fir低通滤波器matlab编程滤波前后图形

合集下载

用MATLAB设计FIR数字滤波器

用MATLAB设计FIR数字滤波器

实验八 用MATLAB 设计FIR 数字滤波器(二)一、实验目旳:1、加深对窗函数法设计FIR 数字滤波器旳基本原理旳理解。

2、学习用MATLAB 语言旳窗函数法编写设计FIR 数字滤波器旳程序。

3、理解MATLAB 语言有关窗函数法设计FIR 数字滤波器旳常用函数用法。

二、实验原理:1、用窗函数法设计FIR 数字滤波器 FIR 数字滤波器旳系统函数为N-1-n n=0H(z)=h(n)z ∑这个公式也可以当作是离散LSI 系统旳系统函数M-m -1-2-mmm=0012m N -1-2-k-k12k k k=1bz b +b z +b z ++b z Y(z)b(z)H(z)====X(z)a(z)1+a z +a z ++a z1+a z ∑∑ 分母a 0为1,其他a k 全都为0时旳一种特例。

由于极点所有集中在零点,稳定和线性相位特性是FIR 滤波器旳突出长处,因此在实际中广泛使用。

FIR 滤波器旳设计任务是选择有限长度旳h(n),使传播函数H(e j ω)满足技术规定。

重要设计措施有窗函数法、频率采样法和切比雪夫等波纹逼近法等。

本实验重要简介窗函数法。

用窗函数法设计FIR 数字滤波器旳基本环节如下:(1)根据过渡带和阻带衰减指标选择窗函数旳类型,估算滤波器旳阶数N 。

(2)由数字滤波器旳抱负频率响应H(e j ω)求出其单位脉冲响应h d (n)。

可用自定义函数ideal_lp实现抱负数字低通滤波器单位脉冲响应旳求解。

程序清单如下:function hd=ideal_lp(wc,N) %点0到N-1之间旳抱负脉冲响应%wc=截止频率(弧度)%N=抱负滤波器旳长度tao=(N-1)/2;n=[0:(N-1)];m=n-tao+eps; %加一种小数以避免0作除数hd=sin(wc*m)./(pi*m);其他选频滤波器可以由低通频响特性合成。

如一种通带在ωc1~ωc2之间旳带通滤波器在给定N值旳条件下,可以用下列程序实现:Hd=ideal_lp(wc2,N)-ideal_lp(wc1,N)(3)计算数字滤波器旳单位冲激响应h(n)=w(n)h d(n)。

matlabfir滤波器设计

matlabfir滤波器设计

matlabfir滤波器设计在数字信号处理中,滤波器是一种常用的工具,用于处理信号的频率特性。

其中,FIR(有限脉冲响应)滤波器是一种常见的滤波器类型之一。

MATLAB提供了方便的工具和函数来设计和实现FIR滤波器。

在本文中,我们将介绍MATLAB中如何使用fir1函数来设计FIR滤波器。

要使用fir1函数设计FIR滤波器,需要指定滤波器的阶数和截止频率。

阶数决定了滤波器的复杂度,而截止频率则决定了滤波器的频率响应特性。

通过调整这两个参数,可以设计出不同类型的滤波器,如低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

接下来,我们可以使用fir1函数来设计一个简单的低通滤波器。

例如,我们可以指定一个4阶低通滤波器,截止频率为0.5(归一化频率,取值范围为0到1)。

通过调用fir1函数并传入相应的参数,即可得到设计好的滤波器系数。

设计好滤波器系数后,我们可以将其应用于信号处理中。

例如,我们可以使用filter函数来对信号进行滤波。

将设计好的滤波器系数和待处理的信号作为输入参数传入filter函数,即可得到滤波后的信号。

这样,我们就可以实现对信号的滤波处理。

除了fir1函数外,MATLAB还提供了其他用于滤波器设计的函数,如firpm、fircls、firls等。

这些函数可以实现更复杂的滤波器设计,满足不同的需求。

通过选择合适的函数和参数,可以设计出性能优越的滤波器,用于各种信号处理应用中。

MATLAB提供了强大的工具和函数来设计和实现各种类型的滤波器。

通过合理选择滤波器的阶数和截止频率,以及使用适当的函数来设计滤波器系数,可以实现对信号的有效滤波处理。

希望本文能够帮助读者了解MATLAB中fir1函数的使用方法,进一步掌握滤波器设计的技巧,提高信号处理的效率和质量。

使用MATLAB设计FIR滤波器

使用MATLAB设计FIR滤波器

使⽤MATLAB设计FIR滤波器1. 采⽤fir1函数设计,fir1函数可以设计低通、带通、⾼通、带阻等多种类型的具有严格线性相位特性的FIR滤波器。

语法形式:b = fir1(n, wn)b = fir1(n, wn, ‘ftype’)b = fir1(n, wn, ‘ftype’, window)b = fir1(n, wn, ‘ftype’, window, ‘noscale’)参数的意义及作⽤:b:返回的FIR滤波器单位脉冲响应,脉冲响应为偶对称,长度为n+1;n:滤波器的介数;wn:滤波器的截⽌频率,取值范围为0<wn<1,1对应信号采样频率⼀半。

如果wn是单个数值,且ftype参数为low,则表⽰设计截⽌频率为wn的低通滤波器,如果ftype参数为high,则表⽰设计截⽌频率为wn的⾼通滤波器;如果wn是有两个数组成的向量[wn1wn2],ftype为stop,则表⽰设计带阻滤波器,ftype为bandpass,则表⽰设计带通滤波器;如果wn是由多个数组成的向量,则根据ftype的值设计多个通带或阻带范围的滤波器,ftype为DC-1,表⽰设计的第⼀个频带为通带,ftype为DC-0,表⽰设计的第⼀个频带为阻带;window:指定使⽤的窗函数,默认为海明窗;noscale:指定是否归⼀化滤波器的幅度。

