椭圆定义及其应用课件
《椭圆及其标准方程》课件
感谢观看
THANKS
《椭圆及其标准方 程》ppt课件
目 录
• 椭圆的定义 • 椭圆的方程 • 椭圆的性质 • 椭圆的图像 • 椭圆的实际应用
01
椭圆的定义
椭圆的几何定义
01
椭圆是由平面内两个定点F1、F2 的距离之和等于常数(常数大于 F1、F2之间的距离)的点的轨迹 形成的图形。
02
两个定点F1、F2称为椭圆的焦点 ,焦点的距离c满足关系式: c²=a²-b²,其中a为椭圆长轴半径 ,b为短轴半径。
椭圆的范围
总结词
椭圆的范围是指椭圆被坐标轴所限制的范围。
详细描述
这意味着椭圆永远不会出现在坐标轴之外。在x轴上,椭圆的范围是从-a到a;在y轴上,椭圆的范围是从-b到b。 其中a和b是椭圆的长轴和短轴的半径。
椭圆的顶点
总结词
椭圆的顶点是指椭圆与坐标轴的交点 。
详细描述
椭圆的顶点是椭圆与x轴和y轴的交点 。这些点是椭圆的边界点,并且它们 位于椭圆的长轴和短轴上。具体来说 ,椭圆的顶点是(-a,0),(a,0),(0,-b) 和(0,b)。
小和形状。
平移变换
将椭圆在坐标系中移动,可以实现 椭圆的平移变换。平移变换不会改 变椭圆的大小和形状,只会改变椭 圆的位置。
旋转变换
通过旋转椭圆,可以实现椭圆的旋 转变换。旋转变换会改变椭圆的方 向,但不会改变椭圆的大小和形状 。
椭圆的图像应用
天文学
在天文观测中,行星和卫星的轨道通常可以用椭圆来近似 描述。通过研究椭圆的性质,可以更好地理解天体的运动 规律。
焦点位置
离心率
定义为c/a,其中c是焦点到椭圆中心 的距离,a是椭圆长轴的半径。离心率 越接近0,椭圆越接近圆;离心率越 大,椭圆越扁。
椭圆及其标准方程ppt课件
F2
根据椭圆定义,设|MF1|+|MF2|=2a
2
2
+ 2
=1
2
2
−
你可以在图中找出表示a,c,b的线段吗?
2 2
+ 2=1
2
M
F1
O
F2
二、椭圆的标准方程
椭圆的焦点为F1(-c,0),F2(c,0),椭圆上任意一点M都满
足|MF1|+|MF2|=2a,则椭圆的标准方程为
M
2 2
LET’S START
椭圆是生活中的一种常见图形
椭圆是生活中的一种常见图形
椭圆是生活中的一种常见图形
具有何种几何特征才是椭圆呢?
具有何种几何特征才是椭圆呢?
b
1
a
一、椭圆的定义
我们把平面内与两个定点F1,F2的距离的和等于常数(大
于|F1F2|)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,
椭圆:我们把平面内与两个定点F1,F2的距离的和等
于常数(大于|F1F2|)的点的轨迹叫做椭圆。
|PF1|+|PF2|=2aLeabharlann > 2c椭圆的标准方程:
焦点在x轴:
其中,a>b>0,且a2=b2+c2
焦点在y轴:
怎样建立坐标系可以使所得的椭圆方程形式更简单?
M
设M(x,y),焦距|F1F2|=2c (c>0) 则F1(-c,0),F2(c,0)
根据椭圆定义,设|MF1|+|MF2|=2a
2 − = ( − )2 + 2
F1
O
F2
怎样建立坐标系可以使所得的椭圆方程形式更简单?
