆上一点,当21F F P 、、三点不在同一直线上时,21F F P 、、构成了一个三角形——焦点三角形. 依椭圆的定义知:c F F a PF PF 2,22121==+.(二)运用的知识点及公式1、两条直线111222:,:l y k x b l y k x b =+=+垂直:则121k k =-;两条直线垂直,则直线所在的向量120v v =2、韦达定理:若一元二次方程20(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a+=-=。
椭圆的定义ppt
![椭圆的定义ppt](https://img.taocdn.com/s3/m/2d7b55f2a300a6c30d229f04.png)
2006年 重庆22 全国 2007年 广东18 湖南9 重庆22 江苏15 2008年 湖北19 四川21天津5 重庆21 辽宁10
复习
椭圆的定义
椭圆第一定义:
PF1 PF2 2a F1F2
椭圆第二定义:
| PF | e(0 e 1) d
0下载券文档一键搜索 VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
内容特 无限次复制特权 权 文档格式转换
VIP有效期内可以无限次复制文档内容,不用下载即可获取文档内容 VIP有效期内可以将PDF文档转换成word或ppt格式,一键转换,轻松编辑!
阅读页去广告
椭圆
x2 25
y2 9
sin A sin C
1上,则 sin B
.
例题及练习
五、 求最值
例 5 给定 A(-2,2),已知 B 是椭圆
x2 25
y2 16
1
上动点,F
是左焦点,当
|AB|
5 | BF|
3
取最小值时,求
B
点坐标.
课后作业
(x 1)2 y2
1.方程 | x y 1| 1表示的曲线为( ) A. 两条相交直线但不含它们的交点 B. 椭圆 C. 双曲线一支 D. 抛物线
面积是
.
例题及练习
四、求离心率
例4
已知
P
是椭圆
x2
y2 b2
1(a
b 0) 上一点,
且点 P 不在 x 轴上,F1、F2 是椭圆的左、
右焦点,若∠PF1F2=α,∠PF2F1=β,求
椭圆离心率.(用α、β表示)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中心在坐标原点的椭圆的标准方程和几何意义
一、
知识清单
1. 椭圆的定义:
(1)把平面内与两个定点F 1、F 2的距离的和等于定长(大于F 1F 2)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
符号表示:
|PF 1|+|PF 2|=2a (2a >|F 1F 2|
a 2
(2平面内,到定点F(c,0的距离与到直线l :x =
c
的动点的轨迹叫做椭圆。
2. 椭圆的简单几何性质:
焦点在x 轴上
标准方程
的距离之比是常数
c
(a >c >0 a
焦点在y 轴上
x 2y 2
+2=12a b x 2y 2
+2=12b a
图形,
焦点坐标对称性顶点坐标范围长轴短轴离心率准线方程
F 1(−c , 0, F 2(c , 0 F 1(0, −c , F 2(0, c
关于x 、y 轴成轴对称,关于原点成中心对称
椭圆点的焦距与长轴长的比e =
c
a
x 2y 2
3. 点P (x 0, y 0 和椭圆2+2=1的关系:
a b
(1 P (x 0, y 0 在椭圆内
⇔_______________________________________________________(2 P (x 0, y 0 在椭圆上⇔_______________________________________________________
(3 P (x 0, y 0 在椭圆外
⇔_______________________________________________________
二、例题讲解
例1. 求下列椭圆的离心率:
(1)已知一椭圆的短轴长与它的焦距相等,求椭圆的离心率;
(2)已知一方程为标准方程的椭圆上存在一个横坐标等于焦点横坐标,纵坐标等于短半轴长的
2
求该椭圆的离心率。
的点,
3
x 2y 21
跟踪训练1:椭圆+=1离心率为,则k =_____________________.
k +892
例2.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,求该椭圆的离心率
三课堂练习
x 2y 2x 2y 2
1. 椭圆+=1与+=1(0<k<9的关系为(
2599−k 25−k
A. 有相等的长、短轴2. 短轴长为5, 离心率e=的周长为(
A.3
B. 有相等的焦距
C. 有相同的焦点
D. 有相同的顶点
2
的椭圆的两焦点为F 1、F 2, 过F 1作直线交椭圆于A 、B 两点, 则△ABF 23
B.6
C.12
D.24
x 2y 2
3. 椭圆+=1的焦点为F 1和F 2, 点P 在椭圆上, 如果线段PF 1的中点在y 轴上, 那么 |PF1|
123
是|PF2|的( A.7倍B.5倍C.4倍D.3倍
4. 已知以椭圆短轴的一个端点和两个焦点为顶点的三角形为正三角形, 并且焦点到椭圆的最短距离为3, 求椭圆的标准方程.
x 2y 2
5.在椭圆+=1上求一点P,使它到左焦点的距离是它到右焦点的距离的两倍
259
四、高考题试做
x 2y 2
1. (2008年江苏,12)在平面直角坐标系xOy 中,设椭圆2+2=1(a >b >0 的焦距为
a b a 2
2c , 以定点O 为圆心,a 为半径做圆M 。
若过点P (则, 0 所做圆M 的两条切线互相垂直,
c
该椭圆的离心率为___________.
x 2y 2
2. (2008天津改编,5)设椭圆2+2=1(m >0 上一点P 到其左焦点的距离为3,
m m −1
到右焦点的距离为1,则P 到右准线的距离为__________.
(参考答案)二、课堂练习1.B 2.B 3.A 4. 当椭圆的焦点在x 轴上时,所求椭圆方程为
x 2y 2y 2x 2
+=1;当椭圆的焦点在y 轴上时,所求椭圆方程为+=1.5.P 点的坐标为129129
(
25, ±.四、高考题试做。
1.1242
;2.22。