大地测量
大地测量学
大地测量学大地测量学是地球学科的重要分支,是测绘科学的基础学科,在测绘专业的课程设置中占有重要的地位和作用。
其主要测定地球大小;研究地球形状;测定地面点的几何位置,将地面点沿法线方向投影于地球椭球面上,用投影点在椭球面上的大地纬度和大地经度表示该点的水平位置,用地面点至投影点的法线距离表示该点的大地高程。
这点的几何位置也可以用一个以地球质心为原点的空间直角坐标系中的三维坐标来表示。
就其本质来说,他是一门地球信息学,即为人类的活动提供地球空间信息的学科。
大地测量学的的内容包括几何大地测量学、物理大地测量学、空间大地测量学。
几何大地测量学主要是研究确定地球形状、大小和确定地面点三维空间的理论及技术、因此有关精密的角度、距离测量、水准测量,地球椭圆球体的参数及模型,椭圆面上测量成果的计算、平差、投影变换以及大地控制网建立的原理和技术方法等,是几何大地测量学的基本内容。
物理大地测量学研究用武力方法(重力测量)确定地球的形状及外部重力场。
它的主要内容是重力测量及其归化、地球及外部重力场模型、大地测量边值问题、重力为理论、球谐函数、利用重力测量研究地球形状及椭圆球体参数等。
空间大地测量学是研究以卫星及其它空间探测器实施大地测量的理论和技术。
主要内容包括卫星多普勒技术,海洋卫星雷达测高,激光卫星测距以及卫星定位系统(GPS)和GLONASS,我国的“北斗”卫星定位导航系统,卫星定位定轨理论以及应用卫星及空间探测器在全国性大地测量控制网,全球性的地球动态参数求定和重力场模型的精华、地壳形变、板块运功的、海空导航、导弹制导等方面的研究。
因此较确切地讲。
空间大地测量学的开创。
使大地测量学迈入了以可变地球为研究对象,实施全球动态就对测量的现代大地测量新时期。
学科发展史——萌芽阶段在17世纪以前,大地测量只是处于萌芽状态。
公元前 3世纪,亚历山大的埃拉托斯特尼首先应用几何学中圆周上一段弧AB的长度S、对应的中心角r同圆半径R的关系,估计了地球的半径长度,由于圆弧的两端A和B大致位于同一子午圈上,以后在此基础上发展为子午弧度测量。
大地测量学
6
§3大地测量学发展简史及展望 大地测量学发展简史及展望 3.1大地测量学的发展简史 大地测量学的发展简史 第一阶段: 第一阶段:地球圆球阶段
从远古至17世纪, 从远古至 世纪,人们用天文方法得到地面上同一子 世纪 午线上两点的纬度差, 午线上两点的纬度差,用大地法得到对应的子午圈弧 从而推得地球半径( 长,从而推得地球半径(弧度测量 )
空间大地测量学: 空间大地测量学:
主要研究以人造地球卫星及其他空间探测器为代 表的空间大地测量的理论、技术与方法。 表的空间大地测量的理论、技术与方法。
4
2.2 大地测量学的基本内容
确定地球形状及外部重力场及其随时间的变化, 确定地球形状及外部重力场及其随时间的变化,建立 统一的大地测量坐标系,研究地壳形变(包括垂直升降及 统一的大地测量坐标系,研究地壳形变 包括垂直升降及 水平位移),测定极移以及海洋水面地形及其变化等。 水平位移 ,测定极移以及海洋水面地形及其变化等。 研究月球及太阳系行星的形状及重力场。 研究月球及太阳系行星的形状及重力场。 建立和维持国家和全球的天文大地水平控制网、工程 建立和维持国家和全球的天文大地水平控制网、 控制网和精密水准网以及海洋大地控制网, 控制网和精密水准网以及海洋大地控制网,以满足国民 经济和国防建设的需要。 经济和国防建设的需要。 研究为获得高精度测量成果的仪器和方法等。 研究为获得高精度测量成果的仪器和方法等。研究地 球表面向椭球面或平面的投影数学变换及有关大地测量 计算。 计算。
12
•
物理大地测量在这阶段的进展: 物理大地测量在这阶段的进展:
1.大地测量边值问题理论的提出: 大地测量边值问题理论的提出: 大地测量边值问题理论的提出 英国学者斯托克司(G.G.Stokes)把真正的地球重 英国学者斯托克司(G.G.Stokes)把真正的地球重 力位分为正常重力位和扰动位两部分, 力位分为正常重力位和扰动位两部分,实际的重力分 为正常重力和重力异常两部分, 为正常重力和重力异常两部分,在某些假定条件下进 行简化,通过重力异常的积分, 行简化,通过重力异常的积分,提出了以大地水准面 为边界面的扰动位计算公式和大地水准面起伏公式。 为边界面的扰动位计算公式和大地水准面起伏公式。 后来,荷兰学者维宁·曼尼兹 曼尼兹(F.A.Vening Meinesz)根据 后来,荷兰学者维宁 曼尼兹 根据 斯托克司公式推出了以大地水准面为参考面的垂线偏 差公式。 差公式。 2.提出了新的椭球参数 提出了新的椭球参数: 2.提出了新的椭球参数: 赫尔默特椭球、海福特椭球、 赫尔默特椭球、海福特椭球、克拉索夫斯基椭球 等。
测绘综合能力
测绘综合能力----第一章大地测量第一节大地测量概论大地测量的概论(P3)大地测量是为研究地球的形状及表面特性进行的实际测量工作。
其主要任务是建立国家或大范围的精密控制测量网,内容有三角测量、导线测量、水准测量、天文测量、重力测量、惯性测量、卫星大地测量以及各种大地测量数据处理等。
