两总体参数的假设检验

合集下载

总体参数的假设检验

总体参数的假设检验

社会学研究数据分析
要点一
总结词
社会学研究中的假设检验主要用于探究社会现象、行为和 社会关系等。
要点二
详细描述
在社会学研究中,假设检验被广泛应用于社会调查、实验 研究和准实验研究中。研究者通过收集和分析数据,检验 关于社会现象、行为和社会关系的假设。例如,可以检验 教育程度与收入水平的关系、政策实施对居民生活的影响 等假设。这有助于深入了解社会现象,为政策制定和社会 发展提供科学依据。
P值是假设检验中的重要指标,表示观察到的数据或更极端情况出现的 概率。P值越小,表明观察到的数据越不可能发生,从而支持拒绝原假 设。
P值的解读
在解读P值时,应注意其与临界值的关系。通常,当P值小于显著性水 平(如0.05)时,我们拒绝原假设。
03
决策与P值
虽然P值提供了一定的决策依据,但不应过分依赖P值进行决策。在某
两个总体参数的假设检验
两个总体参数的假设检验的定义
对两个总体的参数提出假设,并利用样本数据对该假设进 行检验,以判断两个参数之间是否存在显著差异。
提出假设
根据研究目的或问题,提出关于两个总体参数的假设。
选择检验统计量
根据总体分布和假设,选择适当的统计量进行检验。
确定临界值
根据统计量的性质和显著性水平,确定临界值。
选择检验统计量
根据总体分布和假设,选择适当的统计量进行检验。
确定临界值
根据统计量的性质和显著性水平,确定临界值。
计算检验统计量的值
根据样本数据计算检验统计量的值。
做出决策
将计算出的检验统计量的值与临界值进行比较,做出接受 或拒绝假设的决策。
非参数假设检验
03
符号检验
总结词

第58讲 两个正态总体参数假设检验(比较两个正态总体均值的检验)

第58讲  两个正态总体参数假设检验(比较两个正态总体均值的检验)

第58讲:两个正态总体参数的假设检验(比较两个正态总体均值的检验)例1:通常认为男女的脉搏率是没有显著差异的. 现在随机地抽取年龄都是25岁的16位男子和13位女子, 测得他们的脉搏率如下:男: 61, 73, 58, 64, 70, 64, 72, 60, 65, 80, 55,72, 56, 56, 74, 65,女: 83, 58, 70, 56, 76, 64, 80, 68, 78, 108,76, 70, 97.问题:假设男女脉搏率都是服从正态分布, 这些数据能否认为男女脉搏率的均值相同?()()12221212122221,,,,,,,,,,,n n X X X N Y Y Y N X Y S S μσμσ∙∙∙ 12假设:是来自的样本是来自的样本,两样本相互独立.并记,分别为两样本的均值和方差.()012112.:,:,H H μμμαμ=≠检验假设显著水平22121.σσ当和已知时2212012,.~(0X Y X Y C H X Y N n n σσ∙--≥∙-+ 检验统计量拒绝域形式 当成立时,,).221212σσ-=+X YZ n n 记: 2α≥--Z z z 则检验拒绝域为:检验{}00002212122(1(),.σσ-=≥=-Φ-=+H P P Z z z x yz n n 其中:222122.σσσ当==但未知时2σ首先利用合样本给出参数的无偏估计量()()22112221211 .2wn S n SS n n -+-=+-1211-=+w X Y T S n n 可取检验统计量为:()21212211wX Y T t n n S n n α-=≥+-+检验拒绝域为:{}{}00120012||||2(2)||11--=≥=+-≥-=+H w P P T t P t n n t x yt P s n n 其中为::值——两样本精确t检验22123.σσ≠当且未知时221212.-=+X Y T S S n n 取检验统计量为:22221212.S S σσ以样本方差分,别代替,{}{}000||||2||,--=≥=≥H P P T t P Z P t 值为:(1)当两个样本量都很大时,利用中心极限定理{}/2||α≥T z 检验的拒绝域为:0221212~(01).-=+x y Z N t s sn n 其中: ,,12min(1,1),=--k n n (2)当两个样本为小样本时都很大时,统计量近似服从t 分布,自由度为22211222222112212(//)(/)(/)11+=+--S n S n k S n S n n n 或更精确的近似自由度{}/2||()α≥T t k 检验的拒绝域为: {}{}000||||2()||.--=≥=≥H P P T t P t k t P 值为: t ——两样本近似检验22112212221201,~(,),~(,),16,13,65.31,75.69,56.36,211.40,.X Y X N Y N n n x y s s H H μσμσμμμμ=======≠1212检验假设在例1中设分别表示男女的脉搏率,由已知数据计得:,::算221256.36,211.40,s s t ==注意到相差很大,采用不等方差的检验法,结论:拒绝原假设,认为男女脉搏率的均值不相同。

