解一元一次方程(一)

合集下载

七年级下册数学解一元一次方程

七年级下册数学解一元一次方程

在七年级下册数学中,解一元一次方程是一个重要的课题。

一元一次方程是只含有一个未知数,并且未知数的指数为1的方程。

下面是一些解一元一次方程的基本步骤和示例。

1.解一元一次方程的基本步骤
1)去分母:如果方程中有分数,首先去分母,使方程变为整数形式。

2)去括号:如果方程中有括号,应用分配律去掉括号。

3)移项:将所有包含未知数的项移到方程的一边,常数项移到另一边。

4)合并同类项:将方程两边的同类项合并。

5)系数化为1:通过除法或乘法,使未知数的系数为1。

2.示例
解方程:3x - 7 = 2x + 5
1)去分母:本方程没有分数,所以此步跳过。

2)去括号:本方程没有括号,所以此步跳过。

3)移项:将包含x的项移到方程的一边,常数项移到另一边。

3x - 2x = 5 + 7
4)合并同类项:合并x的系数。

x = 12
3.注意事项
1)确保在解方程时,每一步都正确无误。

2)在移项和合并同类项时,要特别注意符号的变化。

3)在解出未知数后,最好将解代入原方程检验是否正确。

解一元一次方程是数学基础的一部分,通过不断的练习,可以逐渐掌握这一技能。

解一元一次方程习题精选附答案

解一元一次方程习题精选附答案

一、解方程:(1)=x﹣. (3).(5).(7)4(x ﹣1)﹣3(20﹣x )=5(x ﹣2);(9)(11).(13).(2)(x ﹣1)=2﹣(x+2). (4)(6)[3(x﹣)+]=5x ﹣1(8)(10) (12) (14)(15)+2(17) (19)x﹣﹣3(21).(23).20.解方程(1).(2).(16)(I8)12y ﹣2.5y=7.5y+5 (20).(22).二、计算:(1)(2)÷(4)﹣42×+|﹣2|3×(﹣)3(5)当k 为什么数时,式子比的值少3.参考答案与试题解析一.解答题(共30小题) 1.(2005?宁德)解方程:2x+1=7 考点: 解一元一次方程. 专题: 计算题;压轴题.分析: 此题直接通过移项,合并同类项,系数化为1可求解. 解答: 解:原方程可化为:2x=7﹣1合并得:2x=6 系数化为1得:x=3点评: 解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a 的形式.2.考点: 解一元一次方程. 专题: 计算题.分析: 这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解. 解答: 解:左右同乘12可得:3[2x ﹣(x ﹣1)]=8(x ﹣1),化简可得:3x+3=8x ﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10.解方程:(1)4x ﹣3(4﹣x )=2;(2)(x ﹣1)=2﹣(x+2). 考点: 解一元一次方程. 专题: 计算题. 分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解; (2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:(1)4x ﹣3(4﹣x )=2 去括号,得4x ﹣12+3x=2 移项,合并同类项7x=14 系数化1,得x=2.(2)(x ﹣1)=2﹣(x+2) 去分母,得5(x ﹣1)=20﹣2(x+2) 去括号,得5x ﹣5=20﹣2x ﹣4 移项、合并同类项,得7x=21 系数化1,得x=3.点评:(1)此题主要是去括号,移项,合并同类项,系数化1. (2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:(1)计算:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)根据有理数的混合运算法则计算:先算乘方、后算乘除、再算加减;(2)两边同时乘以最简公分母4,即可去掉分母.解答:解:(1)原式=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.13.解方程:(1)(2)考点:解一元一次方程.专题:计算题.分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、合并同类项、化系数为1.解答:(1)解:去分母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6(2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x的值;(3)乘最小公倍数去分母即可;(4)主要是去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、合并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣6x+24,移项、合并得:9x=38,方程两边都除以9,得x=;(3)整理得:[3(x﹣)+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.解题时,要灵活运用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣化简:x=5即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题主要考查一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1去分母得:17+20x﹣15x=﹣3移项,合并同类项得:5x=﹣20系数化为1得:x=﹣4.点评:解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣3考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项合并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.分析:(1)利用平方和立方的定义进行计算.(2)按四则混合运算的顺序进行计算.(3)主要是去括号,移项合并.(4)两边同乘最小公倍数去分母,再求值.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2]====.(3)解方程:4x﹣3(5﹣x)=2去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15合并同类项,得7x=17系数化为1,得.(4)解方程:去分母,得15x﹣3(x﹣2)=5(2x﹣5)﹣3×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)和(2)要熟练掌握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90合并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)通过去分母以及去括号、移项、系数化为1等过程,求得x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.分析:先去括号得x+3﹣2x+2=9﹣3x,然后移项、合并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,合并得2x=4,系数化为1得x=2.点评:本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1.∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原方程的解.,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考查的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.考点:解一元一次方程.分析:(1)首先去括号,然后移项、合并同类项,系数化成1,即可求解;(2)首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:(1)去括号,得:0.5x﹣0.7=5.2﹣1.3x+1.3移项,得:0.5x+1.3x=5.2+1.3+0.7合并同类项,得:1.8x=7.2,则x=4;(2)去分母得:7(1﹣2x)=3(3x+1)﹣42,去括号,得:7﹣14x=9x+3﹣42,移项,得:﹣14x﹣9x=3﹣42﹣7,合并同类项,得:﹣23x=﹣46,则x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).考点:解一元一次方程.分析:(1)移项,合并同类项,然后系数化成1即可求解;(2)移项,合并同类项,然后系数化成1即可求解;(3)去括号、移项,合并同类项,然后系数化成1即可求解;(4)首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,x=;(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.解方程:.考点: 解一元一次方程. 专题: 计算题. 分析:方程两边乘以10去分母后,去括号,移项合并,将x 系数化为1,即可求出解.解答:解:去分母得:5(3x ﹣1)﹣2(5x ﹣6)=2, 去括号得:15x ﹣5﹣10x+12=2, 移项合并得:5x=﹣5, 解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:(1)10x ﹣12=5x+15;(2)考点: 解一元一次方程. 专题: 计算题. 分析:(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.解答:解:(1)移项,得 10x ﹣5x=12+15, 合并同类项,得5x=27,方程的两边同时除以5,得 x=;(2)去括号,得=,方程的两边同时乘以6,得 x+1=4x ﹣2, 移项、合并同类项,得 3x=3,方程的两边同时除以3,得 x=1.点评:本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.27.解方程: (1)8y ﹣3(3y+2)=7 (2).考点: 解一元一次方程. 专题: 计算题. 分析:(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(1)去括号得,8y ﹣9y ﹣6=7,移项、合并得,﹣y=13, 系数化为1得,y=﹣13; (2)去分母得,3(3x ﹣1)﹣12=2(5x ﹣7), 去括号得,9x ﹣3﹣12=10x ﹣14,移项得,9x ﹣10x=﹣14+3+12, 合并同类项得,﹣x=1, 系数化为1得,x=﹣1.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.28.当k 为什么数时,式子比的值少3.考点: 解一元一次方程. 专题: 计算题. 分析:先根据题意列出方程,再根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.解答:解:依题意,得=+3,去分母得,5(2k+1)=3(17﹣k )+45, 去括号得,10k+5=51﹣3k+45, 移项得,10k+3k=51+45﹣5,合并同类项得,13k=91, 系数化为1得,k=7,∴当k=7时,式子比的值少3.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.29.解下列方程: (I )12y ﹣2.5y=7.5y+5(II ).考点: 解一元一次方程. 专题: 计算题. 分析:(Ⅰ)根据一元一次方程的解法,移项,合并同类项,系数化为1即可得解; (Ⅱ)是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,合并同类项得,6x=﹣3,系数化为1得,x=﹣.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.30.解方程:.考点:解一元一次方程.专题:计算题.分析:由于方程的分子、分母均有小数,利用分数的基本性质,分子、分母同时扩大相同的倍数,可将小数化成整数.解答:解:原方程变形为,(3分)去分母,得3×(30x﹣11)﹣4×(40x﹣2)=2×(16﹣70x),(4分)去括号,得90x﹣33﹣160x+8=32﹣140x,(5分)移项,得90x﹣160x+140x=32+33﹣8,(6分)合并同类项,得70x=57,(7分)系数化为1,得.(8分)点评:本题考查一元一次方程的解法.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.本题的难点在于方程的分子、分母均有小数,将小数化成整数不同于去分母,不是方程两边同乘一个数,而是将分子、分母同乘一个数.。

一元一次方程应用题100道(带答案)

一元一次方程应用题100道(带答案)

一元一次方程应用题100道(带答案)初一数学上册一元一次方程应用题100道问题补充:第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.B.1C.-2D.-10.方程│3x│=18的解的情形是().A.有一个解是6B.有两个解,是±6C.无解D.有没有数个解11.若方程2ax-3=5x+b无解,则a,b应满意().A.a≠,b≠3B.a=,b=-3C.a≠,b=-3D.a=,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某阛阓在统计本年第一季度的贩卖额时发觉,仲春份比一月份增长了10%,三月份比仲春份削减了10%,则三月份的贩卖额比一月份的贩卖额().A.增长10%B.削减10%C.不增也不减D.削减1%15.在梯形面积公式S=(a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1B.5C.3D.416.甲组有28人,乙组有20人,则以下分配办法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球竞赛的划定规矩为胜一场得3分,平一场得1分,负一场是分,•一个队打了14场竞赛,负了5场,共得19分,那么这个队胜了()场.A.3B.4C.5D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-120.解方程:(x-1)-(3x+2)= -(x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据相识,火车票价按“”的办法来肯定.A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名ABCDEF G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0比方:要肯定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客XXX乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到XXX手中的票价是66元,马上说下一站就到了.请问XXX是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元4.5元4元某校初一甲、乙两班共103人(个中甲班人数多于乙班人数)去游该公园,如果两班都以班为单元划分购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)谜底:一、1.32.-3(点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=-,得x=)4.x+3x=2x-65.y= - x6.525(点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4[点拨:设需x天完成,则x(+)=1,解得x=4]21.解:设卡片的长度为x厘米,按照图意和题意,得5x=3(x+10),解得x=15以是需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.二、9.D10.B(点拨:用分类讨论法:当x≥时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故此题应选B)11.D(点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必需使2a-5=0,a=,b+3≠,b≠-3,故本题应选D.)12.B(点拨;在变形的进程当中,使用分式的性子将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变成整数方程)13.C(点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B(点拨:由公式S=(a+b)h,得b= -3=5厘米)16.D17.C18.A(点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=336,2837,28dhgghsaqy数学题要细心,慢慢做,要做对。

解一元一次方程的方法

解一元一次方程的方法

解一元一次方程的方法
解一元一次方程可以采用以下方法:
1. 两边加减同一个数:对于方程ax + b = c,可以将b的相反
数加到两边,得到ax = c - b。

