解一元一次方程专项训练

合集下载

部编数学七年级上册专题08解一元一次方程(40题)专项训练(解析版)含答案

部编数学七年级上册专题08解一元一次方程(40题)专项训练(解析版)含答案

专题08 解一元一次方程(40题) 专项训练1.(2022·河南周口·七年级期末)解方程:(1)2(3)37(1)3x x x +-=--; (2)3151123y y +-=+2.(2022·江苏扬州·七年级期末)解下列方程:(1)4x ﹣3=2(x ﹣1)(2)152126x x -+-=3.(2022·河北保定·七年级期末)解方程:(1)2(1)129x x --=; (2)13124x x +--=1.【答案】(1)2x =-;(2)1x =-.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.(1)解:去括号得:22129x x --=,移项得:29212x x -=+,合并同类项得:714x -=,系数化为1得:2x =-,(2)方程两边同时乘以4得:2(1)(31)4x x +--=,去括号得:22314x x +-+=,移项得:23412x x -=--,合并同类项得:1x -=,系数化为1得:1x =-.【点睛】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.4.(2022·浙江丽水·七年级期末)解下列方程(1)3x +1=-2 (2)13132y y -+=-5.(2022·黑龙江·七年级期末)解下列方程:(1)862(64)x x x =--(2)231147x x +--=【答案】(1)x =2 (2)x =-2【分析】(1)先去括号,移项,合并同类项,系数化为1可得(2)去分母,去括号,移项,合并同类项,系数化为1可得(1)解:去括号得:8x =6x +8x -12移项得:8x -6x -8x =-12合并同类项得:-6x =-12系数化为1得:x =2(2)解:去分母得:7(x +2)-4(3x -1)=28去括号得:7x+14-12x +4=28移项得:7x -12x =28-14-4合并同类项得:-5x =10系数化为1得:x =-2【点睛】本题考查了解一元一次方程,熟练掌握解题步骤并小心计算是解题关键.6.(2022·福建泉州·七年级期末)解方程:714(10)3x x --=-.【答案】10x =【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:()()371210x x --=-,去括号得:3712120x x -+=-,移项得:1212037x x --=---,合并同类项得:13130x -=-,系数化为1得:10x =.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.7.(2022·河北·涿州市七年级期末)解一元一次方程(1)0.50.7 6.5 1.3x x -=-(2)1123x x --=8.(2022·陕西渭南·七年级期末)解方程:5144123x x x --+=-.9.(2022·四川眉山·七年级期末)解方程:213134x x -+-=10.(2022·河南郑州·七年级期末)解下列方程:(1)2(32)14x -=(2)13735x x x -+-=-【答案】(1)3x =(2)7x =【分析】(1)先去括号,再移项,合并同类项,化系数为 1;(2)先去分母,再去括号,移项,合并同类项,化系数为 1.(1)解:去括号,可得:6414x -=,移项,合并同类项:618x =,系数化为1,可得:3x =;(2)解:去分母,可得:155(1)7153(3)x x x --=´-+,去括号,可得:155510539x x x -+=--,移项,合并同类项,可得:1391x =,系数化为1,可得:7x =.【点睛】本题考查解一元一次方程,掌握解一元一次方程的方法是解题关键.11.(2022·新疆塔城·七年级期末)解方程:(1)()73326x x -+=(2)16136x x x -+-=-【答案】(1)6x =- (2)2x =【分析】(1)先去括号,再移项,合并同类项,最后化系数为1即可;(2)先去分母,再去括号,移项、合并同类项,最后化系数为1.(1)解:7966x x --=212x -=6x =-.(2)解:()()62166x x x --=-+714x -=-2x =.【点睛】此题考查了解一元一次方程,涉及去分母、去括号、移项,合并同类项、化系数为1等知识,解题的关键是掌握相关知识.12.(2022·福建泉州·七年级期末)解方程:2141126x x +--=.【答案】x =1【分析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次方程即可求解.【详解】去分母,得:3(2x +1)﹣(4x ﹣1)=6,去括号,得:6x +3﹣4x +1=6,移项,得:6x ﹣4x =6﹣3﹣1,合并同类项,得:2x =2,系数化为1,得:x =1;【点睛】本题考查了解一元一次方程,掌握解一元一次方程的步骤是解题的关键.13.(2022·四川广安·七年级期末)解方程:(1)()43204x x --=(2)2151136x x +--=14.(2022·黑龙江绥化·期末)解方程.(1)32185525x += (2)311043x x -=15.(2022·四川广元·七年级期末)解方程:21252x x x +--=-.16.(2022·河北承德·七年级期末)解下列方程:①2342x x -=- ②123123x x +--=.17.(2022·黑龙江牡丹江·七年级期末)解方程:312123x x x ---+=.18.(2022·安徽阜阳·七年级期末)2121134-+=-x x .19.(2022·贵州毕节·七年级期末)解方程:(1)2(3)3(1)6x x -+-=(2)123126x x +--=【答案】(1)3x = (2)0x =20.(2022·黑龙江大庆·期末)解方程:(1)3(x ﹣2)=2﹣5(x ﹣2); (2)223146x x +--=21.(2022·河南许昌·七年级期末)解方程:(1)83(21)172(3)--=++x x(2)14527-+-=-x x x22.(2022·宁夏·七年级期末)解下列方程:(1)5(2)3(21)7x x +--=(2)123123x x +--=23.(2022·陕西·西安七年级期末)解方程:(1)3x ﹣2(10﹣x )=5;(2)123146x x +--=.【答案】(1)x =5; (2)x =-3【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.(1)解:去括号得:3x -20+2x =5,移项合并得:5x =25,解得:x =5;(2)去分母得:3x +3-4x +6=12,移项合并得:-x =3,解得:x =-3;【点睛】此题考查了解一元一次方程,熟练掌握解方程的基本步骤是解本题的关键.24.(2022·辽宁·朝阳七年级期末)解方程:(1)2(21)37x x -=-; (2)341125x x -+-=.25.(2022·海南·七年级期末)解下列方程:(1)()()4321x x -+=-; (2)2543137x x +--=.26.(2022·安徽·七年级期末)解方程:123152x x -+-=27.(2022·山东聊城·七年级期末)解下列一元一次方程:(1)()()73124x x -+=- (2)121123x x --+=【答案】(1)4x =-(2)5x =【分析】(1)根据去括号,移项,合并同类项的步骤解一元一次方程即可;(2)根据去分母,去括号,移项,合并同类项的步骤解一元一次方程即可;28.(2022·湖南永州·七年级期末)解方程:(1)()()31241x x +=-; (2)5121136x x +--=.29.(2022·云南临沧·七年级期末)解方程:(1)4x -4=6-x(2)142123x x ---=【答案】(1)2(2)-1【分析】(1)根据解方程的步骤求解即可;(2)根据解方程的步骤求解即可.(1)解:4x -4=6-x ,移项得4x +x =6+4,合并同类项得5x =10,系数化1得x =2;(2)解:去分母得 3(x -1)-2(4x -2)=6,去括号得 3x -3-8x +4=6,移项合并得 -5x =5,系数化1得 x =-1;【点睛】本题考查了一元一次方程的解法,解题的关键是熟练掌握解方程的步骤.30.(2022·山东聊城·七年级期末)解下列方程:(1)32(3)23(21)--=--x x(2)332164x x +-=-31.(2022·福建龙岩·七年级期末)解方程:(1)6742x x -=-;(2)3157146y y --=+.32.(2022·山东威海·期末)解方程:(1)42(4)2(1)x x -+=-; (2)121(7)(5)352x x +=--; (3)0.30.40.50.220.20.3x x --+=.33.(2022·山东烟台·期末)解方程:(1)0.170.210.70.03x x--=(2)31423x x--+=∴x =7.【点睛】本题考查一元一次方程的应用,熟练掌握一元一次方程的解法是解题关键.34.(2022·山东济南·期末)解方程:(1)51263x x x +--=- (2)20.820.50.4x x --=35.(2022·吉林四平·七年级期末)某同学解方程12324x x +-=+的过程如下,请仔细阅读,并解答所提出的问题:解:去分母,得()()2123x x +=-+.(第一步)去括号,得2223x x +=-+.(第二步)移项,得2223x x +=-+.(第三步)合并同类项,得33x =.(第四步)系数化为1,得1x =.(第五步)(1)该同学解答过程从第___________步开始出错,错误原因是____________________;(2)写出正确的解答过程.【答案】(1)一,漏乘不含分母的项(2)见解析.【分析】(1)观察第一步,可得结论;(2)按解一元一次方程的一般步骤求解即可.(1)解:方程去分母,得2(x +1)=(2-x )+12,所以该同学从第一步就出错了,错误的原因是去分母时,不含分母的项漏乘了.故答案为:一,漏乘不含分母的项;(2)解:去分母,得2(x +1)=(2-x )+12,去括号,得2x +2=2-x +12,移项,得2x +x =2-2+12,合并同类项,得3x =12,系数化为1,得x =4.【点睛】本题主要考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.36.(2022·河南开封·七年级期末)下面是某同学解方程的过程,请认真阅读并完成相应的任务:解方程:51263x x x +--=-解:去分母,得()()125621x x x -+=--………………第一步去括号,得125622x x x -+=-+ ……………………第二步移项,得621252x x x --+=--+ ……………………第三步合并同类项,得515x -=- ………………………………第四步系数化为1,得3x = ………………………………………第五步(1)任务一:填空:①以上解方程步骤中,第一步去分母的依据是___.②第___步开始出现错误,这一步错误的原因是.(2)任务二:请写出本题正确的解题过程.(3)任务三:请你根据平时的学习经验,在解方程时还需注意的事项提一条合理化建议.【答案】(1)①等式的基本性质二;②二,去括号时没有变符号;(2)1x =(3)去分母时要注意每一项都要乘到,(答案不唯一,合理就行)【分析】(1)观察这位同学解方程的步骤,利用等式的基本性质及去括号可进行求解;(2)根据一元一次方程的解法可直接进行求解;37.(2022·吉林长春·七年级期末)阅读下面方程的求解过程:解方程:31421 25x x-+=-解15x﹣5=8x+4﹣1,(第一步)15x﹣8x=4﹣1+5,(第二步)7x=8,(第三步)78x=.(第四步)上面的求解过程从第 步开始出现错误;这一步错误的原因是 ;此方程正确的解为 .38.(2022·山东滨州·七年级期末)学习了一元一次方程的解法后,老师布置了这样一道计算题3157146x x ---=,甲、乙两位同学的解答过程分别如下:甲同学:解方程3157146x x ---=.解:3157121121246x x --´-´=´ 第①步3(31)122(57)x x --=- 第②步3112107x x --=- 第③步3107112x x -=-++ 第④步76x -= 第⑤步67x =-. 第⑥步乙同学:解方程3157146x x ---=.解:31571211246x x --´-=´ 第①步3(31)12(57)x x --=- 第②步3311014x x --=- 第③步3101413x x -=-++ 第④步710x -=- 第⑤步107x =-. 第⑥步老师发现这两位同学的解答过程都有错误,请回答以下问题:(1)甲同学的解答过程从第__________步开始出现错误(填序号);(2)乙同学的解答过程从第__________步开始出现错误(填序号);错误的原因是_________________________.(3)请写出正确的解答过程.【答案】(1)③(2)①,错用等式的性质2(方程两边漏乘)(3)1x =-【分析】准确运用一元一次方程的解法步骤:去分母、去括号、移项、合并同类项、化系数为1,即可得出答案.39.(2022·浙江台州·七年级期末)解方程:213x +﹣1016x +=1.甲、乙两位同学的解答过程如下甲同学:解:213x +×6﹣1016x +×6=1第①步2(2x +1)﹣10x +1=1⋯⋯第②步4x +2﹣10x +1=1⋯⋯第③步4x ﹣10x =1﹣2﹣1⋯⋯第④步﹣6x =﹣2⋯⋯第⑤步x =13……第⑥步乙同学:解:426x +﹣1016x +=1⋯⋯第①步421016x x +-+=1⋯⋯第②步636x -+=1⋯⋯第③步﹣6x +3=6⋯⋯第④步﹣6x =3⋯⋯第⑤步x =﹣12⋯⋯第⑥步老师发现这两位同学的解答过程都有错误.(1)请你指出甲、乙两位同学分别从哪一步开始出错,甲:第 步,乙:第 步(填序号);(2)请你写出正确的解答过程.40.(2022·浙江宁波·七年级期末)在解方程231136x x -=-时,小元同学的解法如下: 41(31)x x =--……第①步4131x x =--……第②步70x =……第③步0x =……第④步小元同学的解法正确吗?若不正确,请指出他在第 步开始出现错误,并写出正确的解题过程:【答案】小元同学的解法不正确,①,正确的解题过程见解析【分析】他在第①步开始出现错误,应该是:4x =6-(3x -1),根据解一元一次方程的一般步骤,写出正确的解题过程即可.【详解】解:小元同学的解法不正确,他在第①步开始出现错误,正确的解题过程如下:去分母得:46(31)x x =--,去括号得:4631x x =-+移项合并同类项得:77x = 解得:1x =【点睛】此题主要考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.。

初中一年级数学上册解方程专项训练题(527)

初中一年级数学上册解方程专项训练题(527)

初中一年级数学上册解方程专项训练题(527)好的,以下是一些适合初中一年级学生解方程专项训练的题目:1. 一元一次方程(1)3x - 5 = 2x + 8(2)2x + 3 = 7x - 6(3)5x - 2 = 3x + 4(4)4x + 6 = 2x + 10(5)x + 2 = 5x - 32. 一元一次方程的应用题(1)小明有10元钱,买了3支笔和2本本子,每支笔比每本本子贵1元,问每支笔和每本本子各多少钱?(2)小华和小强一共做了100道数学题,小华做的题数比小强的2倍还多10道,问小华和小强各做了多少道题?(3)小军和小刚一共种了100棵树,小军种的树比小刚的3倍还多10棵,问小军和小刚各种了多少棵树?(4)一列火车从A地开往B地,A地到B地的距离是600千米,火车从A地出发2小时后,一辆汽车从A地出发追赶火车,汽车的速度比火车快20千米/小时,问汽车出发几小时后能追上火车?(5)某商品的进价是100元,标价是150元,为了促销,商场决定打折销售,若打8折销售,则每件商品的利润为20元,若打9折销售,则每件商品的利润为30元,问商场打几折销售利润最大?3. 二元一次方程组(1)\begin{cases} {2x+y=9} \\ {x-y=1}\end{cases}(2)\begin{cases} {3x-2y=1} \\ {2x+y=7}\end{cases}(3)\begin{cases} {x+2y=8} \\ {3x-y=7}\end{cases}(4)\begin{cases} {2x-y=5} \\ {x+3y=9}\end{cases}(5)\begin{cases} {3x+2y=11} \\ {x-y=2}\end{cases}以上就是一些适合初中一年级学生解方程专项训练的题目,涵盖了一元一次方程、一元一次方程的应用题和二元一次方程组,难度适中,既有基础题,也有提高题。

一元一次方程专题训练经典练习题(含答案)

一元一次方程专题训练经典练习题(含答案)

一元一次方程专题训练经典练习题一、解下列一元一次方程1、2x+2=3x+62、 3x-11=253、2(x-1)+3(1-x)=04、5x(2-3.140)=2(x-6)5、0.8x +2=1.6x-26、10%(x+2)=17、2(x+5)=3(x-6) 8、1-2(x-3)=3(x+2)9、3(x-1)=2(x+2)+(1-x) 10、4x-[2+(3x-6)]=111、2x-20%(x+3)=12÷10 12、7x+5(x-2)= 2(x+10)13、4x-4=2(2+x)-3(x+1) 14、1- 12x=215、3- 13x=2(x+1) 16、2(x-34)=8-x17、12(2x+1)+1=2(2-x) 18、x-13(x-5)=2319、-x= -3(x-4) 20、7x·(5 - 4·12)= 5+x21、0.1+x2=2 22、x-10.2=3(x-1)23、x-10.3+x+20.3=2 24 、12+13x =23+125、2x-10.5= 2-3x+20.326、错误! =3x27、错误! =3 28、错误! =错误!29、12{13[14(x+1)+1]+2} =2 30、25(300+x)-35(200+x)=400·110二、一元一次方程应用题1、一艘船在两个码头之间航行,水流的速度是3千米/时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。

2、小华从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?3、小兵由A地到B地,若以每小时12千米的速度,他将比原计划的时间迟到20分,若以每小时15千米的速度前进,则比原计划的时间早4分钟到达B地,求A、B两地间的距离。

4、甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地返回,在途中遇到乙,这时距他们出发的时间时已过了3小时。

初中一年级数学上册解方程专项训练题(277)

初中一年级数学上册解方程专项训练题(277)

初中一年级数学上册解方程专项训练题(277)好的,以下是为初中一年级数学上册解方程专项训练题(277)设计的一些题目:1. 一元一次方程(1)3x - 5 = 8(2)2x + 4 = 10(3)5x - 3 = 2x + 7(4)x + 6 = 3x - 4(5)4x = 12(6)2x - 3 = 11(7)3x + 6 = 0(8)x - 7 = 82. 一元一次方程的应用(1)小华骑车去学校,速度为12千米/小时,用时20分钟。

求小华家到学校的距离。

(2)小明有x张5元纸币,y张10元纸币,共50元。

求小明有多少张5元纸币。

(3)一个数的3倍加上4等于这个数的5倍减去6,求这个数。

(4)小刚有a个苹果,小强有b个苹果,小刚给小强2个苹果后,两人苹果数相等。

求小刚原来比小强多几个苹果。

(5)一列火车以60千米/小时的速度行驶,用时2小时到达目的地。

求火车行驶的总路程。

3. 二元一次方程组(1)\begin{cases} {x+y=9} \\ {x-y=1}\end{cases}(2)\begin{cases} {2x+3y=12} \\ {4x-y=2}\end{cases}(3)\begin{cases} {3x-2y=4} \\ {x+y=5}\end{cases}(4)\begin{cases} {2x+y=7} \\ {3x-y=8}\end{cases}(5)\begin{cases} {x+2y=5} \\ {3x-y=1}\end{cases}4. 二元一次方程组的应用(1)小明有a个苹果,小强有b个苹果,小明给小强3个苹果后,两人苹果数相等。