两个正态总体的假设检验

两个正态总体的假设检验
两个正态总体的假设检验
有时,我们需要比较两总体的参数 有时,我们需要比较两总体的参数 是否存在显著差异。比如, 是否存在显著差异。比如,两个农作物 品种的产量,两种电子元件的使用寿命, 品种的产量,两种电子元件的使用寿命, 两种加工工艺对产品质量的影响, 两种加工工艺对产品质量的影响,两地 区的气候差异等等。 区的气候差异等等。
Fα2 (n1 − 1, n2 − 1) 和 F12 α (n1 − 1, n2 − 1) ,使 −
2
( P (F
P F < Fα (n1 − 1, n2 − 1) =
2 2
2
2
> F12 α −
2
)、(3) 由(2)、( )式可得检验的拒绝域为 )、(
F < F1−(α 2) ( n1 − 1, n2 − 1) 及 F > Fα 2 ( n1 − 1, n2 − 1)
拒绝H 两种灯泡的平均寿命 所以拒绝 假设, 所以拒绝 0假设,即认为 A、B两种灯泡的平均寿命 、 两种灯泡的 有统计意义。 有统计意义。
两个正态总体的方差检验 问题: 问题: X ~ N µ , σ 2 , Y ~ N µ ,σ 2 1 1
(
)
未知
µ1 , µ2 ,检验假设 0:σ 12 = σ 22 检验假设H
所以拒绝原假设 H20,即认为两种玉米的产量差异 有统计意义。 有统计意义。
(
2
2
)
F检验 检验
S12 σ 12 F = 2 2 ~ F ( n1 − 1, n2 − 1) 由抽样分布知 S2 σ 2 2 S 若假设H 成立, 若假设 0成立,则 F = 12 ~ F ( n1 − 1, n2 − 1) S2
f (x )

8.3两个正态总体参数的假设检验

8.3两个正态总体参数的假设检验

方差
12
2 2
2
未知
1.H0 : 1 2 0 H1 : 1 2 0
由于
Sw2
1 n1 n2
n1
[ 2 i1
(Xi
X )2
n2 i1
(Yi
Y )2]

2 的无偏估计
检验统计量:T
Sw
X Y 1 n1
1 n2
~ t(n1 n2 2)
检验问题的拒绝域为:| T | t (n1 n2 2)
X Y H0
2 1
2 2
~ N (0,1)
n1 n2
检验问题的拒绝域为:|U | Z
2
方差
12 ,
2 2
已知
2.
检验统计量:U
X Y
2 1
2 2
n1 n2
检验问题的拒绝域为:U Z1
3. H0 : 1 2 0
方差
12 ,
2 2
已知
H1 : 1 2 0
检验统计量:U
X Y
2 1
2 2
n1 n2
检验问题的拒绝域为:U Z
例:设可乐厂车间使用灌装机生产的可乐容量服从正态分布, 方差为1。某天计量检验人员随机抽取10瓶可乐,容量数据如下 (单位:毫升):
499.5 496.3 500.5 499.1 499.3 499.2 499.0 500.2 500.1 499.8 另一可乐厂生产的可乐容量服从正态分布,方差为1.5。计 量检验人员随机抽取了的9瓶可乐,容量数据如下(单位:毫 升):
2. H0 : 1 2 0 H1 : 1 2 0
3. H0 : 1 2 0 H1 : 1 2 0
问题1称为双侧检验问题,问题2、3称为单侧检验问题。

两个正态总体参数的假设检验 推导

两个正态总体参数的假设检验 推导

两个正态总体参数的假设检验推导一、引言假设检验是统计学中常用的方法,用于检验两个正态总体参数是否具有显著差异。

本文将介绍两个正态总体参数的假设检验的推导过程,主要包括以下步骤:假设提出、样本收集、样本检验、推断结论、结果解释和误差分析。

二、假设提出假设检验的基本思想是通过样本数据对总体参数进行推断。

在这个过程中,首先需要提出假设,即对两个正态总体参数的关系做出假设。

通常,假设检验中包含两个假设:零假设(H0)和备择假设(H1)。

零假设通常表示两个总体参数无显著差异,备择假设则是与零假设相对的假设。

例如,我们可以在零假设中设定两个总体均数相等,备择假设则是均数不等。

三、样本收集在提出假设后,需要收集样本数据以进行检验。

样本收集应遵循随机抽样的原则,以确保样本的代表性。

在收集样本时,还需要注意样本量的大小,以保证推断结论的准确性。

四、样本检验样本检验是假设检验的核心步骤,包括计算样本统计量、确定临界值和做出推断结论等步骤。

样本统计量是根据样本数据计算出的量,用于推断总体参数。

临界值是用于判断样本统计量是否达到显著差异的标准。

在做出推断结论时,需要根据样本统计量和临界值进行比较,以确定零假设是否被拒绝。

五、推断结论根据样本检验的结果,可以做出推断结论。

如果样本统计量超过了临界值,则可以拒绝零假设,接受备择假设;否则,不能拒绝零假设。

推断结论是假设检验的关键步骤之一,要求谨慎和客观地做出判断。

六、结果解释推断结论做出后,需要对结果进行解释。

解释结果时需要关注以下几点:一是理解推断结论的含义,二是明确结果对于实践的意义,三是注意结果的局限性,即样本量和误差范围等因素对结果的影响。

结果解释要求清晰明了地传达结果的含义和应用范围。

七、误差分析误差分析是假设检验中不可或缺的一环。

误差分为两类:一类是随机误差,由随机抽样造成;另一类是系统误差,由样本设计和处理等环节造成。

误差分析的目的是评估结果的可靠性和精确性,从而确定结果在实际应用中的可信度。

两个总体参数的假设检验

两个总体参数的假设检验
Bartlett's test用于比较两个总体 的方差是否存在显著差异。它基 于K2分布理论,通过计算每个总 体样本的方差,然后比较两组方 差之间的差异是否具有统计学显 著性。
Part
03
假设检验的注意事项
样本量
样本量过小
01
如果样本量过小,会导致检验结果不稳定,无法准确
推断总体参数。
样本量过大
两个总体参数的假设 检验
• 假设检验的基本概念 • 两个总体参数的假设检验 • 假设检验的注意事项 • 假设检验的实例分析 • 总结与展望
目录
Part
01
假设检验的基本概念
定义
01
假设检验是一种统计推断方法 ,通过对样本数据的分析,对 总体参数做出假设,并通过检 验假设是否成立来得出结论。
02
在假设检验中,通常会先提出 一个关于总体参数的假设,然 后通过样本数据对该假设进行 验证。
03
假设检验的目的是根据样本数 据对总体参数做出合理的推断 ,并尽可能减少因错误判断而 导致的误差。
目的
判断总体参数是否符合预期
通过假设检验,可以判断总体参数是否符合预 期,从而为进一步的研究或决策提供依据。
两个总体比例的比较
总结词
Fisher's exact test
详细描述
Fisher's exact test用于比较两个总体的分类比例是否存在显著差异,特别是当样本量较小时。它基于 Fisher's exact probability distribution,通过计算概率值来评估实际观测频数与期望频数之间的差异是 否具有统计学显著性。
两个总体方差的比较
01 总结词
Levene's test

