数学建模方法及其应用
数学建模的方法和应用前景
![数学建模的方法和应用前景](https://img.taocdn.com/s3/m/edf68b8464ce0508763231126edb6f1aff007193.png)
数学建模的方法和应用前景数学建模是一门将数学、计算机科学、统计学、物理和工程学等交叉学科结合起来的学科。
它的基础是数学,通过利用数学模型,对现实世界的问题进行深入研究,提出解决方案和预测结果。
数学建模在解决实际问题方面具有广泛的应用前景,已成为一个重要的学科。
本文将探讨数学建模的方法及其应用前景。
数学建模的方法数学建模的方法主要有三个方面:问题的分析、建立模型和模型的求解。
问题的分析是解决任何问题的第一步,也是数学建模的第一步。
了解问题的背景和原因,找出问题的核心,确定模型的基本架构和分析问题的重点,是问题分析的主要内容。
建立模型是数学建模的关键步骤。
通过了解问题的实际情况,寻找问题与数学知识的联系,将问题抽象成可以用数学语言描述的形式。
在这个过程中,需要选择合适的数学模型,包括方程、函数、图形等。
模型的求解是数学建模的核心部分。
通过对模型进行求解,可以得到问题的解答。
这个过程中,需要运用数学知识和技巧,包括微积分、线性代数、优化等。
同时,还需要采用计算机模拟等方法来验证结果的正确性。
数学建模的应用前景数学建模在各个领域中都有广泛的应用。
例如,物理学家利用数学模型研究天体和宇宙;生物学家利用数学模型研究生命的进化和发展;经济学家利用数学模型研究市场和交易等。
下面将具体介绍数学建模在几个领域中的应用前景。
环境保护环境保护是一个全球性的问题,涉及到空气、水、土壤等多个方面。
数学建模可以在空气和水质监测、环境预测和风险评估等方面得到广泛的应用。
例如,可以通过建立空气质量或水质量模型,预测和评估环境污染的程度和影响范围。
同时,还可以利用数学模型研究气候变化和海平面上升等重要环境问题。
医疗保健医疗保健也是一个重要的领域,其中数学建模发挥了重要作用。
例如,可以利用数学模型预测疾病的传播和爆发情况,将这些信息用于制定针对性的预防措施。
同时,还可以利用数学模型研究影响健康的因素,如食品安全、医疗资源配置、营养与疾病发生的关系等。
数学建模方法与应用
![数学建模方法与应用](https://img.taocdn.com/s3/m/56d877ba03d276a20029bd64783e0912a3167c77.png)
数学建模方法与应用数学建模是一种将现实问题转化为数学模型、通过数学方法进行求解与分析的过程。
它是数学与实际问题相结合的一种高级应用领域,涉及数学、计算机科学、物理学、经济学等多个学科的知识。
本文将介绍数学建模的基本方法和一些常见的应用领域。
一、数学建模的方法1.问题描述与分析:在进行数学建模前,首先需要对实际问题进行准确的描述和分析。
这包括确定问题的目标、特征和约束条件,并明确问题的可行性和难度。
2.建立数学模型:将实际问题转化为数学问题,并建立相应的数学模型。
常见的数学模型包括线性模型、非线性模型、优化模型等。
根据实际问题的特点选择合适的模型进行建立。
3.模型求解:使用数学方法对建立的数学模型进行求解。
常见的求解方法包括解析解法、数值解法、优化算法等。
根据问题的要求和模型的特点选择合适的求解方法。
4.模型评价与验证:对求解结果进行评价和验证,判断模型对实际问题的适应性和准确性。
通过与实际数据的比较,对模型进行修正和改进,提高模型的可靠性和实用性。
二、数学建模的应用领域1.物理学与工程学:数学建模在物理学和工程学中的应用非常广泛。
例如,在物理学中,可以利用数学模型研究天体运动、电磁场分布等问题。
在工程学中,可以使用数学模型分析材料的力学性能、流体的流动规律等。
2.经济学与金融学:数学建模在经济学和金融学中有着重要的作用。
例如,可以使用数学模型分析经济增长、市场供求关系等经济问题。
在金融学中,可以利用数学模型研究股票价格预测、风险管理等问题。
3.生物学与医学:数学建模在生物学和医学领域中的应用也越来越多。
例如,在生物学研究中,可以使用数学模型探究生物体内的化学反应、生物发育等过程。
在医学领域中,可以利用数学模型帮助诊断疾病、预测病情等。
4.社会学与心理学:数学建模在社会学和心理学中的应用正在不断扩大。
例如,在社会学研究中,可以使用数学模型分析人口变动、社会网络等问题。
在心理学领域中,可以利用数学模型研究认知过程、心理评估等。
数学建模思想方法大全及方法适用范围
![数学建模思想方法大全及方法适用范围](https://img.taocdn.com/s3/m/f28fdc85a0116c175f0e4858.png)
数学建模思想方法大全及方法适用范围第一篇:方法适用范围一、统计学方法1.1 多元回归1、方法概述:在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。
2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx 可以转化为 y=u u=lnx 来解决;所以这里主要说明多元线性回归应该注意的问题。
3、注意事项在做回归的时候,一定要注意两件事:(1)回归方程的显著性检验(可以通过 sas 和spss 来解决)(2)回归系数的显著性检验(可以通过 sas 和spss 来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。
4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系;(2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)1.2 聚类分析1、方法概述该方法说的通俗一点就是,将 n 个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取m 聚类中心,通过研究各样本和各个聚类中心的距离Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas 软件或者spss 软件来做聚类分析,就可以得到相应的动态聚类图。
这种模型的的特点是直观,容易理解。
2、分类聚类有两种类型:(1) Q 型聚类:即对样本聚类;(2) R 型聚类:即对变量聚类;通常聚类中衡量标准的选取有两种:(1)相似系数法(2)距离法聚类方法:(1)最短距离法(2)最长距离法(3)中间距离法(4)重心法(5)类平均法(6)可变类平均法(7)可变法(8)利差平均和法在具体做题中,适当选区方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。
数学建模方法与应用
![数学建模方法与应用](https://img.taocdn.com/s3/m/bd25086559fb770bf78a6529647d27284b7337fd.png)
数学建模方法与应用
数学建模是一种将实际问题转化为数学问题并通过数学方法求解的过程。
它通常包含以下步骤:
1. 设计数学模型:将实际问题转化为数学形式,明确变量、参数和约束条件,建立一个数学模型。
2. 求解数学模型:使用数学方法求解模型,通常包括解析方法、数值方法和仿真方法等。
3. 模型检验:对求解结果进行验证和比较,检验模型的准确性和实用性。
4. 模型分析和应用:分析模型的优缺点、适用范围和局限性,并将其应用到实际问题中。
数学建模方法涉及到各种数学学科,如微积分、代数、概率论、数值计算等,并应用于各种领域,如自然科学、工程技术、经济管理、医学卫生等。
其应用包括但不限于以下方面:
1. 自然科学领域:天文学、地理学、生物学、物理学、化学等领域的数据分析、模式识别和预测等问题。
2. 工程技术领域:机械、电子、航空、航天、建筑等领域的系统设计、优化、控制和决策等问题。
3. 经济管理领域:财务、市场、统计、管理等领域的企业决策、投资分析、风险评估和趋势预测等问题。
4. 医学卫生领域:疾病预测、治疗方案选取、医疗资源规划等问题。
数学建模方法的应用是多样化和广泛的,它不仅可以帮助人们更好地理解问题本质,还有助于提高决策的精度、速度和效率。
数学建模方法及其应用
![数学建模方法及其应用](https://img.taocdn.com/s3/m/41ceb2eaac51f01dc281e53a580216fc700a538a.png)
数学建模方法及其应用
数学建模方法是将现实问题抽象化为数学模型,通过符号、计算、推理和实验等手段进行研究解决问题的方法。
数学建模方法的应用十分广泛,包括经济学、工程学、物理学、计算机科学、生物学等领域。
1. 经济学领域:数学建模方法在经济学中的应用包括宏观经济模型、金融市场模型、产业研究模型等,可以帮助经济学家预测经济走势、分析市场趋势、评估政策效果等。
2. 工程学领域:数学建模方法在工程学中的应用包括流体力学模型、热传导模型、结构力学模型、控制系统模型等,可以用来优化设计、预测性能、进行稳定性分析等。
3. 物理学领域:数学建模方法在物理学中的应用包括量子力学模型、场论模型、统计物理模型等,可以帮助物理学家研究物理现象、发掘物理规律、解释实验结果等。
4. 计算机科学领域:数学建模方法在计算机科学中的应用包括图论模型、优化算法模型、人工智能模型等,可以用于解决最优化问题、分类问题、自然语言处理等任务。
5. 生物学领域:数学建模方法在生物学中的应用包括遗传学模型、成因变异模
型、癌症模型等,可以用于预测疾病风险、优化治疗方案、研究基因组学等问题。
总之,数学建模方法是一种十分有价值的计算工具,在各个领域都得到广泛的应用和推广。
数学建模算法分类及应用
![数学建模算法分类及应用](https://img.taocdn.com/s3/m/4d74963d0912a21614792911.png)
1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)1十类常用算法1. 蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。
数学建模的基本方法和应用
![数学建模的基本方法和应用](https://img.taocdn.com/s3/m/5c8d7fabb9f67c1cfad6195f312b3169a451eafb.png)
数学建模的基本方法和应用数学建模是将实际问题转化为数学模型,并通过数学方法进行分析、求解的过程。
它在现代科学和工程领域中发挥着重要的作用。
本文将介绍数学建模的一些基本方法和应用。
一、问题的数学建模数学建模过程通常包括问题描述、建立数学模型、求解和验证模型等步骤。
首先,对于给定的实际问题,我们需要准确地描述问题的背景和要解决的核心问题。
然后,根据问题的特点和要求,选择合适的数学模型来描述问题。
数学模型可以是方程、函数、图形或者统计模型等。
接下来,我们使用数学方法对模型进行求解,并在解的基础上得出对问题的回答。
最后,我们需要验证我们的模型和解是否符合实际情况,通过与实际数据进行比较和分析来验证模型的有效性。