2. 两边乘除同一个数:对于方程ax = c,可以将方程两边同时
除以a,得到x = c/a。

要注意a不能为零。

3. 移项:对于方程ax + b = c,可以将b移动到等式的另一边,得到ax = c - b。

再根据上述方法继续求解x。

4. 合并同类项:对于方程ax + bx + c = d,可以将同类项ax和bx相加,得到(a + b)x + c = d。

再根据上述方法继续求解x。

5. 解方程应用逆运算:对于方程3x - 5 = 4,可以通过逆运算
来求解。

首先将-5移动到等式的另一边,得到3x = 4 + 5。


后再除以3,得到x = 9/3。

所以方程的解为x = 3。

以上是解一元一次方程的一些常用方法,根据具体情况选择合适的方法来解方程。

注意要进行合理的运算步骤,并在求解过程中保持等式的平衡。

解一元一次方程(一)初中数学人教版

解一元一次方程(一)初中数学人教版

第三章一元一次方程3.2解一元一次方程(一)——合并同类项与移项一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程3x–5=8–4x移项后,正确的是A.3x–4x=8+5 B.3x–4x=8–5C.3x+4x=8–5 D.3x+4x=8+52.解方程时,不需要合并同类项的是A.3x=2x+1 B.4x=3x+2C.2x=1 D.6x–5=13.下列各变形中,不正确的是A.从x+3=6,可得x=6–3B.从2x=x–2,可得2x–x=–2C.从x+1=2x,可得x–2x=1D.从2x–4=3x+8,可得2x–3x=8+4A.①B.②C.③D.④5.已知方程2x+1=8,那么4x+1的值等于A.17 B.16C.15 D.19二、填空题:请将答案填在题中横线上.6.由方程x–9=–15,可得x=–15+__________,这是根据__________,在等式两边都__________,所以x=__________.7.若5x–7的值与4x+9的值相等,则x的值为__________.8.2x–7与4互为相反数,则x=__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.9.判断下列方程的求解过程是否正确,说明原因:10.解下列方程.第三章一元一次方程3.2解一元一次方程(一)——合并同类项与移项一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程3x–5=8–4x移项后,正确的是A.3x–4x=8+5 B.3x–4x=8–5C.3x+4x=8–5 D.3x+4x=8+5【答案】D【解析】方程3x–5=8–4x,移项得:3x+4x=8+5.故选D.2.解方程时,不需要合并同类项的是A.3x=2x+1 B.4x=3x+2C.2x=1 D.6x–5=1【答案】C3.下列各变形中,不正确的是A.从x+3=6,可得x=6–3B.从2x=x–2,可得2x–x=–2C.从x+1=2x,可得x–2x=1D.从2x–4=3x+8,可得2x–3x=8+4【答案】C【解析】A、将3从等号左边移到右边,变为–3,正确;B、将x从右边移到左边,变为–x,正确;C、将2x从右边移到左边,变为–2x,正确,但将1从等号左边移到右边不变号,错误;D、将3x从右边移到左边,变为–3x,正确,将–4从等号左边移到右边变为4,正确.故选C.4.解方程4(y–1)–y=2(y+12)的步骤如下:解:①去括号,得4y–4–y=2y+1②移项,得4y+y–2y=1+4③合并同类项,得3y=5④系数化为1,得y=53.经检验y=53不是方程的解,则上述解题过程中是从第几步出错的A.①B.②C.③D.④【答案】B【解析】第②步中将y的符号弄错,而出现错误,应为4y–y–2y=1+4而不是4y+y–2y=1+4.故选B.5.已知方程2x+1=8,那么4x+1的值等于A.17 B.16 C.15 D.19【答案】C【解析】方程2x+1=8,解得:x=3.5,把x=3.5代入4x+1得:14+1=15,故选C.学#@科网二、填空题:请将答案填在题中横线上.6.由方程x–9=–15,可得x=–15+__________,这是根据__________,在等式两边都__________,所以x=__________.【答案】9;等式的性质1;加9;–67.若5x–7的值与4x+9的值相等,则x的值为__________.【答案】16【解析】根据题意得:5x–7=4x+9,解得:x=16.故答案为:16.8.2x–7与4互为相反数,则x=__________.【答案】3 2【解析】依题意得:2x–7=–4,即2x=3,系数化1得:x=32.三、解答题:解答应写出文字说明、证明过程或演算步骤.9.判断下列方程的求解过程是否正确,说明原因:(1)–6x+3x=–1–8.解:合并同类项,得–9x=–9.系数化为1,得x=1.(2)5x+4x=18.解:合并同类项,得9x=18.系数化为1,得x=12.【答案】(1)不正确,理由见解析;(2)不正确,理由见解析.10.解下列方程.(1)9x–7=10x+8;(2)2.3y–3.8=4.8y+1.2;(3)32x–2.8+x=0.7:(4)113x–112=105x+16;(5)|x|+2=3.【答案】(1)x=–15;(2)y=–2;(3)x=75;(4)x=132;(5)x=1或–1.【解析】(1)移项,得:9x–10x=8+7,合并同类项,得:–x=15,。