椭圆的课件ppt
对于长轴在y轴上的椭圆,参 数方程为:$x=bsintheta$,
$y=acostheta$。
其中,$theta$为参数,表示 椭圆上的点与长轴之间的夹角。源自05椭圆的作图方法
椭圆的基本作图方法
定义法
根据椭圆的定义,通过两个固定 点(焦点)和一根线段(焦距) 来绘制椭圆。
椭圆的任意两个不同点与椭圆中 心的连线形成的角为直角或锐角
。
椭圆的参数方程
椭圆的参数方程为 $x = a cos theta, y = b sin theta$,其中 $theta$ 是参数。
该方程描述了椭圆上任意一点 $P$ 的坐标与参数 $theta$ 的 关系。
通过参数方程,可以方便地研 究椭圆的几何性质和运动轨迹 。
离心率与长短轴关系
离心率与长短轴之间存在反比关系,即长轴越短,离心率越大;短轴 越短,离心率越小。
椭圆的对称性
对称性定义
椭圆关于坐标轴和原点对 称。
对称轴
椭圆有两条对称轴,分别 是长轴和短轴所在的直线 。
对称中心
椭圆的中心称为对称中心 ,是椭圆上任意一点关于 对称轴的对称点。
03
椭圆的几何应用
椭圆在几何图形中的应用
当 $a > b$ 时,椭圆呈横向;当 $a < b$ 时,椭圆呈纵向。
该方程描述了一个平面上的二维椭圆 ,其中心位于原点,长轴位于x轴上。
椭圆的几何性质
椭圆是一个封闭的二维曲线,由 两个焦点和其上的所有点组成。
椭圆的两个焦点到任意一点 $P$ 的距离之和等于椭圆的长轴长度 ,即 $|PF_1| + |PF_2| = 2a$。
01
椭圆在几何图形中可以作为椭圆 形的绘制基础,如椭圆形的车轮 、椭圆形的镜子等。
椭圆的简单几何性质ppt课件
由 e 1 ,得 1 k 1 ,即 k 5 .
2
94
4
∴满足条件的 k 4 或 k 5 .
4
例3:酒泉卫星发射中心将一颗人造卫星送入到 距地球表面近地点(离地面 近的点)高度约200km, 远地点(离地面最远的点)高度约350km的椭圆轨 道(将地球看作一个球,其半径约为6371km),求 椭圆轨道的标准方程。(注:地心(地球的中心)位
2.椭圆的标准方程
标准方程 图形
焦点在x轴上
x2 + y2 = 1a > b > 0
a2 b2
y P
F1 O F2
x
焦点在y轴上
x2 + y2 = 1a > b > 0
b2 a2
y
F2
P
O
x
F1
焦点坐标 a、b、c 的关系 焦点位置的判断
F1 -c , 0,F2 c , 0
F1 0,- c,F2 0,c
分别叫做椭圆的长轴和短轴。 A1
o
A2 x
B2(0,-b)
a、b分别叫做椭圆的长半轴长和短半轴长。
思考:椭圆的焦点与椭圆的长轴、短轴有什么关系? 焦点落在椭圆的长轴上
椭圆的简单几何性质
长轴:线段A1A2; 长轴长
短轴:线段B1B2; 短轴长
注意
焦距
|A1A2|=2a |B1B2|=2b |F1F2| =2c
y
B2(0,b)
①a和b分别叫做椭圆的 A1 (-a, 0)
b
a
A2 (a, 0)
长半轴长和短半轴长;
F1 a
o c F2 x
② a2=b2+c2,|B2F2|=a;
B1(0,-b)
椭圆的定义课件(2023版ppt)
椭圆的离心率为e = c/a,
04 其中c为椭圆的焦距,a
为椭圆的长半轴
椭圆的图形表示
椭圆的图形特征
椭圆是一种封闭的曲线图形,由两个焦点和
01
一条长轴组成。
椭圆的形状可以根据长轴和短轴的长度比例来
02
变化,当长轴和短轴相等时,椭圆变为圆。
椭圆上任意一点到两个焦点的距离之和是常
03
数,这个常数叫做椭圆的焦距。
01
02
03
04
椭圆的性质与定理
椭圆的性质
椭圆的定义:平面 内到两个固定点的 距离之和等于常数 的点的轨迹
椭圆的焦点:椭圆 的两个固定点,决 定了椭圆的形状和 大小
椭圆的离心率:椭 圆焦点到椭圆中心 的距离与椭圆长轴 长度的比值,决定 了椭圆的扁平程度
椭圆的顶点:椭圆 与坐轴的交点, 决定了椭圆的位置 和方向
2
椭圆在物理学中 的应用:椭圆轨 道、椭圆振动等
3