二、常用的数学建模方法1. 数理统计法数理统计是利用数学统计方法对实际数据进行分析和推断的过程。
在建模过程中,我们可以使用数理统计方法对数据进行收集、整理和清洗,然后通过统计分析来描述数据的分布规律,从而得到对问题的解答。
2. 最优化方法最优化方法是寻找最优解的数学方法。
在建模过程中,我们常常需要优化某个目标函数,例如最大化利润、最小化成本等。
通过建立数学模型和应用最优化方法,我们可以求解出最优解,并得到对问题的最佳回答。
3. 微分方程模型微分方程是描述变量之间变化关系的数学模型。
在建模过程中,我们经常遇到一些动态变化的问题,例如人口增长、化学反应等。
通过建立微分方程模型,我们可以研究变量之间的关系,预测未来的发展趋势,并得出对问题的解答。
4. 离散数学模型离散数学模型是以离散对象和离散关系为基础的数学模型。
在建模过程中,我们常常需要处理离散的数据和变量,例如图论、排队论等。
通过建立离散数学模型,我们可以对离散问题进行分析和求解,得出对问题的解答。
三、数学建模的应用领域数学建模在各个领域都有广泛的应用,例如:1. 自然科学领域:物理学、化学、生物学等领域都需要通过数学建模来研究和解决实际问题,例如天体力学、药物代谢等。
数学建模方法及其应用
![数学建模方法及其应用](https://img.taocdn.com/s3/m/eebb3b685bcfa1c7aa00b52acfc789eb162d9e5c.png)
一、层次分析法层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.(一) 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2.测度原理决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理1层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题.(二) 层次分析法的基本步骤层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1].1. 成对比较矩阵和权向量为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.假设要比较某一层个因素对上层一个因素的影响,每次取两个因素和,用表示和n n C C ,,1 O i C j C ij a i C 对的影响之比,全部比较结果可用成对比较阵j C O 表示,称为正互反矩阵.()1,0,ij ij ji n nijA a a a a ⨯=>=A 一般地,如果一个正互反阵满足:A (1),ij jk ik a a a ⋅=,,1,2,,i j k n = 则称为一致性矩阵,简称一致阵.容易证明阶一致阵有下列性质:A n A ①的秩为1,的唯一非零特征根为;A A n ②的任一列向量都是对应于特征根的特征向量.A n 如果得到的成对比较阵是一致阵,自然应取对应于特征根的、归一化的特征向量(即分量之和为1)表n示诸因素对上层因素的权重,这个向量称为权向量.如果成对比较阵不是一致阵,但在不一致的n C C ,,1 O A 容许范围内,用对应于最大特征根(记作)的特征向量(归一化后)作为权向量,即满足:A λw w (2)Aw w λ=直观地看,因为矩阵的特征根和特征向量连续地依赖于矩阵的元素,所以当离一致性的要求不远时,A ij a ij a 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.A 2. 比较尺度当比较两个可能具有不同性质的因素和对于一个上层因素的影响时,采用Saaty 等人提出的尺i C j C O 91-度,即的取值范围是及其互反数.ij a 9,,2,1 91,,21,1 3. 一致性检验成对比较阵通常不是一致阵,但是为了能用它的对应于特征根的特征向量作为被比较因素的权向量,其λ不一致程度应在容许范围内.若已经给出阶一致阵的特征根是,则阶正互反阵的最大特征根,而当时是一致阵.所以n n n A n λ≥n λ=A 比大得越多,的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用数值λn A n λ-的大小衡量的不一致程度.Saaty 将A3(3)1nCI n λ-=-定义为一致性指标.时为一致阵;越大的不一致程度越严重.注意到的个特征根之和恰好等0CI =A CI A A n 于,所以相当于除外其余个特征根的平均值.n CI λ1n -为了确定的不一致程度的容许范围,需要找到衡量的一致性指标的标准,又引入所谓随机一致性指A A CI 标,计算的过程是:对于固定的,随机地构造正互反阵,然后计算的一致性指标.RI RI n A 'A 'CI 表1 随机一致性指标的数值RI 表中时,是因为阶的1,2n =0RI =2,1正互反阵总是一致阵.对于的成对比较阵,将它3n ≥A 的一致性指标与同阶(指相同)CI n 的随机一致性指标之比称为一致性比率,当RI CR (4)0.1CICR RI=<时认为的不一致程度在容许范围之内,可用其特征向量作为权向量.A 对于利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已A 有的进行修正.A n1234567891011RI00.580.901.121.241.321.411.451.491.514. 组合权向量由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有层,则第层对第一层(设只有个因素)的组合权向量满足:s k 1 (5)()()()1,3,4,k k k w W w k s -== 其中是以第层对第层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:()k W k 1k - (6)()()()()()132sss w W W W w -= 5. 组合一致性检验在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据.组合一致性检验可逐层进行.如第层的一致性指标为(是第层因素的数目),随机一致p ()()p n p CI CI ,,1 n 1-p 性指标为,定义()()1,,p p n RI RI ()()()()11,,P p p p n CI CI CI w -⎡⎤=⎣⎦ ()()()()11,,p p p p n RI RI RI w-⎡⎤=⎣⎦ 则第层的组合一致性比率为:p5(7)()()(),3,4,,pp p CI CRp s RI== 第层通过组合一致性检验的条件为.p ()0.1p CR <定义最下层(第层)对第一层的组合一致性比率为:s (8)()2*sP p CR CR ==∑对于重大项目,仅当适当地小时,才认为整个层次的比较判断通过一致性检验.*CR 层次分析法的基本步骤归纳如下:(1) 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有个因素,最下层通常为1方案或对象层,中间可以有个或几个层次,通常称为准则或指标层,当准则过多时(比如多于个)应进一19步分解出子准则层.(2) 构造成对比较阵 从层次结构模型的第层开始,对于从属于上一层每个因素的同一层诸因素,用成2对比较法和比较尺度构造成对比较阵,直到最下层.91-(3) 计算权向量并做一致性检验 对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,重新构造成对比较阵.(4)计算组合权向量并做组合一致性检验利用公式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率较大的成对比较阵.CR(三) 层次分析法的优点1.系统性层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具.2.实用性层次分析把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广.同时,这种方法将决策者与决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性.3.简洁性具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,且所得结果简单明确,容易为决策者了解和掌握.(四) 层次分析法的局限性层次分析法的局限性可以用囿旧、粗略、主观等词来概括.第一,它只能从原有的方案中选优,不能生成新方案;第二,它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;第三,从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受.当然,采取专家群体判断的方法是克服这个缺点的一种途径.(五) 层次分析法的若干问题层次分析法问世以来不仅得到广泛的应用而且在理论体系、计算方法等方面都有很大发展,下面从应用的角度讨论几个问题.1.正互反阵最大特征根和对应特征向量的性质成对比较阵是正互反阵.层次分析法中用对应它的最大特征根的特征向量作为权向量,用最大特征根定义一致性指标进行一致性检验.这里人们碰到的问题是:正互反阵是否存在正的最大特征根和正的特征向量;一致性指标的大小是否反映它接近一致阵的程度,特别,当一致性指标为零时,它是否就为一致阵.下面两个定理可以回答这些问题.定理1对于正矩阵(的所有元素为正数)A A1)的最大特征根是正单根;Aλ2)对应正特征向量(的所有分量为正数);λwω73),其中,是对应的归一化特征向量.w IA I I A k k k =T ∞→lim ()T=1,1,1 I w λ定理2 阶正互反阵的最大特征根;当时是一致阵.n A n λ≥n λ=A 定理2和前面所述的一致阵的性质表明,阶正互反阵是一致阵的充要条件为 的最大特征根.n A A n λ=2. 正互反阵最大特征根和特征向量的实用算法众所周知,用定义计算矩阵的特征根和特征向量是相当困难的,特别是矩阵阶数较高时.另一方面,因为成对比较阵是通过定性比较得到的比较粗糙的量化结果,对它精确计算是不必要的,下面介绍几种简单的方法.(1) 幂法 步骤如下:a .任取维归一化初始向量n ()0w b .计算()()1,0,1,2,k k wAw k +== c .归一化,即令()1k w+ ()()()∑=+++=ni k ik k ww1111~~ωd .对于预先给定的精度,当 时,即为所求的特征向量;否则返回bε()()()1||1,2,,k k i i i n ωωε+-<= ()1k w +e.计算最大特征根()()111k n i k i in ωλω+==∑9这是求最大特征根对应特征向量的迭代法,可任选或取下面方法得到的结果.()0w (2) 和法 步骤如下:a.将的每一列向量归一化得A 1nij ij iji a aω==∑ b .对按行求和得ij ω1ni ij j ωω==∑ c .将归一化即为近似特征向量.i ω()*121,,,ni i n i w ωωωωωωT===∑ d.