椭圆的定义PPT课件
合集下载
高中数学椭圆课件
![高中数学椭圆课件](https://img.taocdn.com/s3/m/d2b28cf364ce0508763231126edb6f1afe00715e.png)
已知椭圆的一个焦点到椭圆上任意一点的距离的 最小值为4,求椭圆的标准方程。
题目4
已知椭圆上任意一点P与椭圆中心O的距离为d, 求点P到椭圆两个焦点的距离之差的绝对值。
答案3
根据椭圆的性质,焦点到椭圆上任意一点的距离 的最小值为半短轴b。已知这个距离的最小值为4 ,可以得出半短轴b=4。由于没有给出半长轴a的 具体数值,所以无法确定椭圆的标准方程。
注意事项:避免常见错误和陷阱
方程形式
注意椭圆的标准方程形式,不要混淆不同的形式 。
焦点位置
注意焦点的位置,有时题目中没有明确指出焦点 的位置,需要自己判断。
参数范围
在解题时,要注意参数的范围,不要超出范围进 行计算。
单位长度
在计算时,要注意单位长度的一致性,不要出现 单位不匹配的情况。
06
椭圆的练习题与答案解析
已知椭圆的一个焦点到 椭圆上任意一点的距离 和为10,求椭圆的标准 方程。
根据椭圆的定义,任意 一点到两个焦点的距离 之和为常数,这个常数 等于长轴的长度。已知 这个距离和为10,可以 得出半长轴a=5。由于 没有给出半短轴b的具 体数值,所以无法确定 椭圆的标准方程。
提高练习题:挑战更高难度
题目3
椭圆的准线与焦点
定义
椭圆的准线是指与椭圆焦点距离 相等的点所在的直线。
性质
准线与椭圆相交于四个点,这四 个点称为椭圆的焦点。焦点到椭 圆中心的距离称为焦距。
03
椭圆的方程求解方法
直接法求解椭圆方程
定义椭圆
根据椭圆的定义,确定椭圆的标准方程。
确定参数
根据椭圆的标准方程,确定参数a、b、c的值。
求解方程
高中数学椭圆课件
目
CONTENCT
题目4
已知椭圆上任意一点P与椭圆中心O的距离为d, 求点P到椭圆两个焦点的距离之差的绝对值。
答案3
根据椭圆的性质,焦点到椭圆上任意一点的距离 的最小值为半短轴b。已知这个距离的最小值为4 ,可以得出半短轴b=4。由于没有给出半长轴a的 具体数值,所以无法确定椭圆的标准方程。
注意事项:避免常见错误和陷阱
方程形式
注意椭圆的标准方程形式,不要混淆不同的形式 。
焦点位置
注意焦点的位置,有时题目中没有明确指出焦点 的位置,需要自己判断。
参数范围
在解题时,要注意参数的范围,不要超出范围进 行计算。
单位长度
在计算时,要注意单位长度的一致性,不要出现 单位不匹配的情况。
06
椭圆的练习题与答案解析
已知椭圆的一个焦点到 椭圆上任意一点的距离 和为10,求椭圆的标准 方程。
根据椭圆的定义,任意 一点到两个焦点的距离 之和为常数,这个常数 等于长轴的长度。已知 这个距离和为10,可以 得出半长轴a=5。由于 没有给出半短轴b的具 体数值,所以无法确定 椭圆的标准方程。
提高练习题:挑战更高难度
题目3
椭圆的准线与焦点
定义
椭圆的准线是指与椭圆焦点距离 相等的点所在的直线。
性质
准线与椭圆相交于四个点,这四 个点称为椭圆的焦点。焦点到椭 圆中心的距离称为焦距。
03
椭圆的方程求解方法
直接法求解椭圆方程
定义椭圆
根据椭圆的定义,确定椭圆的标准方程。
确定参数
根据椭圆的标准方程,确定参数a、b、c的值。
求解方程
高中数学椭圆课件
目
CONTENCT
椭圆ppt课件
![椭圆ppt课件](https://img.taocdn.com/s3/m/6e38f59b85254b35eefdc8d376eeaeaad1f316d1.png)