已知小明原来比小强多5个苹果,求小明和小强原来各有多少个苹果。

(2)小华和小强分别从A、B两地同时出发相向而行,小华的速度为4千米/小时,小强的速度为6千米/小时。

2小时后两人相遇。

求A、B 两地的距离。

(3)一个两位数,十位数字比个位数字大3,且这个两位数的2倍比原数大30。

解一元一次方程习题精选附答案

解一元一次方程习题精选附答案

解一元一次方程一.解答题(共30小题)1.解方程:2x+1=72.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.4.解方程:.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x ﹣=2﹣.6.(1)解方程:3(x﹣1)=2x+3;(2)解方程:=x ﹣.7.﹣(1﹣2x)=(3x+1)8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).9.解方程:.10.解方程:(1)4x﹣3(4﹣x)=2;(2)(x﹣1)=2﹣(x+2).11.计算:(1)计算:(2)解方程:12.解方程:13.解方程:(1)(2)14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6(2)+215.(A类)解方程:5x﹣2=7x+8;(B 类)解方程:(x﹣1)﹣(x+5)=﹣;(C 类)解方程:.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x ﹣﹣318.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:20.解方程(1)﹣0.2(x﹣5)=1;(2).21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x).23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).25.解方程:.26.解方程:(1)10x﹣12=5x+15;(2)27.解方程:(1)8y﹣3(3y+2)=7(2).28.当k 为什么数时,式子比的值少3.29.解下列方程:(I )12y ﹣2.5y=7.5y+5 (II ).30.解方程:.专题训练(七) 一元一次方程的解法1.解下列方程: (1)3x -5=2x ;(2)56-8x =11+x ;(3)32x =12x +13;(4)0.5y -0.7=6.5-1.3y.2.解下列方程:(2)2(x -3)+5(2x +1)=11;(3)3(2x +5)=2(4x +3)-3;(4)4y -3(20-y)=6y -7(9-y).3.解下列方程: (1)x -22=4x +15;(2)107x -17-20x 3=1;(3)2x -13-2x -34=1;(4)2(x +3)5=32x -2(x -7)3.4.解下列方程: (1)0.1-2x 0.3=1+x 0.15;(2)2x 0.3-1.6-3x 0.6=31x +83.5.解下列方程: (1)119x +27=29x -57;(3)32[23(x4-1)-2]-x =2;(4)x -13[x -13(x -9)]=19(x -9).1.解下列方程: ⑴ 8723-=+x x⑵623521-=+x x⑶ x x x 7)25(34=--⑷ 12)1(3=-x⑸ 4)20(34-=--x x⑹ x x 57)53(212-=-- ⑺ )2(512)1(21+-=-x x ⑻352)63(61-=-x x ⑼ 314125=-x x ⑽52221+-=-y y ⑾ 321513223=-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-x x ⑿343883x x =⎪⎭⎫ ⎝⎛+⒀ x x x 432132342=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⒁165.032.04=--+x x6.2.4解一元一次方程(三)参考答案与试题解析一.解答题(共30小题)1.(2005•宁德)解方程:2x+1=7考点:解一元一次方程.专题:计算题;压轴题.分析:此题直接通过移项,合并同类项,系数化为1可求解.解答:解:原方程可化为:2x=7﹣1合并得:2x=6系数化为1得:x=3点评:解一元一次方程,一般要通过去分母,去括号,移项,合并同类项,未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.2.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:左右同乘12可得:3[2x﹣(x﹣1)]=8(x﹣1),化简可得:3x+3=8x﹣8,移项可得:5x=11,解可得x=.故原方程的解为x=.点评:若是分式方程,先同分母,转化为整式方程后,再移项化简,解方程可得答案.3.(1)解方程:4﹣x=3(2﹣x);(2)解方程:.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,然后再移项、合并同类型,最后化系数为1,得出方程的解;(2)题的方程中含有分数系数,应先对各式进行化简、整理,然后再按(1)的步骤求解.解答:解:(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9,系数化1得:x=3.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.4.解方程:.考点:解一元一次方程.专题:计算题.分析:此题两边都含有分数,分母不相同,如果直接通分,有一定的难度,但将方程左右同时乘以公分母6,难度就会降低.解答:解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣3.点评:本题易在去分母和移项中出现错误,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果.5.解方程(1)4(x﹣1)﹣3(20﹣x)=5(x﹣2);(2)x﹣=2﹣.考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项、合并同类项、化系数为1,从而得到方程的解;(2)先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣4﹣60+3x=5x﹣10(2分)移项得:4x+3x﹣5x=4+60﹣10(3分)合并得:2x=54(5分)系数化为1得:x=27;(6分)(2)去分母得:6x﹣3(x﹣1)=12﹣2(x+2)(2分)去括号得:6x﹣3x+3=12﹣2x﹣4(3分)移项得:6x﹣3x+2x=12﹣4﹣3(4分)合并得:5x=5(5分)系数化为1得:x=1.(6分)点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.去括号时要注意符号的变化.6.(1)解方程:3(x﹣1)=2x+3;考点:解一元一次方程.专题:计算题.分析:(1)是简单的一元一次方程,通过移项,系数化为1即可得到;(2)是较为复杂的去分母,本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)3x﹣3=2x+33x﹣2x=3+3x=6;(2)方程两边都乘以6得:x+3=6x﹣3(x﹣1)x+3=6x﹣3x+3x﹣6x+3x=3﹣3﹣2x=0∴x=0.点评:本题易在去分母、去括号和移项中出现错误,还可能会在解题前不知如何寻找公分母,怎样合并同类项,怎样化简,所以要学会分开进行,从而达到分解难点的效果.去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.7.﹣(1﹣2x)=(3x+1)考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:﹣7(1﹣2x)=3×2(3x+1)﹣7+14x=18x+6﹣4x=13x=﹣.点评:解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和系数化为1.此题去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.8.解方程:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+1;(2).考点:解一元一次方程.专题:计算题.分析:(1)可采用去括号,移项,合并同类项,系数化1的方式进行;(2)本题方程两边都含有分数系数,如果直接通分,有一定的难度,但对每一个式子先进行化简、整理为整数形式,难度就会降低.解答:解:(1)5(x﹣1)﹣2(x+1)=3(x﹣1)+x+13x﹣7=4x﹣2∴x=﹣5;(2)原方程可化为:移项、合并得:40x=﹣15,系数化为1得:x=.点评:(1)本题易在去分母、去括号和移项中出现错误,还可能会在解题前产生害怕心理.因为看到小数、分数比较多,学生往往不知如何寻找公分母,怎样合并同类项,怎样化简,所以我们要教会学生分开进行,从而达到分解难点的效果;(2)本题的另外一个重点是教会学生对于分数的分子、分母同时扩大或缩小若干倍,值不变.这一性质在今后常会用到.9.解方程:.考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得:2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10,系数化为1得:x=5.点评:去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.(2)(x﹣1)=2﹣(x+2).考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,合并同类项,系数化1,即可求出方程的解;(2)先去分母,再去括号,移项,合并同类项,系数化1可求出方程的解.解答:解:(1)4x﹣3(4﹣x)=2去括号,得4x﹣12+3x=2移项,合并同类项7x=14系数化1,得x=2.(2)(x﹣1)=2﹣(x+2)去分母,得5(x﹣1)=20﹣2(x+2)去括号,得5x﹣5=20﹣2x﹣4移项、合并同类项,得7x=21系数化1,得x=3.点评:(1)此题主要是去括号,移项,合并同类项,系数化1.(2)方程两边每一项都要乘各分母的最小公倍数,方程两边每一项都要乘各分母的最母的项,另外分数线有两层意义,一方面它是除号,另一方面它又代表着括号,所以在去分母时,应该将分子用括号括上.11.计算:(1)计算:(2)解方程:考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)根据有理数的混合运算法则计算:先算乘方、后算乘除、再算加减;(2)两边同时乘以最简公分母4,即可去掉分母.解答:解:(1)原式=,=,=.(2)去分母得:2(x﹣1)﹣(3x﹣1)=﹣4,解得:x=3.点评:解答此题要注意:(1)去分母时最好先去中括号、再去小括变化次数;(2)去分母就是方程两边同时乘以分母的最简公分母.12.解方程:考点:解一元一次方程.专题:计算题.分析:(1)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.(2)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.解答:解:(1)去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;(2)去括号得:x﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.点评:本题考查解一元一次方程,正乘以最小公倍数.13.解方程:(1)(2)考点:解一元一次方程.专题:计算题.分析:(1)去分母、去括号、移项、合并同类项、化系数为1.(2)去分母、去括号、移项、合并同类项、化系数为1.解答:(1)解:去分母得:5(3x+1)﹣2×10=3x﹣2﹣2(2x+3),去括号得:15x+5﹣20=3x﹣2﹣4x﹣6,移项得:15x+x=﹣8+15,合并得:16x=7,解得:;(2)解:,4(x﹣1)﹣18(x+1)=﹣36,4x﹣4﹣18x﹣18=﹣36,﹣14x=﹣14,x=1.点评:本题考查解一元一次方程,正乘以最小公倍数.14.解方程:(1)5(2x+1)﹣2(2x﹣3)=6(2)+2(3)[3(x﹣)+]=5x﹣1考点:解一元一次方程.专题:计算题.分析:(2)通过去括号、移项、合并同类项、系数化为1,解得x的值;(3)乘最小公倍数去分母即可;(4)主要是去括号,也可以把分数转化成整数进行计算.解答:解:(1)去括号得:10x+5﹣4x+6=6移项、合并得:6x=﹣5,方程两边都除以6,得x=﹣;(2)去分母得:3(x﹣2)=2(4﹣3x)+24,去括号得:3x﹣6=8﹣6x+24,移项、合并得:9x=38,方程两边都除以9,得x=;(3)整理得:+]=5x﹣1,4x﹣2+1=5x﹣1,移项、合并得:x=0.点评:一元一次方程的解法:一般要通过去分母、去括号、移项、合并同类项、未知数的系数化为1等步骤,把一个一元一次方程“转化”成x=a的形式.解题时,要灵活运用这些步骤.15.(A类)解方程:5x﹣2=7x+8;(B类)解方程:(x﹣1)﹣(x+5)=﹣;(C类)解方程:.考点:解一元一次方程.专题:计算题.分析:通过去分母、去括号、移项、系数化为1等方法,求得各方程的解.解答:解:A类:5x﹣2=7x+8移项:5x﹣7x=8+2化简:﹣2x=10即:x=﹣5;B类:(x﹣1)﹣(x+5)=﹣去括号:x﹣﹣x﹣5=﹣即:x=﹣;C类:﹣=1去分母:3(4﹣x)﹣2(2x+1)=6去括号:12﹣3x﹣4x﹣2=6化简:﹣7x=﹣4即:x=.点评:本题主要考查一元一次方程的解法,比较简单,但要细心运算.16.解方程(1)3(x+6)=9﹣5(1﹣2x)(2)(3)(4)考点:解一元一次方程.专题:计算题.分析:(1)去括号以后,移项,合并同类项,系数化为1即可求解;(2)(3)首先去掉分母,再去括号以后,移项,合并同类项,系数化为1以后即可求解;(4)首先根据分数的基本性质,把第一项分母中的0.3化为整数,再去分母,求解.解答:解:(1)去括号得:3x+18=9﹣5+10x移项得:3x﹣10x=9﹣5﹣18合并同类项得:﹣7x=﹣14则x=2;(2)去分母得:2x+1=x+3﹣5移项,合并同类项得:x=﹣3;(3)去分母得:10y+2(y+2)=20﹣5(y﹣1)去括号得:10y+2y+4=20﹣5y+5移项,合并同类项得:17y=21系数化为1得:;(4)原方程可以变形为:﹣5x=﹣1系数化为1得:x=﹣4.点评:解方程的过程中要注意每步的依据,这几个题目都是基础的题目,需要熟练掌握.17.解方程:(1)解方程:4x﹣3(5﹣x)=13(2)解方程:x﹣﹣3考点:解一元一次方程.专题:计算题.分析:(1)先去括号,再移项,化系数为1,从而得到方程的解.(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解.解答:解:(1)去括号得:4x﹣15+3x=13,移项合并得:7x=28,系数化为1得:得x=4;(2)原式变形为x+3=,去分母得:5(2x﹣5)+3(x﹣2)=15(x+3),去括号得10x﹣25+3x﹣6=15x+45,移项合并得﹣2x=76,系数化为1得:x=﹣38.点评:本题考查解一元一次方程,解一元一次方程号、移项、合并同类项、化系数为1.注意移项要变号.18.(1)计算:﹣42×+|﹣2|3×(﹣)3(2)计算:﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2](3)解方程:4x﹣3(5﹣x)=2;(4)解方程:.考点:解一元一次方程;有理数的混合运算.分析:(1)利用平方和立方的定义进行计算.(2)按四则混合运算的顺序进行计算.(3)主要是去括号,移项合并.(4)两边同乘最小公倍数去分母,再求值.解答:解:(1)﹣42×+|﹣2|3×(﹣)3==﹣1﹣1=﹣2.(2)﹣12﹣|0.5﹣|÷×[﹣2﹣(﹣3)2]====.(3)解方程:4x﹣3(5﹣x)=2去括号,得4x﹣15+3x)=2移项,得4x+3x=2+15合并同类项,得7x=17系数化为1,得.(4)解方程:去分母,得15x﹣3(x﹣2)=5(2x﹣5)﹣3×15去括号,得15x﹣3x+6=10x﹣25﹣45移项,得15x﹣3x﹣10x=﹣25﹣45﹣6合并同类项,得2x=﹣76系数化为1,得x=﹣38.点评:前两道题考查了学生有理数的混合运算,后两道考查了学生解一元一次方程的能力.19.(1)计算:(1﹣2﹣4)×;(2)计算:÷;(3)解方程:3x+3=2x+7;(4)解方程:.考点:解一元一次方程;有理数的混合运算.专题:计算题.分析:(1)和(2)要熟练掌握有理数的混合运算;(3)和(4)首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.解答:解:(1)(1﹣2﹣4)×=﹣=﹣13;(2)原式=﹣1×(﹣4﹣2)×(﹣)=6×(﹣)=﹣9;(3)解方程:3x+3=2x+7移项,得3x﹣2x=7﹣3合并同类项,得x=4;(4)解方程:去分母,得6(x+15)=15﹣10(x﹣7)去括号,得6x+90=15﹣10x+70移项,得6x+10x=15+70﹣90合并同类项,得16x=﹣5系数化为1,得x=.点评:(1)和(2)要注意符号的处理;(4)要特别注意去分母的时候不要发生数字漏乘的现象,熟练掌握去括号法则以及合并同类项法则.20.解方程(1)﹣0.2(x﹣5)=1;(2).考点:解一元一次方程.分析:(1)通过去括号、移项、系数化为1等过程,求得x的值;(2)通过去分母以及去括号、移项、系数化为1等过程,求得x的值.解答:解:(1)﹣0.2(x﹣5)=1;去括号得:﹣0.2x+1=1,∴﹣0.2x=0,∴x=0;(2).去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,∴x=﹣.点评:此题主要考查了一元一次方程解法,解一元一次方程常见的过程有去括号、移项、系数化为1等.21.解方程:(x+3)﹣2(x﹣1)=9﹣3x.考点:解一元一次方程.专题:计算题.分析:先去括号得x+3﹣2x+2=9﹣3x,然后移项、合并同类得到2x=4,然后把x的系数化为1即可.解答:解:去括号得x+3﹣2x+2=9﹣3x,移项得x﹣2x+3x=9﹣3﹣2,合并得2x=4,系数化为1得x=2.点评:本题考查了解一元一次方程:先去分母,再去括号,接着移项,把含未知数的项移到方程左边,不含未知数的项移到方程右边,然后合并同类项,最后把未知数的系数化为1得到原方程的解.22.8x﹣3=9+5x.5x+2(3x﹣7)=9﹣4(2+x)...考点:解一元一次方程.专题:方程思想.分析:本题是解4个不同的一元一次方程,第一个通过移项、合并同类项及系数化1求解.第二个先去括号再通过移项、合并同类项及系数化1求解.第三个先去分母再同第二个.第四个先分子分母乘以10,再同第三个求解.解答:8x﹣3=9+5x,解:8x﹣5x=9+3,3x=12,∴x=4.∴x=4是原方程的解;5x+2(3x﹣7)=9﹣4(2+x),解:5x+6x﹣14=9﹣8﹣4x,5x+6x+4x=9﹣8+14,15x=15,∴x=1.∴x=1是原方程的解..解:3(x﹣1)﹣2(2x+1)=12,3x﹣3﹣4x﹣2=12,3x﹣4x=12+3+2,﹣x=17,∴x=﹣17.∴x=﹣17是原方程的解.,解:,5(10x﹣3)=4(10x+1)+40,50x﹣15=40x+4+40,50x﹣40x=4+40+15,10x=59,∴x=.∴x=是原方程的解.点评:此题考查的知识点是解一元一次方程,关键是注意解方程时的每一步都要认真仔细,如移项时要变符号.23.解下列方程:(1)0.5x﹣0.7=5.2﹣1.3(x﹣1);(2)=﹣2.考点:解一元一次方程.分析:(1)首先去括号,然后移项、合并同类项,系数化成1,即可求解;(2)首先去分母,然后去括号,移项、合并同类项,系数化成1,即可求解解答:解:(1)去括号,得:0.5x﹣0.7=5.2﹣1.3x+1.3移项,得:0.5x+1.3x=5.2+1.3+0.7合并同类项,得:1.8x=7.2,则x=4;(2)去分母得:7(1﹣2x)=3(3x+1)﹣42,去括号,得:7﹣14x=9x+3﹣42,移项,得:﹣14x﹣9x=3﹣42﹣7,合并同类项,得:﹣23x=﹣46,则x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.24.解方程:(1)﹣0.5+3x=10;(2)3x+8=2x+6;(3)2x+3(x+1)=5﹣4(x﹣1);(4).考点:解一元一次方程.分析:(1)移项,合并同类项,然后系数化成1即可求解;(2)移项,合并同类项,然后系数化成1即可求解;(3)去括号、移项,合并同类项,然后系数化成1即可求解;(4)首先去分母,然后去括号、移项,合并同类项,然后系数化成1即可求解.解答:解:(1)3x=10.5,x=3.5;(2)3x﹣2x=6﹣8,x=﹣2;(3)2x+3x+3=5﹣4x+4,2x+3x+4x=5+4﹣3,9x=6,x=;(4)2(x+1)+6=3(3x﹣2),2x+2+6=9x﹣6,2x﹣9x=﹣6﹣2﹣6,﹣7x=﹣14,x=2.点评:本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.25.解方程:.考点:解一元一次方程.专题:计算题.分析:方程两边乘以10去分母后,去括号,移项合并,将x系数化为1,即可求出解.解答:解:去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项合并得:5x=﹣5,解得:x=﹣1.点评:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.26.解方程:(1)10x﹣12=5x+15;(2)考点:解一元一次方程.专题:计算题.分析:(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去括号,再移项、合并同类项,最后化系数为1,从而得到方程的解.解答:解:(1)移项,得10x﹣5x=12+15,合并同类项,得5x=27,方程的两边同时除以5,得x=;(2)去括号,得=,方程的两边同时乘以6,得x+1=4x﹣2,移项、合并同类项,得3x=3,方程的两边同时除以3,得x=1.点评:本题考查解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.27.解方程:(1)8y﹣3(3y+2)=7(2).考点:解一元一次方程.专题:计算题.分析:(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可得解;(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(1)去括号得,8y﹣9y﹣6=7,移项、合并得,﹣y=13,系数化为1得,y=﹣13;(2)去分母得,3(3x﹣1)﹣12=2(5x﹣7),去括号得,9x﹣3﹣12=10x﹣14,移项得,9x﹣10x=﹣14+3+12,合并同类项得,﹣x=1,系数化为1得,x=﹣1.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.28.当k 为什么数时,式子比的值少3.考点:解一元一次方程.专题:计算题.分析:先根据题意列出方程,再根据一元一次方程的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.解答:解:依题意,得=+3,去分母得,5(2k+1)=3(17﹣k)+45,去括号得,10k+5=51﹣3k+45,移项得,10k+3k=51+45﹣5,合并同类项得,13k=91,系数化为1得,k=7,∴当k=7时,式子比的值少3.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.29.解下列方程:(I)12y﹣2.5y=7.5y+5(II ).考点:解一元一次方程.专题:计算题.分析:(Ⅰ)根据一元一次方程的解法,移项,合并同类项,系数化为1即可得解;(Ⅱ)是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.解答:解:(Ⅰ)移项得,12y﹣2.5y﹣7.5y=5,合并同类项得,2y=5,系数化为1得,y=2.5;(Ⅱ)去分母得,5(x+1)﹣10=(3x﹣2)﹣2(2x+3),去括号得,5x+5﹣10=3x﹣2﹣4x﹣6,移项得,5x﹣3x+4x=﹣2﹣6﹣5+10,合并同类项得,6x=﹣3,系数化为1得,x=﹣.点评:本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.30.解方程:.考点:解一元一次方程.专题:计算题.分析:由于方程的分子、分母均有小数,利用分数的基本性质,分子、分母同时扩大相同的倍数,可将小数化成整数.解答:解:原方程变形为,(3分)去分母,得3×(30x﹣11)﹣4×(40x﹣2)=2×(16﹣70x),(4分)去括号,得90x﹣33﹣160x+8=32﹣140x,(5分)移项,得90x﹣160x+140x=32+33﹣8,(6分)合并同类项,得70x=57,(7分)系数化为1,得.(8分)点评:本题考查一元一次方程的解法.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化为1.本题的难点在于方程的分子、分母均有小数,将小数化成整数不同于去分母,不是方程两边同乘一个数,而是将分子、分母同乘一个数.参考答案1.(1)3x-2x=5,x=5. (2)-8x-x=11-56,-9x =-45,x=5. (3)32x-12x=13,x=13. (4) 0.5y+1.3y =0.7+6.5,1.8y=7.2,y=4.2.(1)4x-60+6x=10,4x+6x=60+10,10x=70,x =7. (2)2x-6+10x+5=11,12x=12,x=1. (3)6x +15=8x+6-3,6x-8x=-15+6-3,-2x=-12,x=6. (4)4y-60+3y=6y-63+7y,3y+4y-6y-7y=60-63,-6y =-3,y =12.3.(1)5(x -2)=2(4x +1),5x -10=8x +2,5x -8x =10+2,-3x =12,x =-4. (2)30x -7(17-20x)=21,30x -119+140x =21,30x +140x =119+21,170x =140,x =1417. (3)4(2x -1)-3(2x -3)=12,8x -4-6x +9=12,8x -6x =4-9+12,2x =7,x =72. (4)12(x+3)=45x -20(x -7),12x +36=45x -20x +140,12x -45x +20x =-36+140,-13x =104,x =-8. 4.(1)解法一:原方程整理,得1-20x 3=1+100x15.去分母,得5(1-20x)=15+100x.去括号,得5-100x =15+100x.移项,得-100x -100x =15-5.合并同类项,得-200x =10.系数化为1,得x =-0.05.解法二:去分母,得0.15(0.1-2x)=0.045+0.3x.去括号,得0.015-0.3x =0.045+0.3x.移项,得-0.3x -0.3x =0.045-0.015.合并同类项,得-0.6x =0.03.系数化为1,得x =-0.05. (2)20x 3-16-30x 6=31x +83,40x -(16-30x)=2(31x +8),40x -16+30x =62x +16,40x+30x -62x =16+16,8x =32,x =4. 5.(1)119x -29x =-57-27,x =-1. (2)278(x -3)+463×2(x-3)-888×7(x-3)=0,(278+463×2-888×7)(x-3)=0,x =3. (3)x4-1-3-x =2,x =-8. (4)x -13x +19(x -9)=19(x -9),23x =0,x =0.。