椭圆在工程学中 的应用:椭圆形 建筑、椭圆形管
道等
4
椭圆在艺术设计 中的应用:椭圆 形构图、椭圆形
图案等
谢谢
椭圆的周长与面积可以通 过公式计算
椭圆的离心率决定了椭圆 的形状
椭圆的焦点决定了椭圆的 位置和方向
椭圆的方程
椭圆的标准方程:
x^2/a^2 + y^2/b^2 01
=1
椭圆的焦点在x轴和y轴
上的坐标分别为(a,0)和 03
(0,b)
椭圆的顶点坐标为(a,0) 05
和(0,b)
02
a和b分别表示椭圆的长 半轴和短半轴
椭圆的性质:椭圆具
2 有对称性、周期性、 可积性等性质,这些 性质在几何应用中具 有重要作用。
椭圆ppt课件
02
椭圆的绘制方法
几何法绘制椭圆
固定两点法
选取两个固定点,利用细线、笔 和画板,通过细线两端分别绕两 个固定点旋转绘制椭圆。
圆心与半径法
选取一个圆心,以不同半径分别 用圆规画出两个相交的圆,连接 两个交点得到椭圆的长短轴,再 绘制椭圆。
代数法绘制椭圆
标准方程法
根据椭圆的标准方程,确定长短轴长度和中心位置,利用坐标纸和直尺绘制椭圆 。
椭圆的几何性质
焦点
椭圆有两个焦点,它们位于长轴上,距离原点分别为c。
长轴和短轴
椭圆有两条对称轴,分别是长轴和短轴。长轴通过两个焦 点,短轴与长轴垂直。长轴长度为2a,短轴长度为2b。
离心率
椭圆的离心率e定义为c/a,它描述了椭圆的扁平程度。 0<e<1时,椭圆越扁平;e=0时,椭圆变为圆;e>1时, 椭圆不存在。
椭圆形储罐
椭圆形储罐结构受力均匀 ,节省材料,常用于石油 、化工等行业的聚焦于一点,应用于望 远镜、卫星天线等光学设 备中。
经济学中椭圆的应用
生产可能性边界
生产可能性边界呈椭圆形,表示 在一定资源和技术条件下,两种
产品最大可能产量的组合。
效用函数
在消费者选择理论中,效用函数常 用椭圆函数形式来描述消费者在无 差异曲线上的偏好。
参数方程法
根据椭圆的参数方程,设定参数范围和步长,利用计算器或计算机软件生成椭圆 上的离散点,再连接成椭圆。
电脑绘图软件绘制椭圆
绘图软件工具
使用绘图软件中的椭圆工具,通过鼠标点击和拖动直接在画 布上绘制椭圆。
自定义绘制
利用绘图软件的编程功能,编写自定义的椭圆绘制程序,实 现更复杂的椭圆绘制需求。
03
椭圆的应用举例
《椭圆的简单几何性质》课件
A1
F1
b
oc
a
A2
F2
B1
3、椭圆的顶点
x2 a2
b y2 2
1(ab0)
令 x=0,得 y=?,说明椭圆与 y轴的交点?
令 y=0,得 x=?说明椭圆与 x轴的交点? y
*顶点:椭圆与它的对称轴
B2 (0,b)
的四个交点,叫做椭圆的
顶点。
A1
*长轴、短轴:线段A1A2、 (-a,0)F1 B1B2分别叫做椭圆的长轴 和短轴。
x
找出a、b、c所表示的线段。B1
△B2F2O叫椭圆的特征三角形。
二、椭圆 x2 y2 1简单的几何性质
a2 b2
1、范围:
问题1:指出A1 、A2 、B1、B2 的坐标? 问题2:指出椭圆上点的横坐标的范围? 问题3:指出椭圆上点的纵坐标的范围? 结论:椭圆中 -a ≤ x ≤a, -b ≤ y ≤b. 椭圆落在x=± a, y= ± b组y 成的矩形中
b
a
oc
F2
B1 (0,-b)
A2(a,0)
a、b分别叫做椭圆的长半 轴长和短半轴长。
根据前面所学有关知识画出下列图形
(1)
x2 y2 1
25 16
(2) x2 y2 1 25 4
y
4 B2
3
2
A1
1
A2
-5 -4 -3 -2 --11 1 2 3 4 5 x
-2
-3
-4 B1
y
4
3 2
B2
A1
长半轴长为a,短半轴长为b. a>b e c a
c2 a2b2
标准方程 范围 对称性 顶点坐标 焦点坐标 半轴长 离心率
3.1.1 椭圆及其标准方程 课件(共34张PPT).ppt
焦点在x轴上:
x2 a2
y2 b2
1(a
b
0)
焦点在y轴上:
y2 a2
x2 b2
1(a
b
0)
y
O
x
其中, PF1 PF2 2a, F1F2 2c,c2 a2 b2.