⽰例:N=41; %滤波器长度fs=2000; %采样频率%各种滤波器的特征频率fc_lpf=200;fc_hpf=200;fp_bandpass=[200 400];fc_stop=[200 400];%以采样频率的⼀半,对频率进⾏归⼀化处理wn_lpf=fc_lpf*2/fs;wn_hpf=fc_hpf*2/fs;wn_bandpass=fp_bandpass*2/fs;wn_stop=fc_stop*2/fs;%采⽤fir1函数设计FIR滤波器b_lpf=fir1(N-1,wn_lpf);b_hpf=fir1(N-1,wn_hpf,'high');b_bandpass=fir1(N-1,wn_bandpass,'bandpass');b_stop=fir1(N-1,wn_stop,'stop');%求滤波器的幅频响应m_lpf=20*log(abs(fft(b_lpf)))/log(10);m_hpf=20*log(abs(fft(b_hpf)))/log(10);m_bandpass=20*log(abs(fft(b_bandpass)))/log(10);m_stop=20*log(abs(fft(b_stop)))/log(10);%设置幅频响应的横坐标单位为Hzx_f=0:(fs/length(m_lpf)):fs/2;%绘制单位脉冲响应%绘制单位脉冲响应subplot(421);stem(b_lpf);xlabel('n');ylabel('h(n)');subplot(423);stem(b_hpf);xlabel('n');ylabel('h(n)');subplot(425);stem(b_bandpass);xlabel('n');ylabel('h(n)');subplot(427);stem(b_stop);xlabel('n');ylabel('h(n)');%绘制幅频响应曲线subplot(422);plot(x_f,m_lpf(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(424);plot(x_f,m_hpf(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(426);plot(x_f,m_bandpass(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(428);plot(x_f,m_stop(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);2. 采⽤fir2函数设计,函数算法是:⾸先根据要求的幅频响应向量形式进⾏插值,然后进⾏傅⾥叶变换得到理想滤波器的单位脉冲响应,最后利⽤窗函数对理想滤波器的单位脉冲响应激进型截断处理,由此得到FIR滤波器系数。

实验3 用MATLAB窗函数法设计FIR滤波器

实验3 用MATLAB窗函数法设计FIR滤波器

实验10 用MATLAB 窗函数法设计FIR 滤波器一、实验目的㈠、学习用MA TLAB 语言窗函数法编写简单的FIR 数字滤波器设计程序。

㈡、实现设计的FIR 数字滤波器,对信号进行实时处理。

二、实验原理㈠、运用窗函数法设计FIR 数字滤波器与IIR 滤波器相比,FIR 滤波器在保证幅度特性满足技术要求的同时,很容易做到有严格的线性相位特性。

设FIR 滤波器单位脉冲响应)(n h 长度为N ,其系统函数)(z H 为∑-=-=10)()(N n n zn h z H)(z H 是1-z 的)1(-N 次多项式,它在z 平面上有)1(-N 个零点,原点0=z 是)1(-N 阶重极点。

因此,)(z H 永远是稳定的。

稳定和线性相位特性是FIR 滤波器突出的优点。

FIR 滤波器的设计任务是选择有限长度的)(n h ,使传输函数)(ωj e H 满足技术要求。

主要设计方法有窗函数法、频率采样法和切比雪夫等波纹逼近法。

本实验主要介绍用窗函数法设计FIR 数字滤波器。

图7-10-1 例1 带通FIR 滤波器特性㈡、 用MATLAB 语言设计FIR 数字滤波器例1:设计一个24阶FIR 带通滤波器,通带为0.35<ω<0.65。

其程序如下b=fir1(48,[0.35 0.65]);freqz(b,1,512)可得到如图7-10-1 所示的带通FIR滤波器特性。

由程序可知,该滤波器采用了缺省的Hamming窗。

例2:设计一个34阶的高通FIR滤波器,截止频率为0.48,并使用具有30dB波纹的Chebyshev窗。

其程序如下Window=chebwin(35,30);b=fir1(34,0.48,'high',Window);freqz(b,1,512)可得到如图7-10-2 所示的高通FIR滤波器特性。

图7-10-2 例2 高通FIR滤波器特性例3:设计一个30阶的低通FIR滤波器,使之与期望频率特性相近,其程序如下 f=[0 0.6 0.6 1];m=[1 1 0 0];b=fir2(30,f,m);[h,w]=freqz(b,1,128);plot(f,m,w/pi,abs(h))结果如图7-10-3所示。

低通滤波matlab

低通滤波matlab

低通滤波matlab低通滤波是数字信号处理中常用的一种滤波方式。

其主要作用是去除高频分量,保留低频分量,从而使信号更加平滑。

Matlab提供了许多低通滤波函数,本文结合实例介绍了常用的几种。

一、FIR低通滤波FIR(Finite Impulse Response,有限冲激响应)低通滤波是数字信号处理中常用的滤波器之一。

它的设计方法是通过选择一组合适的滤波器系数来实现滤波的目的。

Matlab中提供了fir1函数用于设计FIR低通滤波器。

FIR滤波器的特点是具有线性相位,因此在滤波后不会改变信号的相位。

下面是一个例子,在Matlab中生成一个含有高频和低频分量的信号:```matlab t = linspace(0, 1, 1000); y =sin(2*pi*50*t) + sin(2*pi*500*t); ```可以看到,y信号中含有50Hz和500Hz两个频率分量。