①它为大规模地形图测制及各种工程测量提供高精度的平面控制和高程控制;②为空间科学技术和军事用途等提供精确的点位坐标、距离、方位及地球重力场资料;③为研究地球形状和大小、地壳形变及地震预报等科学问题提供资料。
大地坐标系与参考框架(P4)大地测量系统包括坐标系统、高程系统、深度基准和重力参考系统。
与大地测量系统相对应,大地参考框架有坐标(参考)框架、高程(参考)框架和重力测量(参考)框架三种。
地心坐标系(P4)国际地面参考框架(ITRF)是国际地面参考系统(ITRS)的具体实现。
它以甚长基线干涉测量(VLBI)、卫星激光测距(SLR)、激光测月(LLR)、G(P)S和卫星多普勒定轨定位(DORIS)等空间大地测量技术构成全球观测网点,经数据处理,得到ITRF点(地面观测点)站坐标和速度场等。
2000国家大地控制网是定义在ITF'S 2000地心坐标系统中的区域性地心坐标框架。
区域性地心坐标框架一般由三级构成。
第一级为连续运行站构成的动态地心坐标框架,它是区域性地心坐标框架的主控制;第二级是与连续运行站定期联测的大地控制点构成的准动态地心坐标框架;第三级是加密大地控制点.(ITRF)已成为国际公认的应用最广泛、精度最高的地心坐标框架。
高程系统(p5)1985国家高程基准是我国现采用的高程基准,青岛水准原点高程为72. 260 4 m。
水准原点网由主点-----原点、参考点、附点共6个点组成我国高程系统采用正常高系统,正常高的起算面是似大地水准面。
由地面点沿垂线向下至似大地水准面之间的距离,就是该点的正常高,即该点的高程。
《大地测量学》课件
激光雷达地形测量
利用激光雷达技术获取高 精度地形数据,常用于数 字高程模型(DEM)的建 立。
激光雷达遥感
通过激光雷达技术获取地 表信息,用于地质、环境 监测等领域。
其他大地测量技术与方法
重力测量
利用重力加速度的差异来测定地球重力场参数,常用于地球 物理研究。
惯性导航
利用惯性传感器来测定运动物体的姿态、位置和速度,常用 于海洋和航空导航。
大地测量学的应用领域
• 总结词:大地测量学的应用领域非常广泛,包括地理信息系统、资源调 查、城市规划、灾害监测等。
• 详细描述:大地测量学在地理信息系统中的应用主要是提供高精度、高分辨率的地理信息数据,用于地图制作、土地规 划、环境监测等领域。在资源调查方面,大地测量学可以通过对地球的重力场和磁场进行测量,探测地下矿产资源,并 对海洋资源进行调查和监测。此外,大地测量学在城市规划中也有广泛应用,例如通过卫星遥感技术对城市环境进行监 测和评估,以及利用GPS技术对城市交通进行管理和优化。最后,大地测量学在灾害监测方面也发挥了重要作用,例如 通过大地测量技术对地震、火山、滑坡等自然灾害进行监测和预警。
大地测量在地理信息系统中的应用领域
基础地理信息获取
大地测量提供高精度的地 理坐标和地形数据,是GIS 获取基础地理信息的重要 手段。
地图制作与更新
大地测量数据可用于制作 高精度地图,并定期更新 以确保地图的准确性和现 势性。
空间分析与应用
大地测量数据与其他空间 数据结合,可进行空间分 析、规划、决策等应用。
大地测量在地理信
05
息系统中的应用
地理信息系统概述
地理信息系统定义
地理信息系统(GIS)是一种用于采集、存储、处理、分析和显示 地理数据的计算机系统。
大地测量学基础
2020年10月28日星期三12时57分11秒
(一)天球坐标系
1.天球的基本概念: 天球、天极、天球赤道、天球子午圈、 时圈、黄道、黄赤交角、春分点、黄极、 岁差与章动 2.天球坐标系的建立 1)天球空间直角坐标系 2)天球球面坐标系
第二章 大地测量基础知识
§2-1 大地测量的基准面和基准线 一、水准面与大地水准面
1、水准面 我们把重力位相等的面称为重力等位面,也就 是我们通常所说的水准面。水准面有无数个。 1)水准面具有复杂的形状。 2)水准面相互既不能相交也不能相切。
2020年10月28日星期三12时57分11秒
3)每个水准面都对应着唯一的位能W=C=常 数,在这个面上移动单位质量不做功,亦即所做 的功等于0,即dW=-gsds,可见水准面是均衡面。
2020年10月28日星期三12时57分11秒
天球基本概念(1)
天球:我们 把以地球M 为中心,以 无穷远的距 离为半径所 形成的球称 作天球。
天极:地球自
转的中心轴线 简称地轴,将 其延伸就是天 轴,天轴与天 球的交点称为 天极,Pn在北 称作北天极, PS,在南称作
南天极。
天球赤道:
通过地球质心 M与地轴垂直 的平面称为天 球赤道面,天 球赤道面与天 球相交的大圆 就称为天球赤 道。
N2d min
2020年10月28日星期三12时57分11秒
4、但对于天文大地测量及大地点坐标的推算, 对于国家测图及区域绘图来说,往往采用其大小 及定位定向最接近于本国或本地区的地球椭球。 这种最接近,表现在两个面最接近即同点的法线 和垂线最接近。所有地面测量都依法线投影在这 个椭球面上,我们把这样的椭球叫参考椭球。
第五章 大地测量的基本技术与方法(1)