问题4:若焦点F1、F2 在y轴上,且F1(0,-c),F2 (0,c),a,b的意义同上, 则椭圆的方程是什么?
F1(c,0), F2(c,0) F1(0,c), F2 (0,c)
概念辨析1:椭圆的定义
1.命题甲: 动点P到两定点A、B的距离之和| PA | | PB | 2a(a为常数,a 0)
命题乙: 动点P的轨迹是椭圆.
则命题甲是命题乙的___B____条件.
A.充分不必要条件
B.必要不充分条件
甲 / 乙 乙甲
C.充要条件
D.既不充分也不必要条件
2.若两定点F1, F2,且 F1F2 10,则满足下列条件的动点P 的轨迹是什么? ① PF1 PF2 10; 线段F1F2 ② PF1 PF2 16; 椭圆 ③ PF1 PF2 6. 不存在
1(a
b 0),
(法1) 2a
22 3
2
5
22 3 5 2
( 15
3)2
( 15
3)2 2 15,
a 15,b2 15 5 10,方程 y2 x2 1为所求.
15 10
(法2)
代入(2,3)得
9 a2
4 b2
1,
又b2
a2
5,
联立解得a2
15或3(3
设为 y2
a2
x2
b2
1(a
b 0)
椭圆的几何性质优秀课件公开课
3
切线、法线与椭圆关系
切线、法线都与椭圆在切点处有且仅有一个公共 点。
应用举例:求解相关问题
求给定点的切线方程
给定椭圆上一点,求该点的切线方程。
求给定斜率的切线方程
给定椭圆的方程和切线的斜率,求切线的 方程。
求椭圆与直线的交点
利用切线、法线解决最值问题
给定椭圆和直线的方程,求它们的交点坐 标。
加空间的变化和美感。
椭圆在物理学中的应用
天体运动轨道
椭圆是描述天体运动轨道的重要几何形状之一, 如行星绕太阳的轨道就是椭圆形的。
光学性质
椭圆的光学性质也被广泛应用于物理学中,如椭 圆形的透镜、反射镜等。
电磁学
在电磁学中,椭圆也被用于描述电场和磁场的分 布。
椭圆在工程学中的应用
机械工程
01
椭圆在机械工程中应用广泛,如椭圆形的齿轮、轴承等机械零
工程学
在工程学中,椭圆也经常被用来描述一些物体的形状或运动轨迹。例如,一些机械零件的 截面形状就是椭圆形的;在航空航天领域,飞行器的轨道也可能是椭圆形的。
数学及其他领域
在数学领域,椭圆作为一种重要的几何图形,经常被用来研究一些数学问题。此外,在物 理学、经济学等其他领域,椭圆也有着广泛的应用。
02
从椭圆外一点向椭圆引切线,切线长 相等。这个定理在解决与椭圆切线有 关的问题时非常有用。
03
椭圆上点与焦点关系
点到两焦点距离之和为定值
椭圆上任意一点到两 个焦点的距离之和等 于椭圆的长轴长。
通过该性质,可以推 导出椭圆的其他几何 性质。
这是椭圆定义的基础 ,也是椭圆最基本的 几何性质之一。
点到两焦点距离差与长轴关系
椭圆的课件ppt
椭圆的焦点性质与离心率性质的应用
焦点性质
椭圆焦点位置决定了椭圆形状,当两个焦点距离越大,椭圆越扁平;当两个焦点 距离越小,椭圆越圆。
离心率性质的应用
离心率可以用于计算椭圆形状的变化,离心率越小,椭圆越圆;离心率越大,椭 圆越扁平。
椭圆的焦点三角形与离心率三角形
焦点三角形
以椭圆中心为顶点,以两个焦点为侧顶点的三角形称为焦点三角形。
椭圆的范围与顶角
01
椭圆的范围是指椭圆上任一点到 椭圆中心的距离范围。对于标准 椭圆,这个范围是从-a到a的,其 中a是椭圆的长半轴长度。
02
椭圆的顶角是指椭圆上与两个焦 点相连的线段之间的夹角。对于 标准椭圆,这个夹角是90度。
椭圆的性质在生活中的应用