接下来,我们使用fir1函数设计一个通带截止频率为200Hz的FIR低通滤波器,并将信号y通过该滤波器过滤掉高频分量,得到滤波后的信号:```matlab b = fir1(50, 200/(1000/2), 'low');y_filtered = filter(b, 1, y); ```fir1函数的第一个参数表示滤波器的阶数,第二个参数表示滤波器的通带截止频率,第三个参数表示滤波器的类型,这里选择低通滤波器。

filter函数用于将信号通过滤波器进行滤波,第一个参数表示滤波器系数,第二个参数表示单位脉冲响应,第三个参数表示待滤波信号。

最后,将原信号和滤波后的信号进行对比,可以看到滤波后的信号已经去除了500Hz的高频分量:```matlab plot(t, y); hold on; plot(t,y_filtered); hold off; legend('Original Signal','Filtered Signal'); ```二、IIR低通滤波IIR(Infinite Impulse Response,无限冲激响应)低通滤波是另一种常用的滤波器。

利用MATLAB窗函数法设计一个可实现的FIR低通滤波器。

利用MATLAB窗函数法设计一个可实现的FIR低通滤波器。

一、实验目的1.掌握在MATLAB中窗函数的使用方法,了解不同窗函数之间的差别。

2.使用窗函数法设计一个可实现的FIR低通滤波器。

3.观察在相同长度下,不同的窗函数设计出来的滤波器有什么差别。

4.观察同一个窗在不同长度下设计出来的滤波器有什么差别。

二、实验条件PC机,MATLAB7.0三、实验内容1)通过help查找窗函数在MATLAB中如何实现通过example了解MATLAB中窗函数的实现,并且利用矩形窗,汉宁窗,哈明窗,布莱克曼窗和凯塞窗来进行接下来的实验。

2)设计物理可实现的低通滤波器设计思路:因为要设计FIR有限脉冲响应滤波器,通常的理想滤波器的单位脉冲响应h是无限长的,所以需要通过窗来截断它,从而变成可实现的低通滤波器。

程序如下:clc;clear all;omga_d=pi/5;omga=0:pi/30:pi;for N=3:4:51;w1= window(@blackman,N);w2 = window(@hamming,N);w3= window(@kaiser,N,2.5);w4= window(@hann,N);w5 = window(@rectwin,N);M=floor(N/2);subplot(311);plot(-M:M,[w1,w2,w3,w4,w5]); axis([-M M 0 1]);legend('Blackman','Hamming','kaiser','hann','rectwin');n=1:M;hd=sin(n*omga_d)./(n*omga_d)*omga_d/pi;hd=[fliplr(hd),1/omga_d,hd];h_d1=hd.*w1';h_d2=hd.*w2';h_d3=hd.*w3';h_d4=hd.*w4';h_d5=hd.*w5';m=1:M;H_d1=2*cos(omga'*m)*h_d1(M+2:N)'+h_d1(M+1);H_d2=2*cos(omga'*m)*h_d2(M+2:N)'+h_d2(M+1);H_d3=2*cos(omga'*m)*h_d3(M+2:N)'+h_d3(M+1);H_d4=2*cos(omga'*m)*h_d4(M+2:N)'+h_d4(M+1);H_d5=2*cos(omga'*m)*h_d5(M+2:N)'+h_d5(M+1);subplot(312);plot(omga,[H_d1,H_d2,H_d3,H_d4,H_d5]);legend('Blackman','Hamming','kaiser','hann','rectwin');subplot(313);plot(abs([fft(h_d1);fft(h_d2);fft(h_d3);fft(h_d4);fft(h_d5)] )');pause();end程序分析:整个对称窗的长度为N,然而为了在MATLAB中看到窗函数在负值时的形状需将N 变为它的一半,即为2M+1个长度。

基于MATLAB设计FIR滤波器

基于MATLAB设计FIR滤波器

基于MATLAB设计FIR滤波器FIR(Finite Impulse Response)滤波器是一种数字滤波器,它具有有限的冲激响应长度。

基于MATLAB设计FIR滤波器可以使用signal工具箱中的fir1函数。

fir1函数的语法如下:b = fir1(N, Wn, window)其中,N是滤波器的阶数,Wn是截止频率,window是窗函数。

要设计一个FIR低通滤波器,可以按照以下步骤进行:步骤1:确定滤波器的阶数。

阶数决定了滤波器的截止频率的陡峭程度。

一般情况下,阶数越高,滤波器的陡峭度越高,但计算复杂度也会增加。

步骤2:确定滤波器的截止频率。

截止频率是指在滤波器中将信号的频率限制在一定范围内的频率。

根据应用的需求,可以选择适当的截止频率。

步骤3:选择窗函数。

窗函数是为了在时域上窗口函数中心增加频率衰减因子而使用的函数。

常用的窗函数有Hamming、Hanning等。

窗函数可以用来控制滤波器的幅度响应特性,使得它更平滑。

步骤4:使用fir1函数设计滤波器。

根据以上步骤确定滤波器的阶数、截止频率和窗函数,可以使用fir1函数设计FIR滤波器。

具体代码如下:N=50;%设定阶数Wn=0.5;%设定截止频率window = hanning(N + 1); % 使用Hanning窗函数步骤5:使用filter函数对信号进行滤波。

设计好FIR滤波器后,可以使用filter函数对信号进行滤波。

具体代码如下:filtered_signal = filter(b, 1, input_signal);其中,input_signal是输入信号,filtered_signal是滤波后的信号。