② 技术设计的内容和方法 [1] 搜集和分析资料 (1)测区内各种比例尺的地形图。 (2)已有的控制测量成果(包括全部有关技术文件、图表、手簿 等等)。 (3)有关测区的气象、地质等情况,以供建标、埋石、安排作业 时间等方面的参考。 (4)现场踏勘了解已有控制标志的保存完好情况。 (5)调查测区的行政区划、交通便利情况和物资供应情况。若在 少数民族地区,则应了解民族风俗、习惯。 对搜集到的上述资料进行分析,以确定网的布设形式,起始 数据如何获得,网的未来扩展等。 其次还应考虑网的坐标系投影带和投影面的选择。 此外还应考虑网的图形结构,旧有标志可否利用等问题。
上海港GPS扩展网网图
2 甚长基线干涉测量(VLBI) 甚长基线干涉测量系统是在甚长基线的两端(相距几千公里), 用射电望远镜,接收银河系或银河系以外的类星体发出的无线电辐 射信号,通过信号对比,根据干涉原理,直接确定基线长度和方向 的一种空间技术。长度的相对精度可优于10-6,对测定射电源的空 间位置,可达0.001”,由于其定位的精度高,可在研究地球的极移 、地球自转速率的短周期变化、地球固体潮、大地板块运动的相对 速率和方向中得到广泛的应用。
(3)从安全生产方面考虑 点位离公路、铁路和其他建筑物以及高压电线等应有一定的 距离。 图上设计的方法及主要步骤 图上设计宜在中比例尺地形图(根据测区大小,选用1:25 000~1 :100 000地形图)上进行,其方法和步骤如下: a 展绘已知点; b 按上述对点位的基本要求,从已知点开始扩展; c 判断和检查点间的通视; d 估算控制网中各推算元素的精度; e 据测区的情况调查和图上设计结果,写出文字说明,并拟定作业 计划。
2. 大地控制网应有足够的精度。 国家三角网的精度,应能满足大比例尺测图的要求。在测图中 ,要求首级图根点相对于起算三角点的点位误差,在图上应不 超过±0.1mm,相对于地面点的点位误差则不超过 ±0.1Nmm(N 为测图比例尺分母)。 为使国家三角点的误差对图点的影响可以忽略不计,应使相邻国 家三角点的点位误差小于(1/3) ×0.1Nmm。
大地测量学常用的坐标系
大地测量学常用的坐标系引言大地测量学是研究地球形状、大小、重力场及其变化的科学,广泛应用于工程测量、地图制图、导航定位等领域。
在进行测量和定位时,需要采用合适的坐标系来描述地球表面的点和其相对位置关系。
本文将介绍大地测量学中常用的坐标系。
地心坐标系(Geocentric Coordinate System)地心坐标系是以地球质心为原点建立的坐标系,常用来描述地球内部重力场的分布以及地球形状的变化。
地心坐标系的三个坐标轴分别指向地球的北极、本初子午线和赤道平面,称为北极轴、子午轴和赤道轴。
地心坐标系的优点是在研究全球性的问题时非常有用,可以精确描述地球形状和大小的变化。
大地坐标系(Geodetic Coordinate System)大地坐标系是基于地球表面形状和地球椭球体模型建立的坐标系。
在大地坐标系中,使用经度(longitude)和纬度(latitude)来确定地球表面上点的位置。
经度是指从本初子午线开始,沿赤道向东或向西测量的角度,纬度是指从赤道开始,沿黄道向北或向南测量的角度。
大地坐标系常用于地图制图和导航定位等应用中。
投影坐标系(Projected Coordinate System)投影坐标系是为了适应地球表面的非平面特性而引入的。
在投影坐标系中,地球表面上的经纬度坐标被投影到一个平面上,从而实现对地图的制作和使用。
不同的投影方式会导致不同的形变问题,如面积变形、角度变形和长度变形等。
常见的投影坐标系有墨卡托投影、麦卡托投影、兰伯特投影等。
本地坐标系(Local Coordinate System)本地坐标系是根据地球表面的局部特征建立的坐标系,主要用于工程测量和定位。
在本地坐标系中,原点和坐标轴的选择由具体的测量任务和地理特征决定。
本地坐标系可以使用笛卡尔坐标系或极坐标系来表示。
与其他坐标系相比,本地坐标系的优势在于简化了测量计算和数据处理的过程。
结论在大地测量学中,常用的坐标系包括地心坐标系、大地坐标系、投影坐标系和本地坐标系。
大地测量学
© 2000 McGraw-Hill
Introduction to Object-Oriented Programming with Java--Wu
Chapter 0 - 7
§1.1 大地测量学的定义和作用
2)要有一个精确的全球重力场模型,用来描述对飞行器 的约束。 重力场模型中位展开系数是卫星轨道动力方程中的 决定性参数。 在国防中的这种保障作用体现在: 从古代战争到现代战争,以及未来战争,都需要军事测 绘做保障,1)超前储备保障; 2)动态实时保障。 例如,战争区域中的电子地图,数字地图,军事目标的 三维坐标是现代战争中不可缺少的测绘文件,而这 些军事测绘资料都离不开大地测量手段取得。 4、在当代地球科学研究中的地位越来越重要。
© 2000 McGraw-Hill
Introduction to Object-Oriented Programming with Java--Wu
Chapter 0 - 8
§1.1 大地测量学的定义和作用