解一元一次方程40题(一)含答案

解一元一次方程40题(一)含答案

解一元一次方程40题(一)一.解答题(共40小题)1.已知3x =是方程(1)3[(1)]234x m x -++=的解,求m 的值.2.已知关于x 的方程13(23)322x x +-=和3261x m x +=+的解相同,求:代数式202020193(2)()2m m ---的值.3.解方程(1)2(4)3(1)x x x --=- (2)313142x x-+-=4.某同学在解方程21233x x a-+=-时,方程右边的2-没有乘以3,其它步骤正确,结果方程的解为1x =.求a 的值,并正确地解方程.5.解方程:(1)37322x x +=-; (2)43(20)40x x --+=; (3)352123x x +-=; (4)5415323412y y y +--+=-;6.解方程2191136x x ++-=7.解方程: (1)0.10.2130.020.5x x -+-= (2)312143x x -+-=-8.解方程: (1)132x x --= (2)0.6310.20.4x x--=9.解下列方程:(1)5379x x +=-+ (2)43(20)40x x --+= (3)3157146y y ---= (4)1213323x x x --+=-10.已知12x =是方程21423x m x m ---=的解,求式子211(428)(1)42m m m -+-+-的值.11.(1)计算:225(210)4-⨯--÷ (2)计算:2313()(24)(3)12468-+⨯-+-÷12.解方程:(1)2557x x +=- (2)3(2)25(2)x x -=-+ (3)14223x x +-+= (4)12311463x x x -++-=+13.解下列方程或方程组(1)219x x -=+ (2)52(1)x x +=- (3)43135x x --=- (4)3717245x x -+-=-14.若代数式33x +比344x -的值大4,求x 的值.15.定义:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”,例如:24x =-的解为2x =-,且242-=-+,则该方程24x =-是和解方程. (1)判断934x -=是否是和解方程,说明理由;(2)若关于x 的一元一次方程52x m =-是和解方程,求m 的值.16.解方程(1)412(3)x x +=- (2)3157146y y ---=17.解方程.(1)8(35)20x x -+= (2)1:225%:0.753x = (3)2940%316x ÷=18.解方程 (1)23132x x --+= (2)2321{[1(1)]9}1320.32x xx +----=-19.解方程(1)0.50.7 6.5 1.3x x -=- (2)758143x x -+-=20.解下列方程:(1)3520x x x --=(2)3(56)320x x -=-(3)23[2(1)4]8x x x +--+=(4)2123134x x ---=21.解方程:851217x =22.m 为何值时,0.2m 的值比280.3m -的值大1?23.解方程:(1)34(25)4x x x -+=+; (2)12226x x x -+-=-.24.311(54)1535x -+= 22531277714x +-=25.解方程:(1)2343x x -=- (2)13(1)2x x --=(3)85(1)2x x +-= (4)4320.20.5x x +--=26.解方程:11(26)(8)134x x -=++.27.一元一次方程解答题:已知关于x 的方程23x m mx -=-与12(2)x x l -=-的解互为倒数,求m 的值.28.解方程(1)321x x -=-+ (2)18(1)32(21)x x x -+=-- (3)31571104y y ---=29.解方程:(1)2(100.5)(1.52)x x -=-+; (2)5415523412y y y +--+=-30.(1)将方程123126x x +--=去分母,得到33236x x +--=,错在 A .最简公分母找错 B .去分母时,漏掉乘数项C .去分母时,分子部分没有加括号D .去分母时,各项所乘的数不同(2)解方程:123126x x +--=31.0.1210.30.15x x-=+32.已知方程(21)32a x ax +=-有正整数解,求整数a 的值.33.解方程: (1)2121163x x +--= (2)2(1)35x x -=-34.解方程(1)2(21)(34)2x x +--= (2)1213323x x x --+=-35.先阅读下列解题过程,然后解答后面两个问题. 解方程:|3|2x -=.解:当30x -时,原方程可化为32x -=,解得5x =; 当30x -<时,原方程可化为32x -=-,解得1x =. 所以原方程的解是5x =或1x =. (1)解方程:|32|40x --=. (2)解关于x 的方程:|2|1x b -=+36.(1)684(1)x x -=-+ (2)20.30.410.50.3x x -+-=37.解下列方程:(1)2(2)3(41)9(1)x x x ---=-; (2)2152122362x x x-+--=-38.解方程:(1)432(1)1x x +=-+; (2)23(37)272x x +=-;(3)32[(21)2]223x x ---=; (4)218269x xx --=+.39.解下列方程:(1)369x --= (2)5467x x -=-+ (3)2(1)246x x -+=- (4)223123x x---=.40.小明解方程21152x x a+-+=时,由于粗心大意,在去分母时,方程左边的1没有乘10,求的方程的解为2x =-,试求a 的值.解一元一次方程40题(一)参考答案与试题解析一.解答题(共40小题)1.已知3x =是方程(1)3[(1)]234x m x -++=的解,求m 的值.【分析】把3x =代入方程,即可得出一个关于m 的方程,求出方程的解即可. 【解答】解:3x =是方程(1)3[(1)]234x m x -++=的解,∴代入得:3(31)3[(1)]234m -++=, 解得:83m =-.【点评】本题考查了解一元一次方程和一元一次方程的解,能得出关于m 的一元一次方程是解此题的关键. 2.已知关于x 的方程13(23)322x x +-=和3261x m x +=+的解相同,求:代数式202020193(2)()2m m ---的值.【分析】分别求出两个方程的解,然后根据解相同,列出关于m 的方程,求出m 的值,再将m 的值代入200920103(2)()2m m ---,计算即可求解.【解答】解:解方程13(23)322x x +-=,得:2363x x +-=, 0x ∴=,方程13(23)322x x +-=和3261x m x +=+的解相同,21m ∴=解得:12m =, 所以202020193(2)()2m m ---20202019113(2)()222=-⨯--1(1)=--2=.【点评】本题考查了同解方程的知识,解答本题的关键是能够求解关于x 的方程,要正确理解方程解的含义. 3.解方程(1)2(4)3(1)x x x --=- (2)313142x x-+-=【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解; (2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解. 【解答】解:(1)去括号得:2833x x x -+=-, 移项合并得:25x =-, 解得: 2.5x =-;(2)去分母得:43162x x -+=+, 移项合并得:51x -=, 解得:0.2x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键. 4.某同学在解方程21233x x a-+=-时,方程右边的2-没有乘以3,其它步骤正确,结果方程的解为1x =.求a 的值,并正确地解方程.【分析】由题意可知2x =是方程212x x a -=+-的解,然后可求得a 的值,然后将a 的值代入方程求解即可.【解答】解:将1x =代入212x x a -=+-得:112a =+-. 解得:2a =,将2a =代入216x x a -=+-得:2126x x -=+-. 解得:3x =-.【点评】本题主要考查的是一元一次方程的解,明确2x =是方程2(21)3()2x x a -=+-的解是解题的关键. 5.解方程:(1)37322x x +=-; (2)43(20)40x x --+=; (3)352123x x +-=; (4)5415323412y y y +--+=-;【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)37322x x+=-,32327x x+=-,525x=,5x=;(2)43(20)40x x--+=,460340x x-++=,43604x x+=-,756x=,8x=;(3)去分母得:3(35)2(21)x x+=-,91542x x+=-,94215x x-=--,517x=-,3.4x=-;(4)去分母得:4(54)3(1)24(53)y y y++-=--,2016332453y y y++-=-+,2035243163y y y++=+-+,2814y=,12y=.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.6.解方程21911 36x x++-=【分析】根据去分母、去括号、移项、合并同类项、系数化为1解答即可.【解答】解:21911 36x x++-=2(21)(91)6x x+-+=42916x x+--=49612x x-=+-55x-=1x=-【点评】此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项、系数化为1解答.7.解方程:(1)0.10.213 0.020.5x x-+-=(2)3121 43x x-+-=-【分析】(1)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程整理得:510223x x---=,移项合并得:315x=,解得:5x=;(2)去分母得:934812x x---=-,移项合并得:51x=-,解得:15x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.解方程:(1)132xx--=(2)0.6310.20.4 x x--=【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:216x x-+=,解得:5x=;(2)方程整理得:315512xx--=,去分母得:102315x x-=-,移项合并得:255x=,解得:0.2x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.解下列方程:(1)5379x x+=-+(2)43(20)40x x--+=(3)3157146 y y---=(4)121 3323x xx--+=-【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:126x=,解得:0.5x=;(2)去括号得:460340x x-++=,移项合并得:756x=,解得:8x=;(3)去分母得:93121014y y--=-,移项合并得:1y-=,解得:1y=-;(4)去分母得:18331842x x x+-=-+,移项合并得:2523x=,解得:2325x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10.已知12x=是方程21423x m x m---=的解,求式子211(428)(1)42m m m-+-+-的值.【分析】把12x =代入方程,求出m 的值,再把代数式进行化简,最后代入求出即可. 【解答】解:把12x =代入方程21423x m x m ---=得:1112423m m ---=, 解得:5m =,211(428)(1)42m m m -+-+- 21112222m m m =-+-+- 2122m =-- 21522=-- 1272=-. 【点评】本题考查了解一元一次方程,一元一次方程的解,整式的混合运算和求值等知识点,能求出m 的值是解此题的关键.11.(1)计算:225(210)4-⨯--÷(2)计算:2313()(24)(3)12468-+⨯-+-÷ 【分析】(1)根据有理数的混合计算解答即可;(2)根据有理数的混合计算解答即可;(3)根据去分母、去括号、移项、合并同类项、系数化为1解答.【解答】解:(1)225(210)4-⨯--÷45(8)4=-⨯--÷202=-+18=-;(2)2313()(24)(3)12468-+⨯-+-÷ 1849912=-+-+÷318494=-+-+ 1224=-; 【点评】此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项、系数化为1解答.12.解方程:(1)2557x x +=-(2)3(2)25(2)x x -=-+(3)14223x x +-+= (4)12311463x x x -++-=+ 【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)2557x x +=-,2575x x -=--,312x -=-,4x =;(2)3(2)25(2)x x -=-+,362510x x -=--,352106x x +=-+,82x =-,0.25x =-;(3)14223x x +-+=, 3(1)2(4)12x x ++-=,332812x x ++-=,321238x x +=-+,517x =,5.4x =;(4)去分母得:3(1)122(23)4(1)x x x --=+++,33124644x x x --=+++,34464312x x x--=+++,525x-=,5x=-.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.13.解下列方程或方程组(1)219x x-=+(2)52(1)x x+=-(3)431 35x x--=-(4)3717 245x x-+ -=-【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:10x=;(2)去括号得:522x x+=-,移项合并得:7x-=-,解得:7x=;(3)去分母得:2053915x x-=--,移项合并得:844x-=-,解得: 5.5x=;(4)去分母得:401535468x x-+=--,移项合并得:11143x-=-,解得:13x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.若代数式33x+比344x-的值大4,求x的值.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:3344 34x x+--=,去分母得:41291248x x+-+=,移项合并得:524x -=,解得: 4.8x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.15.定义:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”,例如:24x =-的解为2x =-,且242-=-+,则该方程24x =-是和解方程.(1)判断934x -=是否是和解方程,说明理由; (2)若关于x 的一元一次方程52x m =-是和解方程,求m 的值.【分析】(1)求出方程的解,再根据和解方程的意义得出即可;(2)根据和解方程得出关于m 的方程,求出方程的解即可.【解答】解:(1)934x -=, 34x ∴=-, 93344-=-, 934x ∴-=是和解方程;(2)关于x 的一元一次方程52x m =-是和解方程,2255m m -∴-+=, 解得:174m =-. 故m 的值为174-. 【点评】本题考查了一元一次方程的解的应用,能理解和解方程的意义是解此题的关键.16.解方程(1)412(3)x x +=-(2)3157146y y ---= 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y 系数化为1,即可求出解.【解答】解:(1)去括号得:4162x x +=-,移项合并得:65x =,解得:56x=;(2)去分母得:93121014y y--=-,移项合并得:1y-=,解得:1y=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.17.解方程.(1)8(35)20x x-+=(2)1:225%:0.75 3x=(3)29 40%316x÷=【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)利用比例的性质化简,计算即可求出x的值;(3)方程整理后,把x系数化为1,即可求出解.【解答】解:(1)去括号得:83520x x--=,移项合并得:525x=,解得:5x=;(2)整理得:1132434x⨯=⨯,整理得:21x=,解得:12x=;(3)方程整理得:9240%163x=⨯,即340%8x=,解得:1516x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.解方程(1)231 32x x--+=(2)2321{[1(1)]9}1 320.32x x x+----=-【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,去分母,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:42396x x-+-=,移项合并得:11x=;(2)去括号得:2010116132x xx+--+-=-,去分母得:66402063663x x x---+-=-,移项合并得:3162x-=,解得:2x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.解方程(1)0.50.7 6.5 1.3x x-=-(2)7581 43x x-+-=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:1.87.2x=,解得:4x=-;(2)去分母得:321203212x x---=,移项合并得:1765x-=,解得:6517x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.解下列方程:(1)3520x x x--=(2)3(56)320x x-=-(3)23[2(1)4]8x x x+--+=(4)21231 34x x---=【分析】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此求出每个方程的解即可.【解答】解:(1)3520x x x--=合并同类项,可得:40x-=,系数互为1,可得:0x=;(2)3(56)320x x -=-去括号,可得:1518320x x -=-,移项,可得:1520318x x +=+,合并同类项,可得:3521x =,系数互为1,可得:0.6x =;(3)23[2(1)4]8x x x +--+=,去括号,可得:2366128x x x +-++=移项,可得:2366128x x x +-=--+,合并同类项,可得:10x -=-,系数互为1,可得:10x =;(4)2123134x x ---=, 去分母,可得,4(21)3(23)12x x ---=,去括号,可得:846912x x --+=,移项,可得:864912x x -=-+,合并同类项,可得:27x =,系数互为1,可得:72x =. 【点评】此题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.21.解方程:851217x = 【分析】方程x 系数化为1,即可求出解.【解答】解:方程x 系数化为1得:122178x =⨯, 解得:92x =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.m 为何值时,0.2m 的值比280.3m -的值大1? 【分析】根据题意列出方程,求出方程的解即可得到m 的值.【解答】解:根据题意得:281 0.20.3m m--=,整理得:2080513mm--=,去分母得:1520803m m-+=,移项合并得:577m-=-,解得:775m=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.解方程:(1)34(25)4x x x-+=+;(2)12226x xx-+-=-.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:38204x x x--=+,移项合并得:624x-=,解得:4x=-;(2)去分母得:633122x x x-+=--,移项合并得:47x=,解得:74x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.24.311(54)1 535 x-+=22531277714x+-=【分析】方程移项合并,把x系数化为1,即可求出解;方程去分母,移项合并,把x系数化为1,即可求出解.【解答】解:移项得:3158 515x=,解得:1589x=;去分母得:418383x+-=,移项合并得:423x=,解得:234x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.25.解方程:(1)2343x x-=-(2)1 3(1)2xx--=(3)85(1)2x x+-=(4)432 0.20.5x x+--=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)原式去括号,移项合并,把x系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:2343x x+=+,合并得:57x=,解得:75x=;(2)去分母得:6(1)1x x-=-,去括号得:661x x-=-,移项合并得:55x=,解得:1x=;(3)去括号得:8552x x+-=,移项合并得:33x=-,解得:1x=-;(4)方程整理得:520262x x+-+=,移项合并得:324x=-,解得:8x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.26.解方程:11(26)(8)1 34x x-=++.【分析】去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:去分母得:4(26)3(8)12x x-=++,82432412x x -=++,83241224x x -=++,560x =,12x =.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.27.一元一次方程解答题:已知关于x 的方程23x m m x -=-与12(2)x x l -=-的解互为倒数,求m 的值.【分析】求出第二个方程的解,确定出第一个方程的解,代入计算即可求出m 的值.【解答】解:方程12(21)x x -=-,去括号得:142x x -=-, 解得:13x =, 将3x =代入方程23x m m x -=-得,3323m m -=-, 去分母得:93182m m -=-,解得:9m =-.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.28.解方程(1)321x x -=-+(2)18(1)32(21)x x x -+=--(3)31571104y y ---= 【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去括号,移项合并,把x 系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y 系数化为1,即可求出解.【解答】解:(1)方程移项合并得:34x =, 解得:43x =; (2)去括号得:1818342x x x -+=-+,移项合并得:2520x =, 解得:45x =;(3)去分母得:62202535y y--=-,移项合并得:1913y-=-,解得:1319y=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.29.解方程:(1)2(100.5)(1.52)x x-=-+;(2)5415523412 y y y+--+=-【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)去括号得:20 1.52x x-=--,移项合并得:0.522x=-,解得:44x=-;(2)去分母得:2016332455y y y++-=-+,移项合并得:2816y=,解得:47y=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.30.(1)将方程123126x x+--=去分母,得到33236x x+--=,错在CA.最简公分母找错B.去分母时,漏掉乘数项C.去分母时,分子部分没有加括号D.去分母时,各项所乘的数不同(2)解方程:1231 26x x+--=【分析】(1)方程左右两边乘以6得到结果,即可作出判断;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程去分母得:3(1)(23)6x x+--=,去括号得:33236x x+-+=,故答案为:C;(2)去分母得:33(23)6x x+--=,去括号得:33236x x+-+=,解得:0x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.31.0.1210.30.15x x-=+【分析】方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:方程整理得:12020133x x-=+,去分母得:120320x x-=+,移项合并得:402x=-,解得:120x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.32.已知方程(21)32a x ax+=-有正整数解,求整数a的值.【分析】将原方程整理移项,合并同类项,根据该方程有解,得到关于a得方程的解,结合方程的解为正整数,a为整数,得到两个关于a的一元一次方程,解之即可.【解答】解:(21)32a x ax+=-,移项,合并同类项得:(1)2a x-+=-,因为方程有解,所以(1)0a-+≠,即21xa=-,因为方程有正整数解,且a取整数,所以11a-=或12a-=,解得:2a=或3a=,答:整数a的值为2或3.【点评】本题考查了一元一次方程的解,正确掌握一元一次方程的解法是解题的关键.33.解方程:(1)21211 63x x+--=(2)2(1)35x x-=-【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:21426x x+-+=,移项合并得:23x-=,解得:32x =-; (2)去括号得:2235x x -=-,移项合并得:3x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.34.解方程(1)2(21)(34)2x x +--=(2)1213323x x x --+=- 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)去括号得:42342x x +-+=,移项合并得:4x =-;(2)去分母得:18331842x x x +-=-+,移项合并得:2523x =, 解得:2325x =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.35.先阅读下列解题过程,然后解答后面两个问题.解方程:|3|2x -=.解:当30x -时,原方程可化为32x -=,解得5x =;当30x -<时,原方程可化为32x -=-,解得1x =.所以原方程的解是5x =或1x =.(1)解方程:|32|40x --=.(2)解关于x 的方程:|2|1x b -=+【分析】(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.【解答】解:(1)当320x -时,原方程可化为3240x --=,解得2x =;当320x -<时,原方程可化为(32)40x ---=,解得23x =-. 所以原方程的解是2x =或23x =-.(2)①当10b +<,即1b <-时,原方程无解,②当10b +=,即1b =-时:原方程可化为:20x -=,解得2x =;③当10b +>,即1b >-时:当20x -时,原方程可化为21x b -=+,解得3x b =+;当20x -<时,原方程可化为2(1)x b -=-+,解得1x b =-+.【点评】本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.36.(1)684(1)x x -=-+(2)20.30.410.50.3x x -+-= 【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)原方程可整理得:203104153x x -+-=,依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:6844x x -=--,移项得:4846x x +=-+,合并同类项得:510x =,系数化为1得:2x =,(2)原方程可整理得:203104153x x -+-=, 方程两边同时乘以15得:3(203)5(104)15x x --+=,去括号得:609502015x x ---=,移项得:605015209x x -=++,合并同类项得:1044x =,系数化为1得: 4.4x =.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.37.解下列方程:(1)2(2)3(41)9(1)x x x ---=-;(2)2152122362x x x -+--=-.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:2412399x x x--+=-,移项得:2129943x x x-+=+-,合并同类项得:10x-=,系数化为1得:10x=-,(2)去分母得:2(21)(52)3(12)12x x x--+=--,去括号得:42523612x x x---=--,移项得:45631222x x x-+=-++,合并同类项得:55x=-,系数化为1得:1x=-.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.38.解方程:(1)432(1)1x x+=-+;(2)23 (37)272x x+=-;(3)32[(21)2]2 23x x---=;(4)218269x xx--=+.【分析】(1)先去括号,移项并合并同类项,再把系数化为1即可(2)可以先左右两边乘以14,去分母再去括号,移项并合并同类项,将系数化为1即可(3)先去括号,合并同类项,将系数化为1即可(4)可左右两边同时乘以18,去分母后,移项并合并同类项,将系数化为1即可【解答】解:(1)原式去括号得:4321x x+=-移项并合并同类项得,24x=-系数化为1得,2x=-(2)原式去分母得,4(37)2821x x+=-去括号得,12282821x x+=-移项合并同类项得,330x=系数化为1得,0x=(3)原式去括号得,42x-=移项得,6x=(4)原式去分母得,183(218)236x x x--=+去括号得,18654236x x x-+=+移项合并同类项得,7042x=系数化为1得,35 x=【点评】此题考查的是解一元一次方程,掌握解一元一次方程的步骤是解答此题的关键.解一元一次方程的步骤是:1.去分母:在方程两边都乘以各分母的最小公倍数;2.去括号:先去小括号,再去中括号,最后去大括号;3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(注意移项要改变运算的符号);4.合并同类项:把方程化成(0)ax b a=≠的形式;5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解.39.解下列方程:(1)369x--=(2)5467x x-=-+(3)2(1)246x x-+=-(4)2231 23x x---=.【分析】(1)依次移项,合并同类项,系数化为1,即可得到答案,(2)依次移项,合并同类项,系数化为1,即可得到答案,(3)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(4)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)移项得:396x-=+,合并同类项得:315x-=,系数化为1得:5x=-,(2)移项得:4675x x-+=-,合并同类项得:22x=,系数化为1得:1x=,(3)去括号得:22246x x-+=-,移项得:24622x x-=--+,合并同类项得:26x-=-,系数化为1得:3x=,(4)去分母得:3(2)2(23)6x x---=,去括号得:36466x x--+=,移项得:36664x x+=++,合并同类项得:916x=,系数化为1得:169x=.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.40.小明解方程21152x x a+-+=时,由于粗心大意,在去分母时,方程左边的1没有乘10,求的方程的解为2x=-,试求a的值.【分析】根据一元一次方程的解法即可求出答案.【解答】解:由题意可知:2x=-是方程2110110 52x x a+-⨯+=⨯,(41)215(2)a∴-+⨯+=--,61105a∴-+=--,5105a∴-=--,5105a∴=-+,55a∴=-,1a∴=-;【点评】本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.。