以上,便是基于MATLAB设计FIR滤波器的简要步骤和代码示例。

根据具体需求和信号特性,可以进行相应的调整和优化。

基于Matlab的FIR滤波器设计与实现

基于Matlab的FIR滤波器设计与实现

基于Matlab的FIR滤波器设计与实现⼀、摘要 前⾯⼀篇⽂章介绍了通过FDATool⼯具箱实现滤波器的设计,见“”,这⾥通过⼏个例⼦说明采⽤Matlab语⾔设计FIR滤波器的过程。

⼆、实验平台 Matlab7.1三、实验原理 以低通滤波器为例,其常⽤的设计指标有:1. 通带边缘频率f p(数字频率为Ωp)2. 阻带边缘频率f st (数字频率为Ωst)3. 通带内最⼤纹波衰减δp=-20log10(1-αp),单位为 dB4. 阻带最⼩衰减αs=-20log10(αs),单位为 dB5. 阻带起伏αs6. 通带峰值起伏αp 其中,以1、2、3、4条最为常⽤。

5、6条在程序中估算滤波器阶数等参数时会⽤到。

数字频率 = 模拟频率/采样频率四、实例分析例1 ⽤凯塞窗设计⼀FIR低通滤波器,通带边界频率Ωp=0.3pi,阻带边界频率Ωs=0.5pi,阻带衰减δs不⼩于50dB。

⽅法⼀:⼿动计算滤波器阶数N和β值,之后在通过程序设计出滤波器。

第⼀步:通过过渡带宽度和阻带衰减,计算滤波器的阶数B和β值。

第⼆步:通过程序设计滤波器。

程序如下:b = fir1(29,0.4,kaiser(30,4.55));[h1,w1]=freqz(b,1);plot(w1/pi,20*log10(abs(h1)));axis([0,1,-80,10]);grid;xlabel('归⼀化频率/p') ;ylabel('幅度/dB') ;波形如下:⽅法⼆:采⽤[n,Wn,beta,ftype] = kaiserord(f,a,dev)函数来估计滤波器阶数等,得到凯塞窗滤波器。

这⾥的函数kaiserord(f,a,dev)或者kaiserord(f,a,dev,f s): f为对应的频率,f s为采样频率;当f⽤数字频率表⽰时,f s则不需要写。

a=[1 0]为由f指定的各个频带上的幅值向量,⼀般只有0和1表⽰;a和f长度关系为(2*a的长度)- 2=(f的长度) devs=[0.05 10^(-2.5)]⽤于指定各个频带输出滤波器的频率响应与其期望幅值之间的最⼤输出误差或偏差,长度与a相等,计算公式:阻带衰减误差=αs,通带衰减误差=αp,可有滤波器指标中的3、4条得到。

FIR滤波器的MATLAB设计与实现

FIR滤波器的MATLAB设计与实现

FIR滤波器的MATLAB设计与实现FIR滤波器(Finite Impulse Response Filter)是一种数字滤波器,其特点是其响应仅由有限长度的序列决定。

在MATLAB中,我们可以使用信号处理工具箱中的函数来设计和实现FIR滤波器。

首先,需要明确FIR滤波器的设计目标,包括滤波器类型(低通、高通、带通、带阻)、通带和阻带的频率范围、通带和阻带的增益等。

这些目标将决定滤波器的系数及其顺序。

在MATLAB中,我们可以使用`fir1`函数来设计FIR滤波器。

该函数的使用方式如下:```matlabh = fir1(N, Wn, type);```其中,`N`是滤波器长度,`Wn`是通带边缘频率(0到0.5之间),`type`是滤波器的类型('low'低通、'high'高通、'bandpass'带通、'stop'带阻)。

该函数会返回一个长度为`N+1`的滤波器系数向量`h`。

例如,如果要设计一个采样频率为10kHz的低通滤波器,通带截止频率为2kHz,阻带频率为3kHz,可以使用以下代码:```matlabfc = 2000; % 通带截止频率h = fir1(50, fc/(fs/2), 'low');```上述代码中,`50`表示滤波器的长度。

注意,滤波器的长度越大,滤波器的频率响应越陡峭,但计算成本也更高。

在设计完成后,可以使用`freqz`函数来分析滤波器的频率响应。

例如,可以绘制滤波器的幅度响应和相位响应曲线:```matlabfreqz(h);```除了使用`fir1`函数外,MATLAB还提供了其他函数来设计FIR滤波器,如`fir2`、`firpm`、`firls`等,具体使用方式可以参考MATLAB的文档。

在实际应用中,我们可以将FIR滤波器应用于音频处理、图像处理、信号降噪等方面。

例如,可以使用FIR滤波器对音频信号进行去噪处理,或者对图像进行锐化处理等。

FIR数字滤波器的Matlab实现

FIR数字滤波器的Matlab实现

第7章 FIR 数字滤波器的Matlab 实现7.1 实验目的● 学习用窗函数法设计FIR 数字滤波器的原理及其设计步骤; ● 学习编写数字滤波器的设计程序的方法,并能进行正确编程; ● 根据给定的滤波器指标,给出设计步骤。

7.2 实验原理及实例分析7.2.1 FIR 低通数字滤波器的设计原理如果系统的冲激响应)(n h d 为已知,则系统的输入/输出关系为:)()()(n h n x n y d ⋅=对于低通滤波器,只要设计出低通滤波器的冲激响应函数,就可以由上式得到系统的输出了。