两个总体参数的检验

两个总体参数的检验
饮料的评分存在显著差异?
两种饮料平均等级的样本数据
1 - 16
旧饮料
5
4
7
3
5
8
5
6
新饮料
6
6
7
4
3
9
7
6

两个总体比例差的检验
(大样本)
1 - 17

两个总体比例之差的检验
1. 假定条件


两个总体都服从二项分布
可以用正态分布来近似
4、计算样本检验统计量的数值
5、做决策
1-3

二、两个总体均值之差的检验
(假设的形式)
研究的问题
双侧检验
左侧检验
右侧检验
没有差异
有差异
均值1 均值2
均值1 < 均值2
均值1 均值2
均值1 > 均值2
原H0
1 – 2 = 0
1 – 2 0
1 – 2 0
备H1
1 – 20
H0: 1- 2 = 0
H1: 1- 2 0
检验统计量:
=
= 0.05
n1 = 32,n2 = 40
临界值(s):
拒绝 H0
-1.96
1-8
12 22
+
1 2
.025
0
1.96
2.83
=
50 − 40 − 0
64 100
+
32 40
= 2.83
检验统计量值 2.83 > 1.96(临界值)
拒绝 H0
.025
(lj 1 − lj 2 ) − (1 − 2 )
Z
决策:

统计学中的假设检验方法应用

统计学中的假设检验方法应用

统计学中的假设检验方法应用假设检验是统计学中一种常用的推断方法,用于检验关于总体参数的假设。

它基于样本数据,通过对比样本观察值与假设的理论值之间的差异,来确定是否拒绝或接受一些假设。

假设检验在实际应用中广泛使用,以下是一些常见的应用:1.平均值检验:平均值检验用于检验总体平均值是否等于一些特定值。

例如,一个医疗研究想要检验其中一种药物的疗效,可以控制一个实验组和一个对照组,然后收集两组患者的项指标数据(如血压)并计算均值,然后利用假设检验来判断两组是否存在显著差异。

2.方差检验:方差检验用于检验不同总体的方差是否相等。

例如,一个制造业公司想要比较两个供应商提供的原材料的质量是否一致,可以从这两个供应商中分别抽取样本,然后对比两组样本的方差,通过假设检验来判断两个供应商的方差是否有显著差异。

3.比例检验:比例检验用于检验两个总体比例是否相等。

例如,一个选举调查机构想要了解两个候选人在选民中的支持率是否相同,可以进行随机抽样并询问选民的偏好,然后利用假设检验来判断两个候选人的支持率是否存在显著差异。

4.相关性检验:相关性检验用于检验两个变量之间的相关关系是否显著。

例如,一个市场研究公司想要了解广告投入与销售额之间的关系,可以收集一定时间内的广告投入和销售额的数据,并进行相关性检验来判断两者之间是否存在显著的线性关系。

5.回归分析:假设检验在回归分析中也有广泛应用。

通过假设检验可以判断回归模型中的参数估计是否显著,进而判断自变量对因变量的影响是否存在统计学意义。

例如,一个经济学研究想要检验GDP(自变量)对于失业率(因变量)的影响,可以建立回归模型并通过假设检验来判断GDP系数是否显著。

在应用中,假设检验的步骤通常包括以下几个部分:明确研究问题、建立原假设和备择假设、选择适当的检验统计量、设定显著水平、计算检验统计量的观察值、根据观察值和临界值的比较结果进行决策、得出结论。

需要注意的是,假设检验的结果并不能确定假设是正确的或错误的,它只是根据样本数据提供了统计学上的证据。

双正态总体参数的假设检验

双正态总体参数的假设检验

§7.3 双正态总体参数的假设检验设样本1,,1n X X 取自正态总体211(,)N μσ,样本2,,1n Y Y 取自总体222(,)N μσ,两样本相互独立,它们的样本均值分别为∑==1111n i iX n X ,∑==2121n j jYn Y ,样本方差分别为∑=--=112121)(11n i i X X n S ,∑=--=212222)(11n j j Y Y n S 。

一、 关于两个正态总体方差比的假设检验以双侧检验:2221122210::σσσσ≠↔=H H 为例 选用检验统计量2221S S F =,它在原假设0H 成立的条件下服从F 分布)1,1(21--n n F ;记2221s s f O =表示检验统计量F 的样本观测值,则检验的P 值为⎪⎩⎪⎨⎧<=≥≥=≥=1),/1/1(21),(222212221O O O O f f F P f f F P P 如果如果σσσσ这种检验方法通常称为“F 检验”。

例7.3.1 甲乙两台车床分别加工某种轴,轴的直径分别服从正态分布),(211σμN ,),(2σμN ,从各自加工的轴中分别抽取若干根,测得其直径如下表所示:试问在显著性水平05.0=α下,两台车床加工的精度是否有显著差异?解:(1)依题意,考虑假设检验问题2221122210::σσσσ≠↔=H H (2)用F 检验,检验统计量为)6,7(~02221F S S F H =或)7,6(~/102122F S S F H =;(3)由样本观测值可得2164.021=s ,2729.022=s ,检验统计量的值为793.0/2221==s s f O 。