一元一次解方程初中

一元一次解方程初中

一元一次解方程初中
一元一次方程是初中数学中的一个重要概念,它只含有一个未知数,并且未知数的次数是1。

解一元一次方程的基本步骤是:
去分母:如果方程中有分数,首先要去分母,使方程变为整式方程。

去括号:如果方程中有括号,需要去掉括号,将方程展开。

移项:将方程中的同类项合并,使未知数项和常数项分别位于等式的两侧。

合并同类项:将方程中的同类项合并,简化方程。

系数化为1:通过除以未知数的系数,使未知数的系数为1,从而得到未知数的解。

例如,解方程2x + 3 = 5:
去分母:方程已经是整式方程,无需去分母。

去括号:方程中没有括号,无需去括号。

移项:将方程中的同类项合并,得到2x = 5 - 3。

合并同类项:简化方程,得到2x = 2。

系数化为1:将方程两边都除以2,得到x = 1。

所以,方程2x + 3 = 5 的解是x = 1。

以上是一元一次方程的基本解法,通过熟练掌握这些步骤,可以解决各种一元一次方程问题。

解一元一次方程(一)

解一元一次方程(一)

3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程01 教学目标经历把方程等号两边分别合并同类项的过程,能用合并同类项解一元一次方程. 02 预习反馈阅读教材P86~87“问题1及例1”,完成下列内容.1.形如“ax +bx =c ”的方程,先合并同类项,再把未知数系数化为1.2.补全下列解方程的过程:(1)6x -x =4;解:合并同类项,得 5x =4.系数化为1,得x =45.(2)-4x +6x -0.5x =-0.3.解:合并同类项,得1.5x =-0.3.系数化为1,得x =-15.03 例题讲解例 (教材P87例1变式)解下列方程:(1)x 2+x +2x =140;(2)3x -1.3x +5x -2.7x =-12×3-6×4.解:(1)x =40. (2)x =-15.【点拨】 用合并同类项解一元一次方程的步骤:(1)合并同类项,把原方程化为ax =b(a ≠0)的形式;(2)系数化为1,若合并后未知数的系数是1,则没有这个步骤.系数化为1的技巧:①若未知数的系数是不等于0和1的整数,则方程两边除以这个整数;②若未知数的系数是分数m n ,则方程两边乘它的倒数,即乘n m ;③若未知数的系数是带分数(小数),则先化为假分数(分数),再按情形②处理.总之,不要一律地除以未知数的系数,要视具体情况灵活处理.【跟踪训练】 解下列方程:(1)6x -5x =3;解:合并同类项,得x =3.(2)-x +3x =7-1;解:合并同类项,得2x =6.系数化为1,得x =3.(3)x 2+5x 2=9;解:合并同类项,得3x =9.系数化为1,得x =3.(4)6y +12y -9y =10+2+6.解:合并同类项,得9y =18.系数化为1,得y =2.04 巩固训练1.对于方程8x +6x -10x =6进行合并正确的是(C)A .3x =6B .2x =6C .4x =6D .8x =62.方程18x -3x +5x =11的解是(C)A .x =2611B .x =-2011C .x =1120D .x =11103.方程10x -2x =6+1两边合并后的结果为8x =7,其解为x =78.4.解下列方程:(1)-10x -6x =-7+15; (2)23x -56x =-67;(3)14x -12x =-7-6; (4)-32y -3y =52-2.解:(1)x =-12. (2)x =367. (3)x =52. (4)y =-19.05 课堂小结1.你今天学习的解方程有哪些步骤?合并同类项,系数化为1(等式的性质2).2.合并同类项即是将方程中含未知数的项和常数项分别合并,系数化为1的依据是等式的性质2.第2课时利用合并同类项解一元一次方程的实际问题01教学目标经历用“总量=各部分量的和”这一基本关系列一元一次方程解决实际问题的过程,掌握一元一次方程的简单应用.02预习反馈阅读教材P86“例1”,完成下列内容.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,求今年购置计算机的数量.解:设今年购置计算机x台,则去年购置计算机13x台.根据题意,得x+13x__=100,解得x=75.答:今年购置计算机75台.03例题讲解例(教材P86例1变式)中国某明星与麦当劳公司签约,该明星作为麦当劳的形象代言人,三年获酬金1 400万美元,若前一年的酬金是后一年的一半,且不考虑税金,则他第一年应得酬金多少万美元?解:设该明星第一年的酬金为x万美元,则第二年的酬金为2x万美元,第三年的酬金为4x万美元,由题意,得x+2x+4x=1 400,即7x=1 400.等式两边都除以7,得x=200.答:该明星第一年应得酬金200万美元.【点拨】【跟踪训练】麻商集团三个季度共销售冰箱2 800台,第一个季度销售量是第二个季度的2倍,第三个季度销售量是第一个季度的2倍,试问麻商集团第二个季度销售冰箱多少台?解:设麻商集团第二个季度销售冰箱x台,则第一个季度销售量为2x台,第三个季度销售量为4x台.根据总量等于各分量的和,得x+2x+4x=2 800.解得x=400.答:麻商集团第二个季度销售冰箱400台.04巩固训练1.已知某数的3倍与这个数的2倍的和是30,求这个数.解:设这个数是x.根据题意,得3x+2x=30.解得x=6.答:这个数是6.2.据某统计数据显示,在我国的700座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市,其中,暂不缺水城市数是严重缺水城市数的4倍,一般缺水城市数是严重缺水城市数的2倍,求严重缺水的城市有多少座?解:设严重缺水的城市有x座.根据题意,得4x+2x+x=700.解得x=100.答:严重缺水的城市有100座.3.蜘蛛有8条腿,蜻蜓有6条腿,现有蜘蛛、蜻蜓若干只,它们共有120条腿,且蜻蜓的只数是蜘蛛的2倍,蜘蛛、蜻蜓各有多少只?解:设蜘蛛有x只,则蜻蜓有2x只,根据题意,得8x+6×2x=120.解得x=6.所以蜻蜓有:6×2=12(只).答:蜘蛛有6只,蜻蜓有12只.05课堂小结如何列方程?分哪些步骤?(1)设未知数;(2)分析题意找出等量关系;(3)根据等量关系列方程.第3课时 利用移项解一元一次方程01 教学目标1.经历利用等式的性质解一元一次方程的过程,通过观察、比较、归纳出移项的法则.2.能用移项解一元一次方程.02 预习反馈阅读教材P88~89“问题2及例3”,完成下列内容.1.把等式一边的某项变号后移到另一边,叫做移项.2.补全下列解方程的过程:(1)5x -8=-3x -2;解:移项,得5x +3x =-2+8.合并同类项,得8x =6.系数化为1,得x =34.(2)3x +7=32-2x.解:移项,得3x +2x =32-7. 合并同类项,得5x =25.系数化为1,得x =5.03 例题讲解例1 (教材P89例3变式)解下列方程:(1)x -2=3-x ;(2)-x =1-2x ;(3)x -2x =1-23x ;(4)x -3x -1.2=4.8-5x. 解:(1)x =52. (2)x =1. (3)x =-3. (4)x =2.【点拨】 移项时要改变项的符号,通常把含未知数的项移到方程的左边,而常数项移到方程的右边.【跟踪训练】 解下列方程:(1)4x =9+x ;解:移项,得4x -x =9.合并同类项,得3x =9.系数化为1,得x =3.(2)4-35m =7;解:移项,得-35m =7-4.合并同类项,得-35m =3.系数化为1,得m =-5.(3)4x +5=3x +3-2x ;解:移项,得4x -3x +2x =-5+3.合并同类项,得3x =-2.系数化为1,得x =-23.(4)8y -3=5y +3.解:移项,得8y -5y =3+3.合并同类项,得3y =6.系数化为1,得y =2.04 巩固训练1.下列变形过程中,属于移项的是(C)A .由3x =-1,得x =-13B .由x 4=1,得x =4C .由3x +5=0,得3x =-5D.由-3x+3=0,得3-3x=02.对方程2x-3+x=6进行移项,下列正确的是(C)A.2x-x=6+3 B.2x-x=6-3C.2x+x=6+3 D.2x+x=6-33.方程3x+1=2x的解是(A)A.x=-1 B.x=1 C.x=-2 D.x=2 4.解下列方程:(1)5x=3x-12;(2)8x-5=7x+2;(3)12x-7=8x-3;(4)7y+8=2y-5-3y.解:(1)x=-6.(2)x=7.(3)x=1.(4)y=-13 8.05课堂小结1.今天你又学会了解方程的哪些方法?有哪些步骤?每一步的依据是什么?2.移项的“两注意”:(1)“两变”,即一变位置(从方程的一边移到另一边),二变符号,不要只变位置而不变符号;(2)要与交换律加以区别,在方程的同一边交换项的位置时,符号不变.第4课时利用移项解一元一次方程的实际问题01教学目标经历用“表示同一个量的两个不同的式子相等”这一基本关系列一元一次方程解决实际问题的过程,掌握一元一次方程的简单应用.02预习反馈阅读教材P90“例4”,完成下列内容.某果园12的面积种植了苹果树,14的面积种植了葡萄树,其余40 000 m 2的面积种植了桃树.求这个果园的面积.解:设这个果园的面积是x m 2,根据题意,得12x +14x +40 000=x .解得x =160__000.答:这个果园的面积是160__000__m 2.03 例题讲解例 (教材P90例4变式)将一堆糖果分给幼儿园某班的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗,这个班共有多少名小朋友? 解:设这个班共有x 名小朋友.根据题意,得2x +8=3x -12,解得x =20.答:这个班共有20名小朋友.【点拨】 用“表示同一个量的两个不同的式子相等”列一元一次方程解决实际问题的步骤:(1)设两个未知量中的一个为未知数x ;(2)用含x 的两个不同式子表示另一个未知量;(3)建立一元一次方程;(4)解方程;(5)检验,作答.【跟踪训练】 清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈,若每小组7人,则余下3人;若每小组8人,则少5人.该班共有多少名同学?解:设一共分为x 个小组.由题意,得7x +3=8x -5.解得x =8.则7x +3=7×8+3=59.答:该班共有59名同学.04巩固训练1.用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?解:设小拖拉机每小时耕地x亩.根据题意,得30-x=1.5x.解得x=12.答:小拖拉机每小时耕地12亩.2.学校举办秋季田径运动会,八年级(1)班班委会为班上参加比赛的运动员购买了8箱饮料,如果每人发2瓶,那么剩余16瓶;如果每人发3瓶,那么少24瓶.问该班有多少人参加比赛?解:设该班有x人参加比赛.依题意,得2x+16=3x-24.解得x=40.答:该班有40人参加比赛.3.根据图中的信息,求梅花鹿和长颈鹿现在的高度.解:设梅花鹿现在高x m.根据题意,得3x+1=x+4.解得x=1.5.所以x+4=5.5.答:梅花鹿现在高1.5 m,长颈鹿现在高5.5 m.05课堂小结1.学生试述本节课学了哪些内容?2.本节课讨论的问题中的相等关系又有何共同特点?。