假设所希望的数字滤波器的频率响应为)(jw d e H ,它是频域的周期函数,周期为2π,那么它与)(jw d e H 相对应的傅立叶系数为dw e e H n h jnw jw d d )(21)(⎰-=πππ以)(n h d 为冲激响应的数字滤波器将具有频域响)(jw d e H 。

但是将)(n h d 作为滤波器脉冲响应有两个问题:(1) 它是无限长的,与FIP 滤波器脉冲响应有限长这一前提不一致 (2) 它是非因果的,0,0)(<≠n n h d 对此,要采取以下的措施,(1) 将)(n h d 截短 (2)将其往右平移, 由此得到)(2n h 的实际频域响应jnwN n jwd en h e H ∑-==12)()(,与理想频域响应)(jw d e H 相近,但不完全一致。

理论证明上述现象是对)(n h d 进行简单截短处理的必然结果,一般称为吉布斯现象,为尽可能的减少吉布斯现象,应对)(n h d 进行加窗截取,即以)()()(n W n h n h N d ⋅=作为FIR 滤波器的系数。

常用的窗函数有矩形窗、海明窗和布莱克曼窗等。

7.2.2 用窗函数法设计FIR 滤波器Matlab 设计FIR 滤波器有多种方法和对应的函数,见表7-1。

表7-1 matlab 设计FIR 滤波器的方法和函数窗函数方法不仅在数字滤波器的设计中占有重要的地位,同时可以用于功率谱的估计,从根本上讲,使用窗函数的目的就是消除由无限序列的截短而引起的Gibbs 现象所带来的影响。

(完整版)使用MATLAB设计ISE中FIR滤波器系数方法总结

(完整版)使用MATLAB设计ISE中FIR滤波器系数方法总结

使用MATLAB设计ISE中FIR滤波器系数的方法
1、打开MATLAB,在命令行窗口输入“fdatool”,打开“Filter Designer & Analysis Tool”工具。

如下图所示:
2、由于FPGA中滤波器的系数需要为整数,因此需要在此处将系数设置为“Fixed -point”类型。

点击上图中红色方框内的按钮,在新出现的页面中将“Filter arithmetic”设置为“Fixed -point”。

设置完成后如下图所示:
3、点击上图中红色方框内的按钮,进入滤波器参数设置页面,在其中设置采样频率(Fs)、通带频率(Fpass)、阻带频率(Fstop)以及阻带衰减(Astop)等参数,并按最下面的“Design Filter”按钮生成滤波器系数。

如下图所示,采样频率为62MHz,通带频率为2MHz,阻带频率为4MHz,阻带衰减为-80dB。

4、然后导出coe文件,点击下图方框中的按钮即可导出coe文件:
5、在ISE中新建一个FIR滤波器IP核,在第一页设置中将“Select Source”改为“COE File”,然后在下面选择上一步生成的coe文件即可。

matlab用窗函数法设计线性相位fir低通滤波器

matlab用窗函数法设计线性相位fir低通滤波器

%用窗函数法设计线性相位低通滤波器clear all;wp=0.5*pi;ws=0.6*pi;wd=ws-wp;%hanning窗N_hann=ceil(8*pi/wd);wc=(wp+ws)/2;if mod(N_hann,2)==0N_hann=N_hann+1;endhann_win=hanning(N_hann);b_hann=fir1(N_hann-1,wc/pi,hann_win);freq_axis=[0:pi/512:pi-pi/512];freqn=[0:511]/512;H_hann=freqz(b_hann,1,512);figure(1);subplot(211);plot(freqn,20*log10(abs(H_hann)));xlabel('归一化频率w/pi');ylabel('幅度谱(dB)'); title('采用hanning 窗设计fir滤波器幅度谱'); subplot(212);plot(freqn,angle(H_hann));xlabel('归一化频率w/pi');ylabel('相位谱');title('采用hanning窗设计fir滤波器相位谱');%hamming窗N_hamm=ceil(8*pi/wd);wc=(wp+ws)/2;if mod(N_hamm,2)==0N_hamm=N_hamm+1;endhamm_win=hamming(N_hamm);b_hamm=fir1(N_hamm-1,wc/pi,hamm_win);H_hamm=freqz(b_hamm,1,512);figure(2)subplot(211);plot(freqn,20*log10(abs(H_hamm)));xlabel('归一化频率w/pi');ylabel('幅度谱(dB)'); title('采用hamming 窗设计fir滤波器幅度谱'); subplot(212);plot(freqn,angle(H_hamm));xlabel('归一化频率w/pi');ylabel('相位谱');title('采用hamming窗设计fir滤波器相位谱');N2_hamm=2*N_hamm;wc=(wp+ws)/2;if mod(N2_hamm,2)==0N2_hamm=N2_hamm+1;endhamm_win=hamming(N2_hamm);b_hamm=fir1(N2_hamm-1,wc/pi,hamm_win);H_hamm=freqz(b_hamm,1,512);figure(3)subplot(211);plot(freqn, 20*log10(abs(H_hamm)) );xlabel('归一化频率w/pi');ylabel('幅度谱(dB)');title('窗长增大一倍,采用hamming窗设计fir滤波器幅度谱'); subplot(212);plot( freqn,angle(H_hamm));xlabel('归一化频率w/pi');ylabel('相位谱');title('窗长增大一倍,采用hanning窗设计fir滤波器相位谱'); 继续阅读。

基于MATLAB的FIR滤波器的设计及应用(图像去噪)

基于MATLAB的FIR滤波器的设计及应用(图像去噪)