和重力测 块边界 用卫星测高技术SLR和重力测量数据测定海底板块边界 高技术 和重力 量数据测定海底板块边 分布情况,监测海水面变 分布情况,监测海水面变化,以高分辨率测定海底地形。 海水面 以高分辨率测定海底地形。 利用VLBI及SLR能以 及 能以1mm/秒的分辨率精确地测定板块 秒的分辨率精确地测 利用 能以 秒的分辨率精确地 定板块 相对运动,监测地壳运动,为解释板块运动、断裂、地震 监测地壳运动 地壳运 断裂、 活动提供科学依据。 提供科学依据。 总之,大地测量学是测绘科学的各个分支学科(包括工 大地测量学是测绘科学的各个分支学科( 测绘科学的各个分支学科 程测量、海洋测绘、矿山测量、航测、地图制图及GPS等) 海洋测绘、 测绘 等 的基础学科。 的基础学科。因为大地测量学的基础理论、手段和方法 大地测量学的基础 为这些测绘学科提供了先决条件。 为这些测绘学科提供了先决条件。 学科提供研究全球或相当大范围内的地球, 各个测 不相互平行, 各个测站铅垂线不相互平行,同时 及地球重力场及形状, 顾及地球重力场及形状,因为地球 重力场对研究地球形状, 场对研究地球形状 重力场对研究地球形状,对高精度 量及数据处理有着不可忽视 测量及数据处理有着不可忽视的作 用和影响。 用和影响。
大地测量学第一章绪论
六、大地测量学的发展简史
第一阶段:地球圆球阶段,从远古至17世纪,人们 用天文方法得到地面上同一子午线上两点的纬度 差,用大地法得到对应的子午圈弧长,从而推得 地球半径(弧度测量 )。
公元前3世纪,亚历山大学者埃拉托色尼进行了弧度测量, 估算出地球半径(与现代值大约差100km)
用这种方法解决地球大小问题分为两种测量:
物理大地测量标志性成就:
2) 重力位函数的提出:为了确定重力与地球形状的关系, 法国的勒让德提出了位函数的概念。所谓位函数,即是 有这种性质的函数:在一个参考坐标系中,引力位对被 吸引点三个坐标方向的一阶导数,等于引力在该方向上 的分力。研究地球形状可借助于研究等位面。因此,位 函数把地球形状和重力场紧密地联系在一起。
5q
q 2a 1
2
当 90时 ,可 得 重 力 扁 率 :p ee
e
288
q为赤道上的离心力与赤道上重力加速度之比,α为椭球扁率
①同一水准面上的重力值随纬度变化而变化; ②同一水准面上赤道上重力值有最小值,两极处有最大值; ③通过重力测量可以推求地球的大小。
• 几何大地测量学
• 物理大地测量学 • 空间大地测量学 (一)几何大地测量学(即天文大地测量学)
• 基本任务:是确定地球的形状和大小及确定地面 点的几何位置。
• 主要内容:国家大地测量控制网(包括平面控制网 和高程控制网)建立的基本原理和方法,精密角度 测量,距离测量,水准测量;地球椭球数学性质, 椭球面上测量计算,椭球数学投影变换以及地球 椭球几何参数的数学模型等。
从19世纪下半叶至20世纪40年代,人们将对椭球 的认识发展到是大地水准面包围的大地体。
几何大地测量学在这阶段的进展主要体现在以下几 方面:
大地测量学
第一章绪论1、大地测量学:在一定时间、空间参考系统中,测量和描绘地球及其他行星体的一门学科。
最基本任务:测量和描绘地球并检测其变化,为人类活动提供关于地球等行星体的空间信息经典测量学是把地球假设为刚体不变,均匀旋转的球体或椭球体,并一定范围内测绘地和研究其形状、大小及外部重力场。
2、大地测量学地位及作用:(1)大地测量学在国民经济各项建设和社会发展中发挥着基础先行性的重要保证作用。
(2)大地测量学在防灾减灾救灾及环境监测、评价与保护中发挥着独具风貌的特殊作用。
(3)大地测量学是发展空间技术和国防建设的重要保障。
(4)大地测量学在当代地球科学研究中的地位显得越来越重要。
(5)大地测量学是测绘学科的各类分支学科(大地测量、工程测量、海洋测量、矿山测量、航空摄影测量与遥感、地图学与地理信息系统等)的基础学科。
3、大地测量学的三个基本分支:几何大地测量学、物理大地测量学及空间大地测量学。
4、现代大地测量学同传统大地测量学之间没有严格界限,但是现代大地测量学确实具有许多新的特征(测量范围大,动态方式,周期短,精度高)。
5、大地测量学的基本内容:(1)确定地球形状及外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水平面地形及其变化等。
(2)研究月球及太阳系行星的形状及重力场。
(3)建立和维持具有高科技水平的国家和全球的天文大地水平控制网和精密水准网以及海洋大地控制网,以满足国民经济和国防建设的需要.(4)研究为获得告警的测量成果的仪器和方法等。
(5)研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算。
(6)研究大规模、高精度和多类别的地面网、空间网及其联合网的数据处理的理论和方法,测量数据库建立及应用等。
第二章坐标系统与时间系统1、地球的运转可分为四类:(1)与银河系一起在宇宙中运动。
(2)在银河系内与太阳系一起旋转。
(3)与其他行星一起绕太阳旋转(公转或周年视运动)(4)绕其瞬时旋转轴旋转(自转或周日视运动)。
大地测量相关基础知识培训
测绘仪器
经纬仪、全站仪、水准仪、GPS、重力仪
2.1 经纬仪
经纬仪是一种根据测角原理设计的测量水平角和竖直角的测量仪器,分为光学经纬仪和电子经纬仪。光学经纬仪按“一测回水平方向标准偏差”分为 DJ07、DJ1、DJ2、DJ6、DJ30
思考:一测回测角中误差怎么算?