02
椭圆的绘制方法
几何法绘制椭圆
固定两点法
选取两个固定点,利用细线、笔 和画板,通过细线两端分别绕两 个固定点旋转绘制椭圆。
圆心与半径法
选取一个圆心,以不同半径分别 用圆规画出两个相交的圆,连接 两个交点得到椭圆的长短轴,再 绘制椭圆。
代数法绘制椭圆
标准方程法
根据椭圆的标准方程,确定长短轴长度和中心位置,利用坐标纸和直尺绘制椭圆 。
椭圆的几何性质
焦点
椭圆有两个焦点,它们位于长轴上,距离原点分别为c。
长轴和短轴
椭圆有两条对称轴,分别是长轴和短轴。长轴通过两个焦 点,短轴与长轴垂直。长轴长度为2a,短轴长度为2b。
离心率
椭圆的离心率e定义为c/a,它描述了椭圆的扁平程度。 0<e<1时,椭圆越扁平;e=0时,椭圆变为圆;e>1时, 椭圆不存在。
椭圆形储罐
椭圆形储罐结构受力均匀 ,节省材料,常用于石油 、化工等行业的聚焦于一点,应用于望 远镜、卫星天线等光学设 备中。
经济学中椭圆的应用
生产可能性边界
生产可能性边界呈椭圆形,表示 在一定资源和技术条件下,两种
产品最大可能产量的组合。
效用函数
在消费者选择理论中,效用函数常 用椭圆函数形式来描述消费者在无 差异曲线上的偏好。
参数方程法
根据椭圆的参数方程,设定参数范围和步长,利用计算器或计算机软件生成椭圆 上的离散点,再连接成椭圆。
电脑绘图软件绘制椭圆
绘图软件工具
使用绘图软件中的椭圆工具,通过鼠标点击和拖动直接在画 布上绘制椭圆。
自定义绘制
利用绘图软件的编程功能,编写自定义的椭圆绘制程序,实 现更复杂的椭圆绘制需求。
03
椭圆的应用举例
《椭圆的简单几何性质》课件
![《椭圆的简单几何性质》课件](https://img.taocdn.com/s3/m/e255ab610640be1e650e52ea551810a6f524c8e9.png)
B2
A1
F1
b
oc
a
A2
F2
B1
3、椭圆的顶点
x2 a2
b y2 2
1(ab0)
令 x=0,得 y=?,说明椭圆与 y轴的交点?
令 y=0,得 x=?说明椭圆与 x轴的交点? y
*顶点:椭圆与它的对称轴
B2 (0,b)
的四个交点,叫做椭圆的
顶点。
A1
*长轴、短轴:线段A1A2、 (-a,0)F1 B1B2分别叫做椭圆的长轴 和短轴。
x
找出a、b、c所表示的线段。B1
△B2F2O叫椭圆的特征三角形。
二、椭圆 x2 y2 1简单的几何性质
a2 b2
1、范围:
问题1:指出A1 、A2 、B1、B2 的坐标? 问题2:指出椭圆上点的横坐标的范围? 问题3:指出椭圆上点的纵坐标的范围? 结论:椭圆中 -a ≤ x ≤a, -b ≤ y ≤b. 椭圆落在x=± a, y= ± b组y 成的矩形中
b
a
oc
F2
B1 (0,-b)
A2(a,0)
a、b分别叫做椭圆的长半 轴长和短半轴长。
根据前面所学有关知识画出下列图形
(1)
x2 y2 1
25 16
(2) x2 y2 1 25 4
y
4 B2
3
2
A1
1
A2
-5 -4 -3 -2 --11 1 2 3 4 5 x
-2
-3
-4 B1
y
4
3 2
B2
A1
长半轴长为a,短半轴长为b. a>b e c a
c2 a2b2
标准方程 范围 对称性 顶点坐标 焦点坐标 半轴长 离心率
A1
F1
b
oc
a
A2
F2
B1
3、椭圆的顶点
x2 a2
b y2 2
1(ab0)
令 x=0,得 y=?,说明椭圆与 y轴的交点?