椭圆性质在生活中的应用广泛,例如在物理 学中,椭圆运动轨迹经常出现,如篮球投篮 、行星运动等;在工程学中,椭圆形状也经 常被用于建筑设计、汽车制造等方面。
转化方法
通过一些数学变换,可以将椭圆的参数方程或极坐标方程转化为另一种形式, 从而方便解的焦点与离心率
椭圆的焦点与离心率定义
椭圆焦点
椭圆的两个焦点位于长轴的端点,与椭圆中心距离相等,连 接两个焦点的线段称为焦距。
离心率定义
椭圆的离心率是指椭圆焦点到椭圆中心的距离与椭圆长轴长 度的比值。
离心率三角形
以椭圆中心为顶点,以两个焦点为侧顶点的三角形称为离心率三角形。
CHAPTER 04
椭圆的性质与运用
椭圆的对称性
椭圆的对称性是指椭圆关于坐标轴和原点都是对称的。这意味着无论从哪个方向开始,沿着坐标轴方 向移动,椭圆上的点都会以相同的形状和大小出现。
在椭圆中,与两个焦点距离之和等于定值的点构成的图形。这个定值是椭圆的长轴长度,与两个焦点 之间的距离之差等于短轴长度。
《椭圆的定义》课件
• 椭圆的定义 • 椭圆的几何意义 • 椭圆的参数方程 • 椭圆的焦点与离心率 • 椭圆的面积与周长 • 椭圆的扩展知识
01
椭圆的定义
椭圆的标准方程
椭圆的标准方程是:$frac{x^2}{a^2} + frac{y^2}{b^2} = 1$,其中 $a$ 和 $b$ 是椭圆的半长轴和半短轴。
当 $a = b$ 时,椭圆变为圆;当 $a > b$ 时,椭圆为扁平椭圆;当 $a < b$ 时,椭圆为长椭圆。
这个方程描述了一个椭圆,其形状由 半长轴 $a$ 和半短轴 $b$ 的大小决 定。
椭圆的基本性质
椭圆是封闭的曲线,它有两个焦点, 分别位于长轴的端点。
椭圆上任意一点到焦点的距离与该点 到椭圆中心的距离之比是一个常数, 这个常数等于半短轴 $b$ 与半长轴 $a$ 的比值,记作 $e$,即 $e = frac{c}{a}$。
椭圆是平面内到两定点距离之差等于常数的点的轨迹:这个常数小于两定点之间的 距离。
椭圆是平面内到两定点距离之积等于常数的点的轨迹:这个常数大于两定点之间的 距离。
椭圆在日常生活中的应用
01
02
03
04
天文学
行星和卫星的轨道通常呈现椭 圆形形状,这是因为它们受到
太阳的引力作用。
物理学
粒子在磁场中的运动轨迹可能 是椭圆形。
椭圆和双曲线有一个共同的焦点 :两点的中点。
椭圆和双曲线都可以由平面截取 圆锥面得到:一个平面与圆锥面 的母线形成的角为锐角得到椭圆 ,形成的角为直角得到双曲线。
THANKS
感谢观看
$S = pi ab$,其中a和b分别是椭圆长轴和 短轴的半径。
应用场景
《椭圆的第二定义》课件
天文观测
椭圆形状的天体,如彗星 和星系,可以用椭圆来描 述其运动轨迹。
哈勃太空望远镜
哈勃太空望远镜的轨道是 椭圆形,用于观测遥远的 天体和星系。
椭圆在物理学中的应用
粒子加速器
粒子加速器中的粒子轨迹 是椭圆形,通过改变电场 和磁场来加速粒子。
核磁共振成像
核磁共振成像中的磁场是 椭圆形,用于检测人体内 的氢原子核。
焦半径的应用
在解决与椭圆相关的几何问题时,利用焦半径的 性质可以简化计算过程。
THANKS
感谢观看
离心率e的范围是0<e<1,当e接近0时,表示椭圆接近圆;当e接 近1时,表示椭圆变得扁平。
离心率与形状关系
离心率e决定了椭圆形状的扁平程度,是描述椭圆形状的重要参数 。
椭圆的焦半径
焦半径定义
从椭圆上的任意一点P引出到两ቤተ መጻሕፍቲ ባይዱ焦点的连线段, 称为焦半径。
焦半径长度
根据椭圆的性质,焦半径PF1和PF2的长度满足 PF1+PF2=2a。
椭圆的范围
总结词
椭圆的范围是由其两个焦点和椭圆上任意一点之间的距离关 系决定的。