故检验的P 值为76.038.02)793.0/1/1(22221=⨯==≥=σσF P P 。

(4) 因为05.0>P ,所以不拒绝原假设0H ,即没有充分理由认为两种机床所加工轴的精度有显著差异。

两正态总体参数假设检验的Excel实现

两正态总体参数假设检验的Excel实现
‘ ‘ 二
临界值 F 一 ( l譬 m一1n一1 和 F ( 一1n一1 。 , ) 辜m , ) ④ 由样 本值计 算统 计量 F的值 , F≥ ( 若 m一1n一1 或者 0≤F≤F 一 ( , ) ,辜 m一1n一1 , , ) 则拒绝 风 , 则 否
接 受 。
以上是一 般教科 书 里所提 供 的检验两 个正 态总 体均 值 和方 差 是 否相 等 的方 法 。这 里 问题 都 是 以 双尾 形
√ 1 +1 / . 2 2
由统 计量 的分 布可 以知 道 , 当 真 时 , N( , ) U~ 0 1 。
③ 对于给定的显著水平 ( < ) 由 P{U ≥“ = 0< 1 , l I } 确定临界值 “ 。 睾 ④ 由样本值计算统计量 U的值 u 若 l l , ≥u 则拒绝 , u 否则接受 。
Vo . 8 12 No 2 . Ap . 0 r 2 08
文童 编 号 :17 0 7 2 0 ) 2- 0 7— 4 6 3— 4 X(0 8 0 0 7 0
两 正 态 总体 参数 假 设 检 验 的 E cl 现 xe 实
王 培 麟 赵 , 玲
( . 禺职业技术学院现代教育技术 中心 , 1番 广东 广州 5 1 8 2 苏州大学 机电工程 学院 , 14 3;. 江苏 苏州 2 5 2 ) 10 1

要 :利 用 E cl xe 的数 据 分析 工具 , 出了两 个正 态总体 参数 检验 的 方法 。该 方 法简单 易操作 , 给 并
且 在检 验 两个 总体 的均值 时, 以对 两个 总体 方差 不等 的模 型进行 检验 。 可
关键 词 :正 态总体 ; 参数 检验 ; 值 ; 均 方差
维普资讯

《卫生统计学》课后思考题答案

《卫生统计学》课后思考题答案

《卫生统计学》思考题参考答案第一章绪论1、统计资料可以分为那几种类型?举例说明不同类型资料之间是如何转换的?答:(1)1定量资料(离散型变量、连续型变量)、2无序分类资料(二项分类资料、无序多项分类资料)、3有序分类资料(即等级资料);(2)例如人的健康状况可分为“非常好、较好、一般、差、非常差”5个等级,应归为等级资料,若将该五个等级赋值为5、4、3、2、1,就可按定量资料处理。

2、统计工作可分为那几个步骤?答:设计、收集资料、整理资料、分析资料四个步骤。

3、举例说明小概率事件的含义。

答:某人打靶100次,中靶次数少于等于5,那么该人一次打中靶的概率≤0.05,即可称该人一次打中靶的事件为小概率事件,可以视为很可能不发生。

第二章调查研究设计1、调查研究有何特点?答:(1)不能人为施加干预措施(2)不能随机分组(3)很难控制干扰因素(4)一般不能下因果结论2、四种常用的抽样方法各有什么特点?答:(1)单纯随机抽样:优点是操作简单,统计量的计算较简便;缺点是当总体观察单位数量庞大时,逐一编号繁复,有时难以做到。

(2)系统抽样:优点是易于理解、操作简便,被抽到的观察单位在总体中分布均匀,抽样误差较单纯随机抽样小;缺点是在某些情况下会出现偏性或周期性变化。

(3)分层抽样:优点是抽样误差小,各层可以独立进行统计分析,适合大规模统计;缺点是事先要进行分层,操作麻烦。

(4)整群抽样:优点是易于组织和操作大规模抽样调查;缺点是抽样误差大。

3、调查设计包括那些基本内容?答:(1)明确调查目的和指标(2)确定调查对象和观察单位(3)选择调查方法和技术(4)估计样本大小(5)编制调查表(6)评价问卷的信度和效度(7)制定资料的收集计划(8)指定资料的整理与分析计划(9)制定调查的组织措施4、调查表中包含那几种项目?答:(1)分析项目直接整理计算的必须的内容;(2)备查项目保证分析项目填写得完整和准确的内容;(3)其他项目大型调查表的前言和表底附注。

两个总体的假设检验

两个总体的假设检验
产品定位评估
评估产品在市场中的定位是否准确,例如测 试目标客户对产品特性的认知与产品定位是 否一致。
社会科学研究中的应用
01
社会现象比较
比较不同社会现象之间的关系, 例如检验不同国家或地区的教育 水平与经济发展之间的关联。
02
政策效果评估
03
文化差异研究
评估政策实施后的效果,例如检 验某项教育政策对提高学生学习 成绩的影响。
02
假设检验只能提供关于总体参数的有限信息,因为 它是基于样本的统计推断。
03
假设检验的结果受到多种因素的影响,包括样本大 小、样本分布、假设检验的类型等。
假设检验与置信区间的关系
假设检验和置信区间是两种不同的统计推断方法,但 它们之间存在一定的关系。
在某些情况下,可以通过置信区间来辅助进行假设检 验。例如,如果一个置信区间不包含预期的参数值,
比较不同文化背景下人们的价值 观、行为和态度,例如探究不同 文化对消费者行为的影响。
THANKS.
根据显著性水平和样本量确定 临界值。
做出推断
根据检验统计量的值和临界值 做出推断,得出结论。
两个总体参数的假设
02
检验
两个总体均数的比较
总结词
在统计学中,比较两个总体均数是一种常见的假设检验方法,用于评估两个总体在平均 水平上的差异。
详细描述
在两个总体均数比较的假设检验中,首先需要设定零假设和备择假设。零假设通常表示 两个总体均数相等,而备择假设则表示两个总体均数不相等。然后,通过计算统计量、 确定临界值和做出决策,判断是否拒绝零假设。常用的统计量包括t统计量、Z统计量等。
两个总体相关系数的比较
总结词
比较两个总体相关系数的假设检验用于评估两个总体变量之间关联的强度和方向。