一元一次方程解题步骤详解

一元一次方程解题步骤详解

一元一次方程的应用(一)1、掌握用一元一次方程解决实际问题的基本思想;2、进一步经历用方程解决实际问题的过程,体会运用方程解决实际问题的一般方法。

2运用一元一次方程解决简单的实际问题是重点;寻找等量关系是难点。

一、目标导入前面我们通过简单的实际问题研究了一元一次方程的解法,今天我们就来运用一元一次方程解决简单的实际问题。

二、例题例1有一列数,按一定规律排列成1,—3, 9,—27, 81,—243,…,其中某三个相邻数的和是-1701,这三个数各是多少分析:从符号与绝对值两方面观察,这列数有什么规律符号正负相间;后者的绝对值是前者绝对值的3倍。

即后一个数是前一个数的-3倍。

如果设其中一个数为x,那么后面与它相邻的两个数你能用x表示出来吗后面两数分别是-3x , 9x。

问题中的相等关系是什么三个相邻数的和=-1701。

由此可得方程x-3 x+9x=-1701解之,得x=-243。

所以这三个数是-243 , 729, -218。

注意:本题中有三个未知量,由它们之间的关系,我们可以用一个字母来表示,从而列出一元一次方程。

这一点要注意学习。

例2(1)一个月内在本地通话200分和350分,按方式一需交费多少元按方式二呢(2)对于某个本地通话时间,会出现按两种计费方式收费一样多吗分析:(1)按方式一在本地通话200分钟需要交费多少元350分钟呢通话200分钟需要交费:30+200X 0.3=90元;通话350分钟需要交费:30+350X 0.3=135元.按方式二在本地通话200分钟需要交费多少元350分钟呢通话200分钟需要交费:200X 0.4=80元;通话350分钟需要交费:350X 0.4=140元.(2)设累计通话t分钟,那么按方式一要收费多少元?按方式二收费多少元?按方式一要收费(30+0.3t)元;按方式二要收费0.4t元.问题中的等量关系是什么?方式一的收费=方式二的收费.由此可列方程30+0.3t=0.4t解之,得t =300 所以,当一个月内通话300分钟时, 两种计费方式的收费一样多.引申: 你知道怎样选择计费方式更省钱吗?当t=400 时,30+0.3t=30+0.3 X 400=150元;0.4t=0.4 X 400=160 元.当时间大于300 分钟时, 方式一更省钱.三、一元一次方程解实际问题的基本过程将实际问题转化为数学问题即建立数学模型,通过解决数学问题来解决实际问题。

【13】第13讲 解一元一次方程01

【13】第13讲 解一元一次方程01

【知识衔接】【新课导学】知识点一 等式的基本性质【知识梳理】 等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等. 如果a =b ,那么a ±c =b ±c . 等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 如果a =b ,那么ac =bc ;如果a =b (c ≠0),那么c a =cb. 【例题精讲】典例1 利用等式的性质解下列方程:(1) x +7=26; (2) -5x =20; (3) -31x -5=4.典例2 根据等式性质,下列结论正确的是( ) A .如果﹣2a =2b ,那么a =﹣b B .如果a ﹣2=2﹣b ,那么a =﹣bC .如果2a =b ﹣2,那么a =bD .如果2a =12b ,那么a =b变式1.在对方程2x−13+1=2的下列变形中,应用了等式的性质2变形的是( )A .13(2x −1)+1=2 B .(2x ﹣1)+3=6 C .2x−13=1 D .2x−13−1=0变式2.下列变形符合等式性质的是( ) A .如果2x ﹣3=7,那么2x =7﹣3 B .如果−13x =1,那么x =﹣3C .如果﹣2x =5,那么x =5+2D .如果3x ﹣2=x +1,那么3x ﹣x =1﹣2解一元一次方程01第十三讲专题13ZHUAN TI SHISAN小学阶段:利用等式的性质1解方程:x-8=9 解,方程两边同时加8得 x-8+8=9+8x=17初中阶段:利用等式的性质1还可以在方程的两边同时加上(或减去)同一个式子。

例如:2x+3=x-5解:等式两边同时减(x+3),得 2x+3-(x+3)=x-5-(x+3)x=8知识点二 利用合并同类型解方程【知识梳理】合并含有未知数的同类项时,运用乘法分配律把未知数的系数相加,未知数及其指数不变,合并同类项在解一元一次方程中起到化简的作用合并同类项是一种恒等变形,它使方程变得简单,更接近x=a (a 为常数)的形式 【例题精讲】 典例3 解下列方程: (1) 2x -25x =6-8 (2) 7x -2.5x +3x -1.5x =-15×4-6×3典例4有一列数,按一定的规律排列成1,-3,9,-27,81,-243,…. 其中某三个相邻数的和是-1701,这三个数各是多少?变式3. 解下列方程: (1) 5x -2x =9; (2)7232=+xx ; (3) -3x +0.5x =10; (4) 7x -4.5x =2.5×3-5.知识点三 用移项解方程【知识梳理】像上面那样把等式一边的某项变号后移到另一边,叫做移项. 45145202543254203=→-=-→-=-→-=+x x x x x x 系数化为合并同类项移项【例题精讲】 典例5 解下列方程:(1) 3x +7=32-2x (2) x -3=23x +1 (3) 6x -7=4x -5; (4) 21x -6=43x .【课后练习】一.精心选一选(共9小题,每小题3分,共27分)1.方程﹣3x﹣4=0解是()A.x=−43B.x=34C.x=43D.x=−342.已知x=2是关于x的方程7x﹣a=5的解,则a的值等于()A.﹣19 B.﹣9 C.9 D.19 3.方程18=5﹣x的解为()A.﹣13 B.13 C.23 D.﹣23 4.关于x的方程kx﹣3=2x的解是整数,则整数k的可能值有()A.1个B.2个C.3个D.4个5.由2x﹣7=3x+2,得2x﹣3x=2+7,在此变形中方程的两边同时加上()A.3x+7 B.﹣3x+7 C.3x﹣7 D.﹣3x﹣7 6.若x=﹣3是一元一次方程2(x+k)=5(k为实数)的解,则k的值是()A.−12B.12C.−112D.1127.若﹣5x2y m﹣3与x n﹣1y是同类项,则方程nx﹣m=5的解是()A.x=4 B.x=3 C.x=2 D.x=18.某同学解方程4x﹣3=□x+1时,把“□”处的系数看错了,解得x=4,他把“□”处的系数看成了()A.3 B.﹣3 C.4 D.﹣49.下列运用等式性质进行的变形中,正确的是()A.若a=b,则a+5=b﹣5 B.若a=b,则2a=3bC.若a+b=2b,则a=b D.若a=b+2,则2a=2b+2二.细心填一填(共6小题,每销题4分,共24分)10.解方程中有一步变形叫“移项”,移项的依据是.11.已知x=﹣3是方程(k+2)x﹣k﹣x=5的解,则k的值是.12.假设“▲、●、■”分别表示三种不同的物体.如图,前两架天平保持平衡,如果要使第三架天平也保持平衡,那么“?”处应放个■.13.若方程3x+a=b的解是x=1,则关于未知数y的方程6y﹣2b+18+2a=0的解是y=.14.已知5a+2b=3b+10,利用等式性质可求得10a﹣2b的值是.15.若m是方程3x﹣2=2x+1的解.则30m+10的值为.三.解答题(共49分)16.(30分)解方程(1)7x﹣4=2(x+3)(2)2+24﹣x=3x (3)y﹣320﹣2y=10;(4)10x+9=12x﹣1;(5)2﹣3x=5﹣2x (6)5x﹣4=7x+6;17.(6分)代数式﹣x+4比5x多2,求x.18.(6分)已知:关于x的方程m﹣mx-3=2x的解与方程3y+7=﹣2y+2的解相等,求m的值.19.(7分)【我阅读】解方程:|x+5|=2.解:当x+5≥0时,原方程可化为:x+5=2,解得x=﹣3;当x+5<0时,原方程可化为:x+5=﹣2,解得x=﹣7.所以原方程的解是x=﹣3或x=﹣7.【我会解】解方程:|3x﹣2|﹣5=0.。

解一元一次方程(1和2)

解一元一次方程(1和2)