计算,作为最大特征根的近似值.()11n ii iAw n λω==∑这个方法实际上是将的列向量归一化后取平均值,作为的特征向量.A A (3) 根法 步骤与和法基本相同,只是将步骤b 改为对按行求积并开次方,即.根法是将和法ij ω n 11nn i ij j ωω=⎛⎫= ⎪⎝⎭∏ 中求列向量的算术平均值改为求几何平均值.3. 为什么用成对比较阵的特征向量作为权向量当成对比较阵是一致阵时,与权向量的关系满,那么当不是一致阵时,权向量A ij a ()T =n w ωω,,1 iij ja ωω=A的选择应使得与相差尽量小.这样,如果从拟合的角度看确定可以化为如下的最小二乘问题:w ij a ijωωw (9)()21,,11min i nniij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ 由(9)式得到的最小二乘权向量一般与特征根法得到的不同.因为(9)式将导致求解关于的非线性方程组,i ω计算复杂,且不能保证得到全局最优解,没有实用价值.如果改为对数最小二乘问题:(10)()21,,11min ln ln i nniij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ 则化为求解关于的线性方程组.可以验证,如此解得的恰是前面根法计算的结果.ln i ωi ω特征根法解决这个问题的途径可通过对定理2的证明看出.4. 成对比较阵残缺时的处理专家或有关学者由于某种原因无法或不愿对某两个因素给出相互比较的结果,于是成对比较阵出现残缺.应如何修正,以便继续进行权向量的计算呢?11一般地,由残缺阵构造修正阵的方法是令()ij A a =()ij Aa = ,,0,,1,ij ij ij ij i i a a i j a a i j m m i i jθθθ≠≠⎧⎪==≠⎨⎪+=⎩ 为第行的个数,(11)表示残缺.已经证明,可以接受的残缺阵的充分必要条件是为不可约矩阵.θA A (六) 层次分析法的广泛应用层次分析法在正式提出来之后,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用.从处理问题的类型看,主要是决策、评价、分析、预测等方面. 这个方法在20世纪80年代初引入我国,很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用.层次分析法在求解某些优化问题中的应用[5]举例 假设某人在制定食谱时有三类食品可供选择:肉、面包、蔬菜.这三类食品所含的营养成分及单价如表所示表 肉、面包、蔬菜三类食品所含的营养成分及单价2食品维生素A/(IU/g)维生素B/(mg/g)热量/(kJ/g)单价/(元/g )肉面包蔬菜0.3527250.00210.00060.002011.9311.511.040.02750.0060.0.007该人体重为kg,每天对各类营养的最低需求为:55维生素A 国际单位 (IU)7500维生素B mg1.6338热量 R kJ8548.5考虑应如何制定食谱可使在保证营养需求的前提下支出最小?用层次分析法求解最优化问题可以引入包括偏好等这类因素.具体的求解过程如下:①建立层次结构②根据偏好建立如下两两比较判断矩阵表3 比较判断矩阵13W D ED 13E311,,,主特征向量max 2λ=10CI =100.1CR =<()0.75,0.25W T=故第二层元素排序总权重为()10.75,0.25W T=表4 比较判断矩阵D ABR A 112B 112R5.05.01,主特征向量111max 1113,0,0,0.58CI CR RI λ====()0.4,0.4,0.2W T=故相对权重()210.4,0.4,0.2,0P T=③ 第三层组合一致性检验问题因为,()()2111211112120;0.435CI CI CI W RI RI RI W ====212200.1CR CR CI RI =+=<故第三层所有判断矩阵通过一致性检验,从而得到第三层元素维生素A 、维生素B 、热量Q 及支出的总权重E15为:()()221221120.3,0.3,0.15,0.25W P W P P W T===求第四层元素关于总目标的排序权重向量时,用到第三层与第四层元素的排序关系矩阵,可以用原始W 的营养成分及单价的数据得到.注意到单价对人们来说希望最小,因此应取各单价的倒数,然后归一化.其他营养成分的数据直接进行归一化计算,可得表5表5 各营养成分数据的归一化食品维生素A维生素B 热量R单价F肉0.0139 0.44680.48720.1051面包0.00000.12770.47020.4819蔬菜0.98610.42550.04260.4310则最终的第四层各元素的综合权重向量为:,结果表明,按这个人的偏好,肉、()3320.2376,0.2293,0.5331W P W T==面包和蔬菜的比例取较为合适.引入参数变量,令,,,0.2376:0.2293:0.533110.2376x k =20.2293x k =30.5331x k =代入()1LP 123min 0.02750.0060.007f x x x =++131231231230.352725.075000.00210.00060.002 1.6338..(1)11.930011.5100 1.048548.5,,,0x x x x x s t LP x x x x x x +≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩则得kf 0116.0min =()13.411375000.0017 1.6338..26.02828548.50k k s t LP k k ≥⎧⎪≥⎪⎨≥⎪⎪≥⎩容易求得,故得最优解;最优值,即肉g ,面1418.1k =()*336.9350,325.1650,755.9767x T=*16.4497f =336.94g ,蔬菜g ,每日的食品费用为元.325.17755.9816.45总之,对含有主、客观因素以及要求与期望是模糊的优化问题,用层次分析法来处理比较适用.二、模糊数学法模糊数学是1965年美国控制论专家L.A.Zadeh创立的.模糊数学作为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判等各方面.在气象、结构力学、控制、心理学方面已有具体的研究成果.(一) 模糊数学的研究内容一一一研究模糊数学的理论,以及它和精确数学、随机数学的关系;一一一研究模糊语言和模糊逻辑,并能作出正确的识别和判断;一一一研究模糊数学的应用.(二) 模糊数学在数学建模中应用的可行性1.数学建模的意义在于将数学理论应用于实际问题[6].而模糊数学作为一种新的理论,本身就有其巨大的应用背景,国内外每年都有大量的相关论文发表,解决了许多实际问题.目前在数学建模中较少运用模糊数学方法的原因不在于模糊数学理论本身有问题,而在于最新的研究成果没有在第一时间进入数学建模的教科书中,就其理论本身所具有的实用性的特点而言,模糊数学应该有助于我们解决建模过程中的实际问题.2.数学建模的要求是模型与实际问题尽可能相符.对实际问题有这样一种分类方式:白色问题、灰色问题和黑色问题.毫无疑问,引进新的方法对解决这些问题大有裨益.在灰色问题和黑色问题中有很多现象是17用“模糊”的自然语言描述的.在这种情况下,用模糊的模型也许更符合实际.3. 数学建模活动的目的之一是培养学生的创新精神.用新理论、新方法解题应该受到鼓励.近年来,用神经网络法、层次分析法等新方法建立模型的论文屡有获奖,这也说明了评审者对新方法的重视.我们相信,模糊数学方法应该很好,同样能够写出优秀的论文.(三) 模糊综合评判法中的最大隶属原则有效度在模糊统计综合评判中,如何利用综合评判结果向量,其中, ,为()12,,,m b b b b =01j b <<m 可能出现的评语个数,提供的信息对被评判对象作出所属等级的判断,目前通用的判别原则是最大隶属原则[7].在实际应用中很少有人注意到最大隶属原则的有效性问题,在模糊综合评判的实例中最大隶属原则无一例外地被到处搬用,然而这个原则并不是普遍适用的.最大隶属原则有效度的测量1. 有效度指标的导出在模糊综合评判中,当时,最大隶属原则最有效;而在11max 1,1nj j j n j b b ≤≤===∑()1max 01,j j nb c c ≤≤=<<时,最大隶属原则完全失效,且越大(相对于而言),最大隶属原则也越有效.由此可1njj bnc ==∑1max j j nb ≤≤1njj b=∑19认为,最大隶属原则的有效性与在中的比重有关,于是令:1max j j nb ≤≤1njj b=∑ (12)11max njjj nj b bβ≤≤==∑显然,当时,则为的最大值,当, 时,有为11max 1,1nj j j n j b b ≤≤===∑1β=β()1max 01j j nb c c ≤≤=<<1nj j b nc ==∑1n β=的最小值,即得到的取值范围为:.由于在最大隶属原则完全失效时,而不为,所以不宜ββ11n β≤≤1n β=0直接用值来判断最大隶属原则的有效性.为此设:β (13)()()11111n n n n βββ--'==--则可在某种程度上测定最大隶属原则的有效性.而最大隶属原则的有效性还与(的含义是β'j n j b ≤≤1sec j nj b ≤≤1sec 向量各分量中第二大的分量)的大小有很大关系,于是我们定义:b (14)11sec njjj nj b bγ≤≤==∑可见: 当时,取得最大值.()1,1,0,0,,0b = γ12当时,取得最小值.()0,1,0,0,,0b = γ0即的取值范围为,设.一般地,值越大最大隶属原则有效程度越高;而值越大,γ012γ≤≤()02120γγγ-'==-β'γ'最大隶属原则的有效程度越低.因此,可以定义测量最大隶属原则有效度的相对指标:(15)()112121n n n n βββαγγγ'--⎛⎫===⎪'--⎝⎭使用指标能更准确地表明实施最大隶属原则的有效性.α2. 指标的使用α从指标的计算公式看出与成反比,与成正比.由与的取值范围,可以讨论的取值范围:ααγββγα当取最大值,取最小值时,将取得最小值;γβα0当取最小值,取最大值时,将取得最大值:因为 ,所以可定义时,.即:γβα0limγα→=+∞0γ=α=+∞.0α≤<+∞由以上讨论,可得如下结论:当 时,可认定施行最大隶属原则完全有效;当时,可认为α=+∞1α≤<+∞施行最大隶属原则非常有效;当时,可认为施行最大隶属原则比较有效,其有效程度即为值;当0.51α≤<α21时可认为施行最大隶属原则是最低效的;而当时,可认定施行最大隶属原则完全无效.有了测00.5α<<0α=量最大隶属原则有效度的指标,不仅可以判断所得可否用最大隶属原则确定所属等级,而且可以说明施行最大隶属原则判断后的相对置信程度,即有多大把握认定被评对象属于某个等级.讨论a . 在很多情况下,可根据值的大小来直接判断使用最大隶属原则的有效性而不必计算值.根据与βαα之间的关系,当,且时,一定存在.