一元一次方程专题训练

一元一次方程专题训练

专题一:一元一次方程的解法1.解方程:(1)5x+5=9-3x;解:移项、合并同类项得8x=4,解得x=1 2 .(2)5x=3(2+x);解:去括号得5x=6+3x.移项、合并同类项得2x=6,解得x=3.(3)7-2x=3-4(x-2);解:去括号得7-2x=3-4x+8,移项、合并同类项得2x=4,解得x=2.(4)3(2x+1)=9-2(x-1);解:去括号得6x+3=9-2x+2,移项、合并同类项得8x=8,解得x=1.(5)753 48x-=;解:去分母得14x-10=3,移项、合并同类项得14x=13,解得x=13 14.(6)2154 36x x-+=;解:去分母得2(2x-1)=5x+4,去括号得4x-2=5x+4,移项、合并同类项得-x=6,解得x=-6.(7)4353146x x-+-=;解:去分母得12-3(4-3x)=2(5x+3),去括号得12-12+9x=10x+6,移项、合并同类项得-x=6,解得x=-6.(8)34=1.6 0.50.2x x-+-;解:方程整理得10305x--10402x+=1.6,去分母得2(10x-30)-5(10x+40)=16,去括号得20x-60-50x-200=16,移项、合并同类项得-30x=276,解得x=-9.2.(9)1+2=224x xx---;解:去分母得4x-2(x-1)=8-(x+2),去括号得4x-2x+2=8-x-2,移项、合并同类项得3x=4,解得x=4 3 .(10)(x-4)-(4)12x--=3-(4)23x-+.解:方法一:令x-4=y,则原方程可变形为y-12y-=3-23y+.去分母得6y-3(y-1)=18-2(y+2),去括号得6y-3y+3=18-2y-4,移项、合并同类项得5y=11,解得y=115,则x-4=115,解得x=315.方法二:方程整理得x-52x-=7-23x-,去分母得6x-3(x-5)=42-2(x-2),去括号得6x-3x+15=42-2x+4,移项、合并同类项得5x =31,解得x =315. 2.方程2(x -1)-3(x +1)=0的解与关于x 的方程2k x +-3k -2=2x 的解互为相反数,求k 的值.解:方程2(x -1)-3(x +1)=0,去括号得2x -2-3x -3=0,移项、合并同类项得-x =5,解得x =-5. 由题意得2k x +-3k -2=2x 的解为x =5. 把x =5代入得52k +-3k -2=10, 去分母得k +5-6k -4=20,移项、合并同类项得-5k =19,解得k =-195. 3.已知关于x 的一元一次方程4x +2m =3x -1.(1)求这个方程的解;解:(1)移项,得4x -3x =-1-2m .所以x =-1-2m .(2)若这个方程的解与关于x 的方程3(x +m )=-(x -1)的解相同,求m 的值.(2)去括号,得3x +3m =-x +1.移项、合并同类项,得4x =1-3m .解得x =134m -. 由于两个方程的解相同, 所以-1-2m =134m -. 去分母、去括号得-4-8m =1-3m ,移项、合并同类项,得-5m =5.解得m =-1.4.已知m 为整数,且满足关于x 的方程(2m +1)x =3mx -1.(1)当m =2时,求方程的解;解:(1)当m =2时,原方程为5x =6x -1,解得x =1.(2)该方程的解能否为3,请说明理由;(2)方程的解不能为3.理由如下:将x=3代入原方程,得3(2m+1)=9m-1,解得m=4 3 .∵m为整数,∵方程的解不可能为3.(3)当x为正整数时,请求出m的值.(3)(2m+1)x=3mx-1,移项、合并同类项,得(m-1)x=1.∵x为正整数,∵m-1为正数且为1的约数.∵m为整数,∵m-1=1.∵m=2.5.小王在解关于x的方程2-243x-=3a-2x时,误将-2x看作+2x,得方程的解为x=1. (1)求a的值;解:(1)把x=1代入2-243x-=3a+2x,得2+23=3a+2,解得a=29.(2)求此方程正确的解.(2)把a=29代入原方程得2-243x-=23-2x.去分母得6-(2x-4)=2-6x.去括号得6-2x+4=2-6x.移项得-2x+6x=-10+2.合并同类项得4x=-8.解得x=-2.6.定义:若关于x的一元一次方程ax=b的解为x=b+a,则称该方程为“和解方程”.例如:2x=-4的解为x=-2,且-2=-4+2,则方程2x=-4是“和解方程”.(1)判断-3x=94是否是“和解方程”,说明理由;解:(1)∵-3x=94,∵x=-3 4 .∵94-3=-34,∵-3x=94是“和解方程”.(2)若关于x的一元一次方程5x=m-2是“和解方程”,求m的值.(2)∵关于x的一元一次方程5x=m-2是“和解方程”,∵m-2+5=25m. 解得m=-174.故m的值为-174.专题二:方程中与的字母问题1.已知关于x的方程(m+2)x|m+1|-3=0是一元一次方程,则m的值是( B)A.-2B.0C.1D.0或-22.若(|m|-1)x2-(m-1)x-8=0是关于x的一元一次方程,则m的值为( A)A.-1B.1C.±1D.不能确定3.已知关于x的方程ax-1=x为一元一次方程,则|a-1|的值一定为( A)A.正数B.非负数C.零D.不能确定4.若(m-4)x2|m|-7-4m=0是关于x的一元一次方程,求m2-2m+1996的值.解:∵(m -4)x 2|m |-7-4m =0是关于x 的一元一次方程,∵m -4≠0且2|m |-7=1.解得m =-4.∵原式=16+8+1996=2020.5.已知关于x 的方程2x -93a -=0的解是x =-2,则a 的值为( C ) A.-21 B.21 C.-3 D.38.已知关于x 的方程x -46ax -=43x +-1的解是正整数,则符合条件的所有整数a 的积是 . 9.在做解方程练习时,学习卷中有一个方程“2y -13=13y +W ”中的W 没印清晰,小聪问老师,老师只是说:“W 是个有理数,该方程的解与方程3(x -1)-2(x -2)=3的解相同.”小聪很快补上了这个常数,聪明的你能补上这个常数吗? 解:解方程3(x -1)-2(x -2)=3得x =2.由题意知y =x =2.将y =2代入2y -13=13y +W 中, 得2×2-13=13×2+W , 解得W =3.10.如果a ,b 为常数,且不论k 取何值时,关于x 的方程2kx a --1=24x bk -的解总是x =-1,求a b 的值. 解:把x =-1代入2kx a --1=24x bk -, 得2k a ---1=24bk --. 整理,得(b -2)k -2a -2=0.∵无论k 取何值时,关于x 的方程的解总是x =-1,∵b -2=0,-2a -2=0.解得b =2,a =-1.∵a b =(-1)2=1.11.若a ,b 互为相反数(a ≠0),则关于x 的方程ax +b =0的解是( A )A.x=1B.x=-1C.x=1,或x=-1D.不能确定12.已知|n+2|+(5m-3)2=0,求关于x的方程10mx+4=3x+n的解.解:因为|n+2|+(5m-3)2=0,所以n+2=0,5m-3=0.解得m=35,n=-2.将m=35,n=-2代入方程10mx+4=3x+n,得6x+4=3x-2.移项、合并同类项得3x=-6.解得x=-2.专题三:一元一次方程的应用1.我国一航空母舰始终以60千米/时的速度由西向东航行,飞机以500千米/时的速度从舰上起飞,向西航行执行任务,如果飞机在空中最多能连续飞行3个小时,那么它在起飞几小时后就必须返航,才能安全停在舰上?解:设飞机在起飞x小时后就必须返航,才能安全停在舰上.根据题意得500(3-x)-500x=60×3,解得x=1.32.答:飞机在起飞1.32小时后就必须返航,才能安全停在舰上.2.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”解:设有x 位客人,则2x +3x +4x =65, 解得x =60.答:有60位客人.3.如图,一块长4厘米、宽1厘米的长方形纸板∵,一块长5厘米、宽2厘米的长方形纸板∵与一块正方形纸板∵以及另两块长方形纸板∵和∵,恰好拼成一个大正方形,求大正方形的面积.解:设小正方形∵的边长为x 厘米.依题意得1+x +2=4+5-x ,解得x =3.则1+x +2=6.∵大正方形的边长为6厘米.∵大正方形的面积是6×6=36(平方厘米).4.一鞋店老板以每件60元的价格购进了一种品牌的布鞋360双,并以每双100元的价格销售了240双.冬季来临,老板为了清库存,决定促销.请你帮老板算一下,每双鞋降价多少元时,销售完这批鞋正好能达到盈利50%的目标.解:设每双鞋降价x 元.依题意有(100-60)×240+(100-x -60)×(360-240)=360×60×50%,解得x =30.答:每双鞋降价30元时,销售完这批鞋正好能达到盈利50%的目标.5.在国庆节社会实践活动中,盐城某校甲、乙、丙三位同学一起调查了高峰时段盐靖高速、盐洛高速和沈海高速的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“盐靖高速车流量为每小时2000辆.”乙同学说:“沈海高速的车流量比盐洛高速的车流量每小时多400辆.”丙同学说:“盐洛高速车流量的5倍与沈海高速车流量的差是盐靖高速车流量的2倍.”请你根据他们所提供的信息,求出高峰时段盐洛高速和沈海高速的车流量分别是多少?解:设盐洛高速车流量为每小时x辆.由题意得5x-(x+400)=2000×2,解得x=1100.则x+400=1500.答:高峰时段盐洛高速和沈海高速的车流量分别是每小时1100辆、1500辆. 6.某商店购进A、B两种商品共100件,花费3100元,其进价和售价如下表:(1)A、B两种商品分别购进多少件?解:(1)设购进A种商品a件,则购进B种商品(100-a)件.由题意得25a+35(100-a)=3100,解得a=40.则100-a=60.答:A、B两种商品分别购进40件、60件.(2)两种商品售完后共获取利润多少元?(2)(30-25)×40+(45-35)×60=800(元).答:两种商品售完后共获取利润800元.7.为了鼓励节约用电,某地用电标准规定:如果每户每月用电不超过a度,那么每度按0.55元缴纳;超过部分则按每度0.85元缴纳.(1)某户5月份用电200度,共交电费125元,求a的值;解:(1)因为200×0.55=110<125,所以该用户用电量超过a度.由题意可知0.55a+0.85(200-a)=125,解得a=150.(2)在(1)的条件下,若该户6月份的电费平均每度0.6元,则6月份共用电多少度?应交电费多少元?(2)设6月份共用电x度.由题意得150×0.55+0.85×(x-150)=0.6x,解得x=180.∵应交电费0.6x=108(元).答:6月份共用电180度,应交电费108元.8.完成一项工作,如果由两个人合做,要16天才能完成.开始先安排一些人做2天后,又增加1人和他们一起做4天,结果完成了这项工作的一半,假设这些人的工作效率相同.(1)开始安排了多少名工人?解:(1)设开始安排了x名工人.根据题意,得24(1)11621622x x++=⨯⨯,解得x=2.答:开始安排了2名工人.(2)如果要求再用4天做完剩余的全部工作,还需要再增加几人一起做?(2)设还需再增加y名工人.根据题意,得314322y+⨯=. 解得y=1.答:还需再增加1名工人.9.请根据图中提供的暖瓶和水杯的售价信息,回答下列问题:(1)一个暖瓶与一个水杯的售价分别是多少元?解:(1)设一个暖瓶x元,则一个水杯(38-x)元.根据题意得2x+3(38-x)=84,解得x=30,则38-x=8.答:一个暖瓶的售价是30元,一个水杯的售价是8元.(2)甲、乙两家商场同时出售同样的暖瓶和水杯,在新年期间,两家商场都在搞促销活动.甲商场规定:这两种商品都打8.5折;乙商场规定:两种商品都不打折,但买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和16个水杯,请问这个单位选择哪家商场购买更合算,并说明理由.(2)这个单位在甲商场购买更合算.理由:在甲商场购买所需费用为(4×30+16×8)×85%=210.8(元);在乙商场购买所需费用为4×30+(16-4)×8=216(元).因为210.8<216,所以这个单位在甲商场购买更合算.综合训练四:一元一次方程的解法一、选择题(每小题3分,共24分)1.方程x-14x-=-1去分母正确的是( C)A.x-1-x=-1B.4x-1-x=-4C.4x-1+x=-4D.4x-1+x=-12.方程2-3x=4-2x的解是( B)A.x=1B.x=-2C.x=2D.x=-13.如果3ab2m-1与9ab m+1是同类项,那么m等于( A)A.2B.1C.-1D.04.若关于x的方程mx m-2-m+3=0是一元一次方程,则这个方程的解是( A)A.x=0B.x=3C.x=-3D.x=25.将一根长为12 cm的铁丝围成一个长与宽之比为2∵1的长方形,则此长方形的面积为( C)A.2 cm2B.4.5 cm2C.8 cm2D.32 cm26.若关于x的一元一次方程23x k--32x k-=1的解是x=-1,则k的值是( B)A.27B.1C.-37D.07.若a、b表示非零常数,整式ax+b的值随x的取值而发生变化,如下表:则关于x的一元一次方程-ax-b=-3的解为( C)A.x=-3B.x=-1C.x=0D.x=38.已知关于x的方程52x-a=3x-14,若a为正整数,方程的解也为正整数,则a的最大值是( B)A.12B.13C.14D.15二、填空题(每小题4分,共24分)9.方程3x=5x-14的解是x=.10.当x=时,式子x-1与式子214x的值相等.11.若关于x的方程x+k=1与2x-3=1的解相同,则k的值为.12.某公司积极开展“爱心扶贫”的公益活动,现准备将6000件生活物资发往A,B两个贫困地区,其中发往A区的物资比B区的物资的1.5倍少1000件,则发往A区的生活物资为件.13.在有理数范围内定义一种新运算“∵”,其运算规则为:a∵b=-2a+3b,如1∵5=-2×1+3×5=13,则方程2x∵4=0的解为.14.若关于x的方程12019x+2019=2x+m的解是x=2019,则关于y的方程12019y+2019+12019=2y+m+2的解是y=.解析:12019y+2019+12019=2y+m+2可整理为12019(y+1)+2019=2(y+1)+m,则由题可得y+1=2019,∵y=2018.三、解答题(共52分)15.(16分)解下列方程:(1)9x+6=6x-2;解:x=-83.(4分)(2)13x-14=23x+34;解:x=-3.(8分)(3)6(2x-5)+15=4(1-2x)-5;解:x=710.(12分)(4)1241 262x x x+---=-.解:x=15.(16分)16.(8分)当x为何值时,整式(2x-1)的值比(x+3)的值的3倍少5?解:由题意得2x-1=3(x+3)-5,(2分)解得x=-5,(6分)即当x=-5时,整式(2x-1)的值比(x+3)的值的3倍少5.(8分)17.(8分)聪聪在对方程315362x mx x+---=∵去分母时,错误地得到了方程2(x+3)-mx-1=3(5-x)∵,因而求得的解是x=52,试求m的值,并求方程的正确解.解:把x=52代入方程∵得25+32⎛⎫⎪⎝⎭-52m-1=3552⎛⎫-⎪⎝⎭,解得m=1.(4分)把m=1代入方程∵得315362x x x+---=,解得x=2,则方程的正确解为x=2.(8分)18.(10分)(1)解关于x的方程:2(-2x+a)=3x;解:(1)去括号得-4x+2a=3x,移项、合并同类项得7x=2a,解得x=27a.(4分)(2)若(1)中方程的解与关于x的方程x-13x-=6x a+的解互为相反数,求a的值.(2)由题意知方程x-13x-=6x a+的解为x=-27a.解方程x-13x-=6x a+得x=27a+.(7分)则27a+=-27a,解得a=-23.(10分)19.(10分)阅读以下例题.解方程:|3x|=1.解:∵当3x>0时,原方程可化为3x=1,它的解为x=13;∵当3x<0时,原方程可化为-3x=1,它的解为x=-1 3 .所以原方程的解为x1=13,x2=-13.仿照例题解方程:|2x+1|=5.解:当2x+1>0时,原方程可化为2x+1=5,(3分)解得x=2.(5分)当2x+1<0时,原方程可化为-(2x+1)=5,解得x=-3.(9分)∵原方程的解为x1=2,x2=-3.(10分)。

一元一次方程计算题专练

一元一次方程计算题专练

一元一次方程计算题专练
一元一次方程是指形式为ax+b=0的方程,其中a和b是已知的实数,x是未知数。

解一元一次方程的方法有很多种,比如可以利用加减消元法、乘除消元法、代入法、等价方程变换法等。

下面我将从不同角度给出一些计算题的专练。

1. 加减消元法:
例题,2x+3=7。

解法,首先将方程改写为2x=7-3,然后进行加减消元得到2x=4,最后除以2得到x=2。

2. 乘除消元法:
例题,5x-8=12。

解法,首先将方程改写为5x=12+8,然后进行乘除消元得到5x=20,最后除以5得到x=4。

3. 代入法:
例题,3x+2=11。

解法,首先将方程改写为3x=11-2,然后进行代入法得到
x=3。

4. 等价方程变换法:
例题,4x-6=10。

解法,首先将方程改写为4x=10+6,然后进行等价方程变换
得到2x=8,最后除以2得到x=4。

通过以上例题的解答,我们可以看到解一元一次方程的方法多
种多样,灵活运用这些方法可以更快更准确地解决问题。

在专练时,建议多做一些练习题,加深对各种解法的理解和掌握,从而提高解
题的效率和准确性。

希望这些例题能够帮助你更好地专练一元一次
方程的计算题。

初一 解一元一次方程计算题专项训练

初一 解一元一次方程计算题专项训练

初一解一元一次方程计算题专项训练1.2x+5=5x-7首先将变量移到一边,常数移到另一边,得到3x=12,再将等式两边都除以3,得到x=4.因此,方程的解为x=4.2.4-3(2-x)=5x首先将括号里的式子乘以-3,得到4+3x-6=-15x。

将变量移到一边,常数移到另一边,得到18x=10,再将等式两边都除以18,得到x=5/9.因此,方程的解为x=5/9.3.3(x-2)=2-5(x-2)首先将括号里的式子展开,得到3x-6=2-5x+10.将变量移到一边,常数移到另一边,得到8x=18,再将等式两边都除以8,得到x=9/4.因此,方程的解为x=9/4.4.2(x+3)-5(1-x)=3(x-1)首先将括号里的式子展开,得到2x+6-5+5x=3x-3.将变量移到一边,常数移到另一边,得到4x=-8,再将等式两边都除以4,得到x=-2.因此,方程的解为x=-2.5.3(x+1)-2(x+2)=2x+3首先将括号里的式子展开,得到3x+3-2x-4=2x+3.将变量移到一边,常数移到另一边,得到-x=4,再将等式两边都乘以-1,得到x=-4.因此,方程的解为x=-4.6.3(x-2)+1=x-(2x-1)首先将等式两边的括号里的式子展开,得到3x-6+1=x-2x+1.将变量移到一边,常数移到另一边,得到2x=6,再将等式两边都除以2,得到x=3.因此,方程的解为x=3.7.x^2=3x-1首先将等式移到一边,得到x^2-3x+1=0.然后可以使用求根公式,得到x=(3±√5)/2.因此,方程的解为x=(3±√5)/2.8.(1/3)-(x-1/2)=1首先将括号里的式子展开,得到1/3-x+1/2=1.将变量移到一边,常数移到另一边,得到-5/6=-x,再将等式两边都乘以-1,得到5/6=x。

因此,方程的解为x=5/6.9.2/3-x/2=1首先将等式移到一边,得到2/3-1=x/2.将常数移到一边,变量移到另一边,得到-1/3=x/2,再将等式两边都乘以2,得到x=-2/3.因此,方程的解为x=-2/3.10.(x+8)/3=-x首先将等式两边都乘以3,得到x+8=-3x,将变量移到一边,常数移到另一边,得到4x=-8,再将等式两边都除以4,得到x=-2.因此,方程的解为x=-2.11.3-1.2x=43/(x-12)首先将等式移到一边,得到1.2x+43/(x-12)=3.然后可以使用图像法或牛顿迭代法求解,得到x≈6.35.因此,方程的解为x≈6.35.12.(x-0.4)/(x-12)=x+0.3首先将等式两边的分母去掉,得到x-0.4=(x+0.3)(x-12)。

一元一次方程专题训练(附有答案详解,下载即可用)

一元一次方程专题训练(附有答案详解,下载即可用)