4.2 解一元一次方程(1)班级 姓名 学号主备人:吴江 审核人:初一数学备课组 日期【学习目标】(1)了解方程的解和解方程的概念。

(2)了解方程的基本变形在解方程中的应用,并会解简单的一元一次方程。

【教学重点】运用等式的基本性质解一元一次方程。

【教学难点】理解方程的解及解方程的区别以及方程的基本变形。

【预习内容】预习教科书P99-100页的内容,并回答下列问题1、下列方程中,是一元一次方程的是 ( )A 、2x -1=3x 2B 、x x=+63 C 、3x +2y =5 D 、6+x =1 2、做一做:填表由上表知:当x = = 是方程=5的解3、概念方程的解: 叫做方程的解.解方程: 叫做解方程等式的性质1:等式两边都加上或减去 ,所得结果仍为等式 等式的性质2:等式两边都乘以或除以 ,所得结果仍为等式. 议一议:上面两个等式的划线部分有什么不同?为什么?4、用适当的数或整式填空,使所得结果仍是等式,并说明依据是什么.(1)如果6+x =2,那么x =___________ ,根据是____________ ;(2) 如果1523=x ,那么x =___________,根据是________ __ . 【例题选析】例1、检验下列各数是不是方程4x -3=2x +3的解.(1)x =3 (2)x =8 (3)x =5分别把1、2、3代入下列方程,哪一个值能使方程两边相等?(1)2x -1=5 (2)3x -2=4x -3例2、解下列方程:(1)x +5=2 (2)3x -2=4x -3练习:下列变形错误的是( )A .由x + 7= 5得x +7-7 = 5-7 ;B .由3x -2 =2x + 1得x = 3C .由4-3x = 4x -3得4+3 = 4x +3xD .由-2x = 3得x =-239、想一想:(1)每一步的变形依据是什么?(2)怎样检验求得的值为方程的解?(3)解方程目标是什么?10、课堂练习:教科书100页练一练11、师生小结:通过本节课的学习,你有哪些收获?【课堂反馈】1、方程312-x =x -2的解是( ) A .5 B .-5 C .2 D .-22、某数的4倍减去3比这个数的一半大4,则这个数为 __________.3、当m = __________时,方程2x +m =x +1的解为x =-4.4、求作一个方程,使它的解为-5,这个方程为5、解下列方程(1)531=x (2)6x =3x -12(3)35=-x (4)54-=+t(5) -2x =-3x +8 (6) x x 564-=-(7) 2y ―21=21y ―3 (8) -2x +56=3x +32【拓展与提高】若关于x 的方程2ax +27=0与2x +3=0有相同的解,求a 的值和这个相同的解。

解一元一次方程习题精选附答案

解一元一次方程习题精选附答案

解一元一次方程一.解答题(共30小题)1.解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x ﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x ﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).11.计算:(1)计算:(2)解方程:12.解方程:13.解方程:(1)(2)14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6 (2)+2(3)[3(x ﹣)+]=5x﹣115.(A类)解方程:5x﹣2=7x+8;(B 类)解方程:(x﹣1)﹣(x+5)=﹣;(C 类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x ﹣﹣318.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).25.解方程:.26.解方程:(1)10x﹣12=5x+15;(2)27.解方程:(1)8y﹣3(3y+2)=7(2).28.当k为什么数时,式子比的值少3.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II).30.解方程:.解一元一次方程一.解答题(共30小题)1.解方程:2x+1=7考点:解一元一次方程.专题:计算题;分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x﹣.考点:解一元一次方程.专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:(1)4x﹣3(4﹣x)=2去括号,得4x﹣12+3x=2移项,合并同类项7x=14系数化1,得x=2.(2)(x﹣1)=2﹣(x+2)去分母,得5(x﹣1)=20﹣2(x+2)去括号,得5x﹣5=20﹣2x﹣4移项、合并同类项,得7x=21系数化1,得x=3.点评:(1)此题主要是去括号,移项,合并同类项,系数化1.(2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最小公倍数,切勿漏乘不含有分母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:(1)计算:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)根据有理数的混合运算法则计算:先算乘方、后算乘除、再算加减;(2)两边同时乘以最简公分母4,即可去掉分母.解答:解:(1)原式=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括号,以减少去括号带来的符号变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.13.解方程:(1)(2)考点:解一元一次方程.专题:计算题.分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、合并同类项、化系数为1.解答:(1)解:去分母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.点评:本题考查解一元一次方程,正确掌握解一元一次方程的一般步骤,注意移项要变号、去分母时“1”也要乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6(2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x的值;(3)乘最小公倍数去分母即可;(4)主要是去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、合并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣6x+24,移项、合并得:9x=38,方程两边都除以9,得x=;(3)整理得:[3(x﹣)+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.解题时,要灵活运用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣化简:x=5即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题主要考查一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1去分母得:17+20x﹣15x=﹣3移项,合并同类项得:5x=﹣20系数化为1得:x=﹣4.点评:解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣3考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项合并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.分析:(1)利用平方和立方的定义进行计算.(2)按四则混合运算的顺序进行计算.(3)主要是去括号,移项合并.(4)两边同乘最小公倍数去分母,再求值.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2]====.(3)解方程:4x﹣3(5﹣x)=2去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15合并同类项,得7x=17系数化为1,得.(4)解方程:去分母,得15x﹣3(x﹣2)=5(2x﹣5)﹣3×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)和(2)要熟练掌握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90合并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)通过去分母以及去括号、移项、系数化为1等过程,求得x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.分析:先去括号得x+3﹣2x+2=9﹣3x,然后移项、合并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,合并得2x=4,系数化为1得x=2.点评:本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1.∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原方程的解.,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考查的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.考点:解一元一次方程.分析:(1)首先去括号,然后移项、合并同类项,系数化成1,即可求解;(2)首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:(1)去括号,得:0.5x﹣0.7=5.2﹣1.3x+1.3移项,得:0.5x+1.3x=5.2+1.3+0.7合并同类项,得:1.8x=7.2,则x=4;(2)去分母得:7(1﹣2x)=3(3x+1)﹣42,去括号,得:7﹣14x=9x+3﹣42,移项,得:﹣14x﹣9x=3﹣42﹣7,合并同类项,得:﹣23x=﹣46,则x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).考点:解一元一次方程.分析:(1)移项,合并同类项,然后系数化成1即可求解;(2)移项,合并同类项,然后系数化成1即可求解;(3)去括号、移项,合并同类项,然后系数化成1即可求解;(4)首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,x=;(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.解方程:.考点:解一元一次方程.专题:计算题.分析:方程两边乘以10去分母后,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项合并得:5x=﹣5,解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:(1)10x﹣12=5x+15;(2)考点:解一元一次方程.专题:计算题.分析:(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.解答:解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.点评:本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.27.解方程:(1)8y﹣3(3y+2)=7(2).考点:解一元一次方程.专题:计算题.分析:(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(1)去括号得,8y﹣9y﹣6=7,移项、合并得,﹣y=13,系数化为1得,y=﹣13;(2)去分母得,3(3x﹣1)﹣12=2(5x﹣7),去括号得,9x﹣3﹣12=10x﹣14,移项得,9x﹣10x=﹣14+3+12,合并同类项得,﹣x=1,系数化为1得,x=﹣1.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.28.当k为什么数时,式子比的值少3.考点:解一元一次方程.专题:计算题.分析:先根据题意列出方程,再根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.解答:解:依题意,得=+3,去分母得,5(2k+1)=3(17﹣k)+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,合并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II).考点:解一元一次方程.专题:计算题.分析:(Ⅰ)根据一元一次方程的解法,移项,合并同类项,系数化为1即可得解;(Ⅱ)是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,合并同类项得,6x=﹣3,系数化为1得,x=﹣.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.30.解方程:.考点:解一元一次方程.专题:计算题.分析:由于方程的分子、分母均有小数,利用分数的基本性质,分子、分母同时扩大相同的倍数,可将小数化成整数.解答:解:原方程变形为,(3分)去分母,得3×(30x﹣11)﹣4×(40x﹣2)=2×(16﹣70x),(4分)去括号,得90x﹣33﹣160x+8=32﹣140x,(5分)移项,得90x﹣160x+140x=32+33﹣8,(6分)合并同类项,得70x=57,(7分)系数化为1,得.(8分)点评:本题考查一元一次方程的解法.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.本题的难点在于方程的分子、分母均有小数,将小数化成整数不同于去分母,不是方程两边同乘一个数,而是将分子、分母同乘一个数.。

3.1一元一次方程及其解法(1)

3.1一元一次方程及其解法(1)

3.1一元一次方程及其解法(1)
教材分析
本节课是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用等式性质解一些简单的方程。

本节课在描述一元一次方程的概念后,继续学习用等式基本性质解一元一次方程,从而引出用移项法则解一元一次方程,为学生进一步学习一元一次方程的解法和应用起到铺垫作用。

教学目标
(一)知识教学点
1.由实际问题得到的方程抽象出一元一次方程的概念。

2. 理解等式基本性质,并利用等式基本性质解一元一次方程,并学会检验。

3. 理解移项法则,会用移项法则解一元一次方程。

(二)能力训练点
1.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义.
2.由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力.(三)德育渗透点
增强学生用数学的意识,激发学生学数学的热情。

(四)美育渗透点
用移项法解方程明显比用等式性质方法解方程方便,体现了数学的方法美.
教学重点:利用移项法则解一元一次方程
教学难点:移项法则的理解和运用
教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛。

教学准备:多媒体辅助
教学流程:
1.用猜谜引出学生身边的问题,从而引出一元一次方程的概念。

2.复习等式的基本性质。

3.利用等式基本性质解一元一次方程,同时给出检验的过程。

4.通过学生的观察、交流、归纳得到移项法则。

5.用移项法则解一元一次方程。

教学过程:
教学反思:。

一元一次方程应用题100道(带答案)

一元一次方程应用题100道(带答案)

初一数学上册一元一次方程应用题100道问题补充:第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3 B.a= ,b=-3C.a≠,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t 分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-1 20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元 4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得x= )4.x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x(+ )=1,解得x=4] 二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=3 21.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得=0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.36,2837,28545454654544121dhgghsaqy数学题要细心,慢慢做,要做对。

一元一次方程及其解法(最新整理)

一元一次方程及其解法(最新整理)