通常评价等级数取和之间,所以这一条件往往β0.7β≥4n >1α>494n >可以忽略,只要就可免算值,直接认定此时采取最大隶属原则确定被评对象的等级是很有效的.0.7β≥αb . 如果对进行归一化处理而得到,则可直接根据进行最大隶属原则的有效度测量.()12,,,m b b b b = b 'b '(四) 模糊数学在数学建模中的应用模糊数学有诸多分支,应用广泛.如模糊规划、模糊优化设计、综合评判、模糊聚类分析、模糊排序、模糊层次分析等等.这些方法在工业、军事、管理等诸多领域被广泛应用.举例 带模糊约束的最小费用流问题[8]问题的提出 最小费用流问题的一般提法是:设是一个带出发点和收点的容量-费用网络,(),,,D V A c ω=s v t v 对于任意,表示弧上的容量,表示弧上通过单位流量的费用,是给定的非负数,问(),i j v v A ∈ij c (),i j v v ij ω(),i j v v 0v 怎样制定运输方案使得从到恰好运输流值为的流且总费用最小?如果希望尽可能地节省时间并提高道路s v t v 0v的通畅程度,问运输方案应当怎样制定?模型和解法 问题可以归结为:怎样制定满足以下三个条件的最优运输方案?(1)从到运送的流的值恰好为;(2)总运输费用最小;(3)在容量大的弧 上适当多运输.如果仅考虑s v t v 0v ij c (),i j v v 条件(1)和(2),易写出其数学模型为:()()()()()()()}(),0,,0,,,,min()..0,0i j s j j s t j j t i j j i ij ijv v Asj js v v A v v A tj jt v v A v v A ij ji i s t v v A v v A ij ijf f f v f f v M s t f f v V v v f c ω∈∈∈∈∈∈∈⎧-=⎪⎪-=-⎪⎪⎨⎪-=∈⎪⎪≤≤⎪⎩∑∑∑∑∑∑∑把条件(3)中的“容量大”看作上的一个模糊子集,定义其隶属函数:为:A Aμ[]0,1A →()()00,0,1,ij ij ij i j A d c c v ij c c v v e c cμμ--≤≤⎧⎪==⎨->⎪⎩其中(平均容量)()1,i j ij v v c A c -⎡⎤⎢⎥=⎢⎥⎣⎦∑:23()()()()21,21,0,11i j i j ij v v A ij v v A A c c d A c c -∈-∈⎧⎡⎤⎪⎢⎥-≤⎪⎢⎥⎣⎦⎪=⎨⎡⎤⎪⎢⎥->⎪⎢⎥⎪⎣⎦⎩∑∑::建立是为了量化“适当多运输”这一模糊概念.对条件(2)作如下处理:对容量大的弧,人为地降低ij μij c (),i j v v 运价,形成“虚拟运价”,其中满足:越大,相应的的调整幅度也越大.选取为,ij ωij ωij ωij c ij ωij ω()1k ij ij ij ωωμ=-.其中是正参数,它反映了条件(2)和条件(3)在决策者心目中的地位.决策者越看重条件(3),取值(),ijv v A ∈k k 越小;当取值足够大时,便可忽略条件(3) .一般情况下,合适的值最好通过使用一定数量的实际数据进k k 行模拟、检验和判断来决定.最后,用代替原模型中的,得到一个新的模型.用现有的方法求解这ij ωM ij ωM '个新的规划问题,可期望得到满足条件(3)的解.模型的评价此模型在原有的数学规划模型和解法的基础上,增加了模糊约束.新模型比较符合实际,它的解包含了原模型的解,因而它是一个较为理想的模型.隶属度的确定在模糊数学中有多种方法,可以根据不同的实际问题进行调整.同样的思想方法可以处理其他的模糊约束问题.三、灰色系统客观世界的很多实际问题,其内部结构、参数以及特征并未全部被人们了解,对部分信息已知而部分信息未知的系统,我们称之为灰色系统.灰色系统理论是从系统的角度出发来研究信息间的关系,即研究如何利用已知信息去揭示未知信息.灰色系统理论包括系统建模、系统预测、系统分析等方面.(一) 灰色关联分析理论及方法灰色系统理论[9]中的灰色关联分析法是在不完全的信息中,对所要分析研究的各因素,通过一定的数据,在随机的因素序列间,找出它们的关联性,找到主要特性和主要影响因素.计算方法与步骤:1. 原始数据初值化变换处理分别用时间序列的第一个数据去除后面的原始数据,得出新的倍数列,即初始化数列,量纲为一,()k 各值均大于零,且数列有共同的起点.2. 求关联系数()()()()()()()()()0000min min ||max max ||||max max ||k i k k i k ikiki k k i k k i k ikx x x x x x x x ρξρ-+-=-+-3. 取分辨系数01ρ<<254. 求关联度 ()()11ni k i k k r n ξ==∑(二) 灰色预测1. 灰色预测方法的特点(1) 灰色预测需要的原始数据少,最少只需四个数据即可建模;(2) 灰色模型计算方法简单,适用于计算机程序运行,可作实时预测;(3) 灰色预测一般不需要多因素数据,而只需要预测对象本身的单因素数据,它可以通过数据本身的生成,寻找系统内在的规律;(4) 灰色预测既可做短期预测,也可做长期预测,实践证明,灰色预测精度较高,误差较小.2. 灰色预测GM(1,1)模型的一点改进一些学者为了提高预测精度做出了大量的研究工作,提出了相应的方法.本文将在改善原始离散序列光滑性的基础上,进一步研究GM(1,1)预测模型的理论缺陷及改进方法[10].问题的存在及改进方法如下:传统灰色预测GM(1,1)模型的一般步骤为:(1)1-ADO :对原始数据序列进行一次累加生成序列(){}0k x ()1,2,,k n = ()()101kk i i x x =⎧⎫=⎨⎬⎩⎭∑()1,2,,k n =。
数学建模方法及其应用
![数学建模方法及其应用](https://img.taocdn.com/s3/m/022876fb9fc3d5bbfd0a79563c1ec5da50e2d63a.png)
数学建模方法及其应用
数学建模是一种通过建立数学模型来解决现实问题的方法。
它可以应用于各种领域,包括物理学、工程学、经济学、环境科学、生物学等。
以下是一些常用的数学建模方法及其应用:
1.微分方程模型:用于描述动态系统的变化规律,包括传热、传质、机械运动等。
应用领域包括物理学、化学工程、生态学等。
2.优化模型:用于最大化或最小化某个目标函数,如生产成本最小化、资源利用最大化等。
应用领域包括供应链管理、金融风险管理、交通规划等。
3.图论模型:用于描述图形结构和网络连接关系,包括最短路径、最小生成树、网络流等。
应用领域包括电力系统优化、社交网络分析、交通路线规划等。
4.概率统计模型:用于描述随机事件和概率分布,包括回归分析、假设检验、时间序列分析等。
应用领域包括经济预测、医学统计、风险评估等。
5.离散事件模型:用于描述离散事件的发生和演化过程,包括排队论、蒙特卡洛模拟等。
应用领域包括交通流量预测、物流调度、金融风险评估等。
这只是数学建模的一小部分方法和应用,实际上还有很多其他方法和领域。
数学建模可以帮助解决实际问题,优化决策,提高效率和效果。
数学建模方法和应用
![数学建模方法和应用](https://img.taocdn.com/s3/m/3a8dd2d7534de518964bcf84b9d528ea81c72fdc.png)
数学建模方法和应用数学作为一门学科和一种工具,一直在各个领域中发挥着重要的作用。
数学建模是一种解决实际问题的方式,不仅可以帮助人们理清复杂的问题脉络,还能够精确地描述问题的本质和规律。
本文将介绍数学建模的概念、方法和应用领域。
一、数学建模的概念数学建模是指利用数学语言和方法来解决实际问题的过程。
其具体步骤一般包括问题的分析、模型的建立、模型的求解及模型的验证等。
数学建模主要涉及数学分析、统计学、概率论、图论、运筹学、优化理论等多个学科。
数学建模的核心在于建立一个恰当的模型,即根据问题的特征和需求,选择合适的数学工具和方法,将问题抽象成一个可以用数学语言和符号表示的模型。
这个模型不仅要简单明了,而且还要尽量贴近实际情况,并且具有可解性和可行性。
只有建立了一个好的模型,才能够得到一个有效的解决方案。
二、数学建模的方法数学建模的方法根据问题的类型和需求而不同。
一般来说数学建模可以分为以下几个步骤:1. 问题分析:明确问题背景、目标和限制条件等,确定问题的类型和性质。
2. 建立模型:将问题抽象成一个可以用数学方法求解的模型,选择合适的数学工具和方法。
3. 模型求解:利用数学工具和方法求解模型,得到问题的最优解或近似解。
4. 模型验证:将模型的结果与实际情况进行比较,评估模型的可靠性和适用性。
数学建模的方法需要结合具体的问题和数据来分析和处理。
在建模过程中需要注意对数据的处理,同时也要注意不要过度追求数学细节而将问题复杂化。
三、数学建模的应用数学建模可以应用于众多领域,如经济、物理、化学、医学、生物学、环境科学等。
下面介绍其中的几个应用领域:1. 生态学生态学是一门综合性学科,用数学工具和方法解决复杂的生态系统问题已成为一个重要的趋势。
生态建模可以对生态系统的结构和功能进行定量描述,从而预测生态系统的演化和变化趋势。
2. 金融数学建模在金融领域中应用广泛,主要涉及到风险管理、资产定价、投资策略、股票波动率预测等问题。
数学建模中的主要方法和应用
![数学建模中的主要方法和应用](https://img.taocdn.com/s3/m/7dac4d6fe3bd960590c69ec3d5bbfd0a7956d5d3.png)
数学建模中的主要方法和应用数学建模是当今现代科学技术发展中的重要组成部分,它将数学方法、计算机技术与实际问题结合,通过数学模型建立、分析和求解实际问题,为人类社会的发展提供了巨大的支持和帮助。
数学建模方法丰富多彩,如最优化方法、微分方程模型、图论模型和随机过程模型等,其中最常用的是最优化方法和微分方程模型。
下面将从理论和实践两个方面展开介绍,重点讲述数学建模中最常用的方法及其应用。
一、最优化方法最优化方法是数学建模中应用广泛的一种方法,它是求解优化问题的一类数学算法。
在数学建模中,最优化方法的应用范围非常广泛,可以用于优化问题的建模与求解,如在工业生产中,我们需要在保证质量的前提下尽量节约原材料和能源,这时就可以采用最优化方法建立优化模型。
最优化方法按不同的算法分类,可以分为线性规划、非线性规划和动态规划等,其中线性规划是最为常见和基础的一种方法。
线性规划的求解一般采用单纯形法,通过计算确定最优解。
非线性规划是线性规划的扩展,它是求解目标函数不是线性函数的规划问题。
非线性规划的求解方法有牛顿法和梯度下降法等,这些方法都需要利用微积分的基础知识。
对于一个复杂的优化问题,在建立模型的过程中,最关键的就是确定目标函数。
一个好的目标函数需要具备可行性、一致性、可表达性和可求解性等特点。
在具体求解过程中,还需要对目标函数进行求导,确定优化点,并验证该点是否为全局最优解。
二、微分方程模型微分方程模型是数学建模中常用的一种方法,它是利用微积分的基础知识建立模型,解决与时间有关的问题。
在实际生活中,许多问题都与时间有关,如人口增长、物种灭绝、气候变化等,这些问题的变化过程都可以通过微分方程模型进行描述和分析。