一元一次方程专题训练姓名:___________班级:___________一、单选题1.已知x=1是方程x+2a=-1的解,那么a 的值是( )A .-1B .0C .1D .22.下列利用等式的性质,错误的是( )A .由a =b ,得到5﹣2a =5﹣2bB .由a c =b c ,得到a =bC .由a =b ,得到ac =bcD .由a =b ,得到a c =b c 3.方程2y ﹣12=12y ﹣中被阴影盖住的是一个常数,此方程的解是y =﹣53.这个常数应是( ) A .1 B .2 C .3 D .44.如果代数式5x-7与4x+9的值互为相反数,则x 的值等于( )A .92B .-92C .29D .29- 5.如果方程2x+1=3和203a x --=的解相同,则a 的值为( ) A .7 B .5 C .3 D .06.对于非零的两个数a ,b ,规定a ⊗b =3a -b ,若(x +1)⊗2=5,则x 的值为( ) A .1 B .-1 C .43 D .-2 7.已知下列方程:①22x x -=;②0.3x =1;③512x x =+;④x 2﹣4x =3;⑤x =6;⑥x+2y =0.其中一元一次方程的个数是( )A .2B .3C .4D .58.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平仍然平衡的有( )A .0个B .1个C .2个D .3个 9.某商店把一件商品按进价增加20%作为定价,可是总卖不出去,后来老板把定价降低20%,以48元的价格出售,很快就卖出了,则老板卖出这件商品的盈亏情况是( )A .亏2元B .亏4元C .赚4元D .不亏不赚10.如图,小明将一个正方形纸剪出一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条面积为( )A .16cm 2B .20cm 2C .80cm 2D .160cm 211.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x 个零件,则所列方程为( ) A .()13x 12x 1060=++B .()12x 1013x 60+=+C .x x 60101312+-=D .x 60x 101213+-= 12.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是( )A .7.5秒B .6秒C .5秒D .4秒13.在数列3、12、30、60……中,请你观察数列的排列规律,则第5个数是( ) A .75B .90C .105D .120二、填空题14.李明和他父亲年龄和为 55 岁,又知父亲的年龄比他年龄的 3 倍少 1 岁,若设李明年龄为 x 岁,则可列方程为_____.15.若方程(a ﹣3)x |a|﹣2﹣7=0是一个一元一次方程,则a 等于_____.16.某种品的标价为120元,若以九折降价出售,仍获利20%,该商品的进货价为________元.17.由一个两位数,十位上的数字比个位上的数字大3,把个位数字与十位数字对调之后所得新数与原数之和是77,这个两位数为_____.18.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班的学生有_____人.19.图1是边长为30的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是cm3.20.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是__________.三、解答题21.解方程:1314(1)(5) 243x x x⎡⎤--=+⎢⎥⎣⎦.22.已知关于x的方程3x﹣5+a=bx+1,问当a、b取何值时.(1)方程有唯一解;(2)方程有无数解;(3)方程无解.23.解下列方程:(1)2(10﹣0.5y)=﹣(1.5y+2)(2)13(x﹣5)=3﹣23(x﹣5)(3)24x+﹣1=326x-(4)x﹣19(x﹣9)=13[x+13(x﹣9)](5) 210.5x--30.6x+=0.5x+224.某车间有60个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件24个或乙种零件12个.已知每2个甲种零件和3个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?25.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2017年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2017年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a =________,若居民乙用电200千瓦时,应交电费________元;(2)若某用户某月用电量超过300千瓦时,设用电量为x 千瓦时,请你用含x 的代数式表示应交的电费;(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价不超过0.62元/千瓦时?26.我市某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的23,结果打了16个包还多40本;第二次他们把剩下的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?27.甲、乙两件服装的成本共500元,商店老板为获取利润,决定甲服装按50℅的利润标价,乙服装按40%的利润标价出售.在实际出售时,应顾客要求,两件服装均按标价9折出售,这样商店共获利157元,求两件服装的成本各是多少元?28.一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?29.A 、B 两地相距64 km ,甲从A 地出发,每小时行14 km ,乙从B 地出发,每小时行18 km.(1)若两人同时出发相向而行,则需经过几小时两人相遇?(2)若两人同时出发相向而行,则需经过几小时两人相距16 km?(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10 km?30.(背景知识)数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:若数轴上点A 、点B 表示的数分别为a 、b ,则A ,B 两点之间的距离AB =|a –b |,线段AB 的中点表示的数为2a b . (问题情境)如图,数轴上点A 表示的数为–2,点B 表示的数为8,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t >0).(综合运用)(1)填空:①A 、B 两点间的距离AB =__________,线段AB 的中点表示的数为__________;②用含t的代数式表示:t秒后,点P表示的数为__________;点Q表示的数为__________.(2)求当t为何值时,P、Q两点相遇,并写出相遇点所表示的数;(3)求当t为何值时,PQ=12 AB;(4)若点M为P A的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请求出线段MN的长.31.一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.32.缴纳个人所得税是收入达到缴纳标准的公民应居的义务,个人所得税率是由国家相应的法律法规规定的.根据个人的收入计算,新修改的《中华人民共和国个人所得税法》于2019年1月1日正式实施,新税法规定个人所得税的免征额为5000元,应纳税所得额按如下税率表缴纳个人所得税(应纳税所得额=税前收总额﹣国家规定扣除专项金额﹣免征额).根据以上信息,解决以下问题:(1)小明的妈妈应纳税所得额为2000元,她应该缴纳个人所得税______元.(2)小明的爸爸要缴纳个人所得税590元,他应纳税所得额是多少元?(3)如果小明的爸爸和妈妈某月应纳税所得额共为20000元(爸爸的应纳税所得额高于妈妈的应纳税所得额),共要缴纳个人所得税1780元,小明的爸爸应纳税所得额是_____元.参考答案1.A【解析】试题分析:根据方程解的定义,将方程的解代入方程可得关于字母系数a的一元一次方程,从而可求出a的值.解:把x=1代入方程,得:1+2a=﹣1,解得:a=﹣1.故选A.点评:已知条件中涉及到方程的解,把方程的解代入原方程,转化为关于字母系数的方程进行求解.可把它叫做“有解就代入”.2.D【解析】A.∵a=b,∴−2a=−2b,∴5−2a=5−2b,故本选项正确;B. ∵a bc c=,∴c×ac=c×bc,∴a=b,故本选项正确;C. ∵a=b,∴ac=bc,故本选项正确;D. ∵a=b,∴当c=0时,ac无意义,故本选项错误.故选:D. 3.C 【解析】【详解】设被阴影盖住的一个常数为k,原方程整理得,k=-32y+12,把53y=-代入k=-32y+12,中得,k=-32×(53-)+12=5122+=3,故选C.4.D【解析】【分析】根据互为相反数的两个数的和为0可得方程5x-7+4x+9=0,解方程求得x的值即可. 【详解】根据题意得5x-7+4x+9=0,移项得5x+4x=- 9+7,合并同类项得9x = -2,系数化为1,得29x =-. 故选D.【点睛】本题考查了一元一次方程的解法,熟知一元一次方程的解法是解决问题关键.5.A【解析】【分析】先求出213x +=的解,然后把求得的方程的解代入203a x --=即可求出a 的值. 【详解】∵213x +=,∴1x =.把1x =代入203a x --=,得 1203a --=, 解之得,7a =.故选A.【点睛】本题主要考查方程的解的概念和一元一次方程的解法,熟练掌握一元一次方程的解法是解答本题的关键.6.C【解析】【分析】根据新定义列出方程3(x-1)-2=4,解之可得.【详解】根据题意知3(x-1)-2=4,3x-3-2=4,3x=4+3+2,3x=9,x=3,故选:C .【点睛】考查解一元一次方程,解题的关键是根据题意列出关于x 的方程及解方程的步骤. 7.B【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.【详解】解:①x−2=2x 是分式方程,故①错误; ②0.3x=1,即0.3x-1=0,符合一元一次方程的定义.故②正确; ③2x =5x+1,即9x+2=0,符合一元一次方程的定义.故③正确; ④x 2-4x=3的未知数的最高次数是2,它属于一元二次方程.故④错误;⑤x=6,即x-6=0,符合一元一次方程的定义.故⑤正确;⑥x+2y=0中含有2个未知数,属于二元一次方程.故⑥错误.综上所述,一元一次方程的个数是3个.故选:B .【点睛】本题考查了一元一次方程的一般形式,掌握只含有一个未知数,且未知数的指数是1,一次项系数不是0是关键.8.C【解析】由①天平可得:一个球形物体和两个圆柱形物体质量相等;②天平是由①天平左右两边同时减去一个圆柱形物体得到的,仍然平衡;③天平时由①天平左边减去一个球形物体和一个圆柱形物体,即减去三个圆柱形物体,右边减去三个圆柱形物体得到的,左右两边仍然平衡;④天平由①天平左边减去一个圆柱形物体,右边减去三个圆柱形物体得到的,所以左右两边不平衡.故选C.点睛:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.9.A【解析】【分析】设这件商品的进价为a元,可用a表示出第一次和第二次的定价,再根据等量关系:第二次的定价=商品的实际售价48元,可列出关于a的方程;然后解关于a的方程,求出a的值,并将a的值与48进行比较即可得出结论.【详解】设这件商品的进价为a元,则a(1+20%)(1-20%)=48,解得a=50.由50-48=2可知,这次生意亏2元.故选:A.【点睛】本题主要考查的是一元一次方程的应用,根据题意得到等量关系是解题的关键;10.C【解析】【分析】首先根据题意,设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x-4cm,宽是5cm;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x的值是多少,即可求出每一个长条面积为多少.【详解】设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是4cm,第二次剪下的长条的长是x-4cm,宽是5cm,则4x=5(x-4),去括号,可得:4x=5x-20,移项,可得:5x-4x=20,解得x=2020×4=80(cm2)答:每一个长条面积为80cm2.故选C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.11.B【解析】试题解析:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.故选B.考点:由实际问题抽象出一元一次方程.12.D【解析】设坐在普通列车上的旅客看见高速列车驶过窗口的时间是x秒,则100÷5×x=80,解得x=4,故选D.13.C【解析】【分析】根据题目中的数据,可以发现题目中数据的变化规律,从而可以得到第5个数.【详解】∵3=1×3,12=2×6=2×(3+3),30=3×10=3×(6+4),60=4×15=4×(10+5),∴第5个数是:5×(15+6)=5×21=105,故选C.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.14.3x ﹣1+x=55.【解析】【分析】直接利用已知表示出父亲的年龄,进而得出答案.【详解】设李明年龄为x 岁,则可列方程为:3x-1+x=55,故答案是:3x-1+x=55.【点睛】考查了由实际问题抽象出一元一次方程,正确得出等式是解题关键.15.-3【解析】试题分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数是1,系数不为0,则这个方程是一元一次方程.解:∵()2370a a x ---=是一个一元一次方程,∴30a -≠且 |a|−2=1,∴a =-3.故答案为-3.16.90【解析】试题分析:设进货价为x 元,根据九折降价出售,仍获利20%,列方程求解.解:设进货价为x 元,由题意得,0.9×120﹣x=0.2x , 解得:x=90.故答案为:90.考点:一元一次方程的应用.17.52【解析】【分析】设原来的这个两位数个位数字为x ,则十位数字为3+x .利用新数+原数=77,列方程求解即可.【详解】设原个位数字为x ,则十位数字为3+x ,由题意得:(10x+3+x )+10(3+x )+x=77,解得:x=2,则原数为10(3+2)+2=52.故答案为52【点睛】本题考查了一元一次方程的应用,读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程求解是解题关键.18.45名.【解析】试题分析:设这个班有x 名学生,因为每人3本,则剩余20本,所以书的总量是3x+20,又每人分4本,缺25本,所以书的总量是4x ﹣25,所以可得方程:3x+20=4x ﹣25,解得:x=45.答:这个班有45名学生.考点:一元一次方程的应用.19.1000。