经纬仪轴线应满足的条件1、VV⊥LL——照准部水准管轴的检校。2、HH⊥十字丝竖丝——十字丝竖丝的检校3、HH⊥CC——视准轴的检校4. HH⊥VV ——横轴的检校5. 竖盘指标差应为零——指标差的检校6. 光学垂线与VV重合——光学对中器的检校7. L'L'∥ VV——圆水准器的检验与校正(次 要)
高斯直角坐标系
采用横切椭圆柱投影(高斯-克吕格投影)方法建立的平面直角坐标系统,称为高斯-克吕格直角坐标系,简称为高斯直角坐标系。高斯直角坐标系以中央子午线为纵轴,以赤道投影为横轴构成。
站心坐标系
以测站为原点的坐标系称为站心坐标系。根据坐标表示方法,可以将站心坐标系分为站心直角坐标系和站心极坐标系。
转换参数的确定:通过公共点,即具有两个不同坐标系坐标的点;至少需要 3 个公共点;将公共点的坐标差作为伪观测值,确定转换参数。
(2)莫洛金斯基(Molodensky)模型
布尔沙模型在进行全球或较大范围的基准转换时较为常用,但是,旋转参数与平移参数具有较高的相关性。 采用莫洛金斯基模型则可以克服这一问题,因为其旋转中心可以人为选定,当网的规模不大时,可以选取网中任意一个点;当网的规模较大时,则可选取网的重心,然后以该点作为固定旋转点进行旋转。应用于局部网坐标转换。
大地测量学
第一章1.大地测量学是通过在广大的地面上建立大地控制网,精确测定大地控制网点的坐标,研究测定地球形状、大小和地球重力场的理论、技术与方法的学科。
2.大地测量的基本任务(1)技术任务:精确测定大地控制点的位置及其随时间的变化也就是它的运动速度场,建立精密的大地控制网,作为测图的控制,为国家经济建设和国防建设服务。
(2)科学任务:测定地球形状、大小和重力场,提供地球的数学模型,为地球及其相关科学服务。
3.大地测量的作用(1)为地形测图与大型工程测量提供基本控制;(2)为城建和矿山工程测量提供起始数据;(3)为地球科学的研究提供信息;(4)在防灾、减灾和救灾中的作用;(5)发展空间技术和国防建设的重要保障。
4.大地测量学的主要研究内容大地测量、椭球测量学、天文测量大地重力学、卫星大地测量学、惯性大地测量学第二章1.大地水准面:设想海洋处于静止平衡状态时,将它延伸到大陆下面且保持处处与铅垂线正交的包围整个地球的封闭的水准面. 特点:重力方向不规则变化:原因是地表起伏不平、地壳内部物质密度分布不均匀大地水准面处处与铅垂线正交,所以大地水准面是一个无法用数学公式表示的不规则曲面。
2.参考椭球:把形状和大小与大地体相近,且两者之间相对位置确定的旋转椭球称为参考椭球。
参考椭球面是测量计算的基准面,椭球面法线则是测量计算的基准线。
另外,水准面是外业观测时的基准面,铅垂线是外业观测时的基准线3.总地球椭球:从全球着眼,必须寻求一个和整个大地体最为接近、密合最好的椭球,这个椭球又称为总地球椭球或平均椭球。
总地球椭球满足以下条件:(1)椭球质量等于地球质量,两者的旋转角速度相等。
(2)椭球体积与大地体体积相等,它的表面与大地水准面之间的差距平方和为最小。
(3)椭球中心与地心重合,椭球短轴与地球平自转轴重合,大地起始子午面与天文起始子午面平行。
大地水准面与椭球面在某一点上的高差称为大地水准面差距,用N表示。
4.垂线偏差:同一测站点上铅垂线与椭球面法线不会重合。
《武大大地测量》课件
遵循分级布设、逐级控制的原则 ,从高级到低级,从整体到局部 ,形成层次分明、结构严密的控 制系统。
大地水准面的测定
大地水准面的概念
大地水准面是指与平均海水面重合并向大陆延伸所形成的封闭曲 面,是描述地球形状的一个重要物理模型。
大地水准面测定的方法
通过大地测量和地球重力场模型相结合的方法,可以精确测定大地 水准面的位置和起伏。
合成孔径雷达干涉测量技术
该技术能够实现大面积、高精度的地表形变监测 和地形测量,尤其在地质灾害监测和城市规划等 领域具有重要应用价值。
大地测量面临的挑战与机遇
挑战
随着城市化进程的加速和基础设施建设的不 断推进,大地测量面临着越来越高的精度和 效率要求,同时还需要应对复杂地形和地貌 的测量难题。
机遇
03
大地测量的技术与方法
大地控制网的建立
大地控制网的概念
大地控制网是由一系列按一定规 律分布的控制点构成的网状图形 ,是进行大地测量和地理信息获 取的基准框架。
大地控制网的分类
根据用途和精度要求,大地控制 网可分为一、二、三、四等控制 网,不同等级的控制网有不同的 布设要求和精度标准。
大地控制网的布设
《武大大地测量》ppt课件
目 录
• 绪论 • 大地测量的基本原理 • 大地测量的技术与方法 • 大地测量的应用与实践 • 大地测量的未来发展与挑战
01
绪论
大地测量的定义与任务
总结词
大地测量的定义与任务
详细描述
大地测量是一门研究地球大小、赤道、地球重力场、地球自转等问题的学科。它的主要任务是提供精确的地球参 数,为科学研究、资源开发、军事侦察等领域提供基础数据。
遥感技术的不断发展,将促进其在大 地测量中的应用,实现大范围的地形 测量、地表监测和资源调查等。
大地测量学基础 第一章
卫星测高
装有激光发射棱镜的低轨卫星