令 y=0,得 x=?说明椭圆与 x轴的交点? y
*顶点:椭圆与它的对称轴
B2 (0,b)
的四个交点,叫做椭圆的
顶点。
A1
*长轴、短轴:线段A1A2、 (-a,0)F1 B1B2分别叫做椭圆的长轴 和短轴。
x
找出a、b、c所表示的线段。B1
△B2F2O叫椭圆的特征三角形。
二、椭圆 x2 y2 1简单的几何性质
a2 b2
1、范围:
问题1:指出A1 、A2 、B1、B2 的坐标? 问题2:指出椭圆上点的横坐标的范围? 问题3:指出椭圆上点的纵坐标的范围? 结论:椭圆中 -a ≤ x ≤a, -b ≤ y ≤b. 椭圆落在x=± a, y= ± b组y 成的矩形中
b
a
oc
F2
B1 (0,-b)
A2(a,0)
a、b分别叫做椭圆的长半 轴长和短半轴长。
根据前面所学有关知识画出下列图形
(1)
x2 y2 1
25 16
(2) x2 y2 1 25 4
y
4 B2
3
2
A1
1
A2
-5 -4 -3 -2 --11 1 2 3 4 5 x
-2
-3
-4 B1
y
4
3 2
B2
A1
长半轴长为a,短半轴长为b. a>b e c a
c2 a2b2
标准方程 范围 对称性 顶点坐标 焦点坐标 半轴长 离心率
3.1.1 椭圆及其标准方程 课件(共34张PPT).ppt
![3.1.1 椭圆及其标准方程 课件(共34张PPT).ppt](https://img.taocdn.com/s3/m/8600497a657d27284b73f242336c1eb91a37338c.png)
焦点在x轴上:
x2 a2
y2 b2
1(a
b
0)
焦点在y轴上:
y2 a2
x2 b2
1(a
b
0)
y
O
x
其中, PF1 PF2 2a, F1F2 2c,c2 a2 b2.
问题4:若焦点F1、F2 在y轴上,且F1(0,-c),F2 (0,c),a,b的意义同上, 则椭圆的方程是什么?
F1(c,0), F2(c,0) F1(0,c), F2 (0,c)
概念辨析1:椭圆的定义
1.命题甲: 动点P到两定点A、B的距离之和| PA | | PB | 2a(a为常数,a 0)
命题乙: 动点P的轨迹是椭圆.
则命题甲是命题乙的___B____条件.
A.充分不必要条件
B.必要不充分条件
甲 / 乙 乙甲
C.充要条件
D.既不充分也不必要条件
2.若两定点F1, F2,且 F1F2 10,则满足下列条件的动点P 的轨迹是什么? ① PF1 PF2 10; 线段F1F2 ② PF1 PF2 16; 椭圆 ③ PF1 PF2 6. 不存在
1(a
b 0),
(法1) 2a
22 3
2
5
22 3 5 2
( 15
3)2
( 15
3)2 2 15,
a 15,b2 15 5 10,方程 y2 x2 1为所求.
15 10
(法2)
代入(2,3)得
9 a2
4 b2
1,
又b2
a2
5,
联立解得a2
15或3(3
设为 y2
a2
x2
b2
1(a
b 0)
椭圆定义(公开课)ppt课件
![椭圆定义(公开课)ppt课件](https://img.taocdn.com/s3/m/d992bd506bd97f192279e9e2.png)
直角坐方标程系的。曲根线据上椭的圆点的是定否义都知是所符求合轨题迹意方。程是椭
圆. ,且焦点在轴上,所以可设椭圆的标准方程为 :
x2 y2 + = 1(a > b > 0)
a2 b2
y
A
∵ 2a=10, 2c=8 ∴ a=5, c=4
Bo Cx
∴ b2=a2-c2=52-42=9
∴所求椭圆的标准方程为:
x2 b2
1
a b 0
去根号的方法;求标准方程的方法
三个意识:求美意识, 求简意识, 猜想的意识。
练习1:判定下列椭圆的焦点在哪个轴,并指 明a2、b2,写出焦点坐标
x2
y2
+ =1 25 16
答:在 X 轴(-3,0)和(3,0)
x2
y2
+ =1
144 169
答:在 y 轴(0,-5)和(0,5)
D 2 2 m 2 2
例2、写出适合下列条件的椭圆的标准方程
(14)已知a 6, c 1的椭圆的标准方程为
x2 y2 1 36 35
x2 y2 1 35 36
小结:先定位(焦点)再定量(a,b,c) 椭圆的焦点位置不能确定时,椭圆的标准方程一般有 两种情形,必须分类求出
(25) 椭 圆x 2 y 2 1的 焦 距 等 于2, 则m的 值 为
(2)若C为椭圆上一点,F1、F2分别为椭圆的左、右焦点,
并且CF1=2,则CF2=_8__.