微分方程模型按不同级别分类,可以分为一阶微分方程、二阶微分方程和高阶微分方程等,其中最为常用的是一阶微分方程。
一阶微分方程是指微分方程中未知函数的导数最高次数为一的情况,它可以描述很多与时间相关的变化问题。
常用数学建模方法及实例
![常用数学建模方法及实例](https://img.taocdn.com/s3/m/db9a9413f11dc281e53a580216fc700abb6852d4.png)
常用数学建模方法及实例数学建模是将实际问题转化为数学模型,通过数学方法进行求解和分析的过程。
常用的数学建模方法包括线性规划、整数规划、非线性规划、图论、动态规划等。
一、线性规划线性规划是一种用于求解线性约束下目标函数的最优值的方法。
它常用于资源分配、生产计划、供应链管理等领域。
例1:公司有两个工厂生产产品A和产品B,两种产品的生产过程需要使用原材料X和Y。
产品A和产品B的利润分别为10和8、工厂1每小时生产产品A需要1个单位的X和2个单位的Y,每小时生产产品B需要2个单位的X和1个单位的Y。
工厂2每小时生产产品A需要2个单位的X和1个单位的Y,每小时生产产品B需要1个单位的X和3个单位的Y。
公司给定了每种原材料的供应量,求使公司利润最大化的生产计划。
二、整数规划整数规划是线性规划的一种扩展,要求变量的取值为整数。
整数规划常用于离散决策问题。
例2:公司有5个项目需要投资,每个项目的投资金额和预期回报率如下表所示。
公司有100万元的投资资金,为了最大化总回报率,应该选择哪几个项目进行投资?项目投资金额(万元)预期回报率1207%2306%3409%4104%5508%三、非线性规划非线性规划是一种求解非线性目标函数下约束条件的最优值的方法。
它广泛应用于经济、金融和工程等领域。
例3:公司通过降低售价和增加广告费用来提高销售额。
已知当售价为p时,销量为q=5000-20p,广告费用为a时,销售额为s=p*q-2000a。
已知售价的范围为0≤p≤100,广告费用的范围为0≤a≤200,公司希望最大化销售额,求最优的售价和广告费用。
四、图论图论是一种用于研究图(由节点和边组成)之间关系和性质的数学方法,常用于网络分析、路径优化、社交网络等领域。
例4:求解最短路径问题。
已知一个有向图,图中每个节点表示一个城市,每条边表示两个城市之间的道路,边上的权重表示两个城市之间的距离。
求从起始城市到目标城市的最短路径。
五、动态规划动态规划是一种通过将问题划分为子问题进行求解的方法,常用于求解最优化问题。
数学建模方法与应用
![数学建模方法与应用](https://img.taocdn.com/s3/m/01fce5bf70fe910ef12d2af90242a8956becaa83.png)
数学建模方法与应用这些方法可以解一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。
拟合与插值方法(给出一批数据点,确定满足特定要求的曲线或者曲面,从而反映对象整体的变化趋势): matlab可以实现一元函数,包括多项式和非线性函数的拟合以及多元函数的拟合,即回归分析,从而确定函数;同时也可以用matlab实现分段线性、多项式、样条以及多维插值。
在优化方法中,决策变量、目标函数(尽量简单、光滑)、约束条件、求解方法是四个关键因素。
其中包括无约束规则(用fminserch、fminbnd实现)线性规则(用linprog实现)非线性规则、(用fmincon实现)多目标规划(有目标加权、效用函数)动态规划、整数规划。
2数学模型方法分析数学模型方法分析简述函数关系可以说是一种变量相依关系的数学模型.数学模型方法是处理科学理论问题的一种经典方法,也是处理各类实际问题的一般方法.掌握数学模型方法是非常必要的.在此,对数学模型方法作一简述.数学模型方法(Mathematical Modeling)称为MM方法.它是针对所视察的问题构造出相应的数学模型,通过对数学模型的研究,使问题得以解决的一种数学方法.数学模型的含义数学模型是针关于现实世界的某一特定对象,为了一个特定的目的,依据特有的内在规律,做出必要的简化和假设,运用适当的数学工具,采纳形式化语言,概括或近似地表述出来的一种数学结构.它或者能解释特定对象的现实性态,或者能猜测对象的将来状态,或者能提供处理对象的最优决策或控制.数学模型既源于现实又高于现实,不是实际原形,而是一种模拟,在数值上可以作为公式应用,可以推广到与原物相近的一类问题,可以作为某事物的数学语言,可译成算〔法语〕言,编写程序进入计算机.数学模型的建立过程建立一个实际问题的数学模型,必须要一定的洞察力和想像力,筛选、抛弃次要因素,特别主要因素,做出适当的抽象和简化.全过程一般分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型到现实对象的循环.3数学建模必须要学些什么数学建模方法与应用:准备一些基本知识吧,比如线性规划、运筹学方面的东西、立即过程、微分方程的定性理论等等,技术方面学一学matlab、spss、stata、sas、maple、c/c++等等。
数学建模方法与应用分析
![数学建模方法与应用分析](https://img.taocdn.com/s3/m/0fd6850c82c4bb4cf7ec4afe04a1b0717fd5b3e9.png)
数学建模方法与应用分析数学建模作为一种近年来比较受关注的交叉学科,已经成为了现代科学研究和工程解决问题不可缺少的手段之一。
数学建模不仅可以对各行业的问题进行分析和解决,还可以提升人们的逻辑思维和数学能力。
本文将从数学建模的定义和基本方法入手,然后分别从各行业的实际应用案例进行分析和讨论。
一、数学建模1. 数学建模的定义数学建模是将现实世界中的问题抽象成数学模型,然后通过数学分析和计算,得到问题的解决方案的一种方法。
它是科学与工程领域中研究和解决问题的重要方法,可以被广泛地应用于金融、环境、交通、军事、医疗等行业。
2. 数学建模的基本方法数学建模的基本思想是把现实问题分析为数学模型,然后用数学分析方法解决模型。
其基本步骤包括:问题的分析和建模、模型的求解、模型的验证和应用。
具体而言,数学建模需要通过以下几个步骤完成。
(1)问题分析和建模。
在这一步骤中,需要深入分析模型系统的问题或通道,找到问题的根本原因,并基于实际情况建立合理的数学模型,确定模型的变量和约束条件。
(2)模型的求解。
有了建立的数学模型,接下来就要用适当的数学分析方法对模型进行求解。
这一步骤一般需要运用适当的数学方法,如微积分、线性规划、最优化等。
(3)模型的验证和应用。
通过数值计算,将解得的模型应用于实际问题中,检验模型是否符合实际情况,并对模型进行必要的修正和完善。
二、数学建模的应用1. 金融行业在金融领域,借助数学建模技术,可以对股票价格的走势、基金投资、金融市场的风险等问题进行量化分析和预测。
通过建立合理的数学模型,可以对金融市场的走势进行模拟,预测未来的市场走势,并对投资策略进行调整。
2. 环境领域在环境领域,数学建模可以用来研究大气污染、水环境污染、环境监测等问题。
例如,对大气污染的研究,可以通过建立数学模型模拟污染物的排放、扩散过程,从而对污染的程度和影响进行评估。
3. 交通领域交通领域许多问题都和城市的交通流密切相关,如交通拥堵、交通安全、交通规划等。
高中数学中的数学建模技巧与应用
![高中数学中的数学建模技巧与应用](https://img.taocdn.com/s3/m/6db7b94c6d85ec3a87c24028915f804d2b168796.png)
高中数学中的数学建模技巧与应用数学建模是一种将数学方法应用于实际问题解决的过程,它不仅可以帮助我们更好地理解数学知识,还可以培养我们的创新思维和解决问题的能力。
在高中数学中,数学建模技巧的应用对于学生的学习和发展具有重要意义。
本文将介绍一些高中数学中常用的数学建模技巧及其应用。
一、数据分析与统计数据分析与统计是数学建模的重要组成部分,它可以帮助我们从大量的数据中提取有用的信息,并进行合理的推断和预测。
在高中数学中,我们可以通过对实际问题中的数据进行整理、分类和分析,来解决一些实际问题。
例如,我们可以通过对某城市过去几年的气温数据进行统计和分析,来预测未来某一天的气温。
通过建立数学模型,我们可以根据过去的气温数据,利用统计学方法对未来的气温进行预测,从而为人们的生活提供一定的参考。
二、函数建模与优化函数建模是数学建模中的一种常用方法,它可以帮助我们将实际问题转化为数学问题,并通过建立合适的函数模型来解决问题。
在高中数学中,我们学习了许多函数的性质和变化规律,可以应用这些知识来进行函数建模。
例如,我们可以通过建立一个函数模型来优化某个问题中的某个指标。
比如,某公司要生产一种产品,产品的成本与生产数量之间存在一定的关系。
我们可以通过建立一个成本函数模型,来确定生产数量使得成本最小化。
通过对函数的优化,我们可以找到最优解,从而为公司的生产决策提供依据。
三、几何建模与空间分析几何建模是数学建模中的另一种常用方法,它可以帮助我们将实际问题转化为几何问题,并通过几何分析和计算来解决问题。
在高中数学中,我们学习了许多几何知识和定理,可以应用这些知识来进行几何建模。
例如,我们可以通过建立一个几何模型来解决某个问题中的空间分析问题。
比如,某建筑设计师要设计一个具有特定形状和结构的建筑物,我们可以通过建立一个几何模型,来确定建筑物的各个部分的尺寸和位置关系。
通过几何分析和计算,我们可以得到满足设计要求的建筑物模型,为建筑师的设计提供参考。
数学建模高一上学期一年级第五节优质课数学建模的基本方法与应用
![数学建模高一上学期一年级第五节优质课数学建模的基本方法与应用](https://img.taocdn.com/s3/m/1a4e8341eef9aef8941ea76e58fafab069dc4491.png)
数学建模高一上学期一年级第五节优质课数学建模的基本方法与应用数学建模是一门将实际问题转化为数学模型,并运用数学方法进行分析和求解的学科。
它旨在培养学生的创新思维和解决实际问题的能力。
本篇文章将介绍数学建模的基本方法与应用。
一、数学建模的基本方法1. 定义问题:数学建模的第一步是准确定义问题。
要把实际问题抽象为数学问题,明确问题的目标和限制条件。
2. 建立模型:建立数学模型是数学建模的核心。
根据实际问题的特征,选择适当的数学工具和数学方法,构建数学模型。
3. 进行分析:对建立的数学模型进行分析,运用数学知识和技巧进行推导和计算,得到问题的解析解或近似解。
4. 验证模型:将得到的解与实际情况进行比较,判断模型的准确性和可行性。
如果模型不准确,需要对模型进行修正和改进。
5. 解释与应用:对模型的解进行解释和分析,提出问题解决的建议,并将数学模型的结果应用于实际问题中。
二、数学建模的应用范围数学建模广泛应用于科学研究、工程技术、社会经济等领域。
下面将介绍数学建模在几个典型领域的应用。
1. 环境保护与资源管理:数学建模可用于分析和预测环境污染、自然资源利用等问题,制定科学的环境保护策略和资源管理方案。
2. 交通运输优化:数学建模可以帮助优化交通规划、交通信号灯控制,提高交通运输效率和减少交通拥堵。