2.第二阶段:(地球椭球阶段)最先由牛顿提出 (1)在此阶段,理论方面 英国的牛顿:万有引力定律,地球椭球学说. 荷兰的斯涅耳:三角测量法 德国的开普勒:行星运动三大定律 荷兰的惠更斯:摆测重力原理 法国的勒让德:最小二乘法,重力位函数 法国的克莱罗:克莱罗定律 英国的普拉特和艾黎:地壳均衡学说 另外此阶段还进行了大量的实测工作。从理论和实 际上推算地球椭球参数,确定地球形状大小。
(2) 现代大地测量学:以空间大地测量学为主要标志,研究 地球及外部宇宙空间。 与经典大地测量学相比,在研究方法、手段方面有显著 不同。主要表现在人造卫星、空间探测器、计算机、通讯技 术等先进技术的应用。
二、大地测量学的地位和作用
1.是国民经济建设和社会发展基础先行性的重要保证。 (1)交通运输事业,资源开发事业,水利水电工程事业,工 业企业建设事业(工厂、矿山等),农业生产规划和土地管理, 城市建设发展及社会信息管理等,都需要地形图作为规划、设 计和发展的依据。可以说,地形图是一切经济建设规划和发展 必需的基础性资料。
2) 较高精度仪器的使用,如因瓦基线尺,因瓦水准尺,带测 微器的水准仪;将天文大地测量与重力大地测量的结合代替 天文水准等方面也有较大的进步。 3.2 此阶段物理大地测量取得的成就 1) 大地测量边值问题理论的提出。 用已知的重力和重力位求边界面和外部重力场的问题
克莱罗:以椭球面为边界解决边值问题 斯托克司:以大地水准面为边界面解决边值问题 莫洛金斯基:以地球表面为边界,直接用地面重力值确定地球 形状与外部重力场
2)物理大地测量学(理论大地测量学) 基本任务:用物理方法(重力测量)确定地球形状及其 外部重力场。 主要内容:位理论,地球重和场,重力测量及其归算, 推球地球形状及外部重力场的理论与方法。
大地测量学基础课程知识要点
大地测量学基础课程知识要点1、大地水准面:假定海水面完全处于静止和平衡状态(没有风浪、潮汐及大气压变化的影响),把这个海水面伸延到大陆下面,形成一个封闭曲面,在这个面上都保持与重力方向正交的特性,则这个封闭曲面称为大地水准面。
2、球面角超:球面多边形的内角和与相应平面上的内角和与(n-2)×180°的差值(或答为球面三角形和180°也可)。
3、底点纬度:在y =0时,把x直接作为中央子午线弧长对应的大地纬度B,叫底点纬度。
4、高程异常:似大地水准面与椭球面的高程差。
5、水准标尺零点差:一对水准标尺的零点误差之差。
6.重力位相等的面称为重力等位面,这也就是我们通常所说的水准面。
7.垂直于旋转轴的平面与椭球面相截所得的圆,叫纬圈。
8.我国规定采用正常高高程系统作为我国高程的统一系统。
9、主曲率半径M是任意法截弧曲率半径RA的极小值。
10、M、R、N三个曲率半径间的关系可表示为N>R>M。
11、方向改正中,三等和四等三角测量不加垂线偏差改正和截面差改正,应加入标高差改正。
12.大地基准是指能够最佳拟合地球形状的地球椭球的参数及椭球定位和定向。
13.兰伯特投影是正形正轴圆锥投影。
14.圆锥面与椭球面相切的纬线称之为标准纬线。
15、截面差改正数值主要与照准点的高程有关。
16、我国采用的1954年北京坐标系应用的是克拉索夫斯基椭球参数。
17.在高斯平面上,过p点的子午线的切线的北极方向与坐标轴x正向的交角叫子午线收敛角。
18.与椭球面上一点的子午面相垂直的法截面同椭球面相截形成的闭合圈称为卯酉圈。
19.由水准面不平行而引起的水准环线闭合差,称为理论闭合差20.空间坐标系:以椭球体中心为原点,起始子午面与赤道面交线为X轴,在赤道面上与X轴正交的方向为Y轴,椭球体的旋转轴为Z轴,构成右手坐标系O-XYZ。
21.垂线偏差改正:将以垂线为依据的地面观测的水平方向观测值归算到以法线为依据的方向值应加的改正。
大地测量学的应用原理
大地测量学的应用原理介绍大地测量学是指通过一系列的地面观测和测量手段,研究地球形状、地壳运动和大地测量技术等现象的学科。
大地测量学的应用范围非常广泛,涉及到地理信息系统、土地测量、导航定位、地震监测等领域。
本文将介绍大地测量学的应用原理,以及其在各个领域的具体应用。
应用原理大地测量学基本原理大地测量学的基本原理是通过测量地球表面上各个点的位置坐标,以确定地球的形状、大小和相对位置。
大地测量学的测量手段主要分为几何测量和物理测量两类。
几何测量是通过在地面上布设测量基线,并利用方位角、距离、高差等测量元素,测量地面上各个点的位置坐标。
物理测量是利用地球物理现象,如地球引力、地磁场等,进行测量。
例如,通过重力测量可以确定地球表面上各点的重力加速度,从而计算出地球的形状。
大地测量学的应用原理大地测量学的应用原理是将大地测量学的基本原理应用到实际工程和科学研究中。
具体而言,大地测量学的应用原理可以归纳为以下几个方面:1.地理信息系统(GIS):大地测量学在GIS领域的应用非常广泛。
通过测量和记录地球表面上各个点的位置坐标,可以构建地理信息系统的空间数据。
这些空间数据可用于地图制作、空间分析、资源管理等方面。
2.土地测量:大地测量学在土地测量领域的应用主要包括土地所有权界定、土地评估和土地开发。
通过测量土地上各个点的位置坐标,可以确定土地的边界和范围,帮助决策者更好地进行土地管理和规划。
3.导航定位:大地测量学在导航定位领域的应用非常重要。
通过利用全球定位系统(GPS)等技术,测量接收器所处的位置坐标,可以实现精确的导航定位。