数字信号处理课程设计报告书课题名称基于MATLAB 的FIR 滤波器的设计及应用(图像去噪)姓 名 陈南洋学 号 20106491 院、系、部 电气工程系 专 业 电子信息工程 指导教师 刘鑫淼2013年 6 月28日※※※※※※※※※ ※※ ※※ ※※ ※※※※※※※※※2010级数字信号理课程设计基于MATLAB 的FIR 滤波器的设计及应用(图像去噪)20106491 陈南洋一、实验目的1.学会MATLAB 的使用,掌握MATLAB 的程序设计方法; 2.掌握数字信号处理的基本概念、基本理论和基本方法; 3. 在MATLAB 环境下产生噪声信号;4.掌握MATLAB 设计FIR 数字滤波器的窗函数设计方法; 5.学会用MATLAB 对图像进行分析和处理。

二、设计原理1.利用窗函数法设计FIR 滤波器的原理如果所希望的滤波器的理想的频率响应函数为)(ωj e H d,则其对应的单位脉冲响应为()()ωπωωππd e e H n h j j d d ⎰-=21(2.1)窗函数设计法的基本原理是用有限长单位脉冲响应序列()n h 逼近()n h d 。

由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到:()()()n n h n h d ω= (2.2)()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函数()ωj e H 为()()nj N n j en h eH ωω∑-==1(2.3)式(2.3)中,N 为所选窗函数()n ω的长度。

我们知道,用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取值。

设计过程中,要根据对阻带最小衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。

各种类型的窗函数可达到的阻带最小衰减和过渡带宽度见表2.1。

表2.1 各种窗函数的基本参数这样选定窗函数类型和长度N 之后,求出单位脉冲响应()()()n n h n h d ω•=,并按照式(2.3)求出()ωj e H 。

FIR滤波器窗函数设计法详细步骤以及Matlab代码

FIR滤波器窗函数设计法详细步骤以及Matlab代码

FIR滤波器窗函数设计法详细步骤以及Matlab代码采⽤窗函数法设计理想低通,⾼通滤波器,参考北京交通⼤学陈后⾦主编的【数字信号处理】5.2节窗函数法设计线性相位FIR数字滤波器P164,和P188。

设计步骤如下:1)确定滤波器类型,不同的FIR类型可设计不同类型的滤波器,I型可设计LP(低通滤波器),HP(⾼通滤波器),BP(带通滤波器),BS(带阻滤波器)。

Fir I型Fir II型Fir III型Fir IV型LP,HP,BP,BS LP,BP BP HP,BP,BS2)确定设计的滤波器的参数Eg:若要设计⼀个低通滤波器,fp=20,fs=30;Ap=1,As=40,则3db截频Wc = 2*pi*(fs-fp)/Fs;Fs为采样频率。

3)确定窗函数窗的类型主瓣宽度近似过渡带宽度δp,δs Ap(dB)As(dB)矩形窗4pi/N 1.8pi/N0.090.8221Hann8pi/N 6.2pi/N0.00640.05644Hamming8pi/N7pi/N0.00220.01953Blackman12pi/N11.4pi/N0.00020.001774Kaiser可调窗,需要确定β值 50<A , β = 0.1102(A-8.7); 21<=A<=50, β=0.5842(A-21)^0.4 + 0.07886(A-21); A<21, β = 0;4) 确定滤波器的阶数M,⾸先确定滤波器的长度N。

对于除凯撒窗以外的窗函数,N值由以下公式确定:N>=(窗函数近似过渡带宽度)/(Wp-Ws)Fir I型Fir II型Fir III型Fir IV型脉冲响应h[k]为偶对称h[k]为偶对称h[k]为奇对称h[k]为奇对称窗函数长度:N=mod(N+1,2)+N N=mod(N,2)+N N=mod(N+1,2)+N N=mod(N,2)+N阶数M=N-1为偶数M=N-1为奇数M=N-1为偶数M=N-1为奇数若采⽤Kaiser窗,则M≈(A-7.95)÷ 2.285*|Wp-Ws|,A>21。

FIR数字滤波器设计及MATLAB实现

FIR数字滤波器设计及MATLAB实现
s s P A Tc 系统实 践 Y R c .E
l 2 9
FR 字 滤 波 器 设 计 及 MA L 实现 I数 T AB
冯 冠超 ( 哈尔滨工业大学 ( 威海 ) 山东威海
24 0) 6 2 9
摘 要 :主要 研 究在 MA IBt境 T FR ̄ 字滤 波 器的 典 型设计 方 法 ,应 用MA L B 号 处理 工 具箱及 其 扩展 函数 ,使 得如 TA  ̄ . IA c TA信 何在 数 字信 号 处理过 程 中较 复杂 的数 字 滤波 器设计 问题 得 以解 决 。
gr i d
1 引 言 .
数字 信 号 处理 是在 2 世 纪6 年 代 ,用 数字 的数 值 计 算 方法 0 O 对 信号 进 行 处 理 ,以达 到 提 取 有 用信 息 便 于应 用 的 目的 , 目前 数 字信号 处理 技术 已广 泛 应用 于 多个领 域 数 字 滤 波器 根 据 其 单 位 冲激 响应 函数 的 时域 特 性 可 分 为两 类 :无 限冲激 响 应 l 滤波 器和 有 限 冲激 响 应 FR 波器 。 F R l R I滤 I 滤 波器 最 重要 的 优点 就是 由于 不存 在 系统 极点 ,FR 波器 是绝 对 I滤 稳 定 的系 统 。MA L B为数 字 滤 波 的研 究 提供 了一 个直 观 、高 TA 效 、便 捷 的 利器 。 它 以矩 阵 运算 为基 础 ,把 计 算 、 可视 化 、程 序 设计融 合到 一 个交互 式 的工 作环 境 中。
参 考文 献 [13 14 晓晨, 李涛, 刘路 . MATL B3 箱应 用指 南[ .电子工业 出 A - M】
版 社 .0 0 20 .
3 窗函数 设 计的基 本 思想 .
窗 函数 法 设 计 的基 本 思 想 是 把给 定 的频 率 响应 通 过 离 散傅 里 叶逆 变换 ,求 得 脉 冲 响应 ,然 后利 用 加 窗 函 数对 它进 行 截 断 和 平 滑 ,以 实现 一 个物理 可 实 现且 具 有线 性相 位 的 FR I 滤波 器 的 设 计 目的。 其 核 心 是从 给 定 的 频 率特 性 ,通 过 加窗 确 定 有 限 长 单 位脉 冲 Ⅱ 应序  ̄ h n ,过 程 如下 : 向 J ()