变题: 若椭圆的方程为16 x2 9y2 144 ,试口答完成(1).
x2 y2 1 9 16
探究: 若方程 x2 y2 1 表示焦点在y轴上的椭圆, k 2 3k
求k的取值范围; 若方程表示椭圆呢?
圆. ,且焦点在轴上,所以可设椭圆的标准方程为 :
x2 y2 + = 1(a > b > 0)
a2 b2
y
A
∵ 2a=10, 2c=8 ∴ a=5, c=4
Bo Cx
∴ b2=a2-c2=52-42=9
∴所求椭圆的标准方程为:
x2 b2
1
a b 0
去根号的方法;求标准方程的方法
三个意识:求美意识, 求简意识, 猜想的意识。
练习1:判定下列椭圆的焦点在哪个轴,并指 明a2、b2,写出焦点坐标
x2
y2
+ =1 25 16
答:在 X 轴(-3,0)和(3,0)
x2
y2
+ =1
144 169
答:在 y 轴(0,-5)和(0,5)
D 2 2 m 2 2
例2、写出适合下列条件的椭圆的标准方程
(14)已知a 6, c 1的椭圆的标准方程为
x2 y2 1 36 35
x2 y2 1 35 36
小结:先定位(焦点)再定量(a,b,c) 椭圆的焦点位置不能确定时,椭圆的标准方程一般有 两种情形,必须分类求出
(25) 椭 圆x 2 y 2 1的 焦 距 等 于2, 则m的 值 为
(2)若C为椭圆上一点,F1、F2分别为椭圆的左、右焦点,
并且CF1=2,则CF2=_8__.
变题: 若椭圆的方程为16 x2 9y2 144 ,试口答完成(1).
x2 y2 1 9 16
探究: 若方程 x2 y2 1 表示焦点在y轴上的椭圆, k 2 3k
求k的取值范围; 若方程表示椭圆呢?
《椭圆的定义》课件
![《椭圆的定义》课件](https://img.taocdn.com/s3/m/41739d6b492fb4daa58da0116c175f0e7cd11920.png)
《椭圆的定义》ppt课件
• 椭圆的定义 • 椭圆的几何意义 • 椭圆的参数方程 • 椭圆的焦点与离心率 • 椭圆的面积与周长 • 椭圆的扩展知识
01
椭圆的定义
椭圆的标准方程
椭圆的标准方程是:$frac{x^2}{a^2} + frac{y^2}{b^2} = 1$,其中 $a$ 和 $b$ 是椭圆的半长轴和半短轴。
当 $a = b$ 时,椭圆变为圆;当 $a > b$ 时,椭圆为扁平椭圆;当 $a < b$ 时,椭圆为长椭圆。
这个方程描述了一个椭圆,其形状由 半长轴 $a$ 和半短轴 $b$ 的大小决 定。
椭圆的基本性质
椭圆是封闭的曲线,它有两个焦点, 分别位于长轴的端点。
椭圆上任意一点到焦点的距离与该点 到椭圆中心的距离之比是一个常数, 这个常数等于半短轴 $b$ 与半长轴 $a$ 的比值,记作 $e$,即 $e = frac{c}{a}$。
椭圆是平面内到两定点距离之差等于常数的点的轨迹:这个常数小于两定点之间的 距离。
椭圆是平面内到两定点距离之积等于常数的点的轨迹:这个常数大于两定点之间的 距离。
椭圆在日常生活中的应用
01
02
03
04
天文学
行星和卫星的轨道通常呈现椭 圆形形状,这是因为它们受到
太阳的引力作用。
物理学
粒子在磁场中的运动轨迹可能 是椭圆形。
椭圆和双曲线有一个共同的焦点 :两点的中点。
椭圆和双曲线都可以由平面截取 圆锥面得到:一个平面与圆锥面 的母线形成的角为锐角得到椭圆 ,形成的角为直角得到双曲线。
THANKS
感谢观看
$S = pi ab$,其中a和b分别是椭圆长轴和 短轴的半径。
应用场景
• 椭圆的定义 • 椭圆的几何意义 • 椭圆的参数方程 • 椭圆的焦点与离心率 • 椭圆的面积与周长 • 椭圆的扩展知识