3. 医学与生物学:数学建模在医学诊断、疾病传播、生物种群动态等领域有广泛应用,为医疗保健和生物科学研究提供支持。
4. 经济与金融:数学建模可以用于分析和预测经济指标、金融风险等,辅助决策和制定政策。
5. 城市规划与建设:数学建模可以模拟城市的发展变化,优化城市规划和建设,提高城市的可持续发展。
三、数学建模的案例1. 高速公路车流模型:通过收集高速公路上的交通数据,建立车辆流量模型,预测交通拥堵情况,优化交通信号灯控制,提高道路通行效率。
2. 疫情传播模型:通过数学建模,可以预测疫情的传播趋势和规律,辅助制定控制措施和疫苗接种策略。
数学建模方法及其应用
![数学建模方法及其应用](https://img.taocdn.com/s3/m/020669a7be1e650e52ea99ee.png)
数学建模方法及其应用摘要:传统的数学教学以题目演算解答为主,重视学生的数学运算能力,针对数学逻辑思维的深度思考培养程度低,容易造成学生学习困难,不利于提高学生解决实际问题的能力,建立数学模型可以帮助学生理解思考社会经济问题,帮助学生更加直观、清晰了解事物发展规律,提高学生学习迁移的能力,帮助学生更好理解数学方法、了解数量的关系,有利于开发学生智力,提高学生创新实践能力。
本文通过探索数学模型相关知识,研究数学建模的步骤与方法,提高数学建模的实际应用,为培养学生数学建模能力提供参考建议。
关键词:数学建模;假设研究;数学结构;方程模型数学模型是数学教育改革的重要方向,教师通过引导学生思考实际问题,帮助学生将实际问题转化为数学知识,通过研究探索问题的主要矛盾,建立数学结构的类型并经过推理演算得到答案,从而降低实际问题的解决难度,加快学生思考解答问题,提高学生探索求知的欲望。
数学建模通过运用数学语言来简化实际问题,培养学生利用数学思维解决问题,借用数学方式探索事物内在规律,用推理演算得出模型结果验证解释实际问题,提高学生知识迁移的能力,激发数学学习兴趣,为社会培养具备数学建模的人才。
一、数学建模的相关理论数学建模通过数学语言与方法研究实际问题,探索事物内在的逻辑规律,运用数学工具来做出简化的数学假设并得出数学结构,即实际问题-简化假设-获得数学公式、表格、算法等数学结构-推理演算-应用验证问题,提高学生解决实际问题的能力。
数学建模以研究事物特征与数量之间的关系为主,通过直观的语言概括出数学结构,得出公式、方程、图表等数学建模规律,如圆柱是日常事物,圆柱概念、体积公式、表面积公式是数学建模,通过推理演算解决关于圆柱的实际问题。
数学建模应用广泛,帮助人们解决实际问题,复杂的事物通过调查、收集分析数据,得出事物关键特征与逻辑规律,建立符合实际的数量关系,使用数学演算推理的方法分析解决问题,因此数学建模思维的培养可以帮助学生更好适应社会发展,提高学生利用数学思维解决问题的能力[1]。
数学建模方法与应用
![数学建模方法与应用](https://img.taocdn.com/s3/m/c99fd5ea5122aaea998fcc22bcd126fff7055d34.png)
数学建模方法与应用数学建模是一种通过数学方法,对实际问题进行抽象、分析、建立数学模型,并进行计算求解和结果验证的过程。
它是一种跨学科的学科,涉及到数学、物理、计算机科学、工程学等多个领域,被广泛应用在工业、商业、环境、生物、医学等各个领域。
数学建模方法可以分为四个主要步骤:清晰阐述问题,建立模型,求解模型,验证结果。
首先,清晰阐述问题是数学建模的重要第一步。
解决一个问题需要对问题进行深入的了解和分析。
这包括对问题的背景、目的、限制条件等进行详细的描述和概括。
只有充分了解问题,才能建立准确的数学模型。
第二步是建立数学模型。
建立数学模型需要根据问题的特点和要求,选择合适的数学工具和方法,把实际问题转化为数学形式,并用数学语言进行描述。
常见的数学工具包括微积分、线性代数、概率论、统计学等。
第三步是求解模型。
求解模型需要根据建立的数学模型,选择合适的求解方法和算法进行计算。
常见的求解方法包括数值计算、优化算法、动态规划、最小二乘法等。
求解结果应该合理、准确、易于理解。
最后一步是验证结果。
验证结果需要对建立的数学模型和求解结果进行检验和评估。
这包括对模型的合理性、求解结果的可用性和稳定性进行检查。
如果结果不符合实际,需要对模型进行修改和完善,重新进行计算和验证。
数学建模方法被广泛应用在各个领域中。
比如,在工业领域中,数学建模可以应用于生产计划、供应链管理、物流运输等方面,提高生产效率和降低成本。
在商业领域中,数学建模可以应用于市场营销、客户关系管理、金融投资等方面,帮助企业做出明智决策。
在环境领域中,数学建模可以应用于气候预测、环境监测、资源管理等方面,促进环境保护和可持续发展。
在生物和医学领域中,数学建模可以应用于疾病预测、药物研发、人体工程学等方面,提高医疗水平和医药品质。
试析数学建模方法及其运用
![试析数学建模方法及其运用](https://img.taocdn.com/s3/m/2682e7b3ed3a87c24028915f804d2b160b4e8697.png)
试析数学建模方法及其运用【摘要】数学模型是数学学问和数学应用的桥梁,研讨和学习数学模型,能协助学生探究数学的应用,对数学学习产生兴味,有利培育学生的创新认识和理论能力,增强数学建模教学与学习对学生的智力开发具有深远的意义。
数学建模是一种数学的考虑办法,是运用数学的言语和办法,经过笼统、简化树立能近似描写并处理实践问题的一种强有力的数学手腕。
当需求从定量的角度剖析和研讨一个实践问题时,人们就要在深化调查研讨、理解对象信息、作出简化假定、剖析内在规律等工作的根底上,用数学的符号和言语,把它表述为数学式子,也就是数学模型,然后用经过计算得到的模型结果来解释实践问题,并承受实践的检验。
这个树立数学模型的全过程就称为数学建模。
1 数学模型的根本概述数学模型就是关于一个特定的对象为了一个特定目的,依据特有的内在规律,做出必要的简化假定,运用恰当的数学工具,得到的一个数学构造。
数学构造能够是数学公式,算法、表格、图示等。
数学模型法就是把实践问题加以笼统概括,树立相应的数学模型,应用这些模型来研讨实践问题的普通数学办法。
教员在应用题教学中要浸透这种办法和思想,要注重并强调如何从实践问题中发现并笼统出数学问题,如何用数学模型(包括数学概念、公式、方程、不等式函数等)来表达实践问题。
2 数学建模的重要意义电子计算机推进了数学建模的开展;电子计算机推进了数学建模的开展;数学建模在工程技术范畴应用普遍。
应用数学去处理各类实践问题时,树立数学模型是重要关键。
树立教学模型的过程,是把扑朔迷离的实践问题简化、笼统为合理的数学构造的过程。
要经过调查、搜集数据材料,察看和研讨实践对象的固有特征和内在规律,抓住问题的主要矛盾,树立起反映实践问题的数量关系,然后应用数学的理论和办法去分折和处理问题。
数学建模越来越遭到数学界和工程界的普遍注重,已成为现代科技工重要的必备能力。
3 数学建模的主要办法和步骤:3.1 数学建模的步骤能够分为几个方面(1)模型准备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、层次分析法层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.(一) 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2.测度原理决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3. 排序原理层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题. (二) 层次分析法的基本步骤层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比,全部比较结果可用成对比较阵 ()1,0,ij ij ji n n ijA a a a a ⨯=>=表示,A 称为正互反矩阵.一般地,如果一个正互反阵A 满足:,ij jk ik a a a ⋅=,,1,2,,i j k n = (1)则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质:①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根n 的特征向量.如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,,1 对上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许X 围内,用对应于A 最大特征根(记作λ)的特征向量(归一化后)作为权向量w ,即w 满足:Aw w λ= (2)直观地看,因为矩阵A 的特征根和特征向量连续地依赖于矩阵的元素ij a ,所以当ij a 离一致性的要求不远时,A 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.2. 比较尺度当比较两个可能具有不同性质的因素i C 和j C 对于一个上层因素O 的影响时,采用Saaty 等人提出的91-尺度,即ij a 的取值X 围是9,,2,1 及其互反数1,,21,1 .3. 一致性检验成对比较阵通常不是一致阵,但是为了能用它的对应于特征根λ的特征向量作为被比较因素的权向量,其不一致程度应在容许X 围内.若已经给出n 阶一致阵的特征根是n ,则n 阶正互反阵A 的最大特征根n λ≥,而当n λ=时A 是一致阵.所以λ比n 大得越多,A 的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用n λ-数值的大小衡量A 的不一致程度.Saaty 将1nCI n λ-=- (3)定义为一致性指标.0CI =时A 为一致阵;CI 越大A 的不一致程度越严重.注意到A 的n 个特征根之和恰好等于n ,所以CI 相当于除λ外其余1n -个特征根的平均值.为了确定A 的不一致程度的容许X 围,需要找到衡量A 的一致性指标CI 的标准,又引入所谓随机一致性指标RI ,计算RI 的过程是:对于固定的n ,随机地构造正互反阵A ',然后计算A '的一致性指标CI .表1 随机一致性指标RI 的数值表中1,2n =时0RI =,是因为2,1阶的正互反阵总是一致阵. 对于3n ≥的成对比较阵A ,将它的一致性指标CI 与同阶(指n 相同)的随机一致性指标RI 之比称为一致性比率CR ,当0.1CICR RI=< (4) 时认为A 的不一致程度在容许X 围之内,可用其特征向量作为权向量.对于A 利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已有的A 进行修正.4. 