详细描述
椭圆的两个焦点到椭圆上任意一点的距离之和等于一个常数 ,这个常数等于两个焦点之间的距离。因此,椭圆被限制在 一个由两个焦点和椭圆上任意一点组成的平面内。
椭圆的光滑性
总结词
椭圆的光滑性是指其在平面上是连续且没有折线的曲线。
电子显微镜
电子显微镜中的电子轨迹 也是椭圆形,用于观察微 小物体。
椭圆在工程学中的应用
桥梁设计
桥梁的支撑结构常常采用椭圆形 ,以承受更大的负载和分散压力
。
隧道设计
隧道的截面形状常常是椭圆形,以 减少工程难度和成本。
高中数学椭圆公开课全省一等奖PPT课件
03
提高数学思维能力
通过学习和练习,提高数学思 维能力,包括逻辑推理、归纳 分类、化归等思想方法的应用 能力。
04
关注数学文化
了解数学史、数学名著和数学 家的故事等数学文化内容,丰 富自己的数学素养和视野。
2024/1/25
30
感谢您的观看
THANKS
2024/1/25
31
PF_2$,若$Delta PF_1F_2$的面积为9,求椭圆的方程。
7
02
椭圆与直线关系
2024/1/25
圆方程的解的情况,可以确定直线与椭圆的位置关系, 如相切、相交或相离。
判别式法
将直线方程代入椭圆方程,消去一个未知数,得到一个关于另一个未知数的二 次方程,通过判别式Δ的值来判断位置关系。当Δ>0时,直线与椭圆相交;当 Δ=0时,直线与椭圆相切;当Δ<0时,直线与椭圆相离。
例题4
结合实际问题,利用参数方程求 解最值问题。
01
02
例题1
已知椭圆的参数方程,求其普通 方程和焦点坐标。
03
04
例题3
利用参数方程研究椭圆上点的运 动轨迹和性质。
2024/1/25
22
05
高考真题回顾与拓展延伸
2024/1/25
23
历年高考真题回顾
(2019年全国卷II)椭圆的焦点 三角形面积问题
解题思路
首先根据题目条件列出方程或不等式,然后结合图形分析,运用相关知识点进行 求解。在解题过程中,需要注意数形结合思想和转化与化归思想的应用。
2024/1/25
12
03
椭圆在几何图形中应用
2024/1/25
13
利用椭圆性质求最值问题
高考理数复习---椭圆的定义及应用考点与例题讲解PPT课件
本例(1)应用线段中垂线的性质实现了“|PF|+|PO|”向 定值的转化;本例(2)把余弦定理与椭圆的定义交汇在一起,借助方 程的思想解出|AF1|,从而求得△AF1F2的面积.
7Leabharlann 已知F1,F2是椭圆C:x2 a2
+
y2 b2
=1(a>b>0)的两个焦点,
P为椭圆C上的一点,且PF1⊥PF2,若△PF1F2的面积为9,则b= ________.
高考理数复习---椭圆的定义及应用考 点与例题讲解PPT课件
椭圆的定义及应用 椭圆定义的应用主要有两个方面
一是判定平面内动点的轨迹是否为椭圆;二是利用定义求焦点三 角形的周长、面积、弦长、最值和离心率等.
2
(1)如图所示,一圆形纸片的圆心为O,F
是圆内一定点,M是圆周上一动点,把纸片折叠使M与
F重合,然后抹平纸片,折痕为CD,设CD与OM交于
点P,则点P的轨迹是( )
A.椭圆
B.双曲线
C.抛物线
D.圆
3
(2)F1,F2是椭圆x92+y72=1的两个焦点,A为椭圆上一点,且
∠AF1F2=45°,则△AF1F2的面积为( )
A.7
7 B.4
C.72
D.7 2 5
4
(1)A (2)C [(1)由题意可知,CD是线段MF的垂直平分线, ∴|MP|=|PF|, ∴|PF|+|PO|=|PM|+|PO|=|MO|(定值). 又|MO|>|FO|, ∴点P的轨迹是以F,O为焦点的椭圆,故选A.