一元一次方程式训练精选 后附答案pdf可复制

一元一次方程式训练精选 后附答案pdf可复制

班级姓名成绩一、单边未知数(1)6x-1 = 149 (2)27x-19 = 332 (3)307 = 16x-29 (4)25x-11 = 739 (5)9x-26 = 10 (6)540 = 21x-6 (7)431 = 19x-25 (8)25x-1 = 424 (9)101 = 29+8x (10)3x-11 = 67 (11)4+4x = 36 (12)200 = 18+13x (13)78 = 3x-12 (14)9x-23 = 229 (15)13 = 27-7x (16)14x-5 = 219 (17)15x-16 = 194 (18)21x-16 = 257 (19)26 = 17x-25 (20)87 = 11+4x(21)376 = 26+25x (22)573 = 3+19x (23)23+16x = 439 (24)192 = 23+13x二、双边未知数(1)24x-23 = 313-4x (2)27+18x = 462+3x (3)19x-21 = 49+9x (4)20+25x = 200-5x (5)27x-5 = 853-6x (6)21x-1 = 701-6x (7)15x-4 = 203+6x (8)4-4x = 1x-91 (9)30x-29 = 244+9x (10)4x-18 = 9x-153 (11)5-17x = 6x-409 (12)1+29x = 232-4x (13)26x-21 = 165-5x (14)24+29x = 1088-9x (15)10x-3 = 107+5x (16)26-8x = 10+8x (17)10x-26 = 226-8x (18)9+12x = 145+4x (19)28+14x = 123+9x (20)19+30x = 425+x (21)25x-25 = 80+4x (22)14x-15 = 153+2x (23)13+25x = 381+9x (24)5+12x = 95+6x班级姓名成绩一、单边未知数(1)30+2x = 42 (2)42 = 22+2x (3)4x-25 = 47 (4)2x-10 = 6(5)5x-10 = 35 (6)264 = 22+22x (7)28x-26 = 618 (8)29+22x = 535 (9)8 = 2x-2 (10)271 = 15+16x (11)42 = 24+6x (12)179 = 12x-25 (13)3+16x = 51 (14)142 = 29x-3 (15)315 = 29+11x (16)802 = 29x-10 (17)14x-2 = 348 (18)24x-2 = 478 (19)630 = 24x-18 (20)6x-21 = 81(21)18-11x = 7 (22)176 = 17x-11 (23)173 = 6x-1 (24)18+28x = 186二、双边未知数(1)1+23x = 193-9x (2)5x-10 = 109-2x (3)19-21x = 10x-291 (4)17x-23 = 129+9x (5)29-4x = 9-3x (6)25+8x = 185-8x (7)4x-16 = 8x-28 (8)21+24x = 84+3x (9)22-17x = 1x-248 (10)21+19x = 340-10x (11)12-15x = 8x-448 (12)19x-29 = 387-7x (13)25x-12 = 402+7x (14)20x-2 = 207+9x (15)28+8x = 178+2x (16)21x-1 = 92-10x (17)2x-24 = 192-7x (18)17x-4 = 146+7x (19)20x-20 = 332-2x (20)27x-21 = 369+x (21)16x-10 = 155+x (22)22+29x = 638+x (23)17+18x = 413-4x (24)4x-15 = 8x-27班级姓名成绩一、单边未知数(1)29+30x = 689 (2)20x-12 = 408 (3)534 = 27x-6 (4)19x-15 = 441 (5)8x-23 = 1 (6)9+22x = 383 (7)53 = 2x-7 (8)19x-24 = 451 (9)56 = 11+15x (10)215 = 5+14x (11)17x-16 = 290 (12)20+29x = 716 (13)11+29x = 98 (14)546 = 26x-26 (15)173 = 19+22x (16)28x-26 = 114 (17)22x-5 = 655 (18)15x-7 = 128 (19)10+x = 40 (20)9+16x = 377(21)26+16x = 218 (22)29x-29 = 406 (23)25+24x = 313 (24)247 = 17x-8二、双边未知数(1)30x-22 = 330-2x (2)20+5x = 410-10x (3)14x-29 = 153+7x (4)16x-17 = 115+10x (5)26-23x = 4x-784 (6)27+16x = 75+8x (7)10+17x = 286+5x (8)28x-28 = 944-8x (9)10x-24 = 111+x (10)18+14x = 194+6x (11)30x-27 = 281+8x (12)5+2x = 6x-35 (13)3+30x = 759+3x (14)17x-21 = 759-9x (15)27x-12 = 772-x (16)8x-30 = 256-3x (17)15x-15 = 167+2x (18)19-26x = 2x-569 (19)4+2x = 184-10x (20)12x-22 = 370-2x (21)1+29x = 121-x (22)11x-20 = 6+9x (23)9+9x = 503-10x (24)4-16x = 3x-528班级姓名成绩一、单边未知数(1)8x-12 = 164 (2)3x-8 = 25 (3)24 = 25x-26 (4)87 = 15+18x (5)25x-20 = 30 (6)13x-14 = 324 (7)28x-6 = 806 (8)2x-5 = 11(9)3+3x = 81 (10)189 = 5+23x (11)8x-6 = 74 (12)10 = 24-2x (13)5x-19 = 51 (14)9 = x-11 (15)19x-16 = 22 (16)282 = 16x-6 (17)94 = 15x-11 (18)7+7x = 119 (19)21x-22 = 272 (20)8 = 2x-18(21)9x-19 = 206 (22)11x-12 = 164 (23)447 = 25x-3 (24)5+15x = 425二、双边未知数(1)4+18x = 235+7x (2)30x-8 = 519-x (3)29x-23 = 439+8x (4)1-30x = 6x-683 (5)22+21x = 202+x (6)2-28x = 7x-838 (7)2x-16 = 1x-14 (8)21x-17 = 469-6x (9)23+21x = 368+6x (10)16-4x = 31-7x (11)2+21x = 188-10x (12)30x-5 = 35-10x (13)22x-18 = 540-9x (14)26x-7 = 983-7x (15)28+25x = 588-10x (16)20x-28 = 266-x (17)4x-4 = 26-x (18)16x-20 = 151+7x (19)21x-15 = 260-4x (20)9+19x = 33-5x (21)9x-11 = 6x-8 (22)3-2x = 2-x (23)6-4x = 110-8x (24)6x-10 = 95+x班级姓名成绩一、单边未知数(1)106 = 7x-20 (2)25x-6 = 119 (3)261 = 8+11x (4)42 = 19+x(5)305 = 19+11x (6)3x-17 = 4 (7)286 = 29x-4 (8)2+24x = 578 (9)365 = 15+14x (10)16x-21 = 107 (11)206 = 9x-1 (12)28+13x = 210 (13)15x-27 = 3 (14)18x-1 = 503 (15)22x-18 = 48 (16)252 = 24+12x (17)8x-23 = 129 (18)287 = 21x-7 (19)62 = 11x-26 (20)298 = 28+15x(21)16x-9 = 7 (22)64 = 11x-2 (23)30x-15 = 675 (24)155 = 29x-19二、双边未知数(1)6x-25 = 31+2x (2)23+10x = 218-5x (3)13+4x = 8x-27 (4)29x-1 = 233-10x (5)10+27x = 395-8x (6)5+27x = 131+9x (7)17x-20 = 140-3x (8)6x-5 = 267-10x (9)10x-19 = 98+x (10)20x-24 = 4-8x (11)26-16x = 5x-226 (12)8+15x = 195+4x (13)7x-14 = 9x-54 (14)18x-1 = 329-4x (15)23+17x = 203-3x (16)12x-15 = 165-3x (17)7+21x = 40+10x (18)26-15x = 1x-262 (19)3x-25 = 6x-76 (20)21x-8 = 360-2x (21)4-21x = 3x-116 (22)9x-1 = 83-3x (23)10x-11 = 109+4x (24)11x-29 = 408-8x小学数学一元一次方程每日训练(1)答案一、单边未知数(1)106 = 7x-20 (2)25x-6 = 119解析:将-20移到方程式左边,变成20 解析:将-6移到方程式右边,变成6 106+20 = 7x 25x = 119+6126 = 7x 25x = 125两边交换得7x = 126 x = 5x = 18(3)261 = 8+11x (4)42 = 19+x解析:将8移到方程式左边,变成-8 解析:将19移到方程式左边,变成-19 261-8 = 11x 42-19 = x253 = 11x 23 = x两边交换得11x = 253 两边交换得x = 23x = 23 x = 23(5)305 = 19+11x (6)3x-17 = 4解析:将19移到方程式左边,变成-19 解析:将-17移到方程式右边,变成17 305-19 = 11x 3x = 4+17286 = 11x 3x = 21两边交换得11x = 286 x = 7x = 26(7)286 = 29x-4 (8)2+24x = 578解析:将-4移到方程式左边,变成4 解析:将2移到方程式右边,变成-2 286+4 = 29x 24x = 578-2290 = 29x 24x = 576两边交换得29x = 290 x = 24x = 10(9)365 = 15+14x (10)16x-21 = 107解析:将15移到方程式左边,变成-15 解析:将-21移到方程式右边,变成21 365-15 = 14x 16x = 107+21350 = 14x 16x = 128两边交换得14x = 350 x = 8x = 25(11)206 = 9x-1 (12)28+13x = 210解析:将-1移到方程式左边,变成1 解析:将28移到方程式右边,变成-28 206+1 = 9x 13x = 210-28207 = 9x 13x = 182两边交换得9x = 207 x = 14x = 23(13)15x-27 = 3 (14)18x-1 = 503解析:将-27移到方程式右边,变成27 解析:将-1移到方程式右边,变成1 15x = 3+27 18x = 503+115x = 30 18x = 504x = 2 x = 28(15)22x-18 = 48 (16)252 = 24+12x解析:将-18移到方程式右边,变成18 解析:将24移到方程式左边,变成-24 22x = 48+18 252-24 = 12x22x = 66 228 = 12xx = 3 两边交换得12x = 228x = 19(17)8x-23 = 129 (18)287 = 21x-7解析:将-23移到方程式右边,变成23 解析:将-7移到方程式左边,变成7 8x = 129+23 287+7 = 21x8x = 152 294 = 21xx = 19 两边交换得21x = 294x = 14(19)62 = 11x-26 (20)298 = 28+15x解析:将-26移到方程式左边,变成26 解析:将28移到方程式左边,变成-28 62+26 = 11x 298-28 = 15x88 = 11x 270 = 15x两边交换得11x = 88 两边交换得15x = 270x = 8 x = 18(21)16x-9 = 7 (22)64 = 11x-2解析:将-9移到方程式右边,变成9 解析:将-2移到方程式左边,变成2 16x = 7+9 64+2 = 11x16x = 16 66 = 11xx = 1 两边交换得11x = 66x = 6(23)30x-15 = 675 (24)155 = 29x-19解析:将-15移到方程式右边,变成15 解析:将-19移到方程式左边,变成19 30x = 675+15 155+19 = 29x30x = 690 174 = 29xx = 23 两边交换得29x = 174x = 6二、双边未知数(1)6x-25 = 31+2x (2)23+10x = 218-5x解析:将2x移到方程式左边,变成-2x 解析:将-5x移到方程式左边,变成5x 将-25移到方程式右边,变成25 将23移到方程式右边,变成-236x-2x = 31+25 5x+10x = 218-234x = 56 15x = 195x = 14 x = 13(3)13+4x = 8x-27 (4)29x-1 = 233-10x解析:将4x移到方程式右边,变成-4x 解析:将-10x移到方程式左边,变成10x 将-27移到方程式左边,变成27 将-1移到方程式右边,变成127+13 = 8x-4x 10x+29x = 233+140 = 4x 39x = 234两边交换得x = 10 x = 6(5)10+27x = 395-8x (6)5+27x = 131+9x解析:将-8x移到方程式左边,变成8x 解析:将9x移到方程式左边,变成-9x 将10移到方程式右边,变成-10 将5移到方程式右边,变成-58x+27x = 395-10 27x-9x = 131-535x = 385 18x = 126x = 11 x = 7(7)17x-20 = 140-3x (8)6x-5 = 267-10x解析:将-3x移到方程式左边,变成3x 解析:将-10x移到方程式左边,变成10x 将-20移到方程式右边,变成20 将-5移到方程式右边,变成53x+17x = 140+20 10x+6x = 267+520x = 160 16x = 272x = 8 x = 17(9)10x-19 = 98+x (10)20x-24 = 4-8x解析:将1x移到方程式左边,变成-x 解析:将-8x移到方程式左边,变成8x 将-19移到方程式右边,变成19 将-24移到方程式右边,变成2410x-x = 98+19 8x+20x = 4+249x = 117 28x = 28x = 13 x = 1(11)26-16x = 5x-226 (12)8+15x = 195+4x解析:将-16x移到方程式右边,变成16x 解析:将4x移到方程式左边,变成-4x 将-226移到方程式左边,变成226 将8移到方程式右边,变成-8226+26 = 5x+16x 15x-4x = 195-8252 = 21x 11x = 187两边交换得x = 12 x = 17(13)7x-14 = 9x-54 (14)18x-1 = 329-4x解析:将7x移到方程式右边,变成-7x 解析:将-4x移到方程式左边,变成4x 将-54移到方程式左边,变成54 将-1移到方程式右边,变成154-14 = 9x-7x 4x+18x = 329+140 = 2x 22x = 330两边交换得x = 20 x = 15(15)23+17x = 203-3x (16)12x-15 = 165-3x解析:将-3x移到方程式左边,变成3x 解析:将-3x移到方程式左边,变成3x 将23移到方程式右边,变成-23 将-15移到方程式右边,变成153x+17x = 203-23 3x+12x = 165+1520x = 180 15x = 180x = 9 x = 12(17)7+21x = 40+10x (18)26-15x = 1x-262解析:将10x移到方程式左边,变成-10x 解析:将-15x移到方程式右边,变成15x 将7移到方程式右边,变成-7 将-262移到方程式左边,变成26221x-10x = 40-7 262+26 = 1x+15x11x = 33 288 = 16xx = 3 两边交换得x = 18(19)3x-25 = 6x-76 (20)21x-8 = 360-2x解析:将3x移到方程式右边,变成-3x 解析:将-2x移到方程式左边,变成2x 将-76移到方程式左边,变成76 将-8移到方程式右边,变成876-25 = 6x-3x 2x+21x = 360+851 = 3x 23x = 368两边交换得x = 17 x = 16(21)4-21x = 3x-116 (22)9x-1 = 83-3x解析:将-21x移到方程式右边,变成21x 解析:将-3x移到方程式左边,变成3x 将-116移到方程式左边,变成116 将-1移到方程式右边,变成1116+4 = 3x+21x 3x+9x = 83+1120 = 24x 12x = 84两边交换得x = 5 x = 7(23)10x-11 = 109+4x (24)11x-29 = 408-8x解析:将4x移到方程式左边,变成-4x 解析:将-8x移到方程式左边,变成8x 将-11移到方程式右边,变成11 将-29移到方程式右边,变成2910x-4x = 109+11 8x+11x = 408+296x = 120 19x = 437x = 20 x = 23小学数学一元一次方程每日训练(2)答案一、单边未知数(1)106 = 7x-20 (2)25x-6 = 119解析:将-20移到方程式左边,变成20 解析:将-6移到方程式右边,变成6 106+20 = 7x 25x = 119+6126 = 7x 25x = 125两边交换得7x = 126 x = 5x = 18(3)261 = 8+11x (4)42 = 19+x解析:将8移到方程式左边,变成-8 解析:将19移到方程式左边,变成-19 261-8 = 11x 42-19 = x253 = 11x 23 = x两边交换得11x = 253 两边交换得x = 23x = 23 x = 23(5)305 = 19+11x (6)3x-17 = 4解析:将19移到方程式左边,变成-19 解析:将-17移到方程式右边,变成17 305-19 = 11x 3x = 4+17286 = 11x 3x = 21两边交换得11x = 286 x = 7x = 26(7)286 = 29x-4 (8)2+24x = 578解析:将-4移到方程式左边,变成4 解析:将2移到方程式右边,变成-2 286+4 = 29x 24x = 578-2290 = 29x 24x = 576两边交换得29x = 290 x = 24x = 10(9)365 = 15+14x (10)16x-21 = 107解析:将15移到方程式左边,变成-15 解析:将-21移到方程式右边,变成21 365-15 = 14x 16x = 107+21350 = 14x 16x = 128两边交换得14x = 350 x = 8x = 25(11)206 = 9x-1 (12)28+13x = 210解析:将-1移到方程式左边,变成1 解析:将28移到方程式右边,变成-28 206+1 = 9x 13x = 210-28207 = 9x 13x = 182两边交换得9x = 207 x = 14x = 23(13)15x-27 = 3 (14)18x-1 = 503解析:将-27移到方程式右边,变成27 解析:将-1移到方程式右边,变成1 15x = 3+27 18x = 503+115x = 30 18x = 504x = 2 x = 28(15)22x-18 = 48 (16)252 = 24+12x解析:将-18移到方程式右边,变成18 解析:将24移到方程式左边,变成-24 22x = 48+18 252-24 = 12x22x = 66 228 = 12xx = 3 两边交换得12x = 228x = 19(17)8x-23 = 129 (18)287 = 21x-7解析:将-23移到方程式右边,变成23 解析:将-7移到方程式左边,变成7 8x = 129+23 287+7 = 21x8x = 152 294 = 21xx = 19 两边交换得21x = 294x = 14(19)62 = 11x-26 (20)298 = 28+15x解析:将-26移到方程式左边,变成26 解析:将28移到方程式左边,变成-28 62+26 = 11x 298-28 = 15x88 = 11x 270 = 15x两边交换得11x = 88 两边交换得15x = 270x = 8 x = 18(21)16x-9 = 7 (22)64 = 11x-2解析:将-9移到方程式右边,变成9 解析:将-2移到方程式左边,变成2 16x = 7+9 64+2 = 11x16x = 16 66 = 11xx = 1 两边交换得11x = 66x = 6(23)30x-15 = 675 (24)155 = 29x-19解析:将-15移到方程式右边,变成15 解析:将-19移到方程式左边,变成19 30x = 675+15 155+19 = 29x30x = 690 174 = 29xx = 23 两边交换得29x = 174x = 6二、双边未知数(1)6x-25 = 31+2x (2)23+10x = 218-5x解析:将2x移到方程式左边,变成-2x 解析:将-5x移到方程式左边,变成5x 将-25移到方程式右边,变成25 将23移到方程式右边,变成-236x-2x = 31+25 5x+10x = 218-234x = 56 15x = 195x = 14 x = 13(3)13+4x = 8x-27 (4)29x-1 = 233-10x解析:将4x移到方程式右边,变成-4x 解析:将-10x移到方程式左边,变成10x 将-27移到方程式左边,变成27 将-1移到方程式右边,变成127+13 = 8x-4x 10x+29x = 233+140 = 4x 39x = 234两边交换得x = 10 x = 6(5)10+27x = 395-8x (6)5+27x = 131+9x解析:将-8x移到方程式左边,变成8x 解析:将9x移到方程式左边,变成-9x 将10移到方程式右边,变成-10 将5移到方程式右边,变成-58x+27x = 395-10 27x-9x = 131-535x = 385 18x = 126x = 11 x = 7(7)17x-20 = 140-3x (8)6x-5 = 267-10x解析:将-3x移到方程式左边,变成3x 解析:将-10x移到方程式左边,变成10x 将-20移到方程式右边,变成20 将-5移到方程式右边,变成53x+17x = 140+20 10x+6x = 267+520x = 160 16x = 272x = 8 x = 17(9)10x-19 = 98+x (10)20x-24 = 4-8x解析:将1x移到方程式左边,变成-x 解析:将-8x移到方程式左边,变成8x 将-19移到方程式右边,变成19 将-24移到方程式右边,变成2410x-x = 98+19 8x+20x = 4+249x = 117 28x = 28x = 13 x = 1(11)26-16x = 5x-226 (12)8+15x = 195+4x解析:将-16x移到方程式右边,变成16x 解析:将4x移到方程式左边,变成-4x 将-226移到方程式左边,变成226 将8移到方程式右边,变成-8226+26 = 5x+16x 15x-4x = 195-8252 = 21x 11x = 187两边交换得x = 12 x = 17(13)7x-14 = 9x-54 (14)18x-1 = 329-4x解析:将7x移到方程式右边,变成-7x 解析:将-4x移到方程式左边,变成4x 将-54移到方程式左边,变成54 将-1移到方程式右边,变成154-14 = 9x-7x 4x+18x = 329+140 = 2x 22x = 330两边交换得x = 20 x = 15(15)23+17x = 203-3x (16)12x-15 = 165-3x解析:将-3x移到方程式左边,变成3x 解析:将-3x移到方程式左边,变成3x 将23移到方程式右边,变成-23 将-15移到方程式右边,变成153x+17x = 203-23 3x+12x = 165+1520x = 180 15x = 180x = 9 x = 12(17)7+21x = 40+10x (18)26-15x = 1x-262解析:将10x移到方程式左边,变成-10x 解析:将-15x移到方程式右边,变成15x 将7移到方程式右边,变成-7 将-262移到方程式左边,变成26221x-10x = 40-7 262+26 = 1x+15x11x = 33 288 = 16xx = 3 两边交换得x = 18(19)3x-25 = 6x-76 (20)21x-8 = 360-2x解析:将3x移到方程式右边,变成-3x 解析:将-2x移到方程式左边,变成2x 将-76移到方程式左边,变成76 将-8移到方程式右边,变成876-25 = 6x-3x 2x+21x = 360+851 = 3x 23x = 368两边交换得x = 17 x = 16(21)4-21x = 3x-116 (22)9x-1 = 83-3x解析:将-21x移到方程式右边,变成21x 解析:将-3x移到方程式左边,变成3x 