这种技术在航空、航海、汽车导航等领域有着广泛的应用。
4.地震监测:大地测量学在地震监测领域起着重要的作用。
通过测量地壳的变形和位移,可以监测地震的发生和变化趋势,提前预警可能发生的地震灾害。
这对于保护人民的生命财产安全具有重要意义。
5.地质探测:大地测量学在地质探测领域的应用也非常广泛。
大地测量实习总结7篇
大地测量实习总结7篇第1篇示例:大地测量是土地资源管理和规划的基础工作,测量的准确度关系到土地资源的开发利用和综合管理。
为了更好地锻炼学生实际操作能力,我所在的院校组织了一次大地测量实习活动。
在这次实习中,我学到了很多理论知识的实际运用,也积累了丰富的实践经验。
接下来,我将结合这次实习的经历,总结一下自己的收获和体会。
这次大地测量实习活动历时一个月,共分为理论学习和实际操作两个阶段。
在理论学习阶段,我们学习了有关大地测量的基本概念、仪器使用和数据处理等知识。
通过老师的讲解和实例操作,我对大地测量有了更加全面的理解,对相关仪器的使用也更加熟练了。
在实际操作阶段,我们分组到不同的实习基地进行测量工作。
我的小组被分配到了一片山区进行测量任务。
这里的地形复杂,测量工作相对较为困难,但也非常具有挑战性。
我们进行了基准点的选址、三角测量、激光测距和数据整理等一系列工作,虽然辛苦,但收获颇丰。
在这次实习中,我不仅学会了如何正确使用测量仪器,还学到了如何与同伴合作、如何分析和解决问题。
在山区测量中,遇到了许多困难和挑战。
由于树木遮挡、地形险峻等原因,测量工作进展缓慢,但我们团队却齐心协力,共同克服了种种困难,最终完成了任务。
这次实习,我深刻体会到了团队合作的重要性,在实际操作中不断锻炼了自己的处理问题能力和应变能力。
这次实习也让我对大地测量有了更加深刻的认识。
大地测量是一项综合性强、操作性较强的工作,需要测量人员具备较高的业务水平和综合素质。
只有通过实践不断磨砺,才能真正掌握测量技术和方法。
在今后的学习和工作中,我将继续努力,不断提高自己的专业水平,为土地资源管理和规划贡献自己的力量。
这次大地测量实习活动给予了我很多宝贵的经验和启示。
通过这次实习,我不仅学到了大地测量的理论知识和操作技能,更锻炼了自己的实际操作能力和团队合作精神。
我相信,这次实习经历将成为我成长道路上宝贵的财富,也将对我的未来学习和工作产生深远的影响。
大地测量学
卫星激光测距对卫星的跟踪测量可以精确测定卫星轨道的摄动,当分离出占摄动主要部分的地球引力摄动, 由此推算地球引力位球谐展开的低阶位系数。20世纪70年代开始卫星雷达测高,后又研制和发展了多代卫星测高 系统,用于精确测定平均海面的大地高,确定海洋大地水准面,并反求海洋重力异常,分辨率优于lO千米,精度 优于分米级。
展望
大地测量学从形成到现在已有 300多年的历史,虽然在研究地球形状、地球重力场和测定地面点几何位置各 方面都已取得了可观的成就,但从整体来看,仍存在着若干不足之处,有待于今后继续研究解决。
①卫星大地测量已经全面地和均匀地求出了地球重力场(包括大地水准面)的总貌,但还不能求得其精细结 构。这是由于卫星运行的轨道至少在地面上方 200公里以上,对地球重力场效应的分辨能力也只能达到这一数量 级。目前地面重力测量在全球的分布极不均匀,有待继续扩展。在海洋上空利用卫星雷达测高技术测定海洋大地 水准面的起伏已取得了较好的结果。由天文大地测量求得的垂线偏差和由天文重力水准所得的大地水准面起伏, 也都是地球重力场的信息。所以要研究地球重力场全面而精细的结构,必须综合利用卫星、物理和几何大地测量 的各种信息,进行统一的处理,有人称之为整体大地测量。这是研究地球重力场的发展趋势。
大地测量学
一门量测和描绘地球表面的科学
01 学科简介
03 简史
目录
02 方法 04 展望
大地测量学,又称为测地学。
大地测量学是在一定的时间与空间参考系中,测量和描绘地球形状及其重力场并监测其变化,为人类活动提 供地球空间信息的一门学科,属于地球科学的一个分支,也是一切测绘科学技术的基础。 传统的大地测量学又称 为经典大地测量学,德国大地测量学家赫尔默特将其表述为对地球表面进行测量和描绘的学科。现代大地测量学 则以空间测绘技术为主要特征,研究空间精密定位的理论、技术与方法,扩展了经典大地测量学的研究范围,并 在空间与时间尺度、实时性、精度和学科融合等各个方面取得了突破。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重力基准就是标定一个国家和地区的绝对重力值的标准。
重力参考系统则是指采用的椭球常数及其相应的正常重力场。
重力测量框架则是由分布在各地的若干绝对重力点和相对重力点构成的重 力控制网,以及用作相对重力尺度标准的若干条长短基线。
基准
年代
椭球常数
基本构成
波茨坦重力基准 20世纪50—70 克拉索夫斯基
年代
1985国家重力基 本网
三、大地测量系统与参考框架
基本定义:
大地测量系统规定了大地测量的起算基准、尺度标准及其实现方式(包 括理论、模型和方法)。大地测量系统包括坐标系统、高程系统、深度基准 和重力参考系统。
大地测量参考框架是通过大地测量手段,由固定在地面上的点所构成的 大地网(点)或其它实体(静止或运动的物体)按相应于大地测量系统的规 定模式构建的,是对大地测量系统的具体实现。与大地测量系统相对应,大 地参考框架有坐标(参考)框架、高程(参考)框架和重力(参考)框架。