假设检验统计量公式了解假设检验统计量的计算公式

假设检验统计量公式了解假设检验统计量的计算公式

假设检验统计量公式了解假设检验统计量的计算公式假设检验统计量公式假设检验是一种用来验证关于总体参数的陈述的方法。

而假设检验统计量则是在假设检验中用来计算和评估数据的一种工具。

本文将介绍几种常用的假设检验统计量公式。

一、t检验的统计量公式t检验是用来判断总体均值差异是否显著的一种假设检验方法。

在t 检验中,常用的统计量公式如下:t = (x - μ) / (s / √n)其中,x为样本均值,μ为总体均值,s为样本标准差,n为样本大小。

这个公式是根据样本的均值与总体均值之间的差异以及样本的标准差进行计算的。

二、Z检验的统计量公式Z检验是一种用来判断总体比例差异是否显著的假设检验方法。

在Z检验中,统计量的计算公式如下:Z = (p - p) / √(p(1-p)/n)其中,p为样本比例,p为总体比例,n为样本大小。

这个公式是根据样本比例与总体比例之间的差异以及样本大小进行计算的。

三、卡方检验的统计量公式卡方检验是一种用来判断两个或多个分类变量之间是否相关的假设检验方法。

在卡方检验中,常用的统计量公式如下:X² = ∑(O - E)² / E其中,O为观察频数,E为期望频数。

这个公式是根据观察频数与期望频数之间的差异进行计算的。

四、F检验的统计量公式F检验是一种用来判断两或多个总体方差是否相等的假设检验方法。

在F检验中,统计量的计算公式如下:F = s₁² / s₂²其中,s₁²为较大的样本方差,s₂²为较小的样本方差。

这个公式是根据样本方差之间的比值进行计算的。

五、ANOVA的统计量公式ANOVA是一种用来比较三个或多个总体均值是否相等的假设检验方法。

在ANOVA中,统计量的计算公式如下:F = (SSB / (k-1)) / (SSE / (n-k))其中,SSB为组间平方和,SSE为组内平方和,k为组数,n为总样本大小。

这个公式是根据组间方差与组内方差的比值进行计算的。

正态总体参数的假设检验

正态总体参数的假设检验

正态总体参数的假设检验 正态总体中有两个参数:正态均值与正态⽅差。

有关这两个参数的假设检验问题经常出现,现逐⼀叙述如下。

(⼀) 正态均值的假设检验 ( 已知情形) 建⽴⼀个检验法则,关键在于前三步l,2,3。

5.判断(同前) 注:这个检验法称为u检验。

(⼆) 正态均值的假设检验 ( 未知情形) 在未知场合,可⽤样本标准差s去替代总体标准差,这样⼀来,u统计量变为t统计量,具体操作如下: 1.关于正态均值常⽤的三对假设为 5.判断 (同前) 注:这个检验法称为t检验。

(三)正态⽅差的假设检验 检验正态⽅差有关命题成⽴与否,⾸先想到要⽤样本⽅差。

在基础上依据抽样分布特点可构造统计量作为检验之⽤。

具体操作如下: 1.关于正态⽅差常⽤的三对假设为 5.判断(同前) 注:这个检验法称为检验。

注:关于正态标准差的假设与上述三对假设等价,不另作讨论。

(四) ⼩结与例⼦ 上述三组有关正态总体参数的假设检验可综合在表1.5-1上,以供⽐较和查阅。

续表 [例1.5-2] 某电⼯器材⼚⽣产⼀种云母带,其厚度在正常⽣产下服从N(0.13,0.0152)。

某⽇在⽣产的产品中抽查了10次,发现平均厚度为0.136,如果标准差不变,试问⽣产是否正常?(取 =0.05)来源:考试通 解:①⽴假设:②由于已知,故选⽤u检验。

③~④根据显著性⽔平 =0.05及备择假设可确定拒绝域为{ >1.96}。

⑤由样本观测值,求得检验统计量: 由于u未落在拒绝域中,所以不能拒绝原假设,可以认为该天⽣产正常。

[例1.5-3] 根据某地环境保护法规定,倾⼊河流的废⽔中⼀种有毒化学物质的平均含量不得超过3ppm。

已知废⽔中该有毒化学物质的含量X服从正态分布。

该地区环保组织对沿河的⼀个⼯⼚进⾏检查,测定每⽇倾⼊河流的废⽔中该物质的含量,15天的记录如下(单位:ppm)3.2,3.2,3.3,2.9,3.5,3.4,2.5,4.3,2.9,3.6,3.2,3.0,2.7,3.5,2.9 试在⽔平上判断该⼚是否符合环保规定? 解:①如果符合环保规定,那么应该不超过3ppm,不符合的话应该⼤于3ppm。

概率论与数理统计假设检验正态总体参数的假设检验(2)

概率论与数理统计假设检验正态总体参数的假设检验(2)