01
椭圆的定义
椭圆的标准方程
椭圆的标准方程是:$frac{x^2}{a^2} + frac{y^2}{b^2} = 1$,其中 $a$ 和 $b$ 是椭圆的半长轴和半短轴。
当 $a = b$ 时,椭圆变为圆;当 $a > b$ 时,椭圆为扁平椭圆;当 $a < b$ 时,椭圆为长椭圆。
这个方程描述了一个椭圆,其形状由 半长轴 $a$ 和半短轴 $b$ 的大小决 定。
椭圆的基本性质
椭圆是封闭的曲线,它有两个焦点, 分别位于长轴的端点。
椭圆上任意一点到焦点的距离与该点 到椭圆中心的距离之比是一个常数, 这个常数等于半短轴 $b$ 与半长轴 $a$ 的比值,记作 $e$,即 $e = frac{c}{a}$。
椭圆是平面内到两定点距离之差等于常数的点的轨迹:这个常数小于两定点之间的 距离。
椭圆是平面内到两定点距离之积等于常数的点的轨迹:这个常数大于两定点之间的 距离。
椭圆在日常生活中的应用
01
02
03
04
天文学
行星和卫星的轨道通常呈现椭 圆形形状,这是因为它们受到
太阳的引力作用。
物理学
粒子在磁场中的运动轨迹可能 是椭圆形。
椭圆和双曲线有一个共同的焦点 :两点的中点。
椭圆和双曲线都可以由平面截取 圆锥面得到:一个平面与圆锥面 的母线形成的角为锐角得到椭圆 ,形成的角为直角得到双曲线。
THANKS
感谢观看
$S = pi ab$,其中a和b分别是椭圆长轴和 短轴的半径。
应用场景
椭圆的几何性质(示范课)ppt课件
![椭圆的几何性质(示范课)ppt课件](https://img.taocdn.com/s3/m/05ef6030be1e650e53ea9958.png)
(1)已知方程化为标准方程为
x2
+
y2
= 1,
故可得长轴长为8,短轴长为4,离心率为16
4
3,
2
焦点坐标为( 2 3 , 0),顶点坐标(±4,0),(0,±2). (2)已知方程化为标准方程为 y2 x2 1,故可得长轴长
81 9
为18,短轴长为6,离心率为 2 2 ,
3
焦点12坐:20:2标8 为(0, 6 2),顶点坐标(0,±9),(±3,608 ).
y2
2
b
=1
12:20:27
16
y
· · F1ຫໍສະໝຸດ o F2xx2 + a2
y2
2
b
=1
12:20:27
17
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
12:20:27
18
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
12:20:27
19
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
12:20:27
37
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
12:20:27
38
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
12:20:27
39
y
· · F1
o F2
x
x2 + a2
x2
+
y2
= 1,
故可得长轴长为8,短轴长为4,离心率为16
4
3,
2
焦点坐标为( 2 3 , 0),顶点坐标(±4,0),(0,±2). (2)已知方程化为标准方程为 y2 x2 1,故可得长轴长
81 9
为18,短轴长为6,离心率为 2 2 ,
3
焦点12坐:20:2标8 为(0, 6 2),顶点坐标(0,±9),(±3,608 ).