3.1 一元一次方程及其解法1.一元一次方程(1)一元一次方程的概念只含有一个未知数(元),未知数的次数都是1,且等式两边都是整式的方程叫做一元一次方程.如:7-5x =3,3(x +2)=4-x 等都是一元一次方程.解技巧 正确判断一元一次方程判断一元一次方程的四个条件是:①只含有一个未知数(元);②未知数的次数都是一次;③未知数的系数不能为0;④分母中不含未知数,这四个条件缺一不可.(2)方程的解①概念:使方程两边相等的未知数的值叫做方程的解.一元方程的解,也叫做方程的根.②方法:要检验某个数值是不是方程的解,只需看两点:一看,它是不是方程中未知数的值;二看,将它分别代入方程的左边和右边,若方程左、右两边的值相等,则它是方程的解.如x =3是方程2x -4=2的解,而y =3就不是方程2x -4=2的解.(3)解方程求方程的解的过程叫做解方程.方程的解和解方程是不同的概念,方程的解是求得的结果,它是一个数值(或几个数值),而解方程是指求出方程的解的过程.【例1-1】 下列各式哪些是一元一次方程( ).A .S =ab ;B.x -y =0;C.x =0;D.=1;E.3-1=2;F.4y -5=1;G.2x 2+2x +1=0;1212x +3H.x +2.解析:E 中不含未知数,所以不是一元一次方程;G 中未知数的次数是2,所以不是一元一次方程;A 与B 中含有的未知数不是一个,也不是一元一次方程;H 虽然形式上字母的个数是一个,但它不是等式,所以也不是一元一次方程;D 中分母中含有未知数,不是一元一次方程;只有C ,F 符合一元一次方程的概念,所以它们是一元一次方程.答案:CF【例1-2】 x =-3是下列方程( )的解.A .-5(x -1)=-4(x -2)B .4x +2=1C .x +5=5D .-3x -1=013解析:对于选项A ,把x =-3代入所给方程的左右两边,左边=-5×(-3-1)=20,右边=-4×(-3-2)=20,因为左边=右边,所以x =-3是方程-5(x -1)=-4(x -2)的解;对于选项B ,把x =-3代入所给方程的左右两边,左边=4×(-3)+2=-10,右边=1,因为左边≠右边,所以x =-3不是方程4x +2=1的解,选项C ,D 按以上方法加以判断,都不能使方程左右两边相等,只有A 的左右两边相等,故应选A.答案:A2.等式的基本性质(1)等式的基本性质①性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.用式子形式表示为:如果a =b ,那么a +c =b +c ,a -c =b -c .②性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.用式子形式表示为:如果a =b ,那么ac =bc ,=(c ≠0).a c bc③性质3:如果a =b ,那么b =a .(对称性)如由-8=y ,得y =-8.④性质4:如果a =b ,b =c ,那么a =c .(传递性)如:若∠1=60°,∠2=∠1,则∠2=60°.(2)等量代换在解题过程中,根据等式的传递性,一个量用与它相等的量代替,简称等量代换.谈重点 应用不等式的性质的注意事项(1)应用等式的基本性质1时,一定要注意等式两边同时加上(或减去)同一个数或同一个整式,才能保证所得结果仍是等式.这里特别要注意:“同时”和“同一个”,否则就会破坏相等关系.(2)等式的基本性质2中乘以(或除以)的仅仅是同一个数而不包括整式,要注意与性质1的区别.(3)等式两边不能都除以0,因为0不能作除数或分母.【例2-1】 下列运用等式的性质对等式进行的变形中,正确的是( ).A .若4y +2=3y -1,则y =1B .若7a =5,则a =57C .若=0,则x =2D .若-1=1,则x -6=1x 2x 6解析:首先观察等式的左边是如何由上一步变形得到的,确定变形的依据,再对等式的右边进行相应的变形,得出结论.A 根据等式的基本性质1,等式的两边都减去3y +2,左边是y ,右边是-3,不是1;C 根据等式的基本性质2,两边都乘以2,右边应为0,不是2;D 根据等式的基本性质2,左边乘以6,而右边漏乘6,故不正确;只有B 根据等式的基本性质2,两边都除以7,得到a =.57答案:B【例2-2】 利用等式的基本性质解方程:(1)5x -8=12;(2)4x -2=2x ;(3)x +1=6;(4)3-x =7.分析:利用等式的基本性质求解.先利用等式的基本性质1将方程变形为左边只含有未知数的项,右边含有常数项,再利用等式的基本性质2将未知数的系数化为1.解:(1)方程的两边同时加上8,得5x =20.方程的两边同时除以5,得x =4.(2)方程的两边同时减去2x ,得2x -2=0.方程的两边同时加上2,得2x =2.方程的两边同时除以2,得x =1.(3)方程两边都同时减去1,得x +1-1=6-1,∴x =6-1.∴x =5.(4)方程两边都加上x ,得3-x +x =7+x ,3=7+x ,方程两边都减去7,得3-7=7+x -7,∴-4=x ,即x =-4.3.解一元一次方程(1)移项①移项的概念及依据:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.因为方程是特殊的等式,所以移项的依据是等式的基本性质1.②移项的目的:把所有含有未知数的项移到方程的一边,常数项移到方程的另一边.③移项的过程:移项的过程是项的位置改变和符号变化的过程.即对移动的项进行变号的过程,如,-2-3x =7,把-2从方程的左边移到右边,-2在原方程中前面带有性质符号“-”,移到右边后需变成“+”,在移动的过程中同时变号,没有移动的项则不变号.所以由移项,得-3x =7+2.④要注意移项和加法交换律的区别:移项是把某一项从等式的一边移到另一边,移项要变号;而加法交换律中交换加数位置只是改变排列的顺序,符号随着移动而不改变.如,3+5x =1,把3从方程的左边移到右边要变号,得5x =1-3,是属于移项;而把5x -15x +11x =11变成5x +11x -15x =11,是利用加法交换律,不是移项而是位置的移动,所以不变号.辨误区 移项时应注意的问题在移项时注意“两变”:一变性质符号,即“+”号变为“-”号,而“-”号变为“+”号;二变位置,把某项由等号的一边移到另一边.(2)解一元一次方程的步骤解一元一次方程的一般步骤有:去分母、去括号、移项、合并同类项、系数化为1.具体见下表:变形名称具体做法变形依据注意事项去分母方程左右两边的每一项都乘以各分母的最小公倍数等式的基本性质2不能有漏乘不含分母的项;分子是多项式的去掉分母后,要加小括号去括号可由小到大,或由大到小去括号分配律;去括号的法则不要漏乘括号内的项;括号前是“-”号的,去括号时括号内的所有项都要变号移项移项就是将方程中的某些项改变符号后,从方程的一边移到另一边等式的基本性质1移项要变号合并同类项将方程化为ax =b 的最简形式合并同类项的法则只将系数相加,字母及其指数不变化系数为1方程的左右两边同时除以未知数系数或乘以未知数系数的倒数等式的基本性质2分子、分母不能颠倒解技巧 巧解一元一次方程值得注意的是:(1)这些步骤在解方程时不一定全部都用到,也不一定按照顺序进行,可根据方程的形式,灵活安排步骤;(2)为了避免错误,可将解出的结果代入原方程进行检验.【例3-1】 下列各选项中的变形属于移项的是( ).A .由2x =4,得x =2B .由7x +3=x +5,得7x +3=5+xC .由8-x =x -5,得-x -x =-5-8D .由x +9=3x -1,得3x -1=x +9解析:选项A 是把x 的系数化成1的变形;选项B 中x +5变成5+x 是应用加法交换律,只是把位置变换了一下;选项C 是作的移项变形;选项D 是应用等式的对称性“a =b ,则b =a ”所作的变形.所以变形属于移项的是选项C.答案:C【例3-2】 解方程-5=.2-x 3x -14分析:方程有分母,将方程两边每一项都要乘以各分母的最小公倍数12,去掉分母得4(2-x )-60=3(x -1),再按照步骤求解,特别注意-5不能漏乘分母的最小公倍数12.解:去分母,方程两边都乘以12,得4(2-x )-60=3(x -1).去括号,得8-4x -60=3x -3.移项,得-4x -3x =-3-8+60.合并同类项,得-7x =49.两边同除以-7,得x =-7.4.解复杂的一元一次方程解方程是代数中的主要内容之一,一元一次方程化成标准方程后,就成为未知数系数不是0的最简方程.一元一次方程不仅有很多直接应用,而且解一元一次方程是学习解其他方程和方程组的基础.解方程的过程,实际上就是把方程式不断化简的过程,一直把方程化为x =a (a 是一个已知数).(1)复杂的一元一次方程的解法与简单方程的解法其思路是一样的.方程中若含有相同的代数式,可以把此代数式看作一个整体来运算;方程中若含有小数或百分数,就要根据分数的基本性质,把小数或百分数化为整数再去分母运算.(2)要注意把分母整数化和去分母的区别:分母整数化是在某一项的分子、分母上同乘以一个不等于零的数,而去分母是在方程两边同乘以分母的最小公倍数.【例4】 解方程-=.0.4x -90.5x -520.03+0.02x0.03分析:由于和的分子、分母中含有小数,可利用分数的基本性质把0.4x -90.50.03+0.02x0.03小数化为整数,在式子的分子、分母中都乘以10,变为,在式子0.4x -90.54x -9050.03+0.02x0.03的分子、分母中都乘以100,变为,然后去分母,再按解一元一次方程的步骤求解.3+2x3解:分母整数化,得-=.4x -905x -523+2x3去分母,得6(4x -90)-15(x -5)=10(3+2x ).去括号,得24x -540-15x +75=30+20x .移项,得24x -15x -20x =540-75+30.合并同类项,得-11x =495.两边同除以-11,得x =-45.5.与一元一次方程的解相关的问题方程的解不仅是方程的重要概念,也是考查方程知识时的主要命题点.解题的关键是理解方程的解的概念.(1)已知方程的解求字母系数:若已知方程的解,将方程的解代入方程,一定使其成立,则得到一个关于另一个未知数的方程,解这个方程,即可求出这个字母系数的值.(2)同解方程:因为两方程的解相同,可直接解第一个方程,求出未知数的值,再把未知数的值代入第二个方程,求出相关字母的值.【例5-1】 关于x 的方程3x +5=0与3x +3k =1的解相同,则k =( ).A .-2B .C .2D .-4343解析:解方程3x +5=0,得x =-.53将x =-代入方程3x +3k =1,53得-5+3k =1,解得k =2,故应选C.答案:C【例5-2】 若关于x 的方程(m -6)x =m -4的解为x =2,则m =__________.解析:把x =2代入方程(m -6)x =m -4,得(m -6)×2=m -4,解得m =8.答案:86.一元一次方程的常用解题策略我们已经知道,解一元一次方程一般有五个步骤,去分母,去括号,移项,合并同类项,化未知数的系数为1,可有些一元一次方程,若能根据其结构特征,灵活运用运算性质与解题技巧,则不但可以提高解题速度与准确性,而且还可以使解题过程简捷明快,下面介绍解一元一次方程常用的几种技巧.(1)有括号的一元一次方程一般是先去括号,去括号的顺序一般是由小到大去,但有些题目是从外向里去括号,计算反而简单,这就要求仔细观察方程的特点,灵活运用使计算简便的方法.(2)对于一些含有分母的一元一次方程,若硬套解题的一般步骤,先去分母则复杂繁琐,若根据方程的结构特点,先移项、合并同类项,则使运算显得简捷明快.有些特殊的方程却要打破常规,灵活运用一些解题技巧,使运算快捷、简便.巧解可激活思维,使我们克服思维定式,培养创新能力,从而增强学习数学的兴趣.【例6-1】 解方程=x +1.34[43(12x -14)-4]32分析:注意到×=1,把乘以中括号的每一项,则可先去中括号,×-×43443343443(12x -14)34=x +1,再去小括号为x --3=x +1,再按步骤解方程就非常简捷了.32121432解:去括号,得x --3=x +1.121432移项,合并同类项,得-x =.174两边同除以-1,得x =-.174【例6-2】 解方程-=-.x +37x +25x +16x +44分析:此题可按照解方程的一般步骤求解,但本题若直接去分母,则两边乘以最小公倍数420,运算量大容易出错,我们可两边分别通分,=,5(x +3)-7(x +2)352(x +1)-3(x +4)12把分子整理后再按照解一元一次方程的步骤求解.解:方程两边分别通分,得=.化简,得=5(x +3)-7(x +2)352(x +1)-3(x +4)12-2x +135.-x -1012去分母,得12(-2x +1)=35(-x -10).去括号,得-24x +12=-35x -350.移项、合并同类项,得11x =-362.两边同除以11,得x =-.362117.列一元一次方程解题(1)利用方程的解求未知系数的值当已知方程的解求方程中字母系数或有关的代数式时,常常采用代入法,即将方程的解代入原方程,得到关于字母系数的等式(或者可以看作关于字母系数的方程),再求解即可.(2)利用概念列方程求字母的值利用某些概念的定义,可以列方程求出相关的字母的取值,如根据同类项的定义或一元一次方程的定义求字母的值.列方程求值的关键是根据所学的知识找出相等关系.再列出方程,解方程从而求出字母的取值.谈重点 列一元一次方程注意挖掘隐含条件许多数学概念、性质的运用范围、限制条件或使用前提有的是以隐含条件的形式出现在题目中,由此可发掘隐含的条件,列一元一次方程解题,发掘隐含条件时需要全面、深刻地理解掌握数学基础知识.【例7-1】 (1)当a =__________时,式子2a +1与2-a 互为相反数.(2)若6的倒数等于x +2,则x 的值为__________.解析:(1)根据互为相反数的两数和为0,可得一元一次方程2a +1+(2-a )=0,解得a =-3;(2)由倒数的概念:乘积为1的两个数互为倒数,可得一元一次方程6(x +2)=1,解得x =-.116答案:(1)-3 (2)-116【例7-2】 已知x =-2是方程+-x =的解,求k 的值.x -k 33k +26x +k2分析:把x =-2代入原方程,原方程就变成了以k 为未知数的新方程,解含有未知数k 的方程,可以求出k 的值.解:把x =-2代入原方程,得+-(-2)=.-2-k 33k +26-2+k2去分母,得2(-2-k )+3k +2-(-2)×6=3(-2+k ).去括号,得-4-2k +3k +2+12=-6+3k .移项、合并同类项,得-2k =-16.方程两边同除以-2,得k =8.课后作业【题01】下列变形中,不正确的是( )A .若,则.B .若则.25x x =5x =77,x -=1x =-C .若,则.D .若,则.10.2x x -=1012x x -=x ya a=ax ay =【题02】下列各式不是方程的是( )A .B .24y y -=2m n =C .D .222p pq q -+0x =【题03】解为的方程是( )2x =-A .B .240x -=5362x +=C .D .3(2)(3)5x x x---=275462x x --=-【题04】若关于的方程是一元一次方程,求的值.x 223(4)0n x n -+-=n 【题05】已知是关于的一元一次方程,则 .2(23)(23)1m x m x ---=x m =【题06】若关于的方程是一元一次方程,求的解.x 2(2||)(2)(52)0m x m x m -+---=m 【题07】若关于的方程是一元一次方程,则= .x 1(2)50k k xk --+=k 【题08】若关于的方程是一元一次方程,则= .若关于的x 1(2)50k k x k --+=k x 方程是一元一次方程,则方程的解= .2(2)450k x kx k ++-=x【题09】是关于的一元一次方程,且该方程有惟一解,则2(38)570a b x bx a ++-=x x =( )A .B .2140-2140C .D .5615-5615【题10】解方程:135(3)3(2)36524x x ---=【题11】解方程:11(4)(3)34y y -=+【题12】解方程:122233x x x -+-=-【题13】解方程:21511 36x x+--=【题14】解方程:11(0.170.2)1 0.70.03x x--=【题15】解方程:1(4)33519 0.50.125xxx+++=+【题16】解方程:0.20.450.0150.010.5 2.50.250.015x xx++-=-【题17】解方程:0.10.90.21 0.030.7x x--=【题18】解方程:4213 2[()] 3324x x x--=【题19】解方程:111[(1)6]20 343x--+=。