将-116移到方程式左边,变成116 将-1移到方程式右边,变成1116+4 = 3x+21x 3x+9x = 83+1120 = 24x 12x = 84两边交换得x = 5 x = 7(23)10x-11 = 109+4x (24)11x-29 = 408-8x解析:将4x移到方程式左边,变成-4x 解析:将-8x移到方程式左边,变成8x 将-11移到方程式右边,变成11 将-29移到方程式右边,变成2910x-4x = 109+11 8x+11x = 408+296x = 120 19x = 437x = 20 x = 23小学数学一元一次方程每日训练(3)答案一、单边未知数(1)106 = 7x-20 (2)25x-6 = 119解析:将-20移到方程式左边,变成20 解析:将-6移到方程式右边,变成6 106+20 = 7x 25x = 119+6126 = 7x 25x = 125两边交换得7x = 126 x = 5x = 18(3)261 = 8+11x (4)42 = 19+x解析:将8移到方程式左边,变成-8 解析:将19移到方程式左边,变成-19 261-8 = 11x 42-19 = x253 = 11x 23 = x两边交换得11x = 253 两边交换得x = 23x = 23 x = 23(5)305 = 19+11x (6)3x-17 = 4解析:将19移到方程式左边,变成-19 解析:将-17移到方程式右边,变成17 305-19 = 11x 3x = 4+17286 = 11x 3x = 21两边交换得11x = 286 x = 7x = 26(7)286 = 29x-4 (8)2+24x = 578解析:将-4移到方程式左边,变成4 解析:将2移到方程式右边,变成-2 286+4 = 29x 24x = 578-2290 = 29x 24x = 576两边交换得29x = 290 x = 24x = 10(9)365 = 15+14x (10)16x-21 = 107解析:将15移到方程式左边,变成-15 解析:将-21移到方程式右边,变成21 365-15 = 14x 16x = 107+21350 = 14x 16x = 128两边交换得14x = 350 x = 8x = 25(11)206 = 9x-1 (12)28+13x = 210解析:将-1移到方程式左边,变成1 解析:将28移到方程式右边,变成-28 206+1 = 9x 13x = 210-28207 = 9x 13x = 182两边交换得9x = 207 x = 14x = 23(13)15x-27 = 3 (14)18x-1 = 503解析:将-27移到方程式右边,变成27 解析:将-1移到方程式右边,变成1 15x = 3+27 18x = 503+115x = 30 18x = 504x = 2 x = 28(15)22x-18 = 48 (16)252 = 24+12x解析:将-18移到方程式右边,变成18 解析:将24移到方程式左边,变成-24 22x = 48+18 252-24 = 12x22x = 66 228 = 12xx = 3 两边交换得12x = 228x = 19(17)8x-23 = 129 (18)287 = 21x-7解析:将-23移到方程式右边,变成23 解析:将-7移到方程式左边,变成7 8x = 129+23 287+7 = 21x8x = 152 294 = 21xx = 19 两边交换得21x = 294x = 14(19)62 = 11x-26 (20)298 = 28+15x解析:将-26移到方程式左边,变成26 解析:将28移到方程式左边,变成-28 62+26 = 11x 298-28 = 15x88 = 11x 270 = 15x两边交换得11x = 88 两边交换得15x = 270x = 8 x = 18(21)16x-9 = 7 (22)64 = 11x-2解析:将-9移到方程式右边,变成9 解析:将-2移到方程式左边,变成2 16x = 7+9 64+2 = 11x16x = 16 66 = 11xx = 1 两边交换得11x = 66x = 6(23)30x-15 = 675 (24)155 = 29x-19解析:将-15移到方程式右边,变成15 解析:将-19移到方程式左边,变成19 30x = 675+15 155+19 = 29x30x = 690 174 = 29xx = 23 两边交换得29x = 174x = 6二、双边未知数(1)6x-25 = 31+2x (2)23+10x = 218-5x解析:将2x移到方程式左边,变成-2x 解析:将-5x移到方程式左边,变成5x 将-25移到方程式右边,变成25 将23移到方程式右边,变成-236x-2x = 31+25 5x+10x = 218-234x = 56 15x = 195x = 14 x = 13(3)13+4x = 8x-27 (4)29x-1 = 233-10x解析:将4x移到方程式右边,变成-4x 解析:将-10x移到方程式左边,变成10x 将-27移到方程式左边,变成27 将-1移到方程式右边,变成127+13 = 8x-4x 10x+29x = 233+140 = 4x 39x = 234两边交换得x = 10 x = 6(5)10+27x = 395-8x (6)5+27x = 131+9x解析:将-8x移到方程式左边,变成8x 解析:将9x移到方程式左边,变成-9x 将10移到方程式右边,变成-10 将5移到方程式右边,变成-58x+27x = 395-10 27x-9x = 131-535x = 385 18x = 126x = 11 x = 7(7)17x-20 = 140-3x (8)6x-5 = 267-10x解析:将-3x移到方程式左边,变成3x 解析:将-10x移到方程式左边,变成10x 将-20移到方程式右边,变成20 将-5移到方程式右边,变成53x+17x = 140+20 10x+6x = 267+520x = 160 16x = 272x = 8 x = 17(9)10x-19 = 98+x (10)20x-24 = 4-8x解析:将1x移到方程式左边,变成-x 解析:将-8x移到方程式左边,变成8x 将-19移到方程式右边,变成19 将-24移到方程式右边,变成2410x-x = 98+19 8x+20x = 4+249x = 117 28x = 28x = 13 x = 1(11)26-16x = 5x-226 (12)8+15x = 195+4x解析:将-16x移到方程式右边,变成16x 解析:将4x移到方程式左边,变成-4x 将-226移到方程式左边,变成226 将8移到方程式右边,变成-8226+26 = 5x+16x 15x-4x = 195-8252 = 21x 11x = 187两边交换得x = 12 x = 17(13)7x-14 = 9x-54 (14)18x-1 = 329-4x解析:将7x移到方程式右边,变成-7x 解析:将-4x移到方程式左边,变成4x 将-54移到方程式左边,变成54 将-1移到方程式右边,变成154-14 = 9x-7x 4x+18x = 329+140 = 2x 22x = 330两边交换得x = 20 x = 15(15)23+17x = 203-3x (16)12x-15 = 165-3x解析:将-3x移到方程式左边,变成3x 解析:将-3x移到方程式左边,变成3x 将23移到方程式右边,变成-23 将-15移到方程式右边,变成153x+17x = 203-23 3x+12x = 165+1520x = 180 15x = 180x = 9 x = 12(17)7+21x = 40+10x (18)26-15x = 1x-262解析:将10x移到方程式左边,变成-10x 解析:将-15x移到方程式右边,变成15x 将7移到方程式右边,变成-7 将-262移到方程式左边,变成26221x-10x = 40-7 262+26 = 1x+15x11x = 33 288 = 16xx = 3 两边交换得x = 18(19)3x-25 = 6x-76 (20)21x-8 = 360-2x解析:将3x移到方程式右边,变成-3x 解析:将-2x移到方程式左边,变成2x 将-76移到方程式左边,变成76 将-8移到方程式右边,变成876-25 = 6x-3x 2x+21x = 360+851 = 3x 23x = 368两边交换得x = 17 x = 16(21)4-21x = 3x-116 (22)9x-1 = 83-3x解析:将-21x移到方程式右边,变成21x 解析:将-3x移到方程式左边,变成3x 将-116移到方程式左边,变成116 将-1移到方程式右边,变成1116+4 = 3x+21x 3x+9x = 83+1120 = 24x 12x = 84两边交换得x = 5 x = 7(23)10x-11 = 109+4x (24)11x-29 = 408-8x解析:将4x移到方程式左边,变成-4x 解析:将-8x移到方程式左边,变成8x 将-11移到方程式右边,变成11 将-29移到方程式右边,变成2910x-4x = 109+11 8x+11x = 408+296x = 120 19x = 437x = 20 x = 23小学数学一元一次方程每日训练(4)答案一、单边未知数(1)106 = 7x-20 (2)25x-6 = 119解析:将-20移到方程式左边,变成20 解析:将-6移到方程式右边,变成6 106+20 = 7x 25x = 119+6126 = 7x 25x = 125两边交换得7x = 126 x = 5x = 18(3)261 = 8+11x (4)42 = 19+x解析:将8移到方程式左边,变成-8 解析:将19移到方程式左边,变成-19 261-8 = 11x 42-19 = x253 = 11x 23 = x两边交换得11x = 253 两边交换得x = 23x = 23 x = 23(5)305 = 19+11x (6)3x-17 = 4解析:将19移到方程式左边,变成-19 解析:将-17移到方程式右边,变成17 305-19 = 11x 3x = 4+17286 = 11x 3x = 21两边交换得11x = 286 x = 7x = 26(7)286 = 29x-4 (8)2+24x = 578解析:将-4移到方程式左边,变成4 解析:将2移到方程式右边,变成-2 286+4 = 29x 24x = 578-2290 = 29x 24x = 576两边交换得29x = 290 x = 24x = 10(9)365 = 15+14x (10)16x-21 = 107解析:将15移到方程式左边,变成-15 解析:将-21移到方程式右边,变成21 365-15 = 14x 16x = 107+21350 = 14x 16x = 128两边交换得14x = 350 x = 8x = 25(11)206 = 9x-1 (12)28+13x = 210解析:将-1移到方程式左边,变成1 解析:将28移到方程式右边,变成-28 206+1 = 9x 13x = 210-28207 = 9x 13x = 182两边交换得9x = 207 x = 14x = 23(13)15x-27 = 3 (14)18x-1 = 503解析:将-27移到方程式右边,变成27 解析:将-1移到方程式右边,变成1 15x = 3+27 18x = 503+115x = 30 18x = 504x = 2 x = 28(15)22x-18 = 48 (16)252 = 24+12x解析:将-18移到方程式右边,变成18 解析:将24移到方程式左边,变成-24 22x = 48+18 252-24 = 12x22x = 66 228 = 12xx = 3 两边交换得12x = 228x = 19(17)8x-23 = 129 (18)287 = 21x-7解析:将-23移到方程式右边,变成23 解析:将-7移到方程式左边,变成7 8x = 129+23 287+7 = 21x8x = 152 294 = 21xx = 19 两边交换得21x = 294x = 14(19)62 = 11x-26 (20)298 = 28+15x解析:将-26移到方程式左边,变成26 解析:将28移到方程式左边,变成-28 62+26 = 11x 298-28 = 15x88 = 11x 270 = 15x两边交换得11x = 88 两边交换得15x = 270x = 8 x = 18(21)16x-9 = 7 (22)64 = 11x-2解析:将-9移到方程式右边,变成9 解析:将-2移到方程式左边,变成2 16x = 7+9 64+2 = 11x16x = 16 66 = 11xx = 1 两边交换得11x = 66x = 6(23)30x-15 = 675 (24)155 = 29x-19解析:将-15移到方程式右边,变成15 解析:将-19移到方程式左边,变成19 30x = 675+15 155+19 = 29x30x = 690 174 = 29xx = 23 两边交换得29x = 174x = 6二、双边未知数(1)6x-25 = 31+2x (2)23+10x = 218-5x解析:将2x移到方程式左边,变成-2x 解析:将-5x移到方程式左边,变成5x 将-25移到方程式右边,变成25 将23移到方程式右边,变成-236x-2x = 31+25 5x+10x = 218-234x = 56 15x = 195x = 14 x = 13(3)13+4x = 8x-27 (4)29x-1 = 233-10x解析:将4x移到方程式右边,变成-4x 解析:将-10x移到方程式左边,变成10x 将-27移到方程式左边,变成27 将-1移到方程式右边,变成127+13 = 8x-4x 10x+29x = 233+140 = 4x 39x = 234两边交换得x = 10 x = 6(5)10+27x = 395-8x (6)5+27x = 131+9x解析:将-8x移到方程式左边,变成8x 解析:将9x移到方程式左边,变成-9x 将10移到方程式右边,变成-10 将5移到方程式右边,变成-58x+27x = 395-10 27x-9x = 131-535x = 385 18x = 126x = 11 x = 7(7)17x-20 = 140-3x (8)6x-5 = 267-10x解析:将-3x移到方程式左边,变成3x 解析:将-10x移到方程式左边,变成10x 将-20移到方程式右边,变成20 将-5移到方程式右边,变成53x+17x = 140+20 10x+6x = 267+520x = 160 16x = 272x = 8 x = 17(9)10x-19 = 98+x (10)20x-24 = 4-8x解析:将1x移到方程式左边,变成-x 解析:将-8x移到方程式左边,变成8x 将-19移到方程式右边,变成19 将-24移到方程式右边,变成2410x-x = 98+19 8x+20x = 4+249x = 117 28x = 28x = 13 x = 1(11)26-16x = 5x-226 (12)8+15x = 195+4x解析:将-16x移到方程式右边,变成16x 解析:将4x移到方程式左边,变成-4x 将-226移到方程式左边,变成226 将8移到方程式右边,变成-8226+26 = 5x+16x 15x-4x = 195-8252 = 21x 11x = 187两边交换得x = 12 x = 17(13)7x-14 = 9x-54 (14)18x-1 = 329-4x解析:将7x移到方程式右边,变成-7x 解析:将-4x移到方程式左边,变成4x 将-54移到方程式左边,变成54 将-1移到方程式右边,变成154-14 = 9x-7x 4x+18x = 329+140 = 2x 22x = 330两边交换得x = 20 x = 15(15)23+17x = 203-3x (16)12x-15 = 165-3x解析:将-3x移到方程式左边,变成3x 解析:将-3x移到方程式左边,变成3x 将23移到方程式右边,变成-23 将-15移到方程式右边,变成153x+17x = 203-23 3x+12x = 165+1520x = 180 15x = 180x = 9 x = 12(17)7+21x = 40+10x (18)26-15x = 1x-262解析:将10x移到方程式左边,变成-10x 解析:将-15x移到方程式右边,变成15x 将7移到方程式右边,变成-7 将-262移到方程式左边,变成26221x-10x = 40-7 262+26 = 1x+15x11x = 33 288 = 16xx = 3 两边交换得x = 18(19)3x-25 = 6x-76 (20)21x-8 = 360-2x解析:将3x移到方程式右边,变成-3x 解析:将-2x移到方程式左边,变成2x 将-76移到方程式左边,变成76 将-8移到方程式右边,变成876-25 = 6x-3x 2x+21x = 360+851 = 3x 23x = 368两边交换得x = 17 x = 16(21)4-21x = 3x-116 (22)9x-1 = 83-3x解析:将-21x移到方程式右边,变成21x 解析:将-3x移到方程式左边,变成3x 将-116移到方程式左边,变成116 将-1移到方程式右边,变成1116+4 = 3x+21x 3x+9x = 83+1120 = 24x 12x = 84两边交换得x = 5 x = 7(23)10x-11 = 109+4x (24)11x-29 = 408-8x解析:将4x移到方程式左边,变成-4x 解析:将-8x移到方程式左边,变成8x 将-11移到方程式右边,变成11 将-29移到方程式右边,变成2910x-4x = 109+11 8x+11x = 408+296x = 120 19x = 437x = 20 x = 23小学数学一元一次方程每日训练(5)答案一、单边未知数(1)106 = 7x-20 (2)25x-6 = 119解析:将-20移到方程式左边,变成20 解析:将-6移到方程式右边,变成6 106+20 = 7x 25x = 119+6126 = 7x 25x = 125两边交换得7x = 126 x = 5x = 18(3)261 = 8+11x (4)42 = 19+x解析:将8移到方程式左边,变成-8 解析:将19移到方程式左边,变成-19 261-8 = 11x 42-19 = x253 = 11x 23 = x两边交换得11x = 253 两边交换得x = 23x = 23 x = 23(5)305 = 19+11x (6)3x-17 = 4解析:将19移到方程式左边,变成-19 解析:将-17移到方程式右边,变成17 305-19 = 11x 3x = 4+17286 = 11x 3x = 21两边交换得11x = 286 x = 7x = 26(7)286 = 29x-4 (8)2+24x = 578解析:将-4移到方程式左边,变成4 解析:将2移到方程式右边,变成-2 286+4 = 29x 24x = 578-2290 = 29x 24x = 576两边交换得29x = 290 x = 24x = 10(9)365 = 15+14x (10)16x-21 = 107解析:将15移到方程式左边,变成-15 解析:将-21移到方程式右边,变成21 365-15 = 14x 16x = 107+21350 = 14x 16x = 128两边交换得14x = 350 x = 8x = 25(11)206 = 9x-1 (12)28+13x = 210解析:将-1移到方程式左边,变成1 解析:将28移到方程式右边,变成-28 206+1 = 9x 13x = 210-28207 = 9x 13x = 182两边交换得9x = 207 x = 14x = 23(13)15x-27 = 3 (14)18x-1 = 503解析:将-27移到方程式右边,变成27 解析:将-1移到方程式右边,变成1 15x = 3+27 18x = 503+115x = 30 18x = 504x = 2 x = 28(15)22x-18 = 48 (16)252 = 24+12x解析:将-18移到方程式右边,变成18 解析:将24移到方程式左边,变成-24 22x = 48+18 252-24 = 12x22x = 66 228 = 12xx = 3 两边交换得12x = 228x = 19(17)8x-23 = 129 (18)287 = 21x-7解析:将-23移到方程式右边,变成23 解析:将-7移到方程式左边,变成7 8x = 129+23 287+7 = 21x8x = 152 294 = 21xx = 19 两边交换得21x = 294x = 14(19)62 = 11x-26 (20)298 = 28+15x解析:将-26移到方程式左边,变成26 解析:将28移到方程式左边,变成-28 62+26 = 11x 298-28 = 15x88 = 11x 270 = 15x两边交换得11x = 88 两边交换得15x = 270x = 8 x = 18(21)16x-9 = 7 (22)64 = 11x-2解析:将-9移到方程式右边,变成9 解析:将-2移到方程式左边,变成2 16x = 7+9 64+2 = 11x16x = 16 66 = 11xx = 1 两边交换得11x = 66x = 6(23)30x-15 = 675 (24)155 = 29x-19解析:将-15移到方程式右边,变成15 解析:将-19移到方程式左边,变成19 30x = 675+15 155+19 = 29x30x = 690 174 = 29xx = 23 两边交换得29x = 174x = 6二、双边未知数(1)6x-25 = 31+2x (2)23+10x = 218-5x解析:将2x移到方程式左边,变成-2x 解析:将-5x移到方程式左边,变成5x 将-25移到方程式右边,变成25 将23移到方程式右边,变成-236x-2x = 31+25 5x+10x = 218-234x = 56 15x = 195x = 14 x = 13(3)13+4x = 8x-27 (4)29x-1 = 233-10x解析:将4x移到方程式右边,变成-4x 解析:将-10x移到方程式左边,变成10x 将-27移到方程式左边,变成27 将-1移到方程式右边,变成127+13 = 8x-4x 10x+29x = 233+140 = 4x 39x = 234两边交换得x = 10 x = 6(5)10+27x = 395-8x (6)5+27x = 131+9x解析:将-8x移到方程式左边,变成8x 解析:将9x移到方程式左边,变成-9x 将10移到方程式右边,变成-10 将5移到方程式右边,变成-58x+27x = 395-10 27x-9x = 131-535x = 385 18x = 126x = 11 x = 7(7)17x-20 = 140-3x (8)6x-5 = 267-10x解析:将-3x移到方程式左边,变成3x 解析:将-10x移到方程式左边,变成10x 将-20移到方程式右边,变成20 将-5移到方程式右边,变成53x+17x = 140+20 10x+6x = 267+520x = 160 16x = 272x = 8 x = 17(9)10x-19 = 98+x (10)20x-24 = 4-8x解析:将1x移到方程式左边,变成-x 解析:将-8x移到方程式左边,变成8x 将-19移到方程式右边,变成19 将-24移到方程式右边,变成2410x-x = 98+19 8x+20x = 4+249x = 117 28x = 28x = 13 x = 1(11)26-16x = 5x-226 (12)8+15x = 195+4x解析:将-16x移到方程式右边,变成16x 解析:将4x移到方程式左边,变成-4x 将-226移到方程式左边,变成226 将8移到方程式右边,变成-8226+26 = 5x+16x 15x-4x = 195-8252 = 21x 11x = 187两边交换得x = 12 x = 17(13)7x-14 = 9x-54 (14)18x-1 = 329-4x解析:将7x移到方程式右边,变成-7x 解析:将-4x移到方程式左边,变成4x 将-54移到方程式左边,变成54 将-1移到方程式右边,变成154-14 = 9x-7x 4x+18x = 329+140 = 2x 22x = 330两边交换得x = 20 x = 15(15)23+17x = 203-3x (16)12x-15 = 165-3x解析:将-3x移到方程式左边,变成3x 解析:将-3x移到方程式左边,变成3x 将23移到方程式右边,变成-23 将-15移到方程式右边,变成153x+17x = 203-23 3x+12x = 165+1520x = 180 15x = 180x = 9 x = 12(17)7+21x = 40+10x (18)26-15x = 1x-262解析:将10x移到方程式左边,变成-10x 解析:将-15x移到方程式右边,变成15x 将7移到方程式右边,变成-7 将-262移到方程式左边,变成26221x-10x = 40-7 262+26 = 1x+15x11x = 33 288 = 16xx = 3 两边交换得x = 18(19)3x-25 = 6x-76 (20)21x-8 = 360-2x解析:将3x移到方程式右边,变成-3x 解析:将-2x移到方程式左边,变成2x 将-76移到方程式左边,变成76 将-8移到方程式右边,变成876-25 = 6x-3x 2x+21x = 360+851 = 3x 23x = 368两边交换得x = 17 x = 16(21)4-21x = 3x-116 (22)9x-1 = 83-3x解析:将-21x移到方程式右边,变成21x 解析:将-3x移到方程式左边,变成3x 将-116移到方程式左边,变成116 将-1移到方程式右边,变成1116+4 = 3x+21x 3x+9x = 83+1120 = 24x 12x = 84两边交换得x = 5 x = 7(23)10x-11 = 109+4x (24)11x-29 = 408-8x解析:将4x移到方程式左边,变成-4x 解析:将-8x移到方程式左边,变成8x 将-11移到方程式右边,变成11 将-29移到方程式右边,变成2910x-4x = 109+11 8x+11x = 408+296x = 120 19x = 437x = 20 x = 23。