y2
2
b
=1
12:20:27
16
y
· · F1ຫໍສະໝຸດ o F2xx2 + a2
y2
2
b
=1
12:20:27
17
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
12:20:27
18
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
12:20:27
19
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
12:20:27
37
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
12:20:27
38
y
· · F1
o F2
x
x2 + a2
y2
2
b
=1
12:20:27
39
y
· · F1
o F2
x
x2 + a2
椭圆的定义及标准方程ppt课件
![椭圆的定义及标准方程ppt课件](https://img.taocdn.com/s3/m/8b80eb516bd97f192279e9d1.png)
于两个定点之间的距离
15
(一)椭圆的定义
椭圆定义的文字表述:
平面内到两个定点F1,F2的距离之和等于常数 (2a) (大于|F1F2 |)的点的轨迹叫椭圆。
定点F1、F2叫做椭圆的焦点。 两焦点之间的距离叫做焦距(2C)。
椭圆定义的符号表述:
M
(2a>2c)
F2
F1
16
二、椭圆标准方程的推导
24
四 课时小结 1. 学习了椭圆的定义,焦点、焦距, 2. 求出了焦点在X轴上的椭圆标准方程
3 . a、b、c始终满足:a2-b2=c2, a>b>0
25
五 堂堂清
1 椭圆 x2 y2 1的焦距是( B )
43
A1 B 2 C4 D2 3
F1
2已知焦点F1(-6,0),F2(6,0),2a=20的椭圆标准方程
b2 a2 c2 41 3
因此,这个椭圆的标准方程是:x2 y2 1 43
23
1.求适合下列条件的椭圆方程 1.a=4,b=3,焦点在x轴上 2.b=1,c 15 焦点在X轴上
小结: 1 先定位(焦点)
根据焦点位置设出恰当的方程
2 再定量(a,b,c) 3 代入标准方程即可求得
x2 y2 1
100 64
26
x2 y2 3 椭圆 100 36 1 上的一点P到焦点F1的距离等于6
14
那么点P到另外的一个焦点F2的距离是_____
27
4已知方程
表示焦点在x轴
上的椭圆,则m的取值范围是 (0,4.)
28
链接高考
x2 y2
1
1、 已知F1,F2 是椭圆 25 9
画椭圆ppt课件
![画椭圆ppt课件](https://img.taocdn.com/s3/m/3ab712446d85ec3a87c24028915f804d2b168781.png)
02
椭圆的绘制方法
使用数学公式绘制椭圆
通过数学公式,我们可以精确地绘制出椭圆。
首先,我们需要了解椭圆的数学公式。椭圆的数学公式是 (x/a)^2 + (y/b)^2 = 1,其中a 和b是椭圆的半长轴和半短轴。然后,我们可以在坐标系上标出椭圆的中心,并使用数学公 式来绘制椭圆。
注意事项:使用数学公式绘制椭圆需要一定的数学基础,并且需要精确地计算出椭圆的半长 轴和半短轴。
椭圆的参数方程
参数方程
椭圆上任意一点的坐标可以用参数方 程表示,其中参数t表示点在椭圆上 的位置。
参数方程的优点
通过参数方程可以方便地描述椭圆上 的点,便于计算和分析。
椭圆在几何中的应用Fra bibliotek01椭圆在几何中有着广泛的应用, 例如在解析几何、代数几何等领 域中都有重要的应用。
02
椭圆的性质和参数方程在解决实 际问题中也有着广泛的应用,例 如在物理学、工程学等领域中都 有应用。
03
注意事项:使用几何方法绘制椭圆需 要一定的耐心和技巧,并且需要确保 所有的线条都平滑且准确。
使用绘图软件绘制椭圆
通过绘图软件,我们可以方便地绘制出椭圆。
首先,我们需要打开一个绘图软件,如PowerPoint、Photoshop等。然 后,我们可以在软件中选择椭圆工具,并在画布上拖动鼠标来绘制椭圆 。最后,我们可以对绘制的椭圆进行编辑和调整。
雕塑作品中采用椭圆形状可以增加作品的动态感和立体感, 使作品更加生动和有趣。
05
练习与思考
绘制不同参数的椭圆
总结词
掌握椭圆的绘制方法
详细描述
通过PPT课件中的绘图工具,尝试绘制不同参数的椭圆,包括长轴长度、短轴长度以及旋转角度。观察椭圆的形 状变化,理解参数对椭圆形状的影响。
椭圆的定义及标准方程PPT教学课件
![椭圆的定义及标准方程PPT教学课件](https://img.taocdn.com/s3/m/6a96bdde6c85ec3a86c2c57f.png)
乡下的房子
木板窗
天窗
月光下的草地河滩
一粒星
星空
读一读
帐玻扇偏璃 鹰烁莺蝠蝙
为什么说天窗是神奇的呢?