低通FIR数字滤波器设计

低通FIR数字滤波器设计

低通FIR数字滤波器设计(1)设计方案本设计利用窗函数法设计了一个低通FIR数字滤波器,利用所设计的滤波器对多个频带叠加的正弦信号进行处理,对比滤波前后的信号时域和频域图。

FIR 滤波器具有严格的相位特性,对于信号处理和数据传输是很重要的。

目前FIR滤波器的设计方法主要有三种:窗函数法、频率取样法和切比雪夫等波纹逼近的最优化设计方法。

由于窗函数法比较简单,可应用现成的窗函数公式,在技术指标要求高的时候是比较灵活方便的,本设计方案选用窗函数法基本思路:从时域出发设计 h(n)逼近理想 hd(n)。

设理想滤波器的单位响应在时域表达为hd(n),则hd(n) 一般是无限长的,且是非因果的,不能直接作为FIR 滤波器的单位脉冲响应。

要想得到一个因果的有限长的滤波器单位抽样响应 h(n),最直接的方法是先将hd(n)往右平移,再进行截断,即截取为有限长因果序列:h(n)=hd(n)w(n),并用合适的窗函数进行加权作为 FIR 滤波器的单位脉冲响应。

按照线性相位滤波器的要求,线性相位FIR数字低通滤波器的单位抽样响应h(n)必须是偶对称的。

对称中心必须等于滤波器的延时常数,即用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,返个现象称为吉布斯(Gibbs)效应。

为了消除吉布斯效应,一般采用其他类型的窗函数。

MATLAB 设计 FIR 滤波器有多种方法和对应的函数。

从根本上讲,使用窗函数的目的就是消除由无限序列的截短而引起的Gibbs现象所带来的影响。

(2)MATLAB程序设计和仿真图MATLAB程序如下:f1=100;f2=200;%待滤波正弦信号频率fs=2000;%采样频率m=(0.3*f1)/(fs/2);%定义过度带宽M=round(8/m);%定义窗函数的长度N=M-1;%定义滤波器的阶数b=fir1(N,0.5*f2/(fs/2));%使用fir1函数设计滤波器%输入的参数分别是滤波器的阶数和截止频率figure(1)[h,f]=freqz(b,1,512);%滤波器的幅频特性图%[H,W]=freqz(B,A,N)当N是一个整数时函数返回N点的频率向量和幅频响应向量plot(f*fs/(2*pi),20*log10(abs(h)))%参数分别是频率与幅值xlabel('频率/赫兹');ylabel('增益/分贝');title('滤波器的增益响应');figure(2)subplot(211)t=0:1/fs:0.5;%定义时间范围和步长s=sin(2*pi*f1*t)+sin(2*pi*f2*t);%滤波前信号plot(t,s);%滤波前的信号图像xlabel('时间/秒');ylabel('幅度');title('信号滤波前时域图');subplot(212)Fs=fft(s,512);%将信号变换到频域AFs=abs(Fs);%信号频域图的幅值f=(0:255)*fs/512;%频率采样plot(f,AFs(1:256));%滤波前的信号频域图xlabel('频率/赫兹');ylabel('幅度');title('信号滤波前频域图');figure(3)sf=filter(b,1,s);%使用filter函数对信号进行滤波%输入的参数分别为滤波器系统函数的分子和分母多项式系数向量和待滤波信号输入subplot(211)plot(t,sf)%滤波后的信号图像xlabel('时间/秒');ylabel('幅度');title('信号滤波后时域图');axis([0.2 0.5 -2 2]);%限定图像坐标范围subplot(212)Fsf=fft(sf,512);%滤波后的信号频域图AFsf=abs(Fsf);%信号频域图的幅值f=(0:255)*fs/512;%频率采样plot(f,AFsf(1:256))%滤波后的信号频域图xlabel('频率/赫兹');ylabel('幅度');title('信号滤波后频域图');低通的FIR数字滤波器的仿真图如图8~图10所示:图8低通FIR滤波器的增益响应图9 滤波前的信号时域图和频域图图10 滤波后的信号时域图和频域图。

用MATLAB设计数字FIR低通滤波器(哈明窗)

用MATLAB设计数字FIR低通滤波器(哈明窗)