解一元一次方程专项训练(40道)(解析版)—2024-2025学年七年级数学上学期(人教版)

解一元一次方程专项训练(40道)(解析版)—2024-2025学年七年级数学上学期(人教版)

解一元一次方程专项训练(40道)目录【专项训练一、移项与合并同类项】 (1)【专项训练二、去括号】 (8)【专项训练三、去分母】 (11)【专项训练三、拓展】 (19)【专项训练一、移项与合并同类项】1.解方程.(1)124 2.4x-=(2)45258 x:=:2(3)()42:15x-=【答案】4x =-【分析】本题主要考查了解一元一次方程,按照移项,合并同类项,系数化为1的步骤解方程即可.【详解】解;3256x x -=+移项得:3562x x -=+,合并同类项得:28x -=,系数化为1得:4x =-.3.解方程:15%9%7%0.31x x -=+.【答案】5x =【分析】本题主要考查了解一元一次方程,根据解一元一次方程的步骤求解即可.【详解】解:15%9%7%0.31x x -=+,0.150.090.070.31x x -=+,移项得:0.150.070.310.09x x -=+,合并同类项得:0.080.4x =,系数化为1得:5x =.4.解下列方程:(1)6259x x -=-+;(2)0.4 2.8 3.6 1.6 1.7y y y+-=-(1)5278x x -=+;(2)1752x x -=+;(3)2.49.8 1.49x x -=-;(4)5671238x x x x -++=+-+.【答案】(1)5x =-(2)24x =-(3)0.8x =(4)1x =【分析】此题考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.(1)先移项、合并同类项,再将系数化为1即可得到方程的解;(2)先移项、合并同类项,再将系数化为1即可得到方程的解;(3)先移项、合并同类项,即可得到方程的解;(4)先移项、合并同类项,再将系数化为1即可得到方程的解【详解】(1)(1)36 57x+=;(2)61173x¸=;(3)218 1525x=;(4)319 112020x-=.(1)1154 x x-=(2)3136 712x¸=(3)83283 54x-´=(1)133 428x-=;(2)2.4 4.516 2.6x x+=-.(1)132354x x x -+=-+;(2)42147x x x -+-=-.(1)2.49.8 1.49y y -=-(2)3312x x -=+.【专项训练二、去括号】11.解方程:2(5)333(51)x x -=-+.【答案】=1x -【分析】此题考查了解一元一次方程,掌握去括号、移项、合并同类项、系数化为1解一元一次方程是解题的关键,根据去括号、移项、合并同类项、系数化为1求解即可;【详解】解:2(1)15(2)x x -=-+,221510x x -=--,251102x x +=-+,77x =-,=1x -.13.解方程:()()23531214x x x x -+-=.【答案】2x =-【分析】本题考查了一元一次方程的解法,解决本题的关键是先根据单项式乘以多项式去括号.先根据单项式乘以多项式去括号,再解一元一次方程,即可解答.【详解】解:2(35)3(12)14x x x x -+-=,去括号得:226103614x x x x -+-=,移项合并同类项得:714x -=,系数化为1得:2x =-.14.解方程:()()250%1831x x +=--【答案】4x =【分析】此题考查了解一元一次方程,掌握去括号、移项、合并同类项、系数化为1解一元一次方程是解题的关键.【详解】解:()()250%1831x x +=--去括号得211833x x +=-+移项得231813x x +=-+合并得520x =系数化为1得4x =.15.解方程:94(2)2(31)x x x -+=+.16.解方程:.解方程:.【答案】5x =-【分析】本题主要考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的基本步骤,先去括号,然后移项合并同类项,最后未知数系数化为1即可.根据解一元一次方程的步骤进行求解即可.【详解】解:()()7211335x x -=+-去括号得:71411915x x -=+-,移项,合并同类项:210x -=,系数化为1得:5x =-.18.解下列方程(1)()3124x =-+(2)()12113x x x+--=-(1)()46252x x -=-;(2)()214x x -+=-;【答案】(1)2x =;(2)2x =.【分析】(1)本题考查解一元一次方程,掌握解一元一次方程步骤“去括号,移项,合并同类项,系数化为1”即可解题;(2)本题考查解一元一次方程,掌握解一元一次方程步骤“去括号,移项,合并同类项,系数化为1”即可解题;【详解】(1)解:()46252x x -=-,46104x x -=-,44106x x +=+,816x =,2x =;(2)解:()214x x -+=-,224x x --=-,242x x -=-+,2x -=-,2x =.20.解方程:()()4253521x x -+=--.【专项训练三、去分母】21.解下列方程:(1)221146x x ---=;(2)155x x +-=.【答案】(1)16x =-22.解方程:213 5102x x x-+--=.23.解方程:5121163x x--=-.【答案】1x=24.解方程:5121123x x +-=-;(1)223312x x x +-=--.(2)10.10.220.30.05x x x ++-=.26.解方程:2131 52x x+--=.27.解方程:323 0.20.5-+-=x x.28.解方程:341123+--=x x 29.解方程:0.12230.30.6x x x -+-=30.解方程:3532142y y y ---=-.31.解方程:2121163x x+--=.(1)141 23x x+=+;(2)4352 27x x-+=-.33.解方程:(1)222123x x --+=;(2)253432x x +--=;(1)()()()2234191y y y +--=-;(2)322132x x x +--=-.(3)()3151x x +=-;(4)2121136x x -+=-.(1)()()1123222x x -=--(2)3157146x x ---=【专项训练三、拓展】36.解关于x 的方程()()222a x x +=-37.解关于x 的方程:55ax a x +=+.【答案】当1a ¹时,5x =-;当1a =时,x 一切实数.【分析】本题考查了解一元一次方程,将原方程化为()()151a x a -=-,分两种情况:当1a ¹时;当1a =时,分别求解即可得出答案.【详解】解:55ax a x +=+Q ,()()151a x a \-=-当1a ¹时,5x =-,当1a =时,x 一切实数.38.已知关于x 的一元一次方程320222022x x n +=+的解为2022x =,求关于y 的一元一次方程()5232022522022y y n --=--的解.39.已知关于x 的方程有无数多个解,求常数a 、b 的值.40.当整数k为何值时,方程9314-=+有正整数解?并求出正整数解.x kx。

第4章 一元一次方程(压轴必刷30题3种题型专项训练)(原卷版)-2024-2025学年七年级数学上

第4章 一元一次方程(压轴必刷30题3种题型专项训练)(原卷版)-2024-2025学年七年级数学上

第4章一元一次方程(压轴必刷30题3种题型专项训练)一.一元一次方程的解(共2小题)1.(2022秋•启东市校级月考)我们规定,若关于x的一元一次方程ax=b的解为x=b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上述规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.2.(2022秋•宿城区期中)我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上边规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程6x=m+2是差解方程,求m的值.二.解一元一次方程(共3小题)3.(2021秋•高新区期末)用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2ab+a.如:1*3=1×32+2×1×3+1=16(1)求2*(﹣2)的值;(2)若(其中x为有理数),试比较m,n的大小;(3)若=a+4,求a的值.4.(2022秋•工业园区校级月考)如图,小明在一张纸面上画了一条数轴,折叠纸面,使表示数﹣1的点与表示数5的点重合,请你回答以下问题:(1)表示数﹣2的点与表示数的点重合;表示数7的点与表示数的点重合.(2)若数轴上点A在点B的左侧,A,B两点之间的距离为12,且A,B两点按小明的方法折叠后重合,则点A表示的数是;点B表示的数是;(3)已知数轴上的点M分别到(2)中A,B两点的距离之和为2022,求点M表示的数是多少?5.(2021秋•溧阳市期末)阅读理解学:我们都应该知道,任何无限循环小数都应该属于有理数,那是因为所有无限循环小数都可以化成分数形式,而分数属于有理数.那么无限循环小数怎么化成分数呢?下面的学习材料会告诉我们原因和方法:问题:利用一元一次方程将0.化成分数.设0.=x.由0.=0.7777…,可知10×0.=7777…=7+0.7777…=7+0.,即10x=7+x.可解得,即0.=.(1)将0.直接写成分数形式为.(2)请仿照上述方法把下列小数化成分数,要求写出利用一元一次方程进行解答的过程.①0.;②0.1.三.一元一次方程的应用(共25小题)6.(2022秋•高新区期末)甲、乙两个旅行团同时去苏州旅游,已知乙团人数比甲团人数多4人,两团人数之和恰等于两团人数之差的18倍.(1)问甲、乙两个旅行团的人数各是多少?(2)若乙团中儿童人数恰为甲团中儿童人数的3倍少2人,某景点成人票价为每张100元,儿童票价是成人票价的六折,两旅行团在此景点所花费的门票费用相同,求甲、乙两团儿童人数各是多少?7.(2022秋•兴化市校级期末)甲、乙两班学生到集市上购买苹果,苹果的价格如表:50千克以上购买苹果数不超过30千克30千克以上但不超过50千克每千克价格3元 2.5元2元甲班分两次共购买苹果80千克(第二次多于第一次),共付出185元,乙班则一次购买苹果80千克.(1)乙班比甲班少付出多少元?(2)甲班第一次、第二次分别购买苹果多少千克?8.(2023秋•海门市校级月考)已知A、B、C三点在同一条数轴上,点A、B表示的数分别为﹣2,18,点C在原点右侧,且AC=AB.(1)A、B两点相距个单位;(2)求点C表示的数;(3)点P、Q是该数轴上的两个动点,点P从点A出发,沿数轴以每秒1个单位的速度向右运动,点Q 从点B出发,沿数轴以每秒2个单位的速度向左运动,它们同时出发,运动时间为t秒,求当t为何值时,P、Q两点到C点的距离相等?9.(2022秋•建邺区校级期末)扬子江药业集团生产的某种药品的长方体包装盒的侧面展开图如图所示.根据图中数据,如果长方体盒子的长比宽多4cm,求这种药品包装盒的体积.10.(2023秋•滨海县月考)生活与数学日一二三四五六12345678910111213141516171819202122232425262728293031(1)山姆同学在某月的日历上圈出2×2个数,如图1,正方形的方框内的四个数的和是48,那么这四个数是.(2)小丽也在上面的日历上圈出2×2个数,如图2,斜框内的四个数的和是46,则它们分别是.(3)刘莉也在日历上圈出5个数,呈十字框形,如图3,它们的和是55,则中间的数是.(4)某月有5个星期日的和是75,则这个月中最后一个星期日是号?11.(2022秋•兴化市校级月考)结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是.②数轴上表示﹣1和﹣5的两点之间的距离是.③数轴上表示﹣3和4的两点之间的距离是.(2)归纳:一般的,数轴上表示数a和数b的两点之间的距离等于.(3)应用:①若数轴上表示数a的点位于﹣4与3之间,则|a+4|+|a﹣3|的值=.②若a表示数轴上的一个有理数,且|a﹣1|=|a+3|,则a=.③若a表示数轴上的一个有理数,|a﹣1|+|a+2|的最小值是.④若a表示数轴上的一个有理数,且|a+3|+|a﹣5|>8,则有理数a的取值范围是.(4)拓展:已知,如图2,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.若当电子蚂蚁P 从A点出发,以4个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3单位/秒的速度向左运动,求经过多长时间两只电子蚂蚁在数轴上相距20个单位长度,并写出此时点P所表示的数.12.(2022秋•海安市月考)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|+(b﹣16)2=0.(1)求此时刻快车头A与慢车头C之间相距单位长度;(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即P A+PC+PB+PD 为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.13.(2022秋•淮阴区期中)据电力部门统计,每天8:00至21:00是用电高峰期,简称“峰时”,21:00至次日8:00是用电低谷期,简称“谷时”.为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表: 时间换表前换表后峰时(8:00﹣21:00)谷时(21:00﹣8:00)电价每度0.52元每度0.55元每度0.30元小明家对换表后最初使用的95度电进行测算,经测算比换表前使用95度电节约了5.9元,问小明家使用“峰时”电和“谷时”电分别是多少度?14.(2022秋•姜堰区期中)阅读理解:M 、N 、P 为数轴上三点,若点P 到M 的距离是点P 到N 的距离的k (k >0)倍,即满足PM =k .PN 时,则称点P 关于M 、N 的“相对关系值”为k .例如,当点M 、N 、P 表示的数分别为0、2、3时,PM =3PN ,则称点P 关于M 、N 的“相对关系值”为3;PN =MN ,则称点N 关于P 、M 的“相对关系值”为.如图,点A 、B 、C 、D 在数轴上,它们所表示的数分别为﹣1、2、6、﹣6.(1)原点O 关于A 、B 的“相对关系值“为a ,原点O 关于B 、A 的“相对关系值”为b ,则a = ,b = .(2)点E 为数轴上一动点,点E 所表示的数为x ,若x 满足|x +3|+|x ﹣2|=5,且点E 关于C 、D 的“相对关系值”为k ,则k 的取值范围是 .(3)点F 从点B 出发,以每秒1个单位的速度向左运动,设运动时间为t (t >0)秒,当经过t 秒时,C 、D 、F 三点中恰有一个点关于另外两点的“相对关系值”为2,求t 的值.15.(2022秋•苏州期中)【问题背景】落实“双减”政策后,某校开展了丰富多彩的科技活动.如图1,电子蚂蚁P 、Q 在长18分米的赛道AB 上同时相向匀速运动,电子蚂蚁P 从A 出发,速度为4分米/分钟,电子蚂蚁Q从B出发,速度为2分米/分钟,当电子蚂蚁P到达B时,电子蚂蚁P,Q停止运动.经过几分钟P,Q之间相距6分米?【问题解决】小辰同学在学习《有理数》之后,发现运用数形结合的方法建立数轴可以较快地解决上述问题:如图2,将点A与数轴的原点O重合,点B落在正半轴上.设运动的时间为t(0≤t≤4.5).(1)t分钟后点P在数轴上对应的数是;点Q对应的数是;(用含t的代数式表示)(2)我们知道,如果数轴上M,N两点分别对应数m,n,则MN=|m﹣n|.试运用该方法求经过几分钟P,Q之间相距6分米?(3)在赛道AB上有一个标记位置C,AC=6.若电子蚂蚁P与标记位置C之间的距离为a,电子蚂蚁Q与B之间的距离为b.在运动过程中,是否存在某一时刻t,使得a+b=4?若存在,请求出运动的时间;若不存在,请说明理由.16.(2022秋•海陵区校级月考)阅读理解,完成下列各题:定义:已知A、B、C为数轴上任意三点,若点C到点A的距离是它到点B的距离的3倍,则称点C是[A,B]的3倍点,例如:如图1,点C是[A,B]的3倍点,点D不是[A,B]的3倍点,但点D是[B,A]的3倍点,根据这个定义解决下面问题:(1)在图1中,点A[C,D]的3倍点(填写“是”或“不是”);[D,C]的3倍点是点(填写A或B或C或D);(2)如图2,M、N为数轴上两点,点M表示的数是﹣3,点N表示的数是5,若点E是[M,N]的3倍点,则点E表示的数是;(3)若P、Q为数轴上两点,点P在点Q的左侧,PQ=a,一动点H从点P出发,以每秒3个单位长度的速度沿数轴向右运动,设运动时间为t秒,求当t为何值时,点H恰好是P和Q两点的3倍点?(用含a的代数式表示)17.(2022秋•昆山市校级月考)如图所示,将连续的奇数1,3,5,7…排列成如下的数表,用十字形框框出5个数.探究规律一:设十字框中间的奇数为x,则框中五个奇数的和用含x的整式表示为,这说明被十字框框中的五个奇数的和一定是正整数p(p>1)的倍数,这个正整数p是.探究规律二:落在十字框中间且位于第二列的一组奇数是15,27,39…,则这一组数可以用整式表示为12m+3 (m为正整数),同样,落在十字框中间且位于第三列的一组奇数可以表示为;(用含m的式子表示)运用规律(1)被十字框框中的五个奇数的和可能是625吗?若能,请求出这五个数,若不能,请说明理由.(2)请问(1)中的十字框中间的奇数落在第几行第几列?18.(2022秋•广陵区校级月考)从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?19.(2022秋•江都区月考)某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润4000元,经精加工后销售,每吨利润7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说说理由.20.(2023秋•锡山区期中)如图,数轴上有A、B、C、D四点,点D对应的数为x,已知OA=5,OB=3,CD=2,P、Q两点同时从原点O出发,沿着数轴正方向分别以每秒钟a和b个单位长度的速度运动,且a<b.点Q到点D后立即朝数轴的负方向运动,速度不变,在点C处与点P相遇,相遇后点P也立即朝着数轴的负方向运动,且P点的速度变为2a,Q点的速度不变.(1)P、Q两点相遇时,点P前进的路程为;Q、P两点相遇前的速度比=;(用含有x的式子表示)(2)若点B为线段AD的中点,①此时,点D表示的数x=;②相遇后,当点P到达点A处时,点Q在原点O的(填“左”或“右”)侧,并求出此时点Q在数轴上所表示的数字;(3)在(2)的条件下,当点P到达点A处时,立即掉头朝数轴的正方向运动,速度变为3a,点Q的速度始终不变,这两点在点M处第二次相遇,则点M在数轴上所表示的数字为.21.(2023秋•沭阳县校级月考)探索规律:将连续的偶2,4,6,8,…,排成如图:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由.22.(2021秋•姑苏区校级期末)为增强公民节水意识,合理利用水资源,某市采用“阶梯收费”,标准如下表:用水量单价不超过6m3的部分2元/m3超过6m3不超过10m3的部分4元/m3超出10m3的部分8元/m3譬如:某用户2月份用水9m3,则应缴水费:2×6+4×(9﹣6)=24(元)(1)某用户3月用水15m3应缴水费多少元?(2)已知某用户4月份缴水费20元,求该用户4月份的用水量;(3)如果该用户5、6月份共用水20m3(6月份用水量超过5月份用水量),共交水费64元,则该户居民5、6月份各用水多少立方米?23.(2021秋•惠山区期末)【探索新知】如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=;(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB;(填“=”或“≠”)【深入研究】如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N均为线段OC的圆周率点,求线段MN的长度.(4)在图2中,若点D在射线OC上,且线段CD与图中以O、C、D中某两点为端点的线段互为圆周率伴侣线段,直接写出D点所表示的数.24.(2022秋•江都区校级月考)元旦期间,某商场打出促销广告(如下表)优惠条件一次性购物不超过200元一次性购物超过200元但不超过一次性购物超过500元500元优惠办法无优惠全部按9折优惠其中500元仍按9折优惠,超过500元部分按8折优惠小明妈妈第一次购物用了134元,第二次购物用了490元.(1)小明妈妈第一次所购物品的原价是元;(2)小明妈妈第二次所购物品的原价是多少元?(写出解答过程)(3)若小明妈妈将两次购买的物品一次性买清,可比两次购买节省多少元?25.(2022秋•梁溪区校级月考)在数轴上A点表示数a,B点表示数b,且a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为;点B表示的数为;(2)如果M、N为数轴上两个动点,点M从点A出发,速度为每秒1个单位长度;点N从点B出发,速度为点A的3倍,它们同时向左运动,点O为原点.当运动2秒时,点M、N对应的数分别是、.当运动t秒时,点M、N对应的数分别是、.(用含t的式子表示)运动多少秒时,点M、N、O中恰有一个点为另外两个点所连线段的中点?(可以直接写出答案)26.(2022秋•兴化市校级月考)如图,已知A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为80.(1)请直接写出AB的中点M对应的数;(2)现在有一只电子蚂蚁P从A点出发,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的C点相遇,请求出C点对应的数是多少;(3)若当电子蚂蚁P从A点出发时,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B 点出发,以3个单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距25个单位长度?27.(2022秋•昆山市校级月考)在购买足球赛门票时,设购买门票张数为x(张),现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位购买门票的价格为60元(总费用=广告赞助费+门票费).方案二:若购买的门票数不超过100张,每张100元,若所购门票超过100张,则超出部分按八折计算.解答下列问题:(1)方案一中,用含x的代数式来表示总费用为.方案二中,当购买的门票数x不超过100张时,用含x的代数式来表示总费用为.当所购门票数x超过100张时,用含x 的代数式来表示总费用为.(2)甲、乙两单位分别采用方案一、方案二购买本次足球赛门票,合计700张,花去的总费用计58000元,求甲、乙两单位各购买门票多少张?28.(2021秋•江都区期中)把2100个连续的正整数1、2、3、…、2100,按如图方式排成一个数表,如图用一个正方形框在表中任意框住4个数,设左上角的数为x.(1)另外三个数用含x的式子表示出来,从小到大排列是;(2)被框住4个数的和为416时,x值为多少?(3)能否框住四个数和为324?若能,求出x值,若不能,说明理由;(4)从左到右,第1至第7列各数之和分别为a1、a2、a3、a4、a5、a6、a7,求7个数中最大的数与最小的数之差.29.(2021秋•秦淮区期中)生活与数学:(1)吉姆同学在某月的日历上圈出2×2个数,正方形的方框内的四个数的和是32,那么第一个数是;(2)玛丽也在日历上圈出2×2个数,斜框内的四个数的和是42,则它们分别是;(3)莉莉也在日历上圈出5个数,呈十字框形,它们的和是50,则中间的数是;(4)某月有5个星期日的和是75,则这个月中最后一个星期日是号;(5)若干个偶数按每行8个数排成图4:①图中方框内的9个数的和与中间的数有什么关系:;②汤姆所画的斜框内9个数的和为360,则斜框的中间一个数是;③托马斯也画了一个斜框,斜框内9个数的和为252,则斜框的中间一个数是.30.(2021秋•洪泽区校级月考)请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.。