概率论与数理统计第7章假设检验第3讲正态总体参数的假设检验(2)01 两个正态总体参数的假设检验02单侧检验03 p 值检验法—简介本讲内容*21μμ-2221σσ检验目的本节将讨论两个相互独立的正态总体,211(,)X N μσ222(,)Y N μσ的参数检验问题.设是来自总体X 的简单随机样本;112,,,n X X X 是来自总体Y 的简单随机样本;212,,,n Y Y Y 样本均值.X Y 、为两为两样本方差. 显著性水平为α .2212S S 、(3) μ1 , μ2 未知,检验.2222012112::H H σσσσ=≠,(1)σ12,σ22已知,检验.012112::H H μμμμ=≠,这些假设检验可细分为许多种情形,这里只介绍3种最常见的类型:(2)σ12,σ22未知但σ12 =σ22,检验.012112::H H μμμμ=≠,两个正态总体的参数检验,主要有比较两个均值μ1与μ2的大小,比较两个方差σ12与σ22的大小.根据已知条件的不同,由样本观测值求出统计量的观测值u ,然后作判断.确定拒绝域2{}U u α>选取检验统计量221212~(0,1)X YU N n n σσ-=+U 检验法建立假设012112::.H H μμμμ=≠,借鉴上一章区间估计(1) 已知,检验.12μμ-2212,σσ1212~(2)11w X Y T t n n S n n -=+-+122{(2)}T t n n α>+-(2) 未知但σ12 =σ22,检验.2212,σσ12μμ-T 检验法建立假设012112::.H H μμμμ=≠,由样本观测值求出统计量的观测值t ,然后作判断.确定拒绝域选取检验统计量211222~(1,1)S F F n n S =--2212121{(1,1)(1,1) 或}F F n n F F n n αα-<-->--2222012112::H H σσσσ=≠,(3) μ1 , μ2 未知,检验.2212/σσF 检验法建立假设由样本观测值求出统计量的观测值,然后作判断.确定拒绝域选取检验统计量在某种制造过程中需要比较两种钢板的强度,一种是冷轧钢板,另一种双面镀锌钢板。

正态总体的均值和方差的假设检验

正态总体的均值和方差的假设检验
χ
2
(x)
2
2
O 12 /2(n 1) 2 / 2(n 1)
x
P{ χ 2
χ12α / 2(n 1)}
P{ χ 2
χα2/ 2n 1}
α, 2
拒绝域:
W 1 {( x1, x2, , xn ) : χ 2 χ12α / 2(n 1)}
U{( x1,
x2 , ,
xn )
:
2
2 /2
是否可以认为由新工艺炼出的铁水含碳质量分
数的方差仍为0.1082( = 0.05)?
解 检验假设
(1)H0 : 2 0.1082, H1: 2 0.1082 ,
(2)取检验统计量:
χ2
(n 1)Sn*2 σ02
~
χ 2(n 1),(当H0为真时)
由n = 5, = 0.05算得,
χα2/ 2n 1 χ02.0254 11.1, χ12α / 2n 1 χ02.9754 0.484.
问: 若总体的均值 已知,则如何设计假设检验?
n
( Xi μ)2
构造χ 2 i1 σ2
~ χ 2(n)可类似进行检验.
例3 某炼钢厂铁水含碳质量分数X在正常情况下
服从正态分布 N ( μ,σ 2 ),现对操作工艺进行了改 革又测量了5炉铁水,含碳质量分数分别为:
4.421,4.052,4.357,4.287,4.683
t/2 n1 n2 2 t0.025 18 2.10
由| t | 2.49 2.10 t0.025 18 W1,
故拒绝假设H0,认为物品处理前后含脂率的均值 有显著差异。
3. 两正态总体方差的检验
设总体
X
~
N

两个总体的假设检验

两个总体的假设检验

两个总体比例的比较
总结词
当需要对两个总体的比例进行比较时, 可以使用卡方检验或Fisher's精确检验。
详细描述
卡方检验用于比较两个总体的分类比 例,要求分类变量无序且样本量较大; Fisher's精确检验用于比较两个总体的 分类比例,要求分类变量有序或无序 且样本量较小。
两个总体方差的比较
总结词
两个总体的假设检验
目录
• 假设检验的基本概念 • 两个总体参数的假设检验 • 两个总体假设检验的实例 • 假设检验的注意事项 • 总结与展望
假设检验的基本概念
01
定义
假设检验是一种统计方法,用于根据样本数据对总体参数做 出推断。
它基于对总体分布的假设,通过样本数据来检验这些假设是 否成立。
目的
当需要对两个总体的方差进行比较时 ,可以使用Levene's检验或 Bartlett's检验。
详细描述
Levene's检验用于比较两组独立样本 的方差,要求样本相互独立; Bartlett's检验用于比较两组相关样本 的方差,要求样本之间存在配对关系 。
两个总体假设检验的
03
实例
实例一:两个总体均数的比较
样本代表性
除了样本量,样本的代表性也是 关键因素。如果样本不能代表总 体,那么基于样本的推断可能不 准确。
假设检验的局限性
假设检验的误判风险
假设检验存在一定的误判风险,即第一 类错误和第二类错误。第一类错误是指 拒绝了实际上成立的假设,第二类错误 是指接受了实际上不成立的假设。
VS
假设检验的适用范围
假设检验有一定的适用范围,超出这个范 围,检验的结果可能不准确。因此,在应 用假设检验时,需要确保其适用性。