3 [设|PF1|=r1,|PF2|=r2, 则rr121++rr222==24ac2,,所以 2r1r2=(r1+r2)2-(r21+r22)=4a2-4c2=4b2,
所以 S△PF1F2=12r1r2=b2=9,所以 b=3.]
椭圆的定义PPT教学课件
M
椭圆的定义: F1
F2
平面内与两个定点F1、F2的距离的和等于常 数(大于|F1F2|)的点的轨迹叫做椭圆。
F1、F2 ——焦点 |F1F2 | ——焦距(一般用2c表示)
|MF1|+ |MF2| = 2a
设∣F1F2∣= 2c, ∣MF1∣+∣MF2∣= 2a,则
c=0时,圆 M
2a>2c时, 椭圆
(3)曲线上一点P到焦点F1的距离为3,则点P到另一
个焦点F2的距离等于___2__5___3_,则三角形F1PF2的周
y
长为_2__5___2_____
F2 P
O
x
F1
例3、求满足下列条件的椭圆的标准方程:
(1)满足a=4, b=1,焦点在 x轴上的椭圆 的标准方程为__1x_62___y_2___1___;
解:由 4x2+ky2=1
x2
y2
可得
1 11
4k
因为方程表示的曲线是焦点在y轴上的椭圆
所以 1 1 k4
即:0<k<4
所以k的取值范围为 0<k<4 .
例5、化简:
x2 ( y 3)2 x2 ( y 3)2 10
分析: |MF1|+|MF2|=10, 2a=10,2c=6, ∴a=5,c=3,b=4 ∴ y2 x2 1
• 父:聪明吾儿,那你再看这平坦的大地又像什么? • 女:(略思索)像方正的木板. • 父:对,正如书中所云:“天圆如张盖,地方如
棋局”。
背景:两千多年前的我国周代
天圆地方---盖天说
古希腊数学家毕达哥拉斯
古希腊著名科学家 亚里士多德
太阳光
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
椭圆定义其应用课件说明
周南中学任元奇
一、教学目的:
1、进一步掌握椭圆的定义,并能根据椭圆的定义解决简单问题。
2、掌握几个有关椭圆的常用结论。
3、能用椭圆定义解决稍复杂的问题。
二、重点、难点:
重点:椭圆的定义及其应用;
难点:椭圆定义的应用。
三、思想品德教育:
数形结合的思想,探索与创新思想。
四、教学方法:
用探索法与分层教学法进行教学,教会学生学习的方法
五、课件所用的软件:
主要的是动态几何软件《几何画板》,它主要体现探索的思想方法;网页制作软件《FrontPage》和《Dreamweaver》,主要实现浏览
课件的窗口;还有动画制作软件《Flash5》,它主要是制作所用的动画效果;当然还离不文字处理软件《Microsoft Word》。
六、课件使用说明:
1、打开文件夹《ty》,双击“index.htm”文件;
2、点击网页左边的菜单,即可跳到相应的网页,但主画面依
然保存着;
3、点击“知识回顾”菜单,主窗口出现一些新的菜单,点击
上面的菜单,弹出相应的几何画板文件,在此可对相应问
题进行探索,探索完后退出几何画板文件,返回主窗口,
再点击下面相应的菜单按钮左边的图案,弹出一个文字框,
对所给问题给予解答;
4、“例题讲解”菜单的操作与“知识回顾”菜单一样操作;
5、“几何画板”文件的操作,就是拖动相应的点,画面上相
应的几何量就会变化,动点就形成了轨迹。
由这些变化可
先知道问题的结果,这就是探索过程;
6、对探索的结果给予证明与解答。
七、课件的特点:
1、整个课件体现了一个探索的精神,很好地体现了本节课
的教学方法;
2、课件虽然要用两个软件来显示,但却链接非常好,使用
权其成为一个了整体;
3、使用网页浏览器使课件的主要菜单贯穿整个课件的始
终,各部分跳转自如;
4、用动态几何软件《几何画板》,很好地体现了数形结合
的思想,反映了数学的精髓;
5、整个课件动静结合,使用起来使人赏心悦目。