组合权向量由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有s 层,则第k 层对第一层(设只有1个因素)的组合权向量满足:()()()1,3,4,kkk w W w k s -== (5)其中()k W 是以第k 层对第1k -层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:()()()()()132s s s w W W W w -= (6)5. 组合一致性检验在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据.组合一致性检验可逐层进行.如第p 层的一致性指标为()()p n p CI CI ,,1 (n 是第1-p 层因素的数目),随机一致性指标为()()1,,p p n RI RI ,定义()()()()11,,P p p p n CI CI CI w -⎡⎤=⎣⎦ ()()()()11,,p p p p n RI RI RI w-⎡⎤=⎣⎦ 则第p 层的组合一致性比率为:()()(),3,4,,p p p CI CRp s RI== (7)第p 层通过组合一致性检验的条件为()0.1p CR <.定义最下层(第s 层)对第一层的组合一致性比率为:()2*sP p CR CR ==∑ (8)对于重大项目,仅当*CR 适当地小时,才认为整个层次的比较判断通过一致性检验.层次分析法的基本步骤归纳如下:(1) 建立层次结构模型在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常称为准则或指标层,当准则过多时(比如多于9个)应进一步分解出子准则层.(2) 构造成对比较阵从层次结构模型的第2层开始,对于从属于上一层每个因素的同一层诸因素,用成对比较法和91 比较尺度构造成对比较阵,直到最下层.(3)计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,重新构造成对比较阵.(4)计算组合权向量并做组合一致性检验利用公式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率CR较大的成对比较阵.(三) 层次分析法的优点1.系统性层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具.2.实用性层次分析把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用X围很广.同时,这种方法将决策者与决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性.3.简洁性具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,且所得结果简单明确,容易为决策者了解和掌握.(四) 层次分析法的局限性层次分析法的局限性可以用囿旧、粗略、主观等词来概括.第一,它只能从原有的方案中选优,不能生成新方案;第二,它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;第三,从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受.当然,采取专家群体判断的方法是克服这个缺点的一种途径.(五) 层次分析法的若干问题层次分析法问世以来不仅得到广泛的应用而且在理论体系、计算方法等方面都有很大发展,下面从应用的角度讨论几个问题.1. 正互反阵最大特征根和对应特征向量的性质成对比较阵是正互反阵.层次分析法中用对应它的最大特征根的特征向量作为权向量,用最大特征根定义一致性指标进行一致性检验.这里人们碰到的问题是:正互反阵是否存在正的最大特征根和正的特征向量;一致性指标的大小是否反映它接近一致阵的程度,特别,当一致性指标为零时,它是否就为一致阵.下面两个定理可以回答这些问题.定理1 对于正矩阵A (A 的所有元素为正数) 1)A 的最大特征根是正单根λ;2)λ对应正特征向量w (ω的所有分量为正数);3)w IA I I A k k k =T ∞→lim ,其中()T=1,1,1 I ,w 是对应λ的归一化特征向量. 定理2n 阶正互反阵A 的最大特征根n λ≥;当n λ=时A 是一致阵.定理2和前面所述的一致阵的性质表明,n 阶正互反阵A 是一致阵的充要条件为 A 的最大特征根n λ=.2. 正互反阵最大特征根和特征向量的实用算法众所周知,用定义计算矩阵的特征根和特征向量是相当困难的,特别是矩阵阶数较高时.另一方面,因为成对比较阵是通过定性比较得到的比较粗糙的量化结果,对它精确计算是不必要的,下面介绍几种简单的方法. (1) 幂法 步骤如下:a .任取n 维归一化初始向量()0wb .计算()()1,0,1,2,k k w Aw k +== c .()1k w+归一化,即令()()()∑=+++=ni k ik k ww1111~~ωd .对于预先给定的精度ε,当 ()()()1||1,2,,k k i i i n ωωε+-<=时,()1k w +即为所求的特征向量;否则返回be. 计算最大特征根()()111k n i k i in ωλω+==∑这是求最大特征根对应特征向量的迭代法,()0w 可任选或取下面方法得到的结果. (2) 和法 步骤如下:a. 将A 的每一列向量归一化得1nij ijiji a aω==∑b .对ij ω按行求和得1ni ij j ωω==∑c .将i ω归一化()*121,,,ni in i w ωωωωωωT===∑即为近似特征向量.d. 计算()11n ii iAw n λω==∑,作为最大特征根的近似值.这个方法实际上是将A 的列向量归一化后取平均值,作为A 的特征向量.(3) 根法 步骤与和法基本相同,只是将步骤b 改为对ij ω按行求积并开n 次方,即11nn i ij j ωω=⎛⎫= ⎪⎝⎭∏.根法是将和法中求列向量的算术平均值改为求几何平均值.3. 为什么用成对比较阵的特征向量作为权向量当成对比较阵A 是一致阵时,ij a 与权向量()T =n w ωω,,1 的关系满iij ja ωω=,那么当A 不是一致阵时,权向量w 的选择应使得ij a 与ijωω相差尽量小.这样,如果从拟合的角度看确定w 可以化为如下的最小二乘问题: ()21,,11min i nniij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (9)由(9)式得到的最小二乘权向量一般与特征根法得到的不同.因为(9)式将导致求解关于i ω的非线性方程组,计算复杂,且不能保证得到全局最优解,没有实用价值.如果改为对数最小二乘问题:()21,,11min ln ln i nni ij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑(10) 则化为求解关于ln i ω的线性方程组.可以验证,如此解得的i ω恰是前面根法计算的结果.特征根法解决这个问题的途径可通过对定理2的证明看出. 4. 成对比较阵残缺时的处理专家或有关学者由于某种原因无法或不愿对某两个因素给出相互比较的结果,于是成对比较阵出现残缺.应如何修正,以便继续进行权向量的计算呢?一般地,由残缺阵()ij A a =构造修正阵()ij A a =的方法是令,,0,,1,ij ij ij ij i i a a i j a a i jm m i i jθθθ≠≠⎧⎪==≠⎨⎪+=⎩为第行的个数,(11)θ表示残缺.已经证明,可以接受的残缺阵A 的充分必要条件是A 为不可约矩阵.(六) 层次分析法的广泛应用层次分析法在正式提出来之后,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界X围内得到普遍的重视和广泛的应用.从处理问题的类型看,主要是决策、评价、分析、预测等方面.这个方法在20世纪80年代初引入我国,很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用.层次分析法在求解某些优化问题中的应用[5]举例假设某人在制定食谱时有三类食品可供选择:肉、面包、蔬菜.这三类食品所含的营养成分及单价如表所示表2肉、面包、蔬菜三类食品所含的营养成分及单价该人体重为55kg,每天对各类营养的最低需求为:维生素A7500国际单位(IU)维生素B 1.6338mg热量R8548.5kJ考虑应如何制定食谱可使在保证营养需求的前提下支出最小?用层次分析法求解最优化问题可以引入包括偏好等这类因素.具体的求解过程如下:①建立层次结构②根据偏好建立如下两两比较判断矩阵表3 比较判断矩阵max 2λ=,10CI =,100.1CR =<,主特征向量()0.75,0.25W T=故第二层元素排序总权重为()10.75,0.25W T=表4 比较判断矩阵111max 1113,0,0,0.58CI CR RI λ==== ,主特征向量()0.4,0.4,0.2W T=故相对权重()210.4,0.4,0.2,0P T=③ 第三层组合一致性检验问题因为()()2111211112120;0.435CI CI CI W RI RI RI W ====,212200.1CR CR CI RI =+=<故第三层所有判断矩阵通过一致性检验,从而得到第三层元素维生素A 、维生素B 、热量Q 及支出E 的总权重为:()()221221120.3,0.3,0.15,0.25W P W P P W T===求第四层元素关于总目标W 的排序权重向量时,用到第三层与第四层元素的排序关系矩阵,可以用原始的营养成分及单价的数据得到.注意到单价对人们来说希望最小,因此应取各单价的倒数,然后归一化.其他营养成分的数据直接进行归一化计算,可得表5表5 各营养成分数据的归一化则最终的第四层各元素的综合权重向量为:3320.2376,0.2293,0.5331W P W T==,结果表明,按这个人的偏好,肉、面包和蔬菜的比例取0.2376:0.2293:0.5331较为合适.引入参数变量,令10.2376x k =,20.2293x k =,30.5331x k =,代入()1LP123min 0.02750.0060.007f x x x =++131231231230.352725.075000.00210.00060.002 1.6338..(1)11.930011.5100 1.048548.5,,,0x x x x x s t LP x x x x x x +≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩则得k f 0116.0min = ()13.411375000.0017 1.6338..26.02828548.50k k s t LP k k ≥⎧⎪≥⎪⎨≥⎪⎪≥⎩容易求得1418.1k =,故得最优解()*336.9350,325.1650,755.9767x T=;最优值 *16.4497f =,即肉336.94g ,面325.17g ,蔬菜755.98g ,每日的食品费用为16.45元.总之,对含有主、客观因素以及要求与期望是模糊的优化问题,用层次分析法来处理比较适用.二、模糊数学法模糊数学是1965年美国控制论专家 L .A .Zadeh 创立的.