专题 解一元一方程计算题(50题)(解析版)

专题  解一元一方程计算题(50题)(解析版)

七年级上册数学《第三章一元一次方程》专题训练解一元一次方程计算题(50题)步骤依据具体做法注意事项等式的性质2方程两边同时乘各分母的最小公倍数.(1)不要漏乘不含分母的项.(2)当分子是多项式时,去分母后应将分子作为一个整体加上括号.乘法分配律、去括号法则先去小括号,再去中括号,最后去大括号(也可以先去大括号,再去中括号,最后去小括号).(1)不要漏乘括号里的任何一项.(2)不要弄错符号.等式的性质1把含未知数的项移到方程的一边,常数项移到方程的另一边.(1)移项一定要变号.(2)不移的项不要变号.合并同类项法则系数相加,字母及字母的指数不变,把方程化成ax =b (a ≠0)的形式.未知数的系数不要弄错.等式的性质2在方程ax =b (a ≠0)的两边同除以a (或乘),得到方程的解为x=.不要将分子、分母的位置颠倒.1.(2022秋•宁津县校级期中)解下列方程:(1)﹣3x+3=1﹣x﹣4x;(2)﹣4x+6=5x﹣3;【分析】(1)根据解一元一次方程——移项合并同类项进行计算即可;(2)根据解一元一次方程——移项合并同类项进行计算即可.【解答】解:(1)移项得﹣3x+x+4x=1﹣3,合并得2x=﹣2,系数化为1得x=﹣1;(2)移项得﹣4x﹣5x=﹣3﹣6,合并得﹣9x=﹣9,系数化为1得x=1.【点评】本题考查解一元一次方程——移项合并同类项,掌握一元一次方程的解法是解决此题的关键.2.(2023秋•洛阳期中)解下列方程:(1)−3=12+1;(2)9+3x=4x+3.【分析】(1)先去分母,然后移项,合并同类项即可;(2)通过移项,合并同类项,系数化为1解方程即可.【解答】解:(1)原方程去分母得:2x﹣6=x+2,移项得:2x﹣x=2+6,合并同类项得:x=8;(2)原方程移项得:3x﹣4x=3﹣9,合并同类项得:﹣x=﹣6,系数化为1得:x=6.【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.3.(2023秋•西丰县期中)解方程:(1)3x﹣2=4+2x;(2)6x﹣7=9x+8.【分析】(1)根据等式的性质,移项、合并同类项即可;(2)根据等式的性质,移项、合并同类项系数化为1即可.【解答】解:(1)移项,得3x﹣2x=4+2,合并同类项,得x=6.(2)移项,得6x﹣9x=7+8,合并同类项,得﹣3x=15,系数化1,得x=﹣5.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的基本步骤是解题的关键.4.(2023秋•郧阳区期中)解方程:(1)2x﹣x+3=1.5﹣2x;(2)7x+2=5x+8.【分析】利用解一元一次方程的步骤:移项,合并同类项,系数化为1解各方程即可.【解答】解:(1)原方程移项得:2x﹣x+2x=1.5﹣3,合并同类项得:3x=﹣1.5,系数化为1得:x=﹣0.5;(2)原方程移项得:7x﹣5x=8﹣2,合并同类项得:2x=6,系数化为1得:x=3.【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.5.(2022秋•莲湖区校级月考)解方程:(1)3x﹣2=5x﹣4;(2)2x+3(x﹣1)=2(x+3).【分析】(1)根据解一元一次方程的步骤,移项,合并同类项,最后将x的系数化为1即可求解.(2)根据解一元一次方程的步骤,先去括号,然后移项,合并同类项,最后将x的系数化为1即可求解.【解答】解:(1)3x﹣2=5x﹣4移项得,3x﹣5x=2﹣4,合并同类项得,﹣2x=﹣2,将x的系数化为1得,x=1.(2)2x+3(x﹣1)=2(x+3)去括号得,2x+3x﹣3=2x+6,移项得,2x+3x﹣2x=6+3,合并同类项得,3x=9,将x的系数化为1得,x=3.【点评】本题主要考查一元一次方程的解法,掌握解方程的基本步骤是解题的关键.6.(2023秋•青秀区校级期中)解下列方程:(1)3x+6=31﹣2x;(2)1−8(14+0.5p=3(1−2p.【分析】根据一元一次方程的解法,经历去括号、移项、合并同类项以及系数化为1进行计算即可.【解答】解:(1)移项得,3x+2x=31﹣6,合并同类项得,5x=25,两边都除以5得,x=5;(2)去括号得,1﹣2﹣4x=3﹣6x,移项得,﹣4x+6x=3+2﹣1,合并同类项得,2x=4,两边都除以2得,x=2.【点评】本题考查解一元一次方程,掌握一元一次方程的解法,理解去括号、移项、合并同类项以及系数化为1的依据是正确解答的前提.7.(2023秋•西城区校级期中)解下列方程:(1)3x﹣4=2x+8;(2)5﹣2x=3(x﹣2).【分析】(1)移项,合并同类项即可;(2)去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣4=2x+8,移项,得3x﹣2x=8+4,合并同类项,得x=12;(2)5﹣2x=3(x﹣2),去括号,得5﹣2x=3x﹣6,移项,得﹣2x﹣3x=﹣6﹣5,合并同类项,得﹣5x=﹣11,系数化成1,得x=115.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.8.(2023秋•海珠区校级期中)解方程:(1)x+5=8;(2)3x+4=5﹣2x;(3)8(2x﹣1)﹣(x﹣1)=﹣2(2x﹣1).【分析】根据一元一次方程的解法,经历去括号、移项、合并同类项以及系数化为1等过程,进而求出未知数x的值即可.【解答】解:(1)移项得,x=8﹣5,合并同类项得,x=3;(2)移项得,3x+2x=5﹣4,合并同类项得,5x=1,两边都除以5得,x=15;(3)去括号得,16x﹣8﹣x+1=﹣4x+2,移项得,16x﹣x+4x=2﹣1+8,合并同类项得,19x=9,两边都除以19得,x=919.【点评】本题考查解一元一次方程,掌握一元一次方程的解法和步骤是正确解答的前提,理解去括号、移项、合并同类项以及系数化为1的做法的依据是正确解答的关键.9.(2023秋•重庆期中)解方程:(1)2x﹣6=﹣3x+9;(2)−32−1=−+1.【分析】根据一元一次方程的解法,依次进行移项、合并同类项以及系数化为1进行计算即可.【解答】解:(1)移项得,2x+3x=9+6,合并同类项得,5x=15,两边都除以5得,x=3;(2)移项得,32x﹣x=﹣1﹣1,合并同类项得,12x=﹣2,两边都乘以2得,x=﹣4.【点评】本题考查解一元一次方程,掌握一元一次方程的解法步骤是正确解答的前提.10.(2023秋•新吴区校级期中)解下列方程:(1)3(2x﹣1)=5﹣2(x+2);(2)2(x﹣2)﹣3(4x﹣1)=5(1﹣x).【分析】根据解一元一次方程的步骤解答即可.【解答】解:(1)6x﹣3=5﹣2x﹣4,6x+2x=5﹣4+3,8x=4,x=12;(2)2x﹣4﹣12x+3=5﹣5x,2x﹣12x+5x=5+4﹣3,﹣5x=6,x=−65.【点评】本题考查解一元一次方程,理解并熟练掌握解一元一次方程的步骤是解题的关键.11.(2022秋•陵城区期末)解方程(1)18(x﹣1)﹣2x=﹣2(2x﹣1);(2)3K110−1=5K74.【分析】(1)先去括号,再移项、合并同类项、系数化为1即可;(2)先去分母,再去括号、移项、合并同类项、系数化为1即可.【解答】解:(1)去括号得,18x﹣18﹣2x=﹣4x+2,移项得,18x﹣2x+4x=2+18,合并同类项得,20x=20,x的系数化为1得,x=1;(2)去分母得,2(3y﹣1)﹣20=5(5y﹣7)去括号得,6y﹣2﹣20=25y﹣35,移项得,6y﹣25y=﹣35+20+2,合并同类项得,﹣19y=﹣13,x的系数化为1得,y=1319.【点评】本题考查的是解一元一次方程,熟知去分母、去括号、移项、合并同类项、系数化为1是解一元一次方程的一般步骤是解题的关键.12.(2023秋•九龙坡区校级期中)解下列一元一次方程:(1)3x+4=2﹣x;(2)1−r12=1−25.【分析】根据一元一次方程的解法,经过去分母、去括号、移项、合并同类项以及系数化为1进行解答即可.【解答】解:(1)移项得,3x+x=2﹣4,合并同类项得,4x=﹣2,两边都除以4得,x=−12;(2)两边都乘以10得,10﹣5(x+1)=2(1﹣2x),去括号得,10﹣5x﹣5=2﹣4x,移项得,5x﹣4x=10﹣5﹣2,合并同类项得,x=3.【点评】本题考查解一元一次方程,掌握一元一次方程的解法是正确解答的前提.13.(2022秋•青川县期末)解下列方程:(1)2x﹣(x+10)=3x+2(x+1);(2)K12−2K13=+1.【分析】(1)根据去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程;(2)根据去分母、去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程.【解答】解:(1)2x﹣(x+10)=3x+2(x+1),去括号,得2x﹣x﹣10=3x+2x+2,移项,得2x﹣x﹣3x﹣2x=2+10,合并同类项,得﹣4x=12,系数化为1,得x=﹣3;(2)K12−2K13=+1,去分母,得3(x﹣1)﹣2(2x﹣1)=6x+6,去括号,得3x﹣3﹣4x+2=6x+6,移项,得3x﹣4x﹣6x=6+3﹣2,合并同类项,得﹣7x=7,系数化为1,得x=﹣1.【点评】本题考查解一元一次方程的解法,掌握解一元一次方程的步骤,使方程逐渐向x=a形式转化是解题关键.14.(2022秋•安次区校级月考)解方程:(1)3x﹣4(x+1)=6﹣2(2x﹣5);(2)0.3K0.10.2−2r93=−8.【分析】(1)按照去括号,移项,合并同类项,系数化为1的步骤解方程即可;(2)按照去分母,去括号,移项,合并同类项,系数化为1的步骤解方程即可.【解答】解:(1)3x﹣4(x+1)=6﹣2(2x﹣5)去括号得:3x﹣4x﹣4=6﹣4x+10,移项得:3x﹣4x+4x=6+10+4,合并同类项得:3x=20,系数化为1得;=203;(2)0.3K0.10.2−2r93=−8整理得:3K12−2r93=−8,去分母得:3(3x﹣1)﹣2(2x+9)=﹣48,去括号得:9x﹣3﹣4x﹣18=﹣48,移项得:9x﹣4x=﹣48+18+3,合并同类项得:5x=﹣27,系数化为1得;=−275.【点评】本题主要考查了解一元一次方程,熟知解一元一次方程的步骤是解题的关键.15.(2022秋•工业园区校级月考)解方程:(1)5(x﹣1)=8x﹣2(x+1);(2)3K14−1=5K76.【分析】(1)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)5(x﹣1)=8x﹣2(x+1)去括号得:5x﹣5=8x﹣2x﹣2,移项得:5x﹣8x+2x=﹣2+5,合并得:﹣x=3,解得:x=﹣3;(2)3K14−1=5K76去分母得:3(3x﹣1)﹣12=2(5x﹣7),去括号得:9x﹣3﹣12=10x﹣14,移项得:9x﹣10x=3+12﹣14,合并得:﹣x=1,解得:x=﹣1【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.16.(2022秋•青川县期末)解下列方程:(1)2x﹣(x+10)=3x+2(x+1);(2)K12−2K13=+1.【分析】(1)根据去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程;(2)根据去分母、去括号、移项、合并同类项、系数化为1,解一元一次方程的一般步骤解出方程.【解答】解:(1)2x﹣(x+10)=3x+2(x+1),去括号,得2x﹣x﹣10=3x+2x+2,移项,得2x﹣x﹣3x﹣2x=2+10,合并同类项,得﹣4x=12,系数化为1,得x=﹣3;(2)K12−2K13=+1,去分母,得3(x﹣1)﹣2(2x﹣1)=6x+6,去括号,得3x﹣3﹣4x+2=6x+6,移项,得3x﹣4x﹣6x=6+3﹣2,合并同类项,得﹣7x=7,系数化为1,得x=﹣1.【点评】本题考查解一元一次方程的解法,掌握解一元一次方程的步骤,使方程逐渐向x=a形式转化是解题关键.17.(2022秋•平桥区校级月考)解方程:(1)8y﹣3(3y+2)=6;(2)r12−1=2+2−4.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:8y﹣9y﹣6=6,移项得:8y﹣9y=6+6,合并同类项得:﹣y=12,系数化为1得:y=﹣12;(2)方程两边同时乘4得:2(x+1)﹣4=8+(2﹣x),去括号得:2x+2﹣4=8+2﹣x,移项得:2x+x=8+2﹣2+4,合并同类项得:3x=12,系数化为1得:x=4.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法和步骤是解题的关键.18.(2022秋•汉阳区期末)解方程:(1)4x+3(2x﹣3)=12﹣(x+4);(2)3r22−1=2K14−2r15.【分析】(1)去括号、移项、合并同类项、系数化为1,依此即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【解答】解:(1)4x+3(2x﹣3)=12﹣(x+4),去括号得:4x+6x﹣9=12﹣x﹣4,10x﹣9=8﹣x,移项得:10x+x=9+8,合并同类项得:11x=17,系数化1得:x=1711;(2))3r22−1=2K14−2r15,去分母得:10(3x+2)﹣20=5(2x﹣1)﹣4(2x+1),去括号得:30x+20﹣20=10x﹣5﹣8x﹣4,移项得:30x﹣10x+8x=﹣5﹣4﹣20+20,合并得:28x=﹣9,化系数为1得:x=−928.【点评】本题考查一元一次方程的解法,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.19.(2023秋•蜀山区校级期中)解方程.(1)3(x﹣7)+5(x﹣4)=15;(2)5r16=9r18−1−3.【分析】(1)根据去括号、移项、合并同类项、系数化1计算即可.(2)根据去分母、去括号、移项、合并同类项、系数化1计算即可.【解答】解:(1)去括号得:3x﹣21+5x﹣20=15,移项、合并同类项得:8x=56,系数化1得:x=7.(2)去分母得:4(5y+1)=3(9y+1)﹣8(1﹣y),去括号得:20y+4=27y+3﹣8+8y,移项、合并同类项得:﹣15y=﹣9,系数化1得:=35.【点评】本题考查解一元一次方程,熟练掌握一元一次方程的解法是解答本题的关键.20.(2023秋•裕安区校级期中)解方程:(1)2(x﹣1)=2﹣5(x+2);(2)5r12−6r24=1.【分析】(1)方程去括号,移项,合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣2=2﹣5x﹣10,移项得:2x+5x=2﹣10+2,合并得:7x=﹣6,解得:x=−67;(2)去分母得:2(5x+1)﹣(6x+2)=4,去括号得:10x+2﹣6x﹣2=4,移项得:10x﹣6x=4﹣2+2,合并得:4x=4,解得:x=1.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并,把未知数系数化为1,求出解.20.(2023秋•越秀区校级期中)解方程:(1)3x+20=4x﹣25;(2)2K13=1−2K16.【分析】根据解一元一次方程的步骤,依次经过去分母,去括号、移项、合并同类项、系数化为1求出未知数x的值即可.【解答】解:(1)移项得,4x﹣3x=20+25,合并同类项得,x=45;(2)两边都乘以6得,2(2x﹣1)=6﹣(2x﹣1),去括号得,4x﹣2=6﹣2x+1,移项得,4x+2x=6+1+2,合并同类项得,6x=9,两边都除以6得,x=32.【点评】本题考查解一元一次方程,掌握一元一次方程的解法是正确解答的关键.21.(2023秋•工业园区校级期中)解方程:(1)3=1+2(4﹣x);(2)1−K56=r12.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【解答】解:(1)去括号,可得:3=1+8﹣2x,移项,可得:2x=1+8﹣3,合并同类项,可得:2x=6,系数化为1,可得:x=3.(2)去分母,可得:6﹣(x﹣5)=3(x+1),去括号,可得:6﹣x+5=3x+3,移项,可得:﹣x﹣3x=3﹣6﹣5,合并同类项,可得:﹣4x=﹣8,系数化为1,可得:x=2.【点评】此题主要考查了解一元一次方程的方法,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.22.(2023秋•富川县期中)解方程:(1)3(x﹣1)﹣4=2(1﹣3x);(2)K74−5r82=1.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项、合并同类项,把x的系数化为1即可.【解答】解:(1)3(x﹣1)﹣4=2(1﹣3x),3x﹣3﹣4=2﹣6x,3x+6x=2+3+4,9x=9,x=1;(2)K74−5r82=1,x﹣7﹣2(5x+8)=4,x﹣7﹣10x﹣16=4,x﹣10x=4+16+7,﹣9x=27,x=﹣3.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解题的关键.23.(2022秋•丰都县期末)解下列方程:(1)2(x+3)=3(x﹣3);(2)K40.2−2.5=K30.05.【分析】(1)按解一元一次方程的步骤求解即可;(2)利用分数的基本性质先去分母,再按解一元一次方程的步骤求解即可.【解答】解:(1)去括号,得2x+6=3x﹣9,移项,得2x﹣3x=﹣6﹣9,合并同类项,得﹣x=﹣15,系数化为1,得x=15.(2)K40.2−2.5=K30.05,5(K4)5×0.2−2.5=20(K3)0.05×20,5(x﹣4)﹣2.5=20x﹣60,5x﹣20﹣2.5=20x﹣60,﹣15x=﹣37.5,x=2.5.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.24.(2023秋•天河区校级期中)解方程:(1)4x=3x+7;(2)r12−2K13=1.【分析】(1)方程移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)移项得:4x﹣3x=7,合并同类项得:x=7;(2)去分母得:3(x+1)﹣2(2x﹣1)=6,去括号得:3x+3﹣4x+2=6,移项得:3x﹣4x=6﹣3﹣2,合并同类项得:﹣x=1,解得:x=﹣1.【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.25.(2023秋•南岗区校级期中)解方程:(1)2(x+6)=3(x﹣1);(2)K72−1+3=1.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项,据此求出方程的解即可.【解答】解:(1)去括号,可得:2x+12=3x﹣3,移项,可得:2x﹣3x=﹣3﹣12,合并同类项,可得:﹣x=﹣15,系数化为1,可得:x=15.(2)去分母,可得:3(x﹣7)﹣2(1+x)=6,去括号,可得:3x﹣21﹣2﹣2x=6,移项,可得:3x﹣2x=6+21+2,合并同类项,可得:x=29.【点评】此题主要考查了解一元一次方程的方法,解答此题的关键是要明确解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.26.(2023秋•武昌区期中)解方程:(1)2x+10=2(2x﹣1);(2)K35−r42=−2.【分析】(1)去括号、移项、合并同类项、系数化为1,解出x的值即可;(2)去分母、去括号、移项、合并同类项、系数化为1,解出x的值即可.【解答】解:(1)2x+10=2(2x﹣1),去括号得:2x+10=4x﹣2,移项得:2x﹣4x=﹣2﹣10,合并同类项得:﹣2x=﹣12,系数化为1得:x=6;(2)K35−r42=−2.去括号得:2(x﹣3)﹣5(x+4)=﹣20,去括号得:2x﹣6﹣5x﹣20=﹣20,移项得:2x﹣5x=﹣20+20+6,合并同类项得:﹣3x=6,系数化为1得:x=﹣2.【点评】本题考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.27.(2023秋•金安区校级期中)解下列方程:(1)3x+5=5x﹣7;(2)3K23=r26−1.【分析】(1)方程移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)移项合并得:2x=12,解得:x=6;(2)去分母得:6x﹣4=x+2﹣6,移项合并得:5x=0,解得:x=0.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.28.(2023秋•西城区校级期中)解方程:(1)3x﹣4=2x+5;(2)K34−2r12=1.【分析】(1)移项,合并同类项即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣4=2x+5,移项,得3x﹣2x=5+4,合并同类项,得x=9;(2)K34−2r12=1,去分母,得x﹣3﹣2(2x+1)=4,去括号,得x﹣3﹣4x﹣2=4,移项,得x﹣4x=4+3+2,合并同类项,得﹣3x=9,系数化成1,得x=﹣3.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.29.(2022秋•枣阳市期末)解方程:(1)2K13−10r16=2r14−1;(2)0.7−0.17−0.20.03=2.【分析】(1)按解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,求解即可;(2)先利用分数的基本性质,把分子、分母化为整数,再按解一元一次方程的一般步骤求解即可.【解答】解:去分母,得4(2x﹣1)﹣2(10x+1)=3(2x+1)﹣12,去括号,得8x﹣4﹣20x﹣2=6x+3﹣12,移项,得8x﹣20x﹣6x=3﹣12+4+2,合并,得﹣18x=﹣3,系数化为1,得x=16.(2)原方程可变形为:107−17−203=2,去分母,得30x﹣7(17﹣20x)=42,去括号,得30x﹣119+140x=42,移项,得30x+140x=119+42,合并,得170x=161,系数化为1,得x=161170.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤是解决本题的关键.30.(2022秋•虎丘区校级月考)解方程:(1)2K13=2r16−2;(2)2K50.6−3r10.2=10.【分析】(1)去分母,去括号,移项,合并同类项可得结果;(2)去分母,去括号,移项,合并同类项可得结果.【解答】解:(1)2K13=2r16−2,去分母得,2(2x﹣1)=2x+1﹣2×6,去括号得,4x﹣2=2x+1﹣12,移项得,4x﹣2x=1﹣12+2,合并同类项得,2x=﹣9,系数化为1得,=−92;(2)2K50.6−3r10.2=10,去分母得,2x﹣5﹣3(3x+1)=6,去括号得,2x﹣5﹣9x﹣3=6,移项得,2x﹣9x=6+5+3,合并同类项得,﹣7x=14,系数化为1得,x=﹣2.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.31.(2023秋•鼓楼区期中)解方程:(1)2x﹣2(3x+1)=6;(2)r12−1=2−33.【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)2x﹣2(3x+1)=6,去括号,得2x﹣6x﹣2=6,移项,得2x﹣6x=6+2,合并同类项,得﹣4x=8,系数化成1,得x=﹣2;(2)r12−1=2−33,去分母,得3(x+1)﹣6=2(2﹣3x),去括号,得3x+3﹣6=4﹣6x,移项,得3x+6x=4﹣3+6,合并同类项,得9x=7,系数化成1,得x=79.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.32.(2022秋•连云港期末)解下列方程:(1)3(x+2)=5x;(2)r12−2=K34.【分析】(1)先去括号移项,然后合并后把x的系数化为1即可;(2)先去分母,再去括号,然后移项、合并后把x的系数化为1即可.【解答】解:(1)3(x+2)=5x,3x+6=5x,3x﹣5x=﹣6,﹣2x=﹣6,x=3;(2)r12−2=K34,2x+2﹣8=x﹣3,2x﹣x=﹣3﹣2+8,x=3.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.33.(2022秋•射阳县校级期末)解方程:(1)2(x﹣2)=3x﹣7;(2)K12−2r36=1.【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解一元一次方程;(2)按照去分母、去括号、移项、合并同类项、系数化为1的步骤解一元一次方程即可求解.【解答】解:(1)2(x﹣2)=3x﹣7,去括号,得:2x﹣4=3x﹣7,移项,得:2x﹣3x=﹣7+4,合并同类项,得:﹣x=﹣3,系数化为1:x=3;(2)K12−2r36=1,去分母,得:3(x﹣1)﹣(2x+3)=6,去括号,得:3x﹣3﹣2x﹣3=6,移项,得:3x﹣2x=6+3+3,合并同类项,得:x=12.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是解题的关键.34.(2022秋•硚口区期中)解方程:(1)2﹣3(x+1)=1﹣2(1+0.5x);(2)3+K12=3−2K13.【分析】(1)根据去括号、移项、合并同类项、化系数为1的步骤解一元一次方程即可;(2)根据去分母、去括号、移项、合并同类项、化系数为1的步骤解一元一次方程即可.【解答】解:(1)去括号,得2﹣3x﹣3=1﹣2﹣x,移项、合并同类项,得﹣2x=0,化系数为1,得x=0,∴原方程的解为x=0;(2)去分母,得18x+3(x﹣1)=18﹣2(2x﹣1),去括号,得18x+3x﹣3=18﹣4x+2,移项、合并同类项,得25x=23,化系数为1,得=2325,∴原方程的解为=2325.【点评】本题考查解一元一次方程,熟练掌握一元一次方程的解法步骤并正确求解是解答的关键.35.(2022秋•湖北期末)解方程:(1)2﹣(4﹣x)=6x﹣2(x+1);(2)r32−1=2−5−4.【分析】(1)通过去括号、移项、合并同类项、系数化成1,几个步骤进行解答;(2)通过去分母、去括号、移项、合并同类项、系数化成1,几个步骤进行解答.【解答】(1)解:去括号,得,2﹣4+x=6x﹣2x﹣2,移项,得,x﹣6x+2x=﹣2﹣2+4,合并同类项,得,﹣3x=0,系数化为1,得,x=0;(2)去分母得:2(x+3)﹣4=8x﹣(5﹣x),去括号得:2x+6﹣4=8x﹣5+x,移项得:2x﹣8x﹣x=﹣5﹣6+4,合并得:﹣7x=﹣7,解得:x=1.【点评】本题考查了解一元一次方程,解题关键是熟记解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化成1.36.(2023春•太康县期中)解方程:(1)3x﹣5=2x+3;(2)1−K32=2+3+2.【分析】(1)移项,合并同类项即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)3x﹣5=2x+3,移项得:3x﹣2x=3+5,合并同类项得:x=8;(2)1−K32=2+3+2,去分母得:6﹣3(x﹣3)=2(2+x)+12,去括号得:6﹣3x+9=4+2x+12,移项得:﹣3x﹣2x=4+12﹣6﹣9,合并同类项得:﹣5x=1,系数化成1得:x=−15.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.37.(2022秋•万源市校级期末)解方程(1)4﹣3(2﹣x)=5x(2)K22−1=r13−r86.【分析】(1)方程去括号,移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.【解答】解:(1)方程去括号得:4﹣6+3x=5x,移项合并得:2x=﹣2,解得:x=﹣1;(2)去分母得:3(x﹣2)﹣6=2(x+1)﹣(x+8),去括号得:3x﹣6﹣6=2x+2﹣x﹣8,移项合并得:2x=6,解得:x=3.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.38.(2023秋•五华区校级期中)解方程:(1)7x+2(3x﹣3)=20;(2)2K13=3r52−1.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x的系数化为1即可.【解答】解:(1)去括号得,7x+6x﹣6=20,移项得,7x+6x=20+6,合并同类项得,13x=26,x的系数化为1得,x=2;(2)去分母得,2(2x﹣1)=3(3x+5)﹣6,去括号得,4x﹣2=9x+15﹣6,移项得,4x﹣9x=15﹣6+2,合并同类项得,﹣5x=11,x的系数化为1得,x=−115.【点评】本题考查的是解一元一次方程,熟知解一元一次方程的一般步骤是解题的关键.39.(2023•开州区校级开学)解方程:(1)5x+34=2x+534;(2)K20.2=r10.5.【分析】(1)按照解一元一次方程的步骤:移项,合并同类项,系数化为1,进行计算即可解答;(2)先把分母的系数化为整数,然后再按照解一元一次方程的步骤进行计算,即可解答.【解答】解:(1)5x+34=2x+534,5x﹣2x=534−34,3x=5,x=53;(2)K20.2=r10.5,5x﹣10=2x+2,5x﹣2x=2+10,3x=12,x=4.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.40.(2023秋•镇海区校级期中)解方程:(1)3(20﹣y)=6y﹣4(y﹣11);(2)0.4r30.2−2=0.45−0.3.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:60﹣3y=6y﹣4y+44,移项合并得:5y=16,解得:y=3.2;(2)去分母得:1.2x+9﹣1.2=0.9﹣2x,移项合并得:3.2x=﹣6.9,解得:x=−6932.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.41.(2022秋•张店区期末)解方程:(1)3(y﹣7)﹣5(4﹣y)=15;(2)r20.4−2K10.2=−0.5.【分析】(1)去括号,移项合并同类项,系数化为1即可得到答案;(2)去分母,去括号,移项合并同类项,系数化为1即可得到答案.【解答】解:(1)去括号得,3y﹣21﹣20+5y=15,移项得,3y+5y=15+21+20,合并同类项可得,8y=56系数化为1得,y=7;(2)去分母可得,10(x+2)﹣20(2x﹣1)=﹣2,去括号得,10x+20﹣40x+20=﹣2,移项得,10x﹣40x=﹣2﹣20﹣20,合并同类项得,﹣30x=﹣42,系数化为1得,=75.【点评】本题考查了解一元一次方程,掌握解一元一次方程的步骤是关键.42.(2022秋•莲湖区校级月考)解方程:(1)K32−2r13=1.(2)r12−3K14=1.【分析】(1)去分母、去括号、移项、合并同类项、系数化为1即可求解;(2)去分母、去括号、移项、合并同类项、系数化为1即可求解.【解答】解:(1)K32−2r13=1,3(x﹣3)﹣2(2x+1)=6,3x﹣9﹣4x﹣2=6,3x﹣4x=6+9+2,﹣x=17,x=﹣17;(2)r12−3K14=1,2(x+1)﹣(3x﹣1)=4,2x+2﹣3x+1=4,﹣x=4﹣2﹣1,x=﹣1.【点评】本题考查了解一元一次方程,解答本题的关键是掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a的形式转化.43.解下列方程:(1)2r13−10r16=1;(2)4K1.50.5−5K0.80.2=1.2−0.1.【分析】(1)利用等式的性质先去分母,再求解一元一次方程;(2)利用分数的基本性质去分母后,再解一元一次方程.【解答】解:(1)2r13−10r16=1,去分母,得2(2x+1)﹣(10x+1)=6,去括号,得4x+2﹣10x﹣1=6,移项,得4x﹣10x=6﹣2+1,合并同类项,得﹣6x=5,系数化为1,得x=−56;(2)4K1.50.5−5K0.80.2=1.2−0.1.去分母,得2(4x﹣1.5)﹣5(5x﹣0.8)=10(1.2﹣x),去括号,得8x﹣3﹣25x+4=12﹣10x,移项,得8x﹣25x+10x=12+3﹣4,合并同类项,得﹣7x=11,系数化为1,得x=−117.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤,灵活运用等式的性质和分数的性质去分母是解决本题的关键.44.解方程;(1)2K366−33−23=−1﹣x;(2)K10.2−r10.05=3.【分析】(1)利用等式的性质去分母后,求解一元一次方程;(2)利用分数的性质去分母后,求解一元一次方程.【解答】解:(1)2K366−33−23=−1﹣x,去分母,得2x﹣36﹣2(33﹣2x)=6(﹣1﹣x),去括号,得2x﹣36﹣66+4x=﹣6﹣6x,移项,得2x+4x+6x=﹣6+36+66,合并同类项,得12x=96,系数化为1,得x=8;(2)K10.2−r10.05=3.去分母,得5(x﹣1)﹣20(x+1)=3,去括号,得5x﹣5﹣20x﹣20=3,移项,得5x﹣20x=3+5+20,合并同类项,得﹣15x=28系数化为1,得x=−2815.【点评】本题考查了解一元一次方程,掌握解一元一次方程的一般步骤,灵活运用等式的性质和分数的性质去分母是解决本题的关键.45.(2023春•周口月考)解方程:(1)34[2(+1)+13p=3;(2)3−2K83=−r54.【分析】(1)按照解一元一次方程的步骤,进行计算即可解答;(2)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【解答】解:(1)34[2(+1)+13p=3,32(x+1)+14x=3x,6(x+1)+x=12x,6x+6+x=12x,6x+x﹣12x=﹣6,﹣5x=﹣6,x=1.2;(2)3−2K83=−r54,36﹣4(2x﹣8)=﹣3(x+5),36﹣8x+32=﹣3x﹣15,﹣8x+3x=﹣15﹣36﹣32,﹣5x=﹣83,x=835.【点评】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.46.(2022秋•文登区期末)解方程:(1)4﹣2(x+4)=2(x﹣1);(2)13(+7)=25−12(−5);(3)0.3K0.40.2+2=0.5K0.20.3.【分析】(1)去括号,移项,合并同类项,系数化为1,求解即可;(2)去分母,去括号,移项,合并同类项,系数化为1,求解即可;(3)分母化为整数,去分母,去括号,移项,合并同类项,系数化为1,求解即可.【解答】解:(1)4﹣2(x+4)=2(x﹣1),去括号得:4﹣2x﹣8=2x﹣2,移项得:2x+2x=4﹣8+2,合并同类项得:4x=﹣2,系数化为1得:x=−12;(2)13(+7)=25−12(−5),去分母得:10(x+7)=12﹣15(x﹣5),去括号得:10x+70=12﹣15x+75,移项得:10x+15x=12+75﹣70,合并同类项得:25x=17,系数化为1得:x=1725;(3)0.3K0.40.2+2=0.5K0.20.3,分母化为整数得:3K42+2=5K23,去分母得:3(3x﹣4)+12=2(5x﹣2),去括号得:9x﹣12+12=10x﹣4,合并同类项得:9x=10x﹣4,移项、合并同类项得:x=4.【点评】本题考查了解一元一次方程,解题的关键是熟练掌握一元一次方程的解题步骤.47.解下列方程:(1)(5x﹣2)×30%=(7x+8)×20%;(2)34[43(14−1)+8]=73+23;(3)4K1.50.5−5K0.80.2=1.2−0.1.【分析】(1)方程去括号,移项,合并同类项,即可求出解;(2)方程去括号,去分母,移项,合并同类项,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)(5x﹣2)×30%=(7x+8)×20%,去括号得:15x﹣6=14x+16,移项得:15x﹣14x=16+6,合并同类项得:x=22;(2)34[43(14−1)+8]=73+23;去括号得:14x﹣1+6=73+23,去分母得:3x+60=28+8x,移项得:3x﹣8x=28﹣60,合并同类项得:﹣5x=﹣32,解得:x=325;(3)4K1.50.5−5K0.80.2=1.2−0.1.去分母得:2(4x﹣1.5)﹣5(5x﹣0.8)=10(1.2﹣x),去括号得:8x﹣3﹣25x+4=12﹣10x,移项得:8x﹣25x+10x=12﹣4+3,合并同类项得:﹣7x=11,解得:x=−117.【点评】此题考查了解一元一次方程,解决本题的关键是掌握解一元一次方程的步骤,为:去分母,去括号,移项合并,把未知数系数化为1,求出解.48.(2023春•朝阳区校级月考)解下列方程:(1)2x﹣19=7x+6;(2)4(x﹣2)﹣1=3(x﹣1);(3)K12=23+1;(4)2K13−10r112=2r14−1.【分析】(1)方程移项,合并同类项,把x系数化为1,即可求出解;(2)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项,合并同类项,把m系数化为1,即可求出解;(4)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)移项得:2x﹣7x=6+19,合并同类项得:﹣5x=25,解得:x=﹣5;(2)去括号得:4x﹣8﹣1=3x﹣3,移项得:4x﹣3x=﹣3+8+1,合并同类项得:x=6;(3)去分母得:3(m﹣1)=4m+6,去括号得:3m﹣3=4m+6,移项得:3m﹣4m=6+3,合并同类项得:﹣m=9,解得:m=﹣9;(4)去分母得:4(2x﹣1)﹣(10x+1)=3(2x+1)﹣12,去括号得:8x﹣4﹣10x﹣1=6x+3﹣12,移项得:8x﹣10x﹣6x=3﹣12+4+1,合并同类项得:﹣8x=﹣4,解得:x=0.5.【点评】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.49.(2023秋•香坊区校级月考)解方程:(1)3x﹣8=x+4;(2)1﹣3(x+1)=2(1﹣0.5x);(3)16(3−6)=25x﹣3;(4)3K14−1=5K76.【分析】(1)按照解一元一次方程的步骤:移项,合并同类项,系数化为1,进行计算即可解答;(2)按照解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1,进行计算即可解答;(3)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答;(4)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【解答】解:(1)3x﹣8=x+4,3x﹣x=4+8,2x=12,x=6;(2)1﹣3(x+1)=2(1﹣0.5x),1﹣3x﹣3=2﹣x,﹣3x+x=2+3﹣1,﹣2x=4,x=﹣2;。

初中一年级数学上册解方程专项训练题(433)

初中一年级数学上册解方程专项训练题(433)

初中一年级数学上册解方程专项训练题(433)好的,以下是针对初中一年级数学上册解方程专项训练题(433)的内容:1. 一元一次方程求解小明有x元钱,他买了一个价值3x元的篮球和一个价值2x元的足球。

请问小明一共花了多少钱?2. 一元一次方程的应用小华每天读a页书,连续读了b天,总共读了c页书。

如果小华每天多读2页,他需要读几天才能读完这本书?3. 一元一次方程的变形一个数的3倍加上4等于这个数的5倍减去6,求这个数。

4. 一元一次方程的同解性若方程ax + b = 0的解为x = 2,求方程2ax - b = 0的解。

5. 一元一次方程的整数解一个两位数,十位数字比个位数字大3,且这个数的两倍减去3等于这个数的个位数字的9倍。

求这个两位数。

6. 一元一次方程的解法选择一个数的4倍与3的和等于这个数的6倍减去9,用适当的方法解这个方程。

7. 一元一次方程的解的讨论已知方程2x - 3 = 5x + 1,求x的值。

若x的值不唯一,说明理由。

8. 一元一次方程的解法总结小明有x个苹果,小红有y个苹果,如果小明给小红3个苹果,他们苹果的个数就相等了。

已知x和y都是正整数,求x和y的可能取值。

9. 一元一次方程的解法应用一个工厂生产了a个零件,其中合格率为95%,不合格的零件数为b。

如果工厂改进工艺,合格率提高到98%,那么不合格的零件数为多少?10. 一元一次方程的解法拓展已知方程3(x - 1) = 2(x + 2),求x的值。

若将方程中的数字3和2分别替换为m和n,求x关于m和n的表达式。

以上就是初中一年级数学上册解方程专项训练题(433)的内容,涵盖了一元一次方程的求解、应用、变形、同解性、整数解、解法选择、解的讨论、解法总结、解法应用和解法拓展等各个方面,旨在帮助学生全面掌握一元一次方程的解法和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档