5)GPS(GPS Time,GPST):由GPS星载原子钟和地面监控站原子钟组 成的一种原子时基准,与国际原子时保持有19s的常数差,并在GPS标准历 元1980年1月6日零时与UTC保持一致。
2020年4月5日3时49分
FOUNDATION OF GEODESY
2 大地测量学在防灾、减灾、救灾及环境监测、评价 与保护中发挥着独具风貌的特殊作用
3)力学时(Dynamic Time,DT):在天文学中,天体的星历是根据天体动力 学理论的运动方程而编算的,其中所采用的独立变量是时间参数T,这个数 学变量T,定义为力学时。
4)协调时( Universal Time Coordinate,UTC ):是时间服务工作钟把原子 时的秒长和世界时的时刻结合起来的一种时间。并不是一种独立的时间。
6、 时间系统与时间系统框架
时间系统也称为时间基准或时间标准,它规定了时间测量 的参考标准,包括时刻的参考标准和时间间隔的尺度标准。
任何一种时间基准都必须建立在某个频率基准的基础上, 因此时间基准也称为时间频率基准。频率基准规定了“秒长” 的尺度。
时间系统框架是在某一区域或全球范围内,通过守时、授 时和时间频率测量技术,实现和维持统一的时间系统。
• A:该阶段几何大地测量的主要成绩
(1)长度单位的建立:法国于1799年计算出新的椭球参数,其 子午圈弧长的四千万分之一为1m.
(2) 提出最小二乘法:法国的勒让德(A.M.Legendre),德国的高 斯(C.F.Gauss)。
•地震带区域内的大地测量形变监测系统:(自动、连续) GPS (全球卫星定位系统) VLBI(甚长基线干涉测量) SLR (激光测卫) •海难、空难等 GPS快速定位+卫星通信技术 •温室效应引起的海水面变化 利用GPS技术将全球验潮站联测到VLBI及SLR上
2020年4月5日3时49分
FOUNDATION OF GEODESY
大地测量系统是总体概念,大地测量参考框架是大地测量系统的具体应 用形式。
2020年4月5日3时49分
FOUNDATION OF GEODESY
2、大地测量坐标框架
1)参心坐标框架(天文大地网,区域性、二维静态,如1954北京,1980西安)
2)地心坐标框架
ITRF——国际地面参考框架,ITRS——国际地面参考系统
VLBI(甚长基线干涉测量)、SLR(激光测距)、LLR(激光测月)、GPS和 DORIS(卫星多普勒定轨定位)等技术构成全球观测网点,经数据处理,得到 ITRF点(地面观测点)站坐标和速度场。是目前国际公认的应用最广泛、精 度最高的地心坐标框架。
2000国家大地控制网是定义在ITRS2000地心坐标系统中的区域性地心坐标 框架。由三级构成:
6)学科融合。现代大地测量除对大气科学贡献以外,由于它能获得精确、大量、在
空间和时间方面有很高分辨率的对地观测数据,因此对地球科学、海洋学、地质学、
地震学的地球科学的作用也越来越大。它与地球科学多个分支相互交叉,已成为推动
地球科学的前沿学科之一。
2020年4月5日ODESY
第一级——为连续运行站构成的动态地心坐标框架,是区域性地心坐标框架 的主控制。
第二级——是与连续运行站定期联测的大地控制点构成的准动态地心坐标框 架。
第三级——加密大地控制点。
2020年4月5日3时49分
FOUNDATION OF GEODESY
4、重力系统和重力测量框架
重力测量就是测定空间一点的重力加速度。
2000国家重力基 本网
2020年4月5日3时49分
20世纪80年代 IAG75椭球常数及其
后
相应正常重力场
2000年后
CRS80椭球常数及 其相应正常重力场
FOUNDATION OF GEODESY
6个基准点 46个基本点 5个基本点引点
21个基准点 126个基本点 112个基本点引点 长基线网1个
2、现代大地测量的特点
背景:二十世纪80年代以来,由于空间技术、计算机技术和信息技术的飞跃发展,以 电磁波测距、卫星测量、甚长基线干涉测量等代表的新的大地测量技术出现,给传统 大地测量带来了革命性的变革,形成了现代大地测量。
现代大地测量特点:
1)长距离、大范围。量测的范围和间距,不再受天气和“视线”长度的制约,能提 供协调一致的全球性大地测量数据。
2020年4月5日3时49分
FOUNDATION OF GEODESY
1、常用的时间系统
1)世界时(Universal Time,UT):以地球自转为基准,在1960年以前一 直作为国际时间基准。
2)原子时(Atomic Time,AT):以位于海平面(大地水准面,等位面)的 铯(133Cs)原子内部两个超精细结构能级跃迁辐射的电磁波周期为基准, 从1958年1月1日世界时的零时开始启用。
2)高精度。量测精度相对于传统大地测量而言,已提高了1—2个数量级。
3)实时、快速。外业观测和内业数据处理几乎可以在同一时间段内完成,即实时或 准实时地完成。
4)“四维”。能提供在合理复测周期内有时间序列(时间或历元)、高1于07 精度的大地测量数据。
相对
5)地心。测得的位置、高程、影像等成果,是以维系卫星运动的地球质心为坐标原 点的三维测量数据。