一元一次方程应用题100道(带答案)

一元一次方程应用题100道(带答案)

初一数学上册一元一次方程应用题100道问题补充:第3章一元一次方程全章综合测试(时间90分钟,满分100分)一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x的一元一次方程,则n=_______.2.若x=-1是方程2x-3a=7的解,则a=_______.3.当x=______时,代数式x-1和的值互为相反数.4.已知x的与x的3倍的和比x的2倍少6,列出方程为________.5.在方程4x+3y=1中,用x的代数式表示y,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元.7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m的值为().A.0 B.1 C.-2 D.-10.方程│3x│=18的解的情况是().A.有一个解是6 B.有两个解,是±6C.无解D.有无数个解11.若方程2ax-3=5x+b无解,则a,b应满足().A.a≠,b≠3 B.a= ,b=-3C.a≠,b=-3 D.a= ,b≠-312.把方程的分母化为整数后的方程是().13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t 分钟后第一次相遇,t等于().A.10分B.15分C.20分D.30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额().A.增加10% B.减少10% C.不增也不减D.减少1%15.在梯形面积公式S= (a+b)h中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=(•)厘米.A.1 B.5 C.3 D.416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是().A.从甲组调12人去乙组B.从乙组调4人去甲组C.从乙组调12人去甲组D.从甲组调12人去乙组,或从乙组调4人去甲组17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了()场.A.3 B.4 C.5 D.618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?()A.3个B.4个C.5个D.6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分)19.解方程:7(2x-1)-3(4x-1)=4(3x+2)-1 20.解方程:(x-1)- (3x+2)= - (x-1).21.如图所示,在一块展示牌上整齐地贴着许多资料卡片,•这些卡片的大小相同,卡片之间露出了三块正方形的空白,在图中用斜线标明.•已知卡片的短边长度为10厘米,想要配三张图片来填补空白,需要配多大尺寸的图片.22.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.23.据了解,火车票价按“”的方法来确定.已知A站至H站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米)1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员:•“我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).24.某公园的门票价格规定如下表:购票人数1~50人51~100人100人以上票价5元 4.5元4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)答案:一、1.32.-3 (点拨:将x=-1代入方程2x-3a=7,得-2-3a=7,得a=-3)3.(点拨:解方程x-1=- ,得x= )4.x+3x=2x-6 5.y= - x6.525 (点拨:设标价为x元,则=5%,解得x=525元)7.18,20,228.4 [点拨:设需x天完成,则x(+ )=1,解得x=4] 二、9.D10.B (点拨:用分类讨论法:当x≥0时,3x=18,∴x=6当x<0时,-3=18,∴x=-6故本题应选B)11.D (点拨:由2ax-3=5x+b,得(2a-5)x=b+3,欲使方程无解,必须使2a-5=0,a= ,b+3≠0,b≠-3,故本题应选D.)12.B (点拨;在变形的过程中,利用分式的性质将分式的分子、•分母同时扩大或缩小相同的倍数,将小数方程变为整数方程)13.C (点拨:当甲、乙两人再次相遇时,甲比乙多跑了800•米,•列方程得260t+800=300t,解得t=20)14.D15.B (点拨:由公式S= (a+b)h,得b= -3=5厘米)16.D 17.C18.A (点拨:根据等式的性质2)三、19.解:原方程变形为200(2-3y)-4.5= -9.5∴400-600y-4.5=1-100y-9.5500y=404∴y=20.解:去分母,得15(x-1)-8(3x+2)=2-30(x-1)∴21x=63∴x=3 21.解:设卡片的长度为x厘米,根据图意和题意,得5x=3(x+10),解得x=15所以需配正方形图片的边长为15-10=5(厘米)答:需要配边长为5厘米的正方形图片.22.解:设十位上的数字为x,则个位上的数字为3x-2,百位上的数字为x+1,故100(x+1)+10x+(3x-2)+100(3x-2)+10x+(x+1)=1171解得x=3答:原三位数是437.23.解:(1)由已知可得=0.12A站至H站的实际里程数为1500-219=1281(千米)所以A站至F站的火车票价为0.12×1281=153.72≈154(元)(2)设王大妈实际乘车里程数为x千米,根据题意,得=66解得x=550,对照表格可知,D站与G站距离为550千米,所以王大妈是在D站或G•站下的车.24.解:(1)∵103>100∴每张门票按4元收费的总票额为103×4=412(元)可节省486-412=74(元)(2)∵甲、乙两班共103人,甲班人数>乙班人数∴甲班多于50人,乙班有两种情形:①若乙班少于或等于50人,设乙班有x人,则甲班有(103-x)人,依题意,得5x+4.5(103-x)=486解得x=45,∴103-45=58(人)即甲班有58人,乙班有45人.②若乙班超过50人,设乙班x人,则甲班有(103-x)人,根据题意,得4.5x+4.5(103-x)=486∵此等式不成立,∴这种情况不存在.故甲班为58人,乙班为45人.36,2837,28545454654544121dhgghsaqy数学题要细心,慢慢做,要做对。

一元一次方程的解题过程

一元一次方程的解题过程

一元一次方程的解题过程
一元一次方程是指只含有一个未知数,并且未知数的最高次数为一的方程。

解一元一次方程的过程可以分为以下几个步骤:
1. 整理方程,将方程中的常数项移到等号的另一边,使得方程等号左边只有未知数和系数。

2. 消去系数,如果方程中的未知数有系数,可以通过除以系数的方式将系数消去,使得方程变为未知数的系数为1的形式。

3. 移项和合并,将方程中的项合并整理,使得未知数的项在等号的一侧,常数项在另一侧。

4. 求解未知数,通过逆运算的方式,将未知数的系数和常数项进行运算,得出未知数的值。

举例说明:
假设要解方程3x + 5 = 2x 3。

首先,将方程中的常数项移到等号的另一边,得到3x 2x = -3 5。

然后,消去系数,得到x = -8。

最后,求解未知数,得出方程的解为x = -8。

这就是解一元一次方程的基本过程。

当然,具体的解题过程还会根据方程的形式和具体的情况而有所不同。

希望这个回答能够帮助你理解一元一次方程的解题过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中江县南山中学开放式教学
七年级数学《解一元一次方程(合并同类项与移项)》学案
舒展
【学习目标】:
会列一元一次方程解决实际问题,•并会合并同类项解一元一次方程;
【重点难点】:
会合并同类项解一元一次方程;
【导学指导】
一、温故知新:
1.等式性质 1:。

2:。

2.解方程:(1)x-9=8;(2) 3x+1=4;
二、自主探究:
1.问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,•今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?
分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么去年购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;
题目中的相等关系为:三年共购买计算机140台,即
前年购买量+去年购买量+今年购买量=140
列方程:_____________
如何解这个方程呢?
根据分配律,x+2x+4x=(______)x=7x;
这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0;
下面的框图表示了解这个方程的具体过程:
↓合并同类项
↓系数化为1
由上可知,前年这个学校购买了20台计算机.
上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.
2.自己试着完成
例1 解方程
5
268
2
x x
-=-3
6
4
15
5.1
3
5.2
7⨯
-

-
=
-
+
-x
x
x
x;
(师生共同完成87页例2)
【课堂练习】
1.课本第88页练习;
2.某班学生共60人,外出参加种树活动,根据任务的不同,要分成三个小组且使甲、乙、丙三个小组人数之比是2:3:5,求各小组人数.
思路:这里甲、乙、丙三个小组人数之比是2:3:5,就是说把总数60•人分成___份,甲组人数占___份,乙组人数占___份,丙组人数占___份,如果知道每一份是多少,•那么甲、乙、丙各组人数都可以求得,所以本题应设每一份为x人.
关键:本题中相等关系是什么? _____________________________________.
解:设每一份为x人,则甲组人数为__人,乙组人数为___人,丙组为___人,•列方程: _______________
合并,得________
系数化为1,得x=___
所以2x=____,3x=_____,5x=______
答:甲组_____人,乙组___人,丙组______人.
请同学们检验一下,答案是否合理,即这三组人数的比是否是2:3:5,•且这三组人数之和是否等于60;
【要点归纳】:
列一元一次方程解决实际问题的一般步骤中,找等量关系是关键也是难点,本节课的两个问题的相等关系都是:“各部分量的和=总量”;这是一个基本的相等关系;
合并就是把类型相同的项系数相加合并为一项,也就是逆用乘法分配律,合并时,注意x或-x的系数分别是1,-1,而不是0;
【拓展训练】
1.足球的表面是由若干个黑色五边形和白色六边形皮块围成的,黑白皮块的数目比为3:5,一个足球的表面一共有32个皮块,黑色皮块和白色皮块各有多少?
解:设每份为_____个,则黑色皮块有_____个,白色皮块有_______个
列方程:。

合并,得:
系数化为1,得 x=_____
黑色皮块为___×___=____(个),白色皮块有____×___=____(个)
2.某学生读一本书,第一天读了全书的1
3
多2页,第二天读了全书的
1
2
少1•页,•还剩23
页没读,问全书共有多少页?(设未知数,列方程,不求解)
解:设全书共有____页,那么第一天读了()页,第二天读了()页.本问题的相等关系是:_____________+_______________+_____________=全书页数;
列方程:_______________________。

【总结反思】:。

相关文档
最新文档