两个正态总体均值差和方差的假设检验

两个正态总体均值差和方差的假设检验

方差齐性检验是检验 两个正态总体方差是 否相等的统计方法。
常用的方差齐性检验 方法有:Levene检验、 Bartlett检验和Welch 检验。
Levene检验基于方差 分析,通过比较不同 组间的方差来判断方 差是否齐性。
Bartlett检验基于 Kruskal-Wallis秩和 检验,通过比较不同 组间的中位数和四分 位距来判断方差是否 齐性。
独立样本的均值检验
1
独立样本的均值检验是用来比较两个独立正态总 体的均值是否存在显著差异的统计方法。
2
常用的独立样本均值检验方法包括t检验和z检验, 其中t检验适用于小样本和大样本,而z检验适用 于大样本。
3
在进行独立样本均值检验时,需要满足独立性、 正态性和方差齐性的假设,以确保检验结果的准 确性和可靠性。
根据研究目的和数据类型,选择合适的统计量 来描述样本数据。
确定临界值
根据统计量的分布和显著性水平,确定临界值。
计算样本统计量
根据样本数据计算所选统计量的值。
做出决策
将样本统计量的值与临界值进行比较,做出接受 或拒绝原假设的决策。
解读结果
根据决策结果解读研究问题,给出结论和建议。
Part
02
两个正态总体均值的假设检验
Part
05
结论与展望
假设检验的优缺点
理论基础坚实
假设检验基于概率论和统计学原理,具有坚实的理论基础。
操作简便
假设检验提供了清晰的步骤和标准,方便研究者进行操作。
假设检验的优缺点
• 实用性强:假设检验广泛应用于各个领域,为科学研究和实践提供了有效的工具。
假设检验的优缺点
01
对数据要求较高
假设检验对数据的分布、样本量 等有一定的要求,不符合条件的 样本可能导致检验结果不准确。

两个总体参数的假设检验(可编辑)

两个总体参数的假设检验(可编辑)

两个总体参数的假设检验主要内容问题作业预习下一节二、两个总体均值比较的t 检验设总体 ,总体 ,且 X与Y 相互独立,与是分别来自总体X与Y 的相互独立的样本,其样本均值与样本方差分别为:检验步骤: 1 建立假设: 2 构造并计算检验统计量两总体方差已知两总体方差未知,但样本量大总体方差未知,但相等总体方差未知,但不相等 3 根据显著性水平?,查相应的临界值表,确定拒绝域与接受域; 4 做出统计判断。

抽样分布临界值临界值 a/2 a/2 拒绝域拒绝域接受域 1 - ? 样本统计量例6-9 设甲、乙两台机器生产同类型药品,其生产的药品重量 g 分别服从方差的正态分布。

从甲机器生产的药品中随机地取出35件,其平均重量,又独立地从乙机器生产的药品中随机地取出45件,其平均重量,问这两台机器生产的药品就重量而言有无显著差异?()分析: 1 建立假设: 2 构造并计算检验统计量解: 3 ?=0.01,查临界值表,得: 4 做出统计判断:所以拒绝H0,接受H1. 例6-8.为考察甲、乙两批药品中某种成分的含量 % , 现分别从这两批药品中抽取9个样品进行测定,测得其样本均值和样本方差分别为、,假设它们都服从正态分布,试检验甲、乙两批药品中该种成分含量是否有显著差异?分析:解: 1 方差齐性检验:构造并计算检验统计量建立假设: 统计判断 ? 0.05,得:所以接受H0,拒绝H1. 医学统计学* * * * 医药数理统计方法高等数学复习1: 1、建立检验假设; 4.做出统计推断; 3.根据显著性水平?,确定拒绝域; 2.确定检验统计量及其分布,并根据样本值计算检验统计量的值;假设检验的一般步骤 1.正态总体均值的假设检验 u 统计量 t 统计量近似服从 u 统计量复习2: t 统计量 2.配对比较总体均值的 t 检验 3.正态总体方差的检验统计量四、正态总体方差的检验设总体,为抽自总体X的样本,总体均值和方差未知,则检验统计量检验步骤为: 1 建立假设: 2 在H0成立的条件下,构造检验统计量 3 对于给定的显著水平?,查分布临界值表,得双侧临界值和; 4 统计判断:若或,拒绝H0,接受H1;双侧若,接受H0,拒绝H1;例6-7.根据长期正常生产的资料可知,某药厂生产的利巴韦林药片重量服从正态分布,其方差为0.25,现从某日生产的药品中随机抽出20片,测得样本方差为0.43,试问该日生产的利巴韦林药片的重量波动与平时有无差异?()解: 1 建立假设: 2 在H0成立的条件下,构造计算统计量 3 显著水平,查表,得: 4统计判断:所以接受H0,拒绝H1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8 - 19
统计学 两个总体比例之差的Z检验
STATISTICS (第三版)
(例题分析)
结论:检验的p值为0.042,小于规定的显著性水平0.05,因
8 - 2此0 拒绝H0,认为“男生赞成比例显著地小于女生”即样本 提供的证据支持调查者的看法。
ST(A第T三IS版T(IC)两S 独立样本,用Excel进行检验步骤)
第1步:2003Excel 中选择“工具”下拉菜单,2010版 Excel中选择“数据”,并选择“数据分析”选项 第2步:选择“t检验,双样本异方差假设” 第3步:当出现对话框后
在“变量1的区域”方框内键入数据区域 在“变量2的区域”方框内键入数据区域
统计学
STATISTICS
(第三版)
6.3 两个总体参数的检验
6.3.2 两个总体均值之差的检验 6.3.3 两个总体比例之差的检验
8 -1
统计学
STATISTICS
(第三版)
两个正态总体参数的检验
两个总体的检验
均值
独立样本 配对样本
比例
*方差
Z 检验 t 检验 t 检验
(大样本) (小样本) (小样本)
t检验:双样本等
统计学 两个总体均值之差的检验
STATISTICS
(第三版)
(两独立样本)---t检验:双样本等方差假设
Excel的输出结果:
因为检验的
p值=0.437>α=0.05
决策:不拒绝原 假设
结论:样本提供的 证据不能推翻“男 性与女性信用卡平 均余额无差异”的 说法。
8 -8
统计学 两个总体均值之差的检验
8 - 11
统计学
STATISTICS