活泼会想的孩子们会知道怎样通过天窗从“无” 中看出“有”,从“虚”中看出“实”,比任凭 他看到的更真切,更阔达,更复杂,更确实。
为什么“小小的天窗是孩子们唯一的慰藉” 呢?
孩子们跟着木板窗的关闭也就被关在地洞似的屋 里的时候,天窗给漆黑的屋子带来的仅有的光明, 通过天窗看见了雨点、闪电、星星、云彩。这些 都是孩子们唯一的慰藉。
1.你能说说自己生活中排解不快的方法吗?பைடு நூலகம்读书?
看电视?还是摆弄小玩具?
2.把自己的经历像作者这样记录下来,为我们的童 年增添一笔美好的回忆。
椭圆的定义及标准方程
一、天体运行轨迹: 太阳系运行简图: 地球绕太阳旋转轨迹:
二、椭圆的定义与标准方程
(一)定义:
到两定点距离之和等于定值 (大于两定点 间的 距离)的点轨迹. 两定点叫焦点,焦点 间的距离 叫焦距. 看一下定值 的变化与要求:
1.当定值小于两定点间的距离时 不可能,没有任何曲线.
b
F1 焦点坐标
-a
(0,-c),(0,c)
不论焦点在何处,都 有a>b>0且a2=b2+c2
三、练习举例 [例 ]求适合下列条件的椭圆方程:
1.两个焦点的坐标分别是(-4,0)、 (4,0),椭圆上一点P到 两焦点的距 离之和等于10;
2.两个焦点的坐标分别是(0,-2)、
(0,2),并且椭圆经过点
2.当定值等于两定点间的距离时
轨迹是:两定点所确定的线段. 3.当定值大于两定点间的距离时
轨迹是:椭圆.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2a=2c时, 线段 2a<2c时, 无轨迹
F1
F2
椭圆标准方程
M
F1
F2
x
椭圆的标准方程
椭圆标准方程
y
M M F1 O F2Fra bibliotekyF2
x
O
x
F1
椭圆的标准方程的形式:焦点随着分母
走,焦点在分母大的轴上。
例题精析
例1:已知椭圆的方程为: ,则
3 ,焦点坐标 a=_____ 4 ,c=_______ 5 ,b=_______
的标准方程为______________.
点评:求椭圆方程首先要判断焦点的位置
练习:若方程4x2+kY2=1表示的曲线是 焦点在y轴上的椭圆,求k的取值范围。 解:由 4x2+ky2=1
可得 因为方程表示的曲线是焦点在y轴上的椭圆
即:0<k<4
所以k的取值范围为 0<k<4 .
例5、化简:
分析: |MF1|+|MF2|=10, 2a=10,2c=6, ∴a=5,c=3,b=4 ∴
M (x,y)
y
F2(0,3) O F1(0,-3)
x
小结:
1.椭圆的定义及焦点、焦距的概念。
2.椭圆的标准方程。
3. 标准方程的简单应用。
作业:
P96习题 8.1
第1,2,4题
(3)曲线上一点P到焦点F1的距离为3,则点P到另一 个焦点F2的距离等于_________,则三角形F1PF2的周 y 长为___________
F2 P O
x
F1
例3、求满足下列条件的椭圆的标准方程: (1)满足a=4, b=1,焦点在 x轴上的椭圆 的标准方程为_____________; (2)满足a=4, c= ,焦点在 y轴上的椭圆
M
椭圆的定义:
F1
F2
平面内与两个定点F1、F2的距离的和等于常
数(大于|F1F2|)的点的轨迹叫做椭圆。 F1、F2 ——焦点
|F1F2 | ——焦距(一般用2c表示)
|MF1|+ |MF2| = 2a
设∣F1F2∣= 2c, ∣MF1∣+∣MF2∣= 2a,则
c=0时,圆
2a>2c时, 椭圆
M
、(-3,0) 焦距等于______; 为:(3,0) ____________ 6 若CD为
过左焦点F1的弦,则三角形F2CD的周长为 y 20 ________
C
F1
O
F2
D
x
例2 已知椭圆的方程为:
,则
(1) a=_____,b=_______ ,c=_______; 2 1
(0,-1)、(0,1) 焦距等于_______; (2)焦点坐标为:_____________ 2