模糊数学作为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判等各方面.在气象、结构力学、控制、心理学方面已有具体的研究成果.(一) 模糊数学的研究内容第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系;第二,研究模糊语言和模糊逻辑,并能作出正确的识别和判断;第三,研究模糊数学的应用.(二) 模糊数学在数学建模中应用的可行性1.数学建模的意义在于将数学理论应用于实际问题[6].而模糊数学作为一种新的理论,本身就有其巨大的应用背景,国内外每年都有大量的相关论文发表,解决了许多实际问题.目前在数学建模中较少运用模糊数学方法的原因不在于模糊数学理论本身有问题,而在于最新的研究成果没有在第一时间进入数学建模的教科书中,就其理论本身所具有的实用性的特点而言,模糊数学应该有助于我们解决建模过程中的实际问题.2.数学建模的要求是模型与实际问题尽可能相符.对实际问题有这样一种分类方式:白色问题、灰色问题和黑色问题.毫无疑问,引进新的方法对解决这些问题大有裨益.在灰色问题和黑色问题中有很多现象是用“模糊”的自然语言描述的.在这种情况下,用模糊的模型也许更符合实际.3.数学建模活动的目的之一是培养学生的创新精神.用新理论、新方法解题应该受到鼓励.近年来,用神经网络法、层次分析法等新方法建立模型的论文屡有获奖,这也说明了评审者对新方法的重视.我们相信,模糊数学方法应该很好,同样能够写出优秀的论文. (三) 模糊综合评判法中的最大隶属原则有效度在模糊统计综合评判中,如何利用综合评判结果向量()12,,,m b b b b =,其中, 01j b <<,m为可能出现的评语个数,提供的信息对被评判对象作出所属等级的判断,目前通用的判别原则是最大隶属原则[7].在实际应用中很少有人注意到最大隶属原则的有效性问题,在模糊综合评判的实例中最大隶属原则无一例外地被到处搬用,然而这个原则并不是普遍适用的. 最大隶属原则有效度的测量1. 有效度指标的导出在模糊综合评判中,当11max 1,1nj j j n j b b ≤≤===∑时,最大隶属原则最有效;而在()1max 01,j j nb c c ≤≤=<<1nj j b nc ==∑时,最大隶属原则完全失效,且1max j j nb ≤≤越大(相对于1njj b=∑而言),最大隶属原则也越有效.由此可认为,最大隶属原则的有效性与1max j j nb ≤≤在1njj b=∑中的比重有关,于是令:11max njjj n j b bβ≤≤==∑ (12)显然,当11max 1,1nj j j nj b b ≤≤===∑时,则1β=为β的最大值,当()1max 01j j nb c c ≤≤=<<, 1njj bnc ==∑时,有1n β=为β的最小值,即得到β的取值X 围为:11n β≤≤.由于在最大隶属原则完全失效时,1n β=而不为0,所以不宜直接用β值来判断最大隶属原则的有效性.为此设:()()11111n n n n βββ--'==-- (13)则β'可在某种程度上测定最大隶属原则的有效性.而最大隶属原则的有效性还与j n j b ≤≤1sec (j nj b ≤≤1sec 的含义是向量b 各分量中第二大的分量)的大小有很大关系,于是我们定义:11sec njjj nj b bγ≤≤==∑ (14)可见: 当()1,1,0,0,,0b =时,γ取得最大值12. 当()0,1,0,0,,0b =时,γ取得最小值0. 即γ的取值X 围为012γ≤≤,设()02120γγγ-'==-.一般地,β'值越大最大隶属原则有效程度越高;而γ'值越大,最大隶属原则的有效程度越低.因此,可以定义测量最大隶属原则有效度的相对指标:()112121n n n n βββαγγγ'--⎛⎫=== ⎪'--⎝⎭ (15) 使用α指标能更准确地表明实施最大隶属原则的有效性.2. α指标的使用从α指标的计算公式看出α与γ成反比,与β成正比.由β与γ的取值X 围,可以讨论α的取值X 围: 当γ取最大值,β取最小值时,α将取得最小值0;当γ取最小值,β取最大值时,α将取得最大值:因为 0lim γα→=+∞,所以可定义0γ=时,α=+∞.即:0α≤<+∞. 由以上讨论,可得如下结论:当α=+∞ 时,可认定施行最大隶属原则完全有效;当1α≤<+∞时,可认为施行最大隶属原则非常有效;当0.51α≤<时,可认为施行最大隶属原则比较有效,其有效程度即为α值;当00.5α<<时可认为施行最大隶属原则是最低效的;而当0α=时,可认定施行最大隶属原则完全无效.有了测量最大隶属原则有效度的指标,不仅可以判断所得可否用最大隶属原则确定所属等级,而且可以说明施行最大隶属原则判断后的相对置信程度,即有多大把握认定被评对象属于某个等级. 讨论a . 在很多情况下,可根据β值的大小来直接判断使用最大隶属原则的有效性而不必计算α值.根据α与β之间的关系,当0.7β≥,且4n >时,一定存在1α>.通常评价等级数取4和9之间,所以4n >这一条件往往可以忽略,只要0.7β≥就可免算α值,直接认定此时采取最大隶属原则确定被评对象的等级是很有效的.b . 如果对()12,,,m b b b b =进行归一化处理而得到b ',则可直接根据b '进行最大隶属原则的有效度测量. (四) 模糊数学在数学建模中的应用模糊数学有诸多分支,应用广泛.如模糊规划、模糊优化设计、综合评判、模糊聚类分析、模糊排序、模糊层次分析等等.这些方法在工业、军事、管理等诸多领域被广泛应用. 举例 带模糊约束的最小费用流问题[8]问题的提出 最小费用流问题的一般提法是:设(),,,D V A c ω=是一个带出发点s v 和收点t v 的容量-费用网络,对于任意(),i j v v A ∈,ij c 表示弧(),i j v v 上的容量,ij ω表示弧(),i j v v 上通过单位流量的费用,0v 是给定的非负数,问怎样制定运输方案使得从s v 到t v 恰好运输流值为0v 的流且总费用最小?如果希望尽可能地节省时间并提高道路的通畅程度,问运输方案应当怎样制定?模型和解法 问题可以归结为:怎样制定满足以下三个条件的最优运输方案?(1)从s v 到t v 运送的流的值恰好为0v ;(2)总运输费用最小;(3)在容量ij c 大的弧(),i j v v 上适当多运输.如果仅考虑条件(1)和(2),易写出其数学模型为:()()()()()()()}(),0,,0,,,,min()..0,0i j s j j s t j j t i j j i ij ijv v Asj js v v A v v A tj jt v v A v v A ij ji i s t v v A v v A ij ijf f f v f f v M s t f f v V v v f c ω∈∈∈∈∈∈∈⎧-=⎪⎪-=-⎪⎪⎨⎪-=∈⎪⎪≤≤⎪⎩∑∑∑∑∑∑∑ 把条件(3)中的“容量大” 看作A 上的一个模糊子集A ,定义其隶属函数μ:[]0,1A →为:()()00,0,1,ij ij ij i j A d c c v ij c c v v e c cμμ--≤≤⎧⎪==⎨->⎪⎩其中 ()1,i j ij v v c Ac -⎡⎤⎢⎥=⎢⎥⎣⎦∑(平均容量) ()()()()()()21,2211,,0,1lg ,1i j i j i j ij v v A ij ij v v A v v A Ac cd c c Ac c -∈-∈∈⎧⎡⎤⎪⎢⎥-≤⎪⎢⎥⎣⎦⎪=⎨⎡⎤⎪⎢⎥⎢⎥-->⎪⎢⎥⎢⎥⎪⎣⎦⎣⎦⎩∑∑∑建立ij μ是为了量化“适当多运输”这一模糊概念.对条件(2)作如下处理:对容量ij c 大的弧(),i j v v ,人为地降低运价ij ω,形成“虚拟运价”ij ω,其中ij ω满足:ij c 越大,相应的ij ω的调整幅度也越大.选取ij ω为()1k ij ij ij ωωμ=-,(),ijv v A ∈.其中k 是正参数,它反映了条件(2)和条件(3)在决策者心目中的地位.决策者越看重条件(3),k 取值越小;当k 取值足够大时,便可忽略条件(3) .一般情况下,合适的k 值最好通过使用一定数量的实际数据进行模拟、检验和判断来决定.最后,用ij ω代替原模型M 中的ij ω,得到一个新的模型M '.用现有的方法求解这个新的规划问题,可期望得到满足条件(3)的解.模型的评价此模型在原有的数学规划模型和解法的基础上,增加了模糊约束.新模型比较符合实际,它的解包含了原模型的解,因而它是一个较为理想的模型.隶属度的确定在模糊数学中有多种方法,可以根据不同的实际问题进行调整.同样的思想方法可以处理其他的模糊约束问题.三、灰色系统客观世界的很多实际问题,其内部结构、参数以及特征并未全部被人们了解,对部分信息已知而部分信息未知的系统,我们称之为灰色系统.灰色系统理论是从系统的角度出发来研究信息间的关系,即研究如何利用已知信息去揭示未知信息.灰色系统理论包括系统建模、系统预测、系统分析等方面.(一) 灰色关联分析理论及方法灰色系统理论[9]中的灰色关联分析法是在不完全的信息中,对所要分析研究的各因素,通过一定的数据,在随机的因素序列间,找出它们的关联性,找到主要特性和主要影响因素.计算方法与步骤:1.原始数据初值化变换处理()k的第一个数据去除后面的原始数据,得出新的倍数列,即初始化数列,量纲为一,各分别用时间序列值均大于零,且数列有共同的起点.2. 求关联系数 ()()()()()()()()()0000min min ||max max ||||max max ||k i k k i k ikiki k k i k k i k ikx x x x x x x x ρξρ-+-=-+-3. 取分辨系数01ρ<<4. 求关联度 ()()11ni k i k k r n ξ==∑ (二) 灰色预测1. 灰色预测方法的特点(1)灰色预测需要的原始数据少,最少只需四个数据即可建模; (2)灰色模型计算方法简单,适用于计算机程序运行,可作实时预测;(3)灰色预测一般不需要多因素数据,而只需要预测对象本身的单因素数据,它可以通过数据本身的生成,寻找系统内在的规律;(4)灰色预测既可做短期预测,也可做长期预测,实践证明,灰色预测精度较高,误差较小.2. 灰色预测GM(1,1)模型的一点改进一些学者为了提高预测精度做出了大量的研究工作,提出了相应的方法.本文将在改善原始离散序列光滑性的基础上,进一步研究GM(1,1)预测模型的理论缺陷及改进方法[10].问题的存在及改进方法如下:传统灰色预测GM(1,1)模型的一般步骤为: (1)1-ADO :对原始数据序列(){}0k x ()1,2,,k n =进行一次累加生成序列()()101kk i i x x =⎧⎫=⎨⎬⎩⎭∑()1,2,,k n =(2)对0x 数列进行光滑性检验:00,k λ∀>∃,当0k k >时:()()()()0011101k k k k i i x x x x λ--==<∑文献[11]进一步指出只要()()0101k k i i x x -=∑为k 的递减函数即可.(3)对1x 作紧邻生成:()()()()1111*1*,2,3,,k k k Z x x k n αα-=+-=一般取0.5α=()()b ax dtdx =+11 (16)。