【例】一个以减肥为主要目标的健美俱乐部声称, 参加其训练班至少可以使减肥者平均体重减重 8.5kg以上。该减肥中心为了验证该宣称,调查人 员随机抽取了10名参加者,得到他们的体重记录如 下表:
训练前 94.5 101 110 103.5 97 88.5 96.5 101 104 116.5
在“变量1的区域”方框内键入数据区域 在“变量2的区域”方框内键入数据区域 在“假设平均差”方框内键入8.5 显著性水平保持默认值
8 - 14
统计学
STATISTICS (第三版)
两个总体比例之差的检验
8 - 15
统计学
STATISTICS
(第三版)
两个总体比例之差的Z检验
1. 假定条件
两个总体是独立的,样本量充分大(nπ≥10, n(1-π)≥10)
统计学 两个总体方差是否相等的检
STATISTICS

(第三版)
(两独立样本)
21, 22分别表示男性和女性信用卡账户的平 均余额
H0: σ21 = σ22 (无差异) H1: σ21 ≠ σ22 (有差异) = 0.05 Excel---数据分析---F检验: 双样本方差分析
8 -6
统计学
STATISTICS
(第三版)
两个总体方差是否相等的检验
(Excel 操作)
xcel---数据分析---F检验: 双样本方差分析 因为p值
=0.45>α=0.05,
因此不拒绝H0
结论:不拒绝“男 性和女性顾客账户 余额的标准差相等 ”的结论,即认为 两总体的方差不存 在显著差异。
所以对两总体均值
进行检验时,采用
8 -7
训练后 85 89.5 101.5 96 86 80.5 87 93.5 93 102
在 = 0.05的显著性水平下,调查结果是否支持该 俱乐部的声称?
8 - 12
统计学
STATISTICS
(第三版)
两总体均值之差的检验 配对样本 (例题分析)
H0: D≤8.5 H1: D > 8.5 = 0.05
2. 检验统计量
Z
8 - 16
( p1 p2 ) (1 2 ) ~ N (0,1)
P1(1 P1) P2 (1 P2 )
n1
n2
统计学
STATISTICS
(第三版)
两个总体比例之差的检验
(假设的形式)
假设
H0 H1
没有差异 有差异
1- 2 = 0
研究的问题
比例1 ≥比例2
比例1 < 比例2
8 - 18
统计学
STATISTICS
(第三版)
两个总体比例之差的Z检验
(例题分析)
H0: 1- 2 ≥0 (男生的赞成比例大于等于女生的赞成比例)
H1: 1- < 0 (有差异) = 0.05 n1 = 200,k1=54
安装Excel的插件Phstat
n2 = 200 , k2=70 Excel—--PHStat--
Excel中选择
“t检验:平 均值的成对二 样本分析”
右侧检验的p值=0.04<在 = 0.05, 因此拒绝原假设
8 - 13
结论:在 = 0.05下,认为 健美俱乐部的声称是正确的。
统计学 两个总体均值之差的检验
STATISTICS
(第三版) (匹配样本) (用Excel进行检验)
第1步:打开数据文件 第2步:选择“数据分析”选项 第3步:选择“t检验:平均值的成对二样本分析” 第4步:当出现对话框后
8 -2
Z 检验
F 检验
统计学
STATISTICS (第三版)
独立样本总体均值之差的检验
8 -3
统计学
STATISTICS
(第三版)
两个总体均值之差的检验
(两独立样本)
【例】某商业银行的市场部门最近对银行客户的 一个样本进行了一项研究,研究内容是男性信 用卡持卡人和女性信用卡持卡人在信用卡账户 余额(已消费未还款的金额)上平均而言是否 存在差异。如果研究发现这两组客户之间存在 差异,他们就会对账户余额低的那一组顾客设 计有针对性的促销活动,以提高他们对信用卡 的 使 用 量 。 这 些 数 据 在 文 件 capital.xls 中 , 试 在显著性水平α=0.05时检验,男女顾客的信用 卡账户余额平均而言是否显著不同。
在“假设平均差”的方框内键入0 在“α(A)”框内键入0.05 在“输出选项”中选择输出区域 选择“确定”
8 -9
统计学
STATISTICS (第三版)
两个匹配(或配对)样本的均值检验
8 - 10
统计学
STATISTICS
(第三版)
两个总体均值之差的检验
(匹配样本)
检验两个总体的均值的差异
采用的两组样本数据相关,来自同一组研 究对象前后的测量数据,被称为配对样本 或匹配样本
1- 2 0
总体1 ≤比例2
总体1 > 比例2
1- 2 0
1- 2 0 1- 2 <0 1- 2 >0
8 - 17
统计学 两个总体比例之差的Z检验
STATISTICS (第三版)
(例题分析)
例题6.13---教材P113
一所大学准备采取一项学生在宿舍上网收费的措
施,为了解男女学生对这一措施的看法是否存在差 异,分别抽取了200名男学生和200名女学生进行 调查,其中的一个问题是:“你是否赞成采取上网 收费的措施?”其中,男学生表示赞成的比例为 27%,女学生表示赞成的比例为35%。调查者认为 ,男学生中表示赞成的比例显著低于女学生,取显 著性水平为α=0.05,样本提供的证据是否支持调查 者的看法。
8 -4
统计学
STATISTICS
(第三版)
两个总体均值之差的检验
(两独立样本)
1, 2分别表示男性和女性信用卡账户的平均 余额
H0: 1- 2 = 0 (无差异) H1: 1- 2 0 (有差异) = 0.05 Excel ---数据分析:
(1) t-检验:双样本等方差假设 或 (2)t-检验:双样本异方差假设 需要利用: F检验: 双样本方差分析 来选择(1) 或8 -(52)
相关文档
最新文档