用MATLAB设计数字FIR低通滤波器(哈明窗)设计数字FIR低通滤波器,技术指标如下:Wp=0.2pi.rp=0.25db;Ws=0.3pi,as=50db.求解,如下图:程序:wp=0.2*pi;ws=0.3*pi;trwidth=ws-wp;M=ceil(6.6*pi/trwidth)+1;%朝正无穷方向取整n=[0:1:M-1];wc=(ws+wp)/2%求的截止频率(弧度)hd=ideal_lp(wc,M) %调用计算理想低通滤波器的单位取样响应wham=(hamming(M))';%哈明窗函数h=hd.*wham;[H,w]=freqz(h,1,1000,'whole'); %求Z变换频率响应函数H=(H(1:1:501))';w=(w(1:1:501))'mag=abs(H);db=20*log10((mag+eps)/max(mag));pha=angle(H);grd=grpdelay(h,1,w);deltaw=2*pi/1000;Rp=-(min(db(1:1:wp/deltaw+1)))As=-round(max(db(ws/deltaw+1:1:501)))subplot(1,1,1)subplot(2,2,1),stem(n,hd);title('理想脉冲响应')axis([0 M-1 -0.1 0.3]);xlabel('N');ylabel('hd(n)');subplot(2,2,2),stem(n,wham);title('Hamming窗')axis([0 M-1 -0 1.1]);xlabel('N');ylabel('w(n)');subplot(2,2,3),stem(n,h);title('实际脉冲响应')axis([0 M-1 -0.1 0.3]);xlabel('N');ylabel('h(n)');subplot(2,2,4),plot(w/pi,db);title('相对标尺的幅度响应');grid on;axis([0 1 -100 10]);xlabel('frequency in pi units');ylabel('decibels');set(gca,'XTickMode','manual','XTick',[0,0.2,0.3,1])%设置或修改LTI对象的属性值set(gca,'XTickMode','manual','XTick',[-50,0])set(gca,'XTickLabelMode','manual','XTickLabels',['50';'0'])子程序:function hd=ideal_lp(wc,N);a=(N-1)/2;n=[0:1:(N-1)];m=n-a+eps;hd=sin(wc*m)./(pi*m);。

【FPGA】MATLAB生成FIR滤波器的操作步骤(包括生成VerilogHDL代码以及仿真过程)

【FPGA】MATLAB生成FIR滤波器的操作步骤(包括生成VerilogHDL代码以及仿真过程)

【FPGA】MATLAB⽣成FIR滤波器的操作步骤(包括⽣成VerilogHDL代码以及仿真过程)使⽤MATLAB⽣成滤波器有很多学问,这⾥只是作为初步的探索,和FPGA的更多结合,也正在探索中,相关博⽂例如:,该专题⽬录正在记录我学习FIR滤波器的过程。

MATLAB⽣成30阶低通1MHz海明窗函数设计步骤:(1)在MATLAB命令窗⼝中输⼊“fdatool”出现如下对话框:注意,在MATLAB2018以后的版本中输⼊:filterDesigner,即可打开上述界⾯。

(2)设定为低通滤波器。

(3)选择FIR滤波器的设计类型为窗函数。

设置FIR滤波器为30阶滤波器,选择窗函数的类型为海明窗函数,海明窗函数可以得到旁瓣更⼩的效果,能量更加集中在主瓣中,主瓣的能量约占99.963%,第⼀旁瓣的峰值⽐主瓣⼩40dB,但主瓣宽度与海明窗相同。

它定义为:(4)输⼊抽样频率和截⽌频率,分别是16MHz和1MHz。

(5)点击Design Filter 得到结果,如下图:(6)量化输⼊输出,点击⼯作栏左边的量化选项,即“set quantization parameters”选项,选择定点,设置输⼊字长为8,其他选择默认,如下图⽰:及测试⽂件:仿真结果如下图:如上图所⽰,当输⼊为线性,或者输⼊频率较低时,输出幅度不会被抑制,当输⼊频率较⾼,输出幅度会受到⼤幅度抑制,⽽当输⼊为⽩噪声或者混频信号时,滤波器会过滤掉⾼频信号。

这⾥分出来⼀⼩部分空间,引⽤点别⼈的内容来简单介绍下上述⼏个参数的意思:Response Type:选择FIR滤波器的类型:低通、、带通和带阻等。

在DDC/DUC模块设计中,抽取和内插需要使⽤Halfband Lowpass 类型,⽽channel filr需要使⽤Rsed-cosine类型。

Design Method:FIR滤波器设计⽅法有多种,最常⽤的是窗函数设计法(Window)、等波纹设计法(Equiripple)和最⼩⼆乘法(Least-Squares)等。

matlab的fir滤波器设计

matlab的fir滤波器设计

matlab的fir滤波器设计FIR(Finite Impulse Response)滤波器是指响应有限长度序列输入的数字滤波器,它可以用于信号去噪、信号滤波和信号重构等领域。

MATLAB软件是目前应用广泛的数学软件工具箱,它可以实现数字信号处理、信号滤波和滤波器设计等功能。

下面我们来分步骤解析如何利用MATLAB完成FIR滤波器设计。

第一步,确定滤波器参数要设计FIR滤波器,需要明确设计的目的,例如信号去噪还是信号滤波。

同时,需要确定滤波器的参数,包括滤波器的采样率、通带边界、阻带边界等。

第二步,调用MATLAB工具箱并加载数据打开MATLAB软件,选择Digital Signal Processing Toolbox,调用fir1函数,该函数用于设计一般的低通、高通、带通和带阻FIR 滤波器。

加载需要滤波的数据,并将其存储在一个变量中。

第三步,进行滤波器设计在MATLAB命令行窗口中输入以下命令,来进行FIR滤波器的设计。

h = fir1(N, Wn, 'type');其中,N是滤波器的阶数,Wn是正规化的截止频率值,type是滤波器的类型,可以是低通、高通、带通和带阻滤波器。

例如,我们要设计一个30阶的低通滤波器,带通频带为0.3至0.7,采样率为1000Hz,输入以下命令:N = 30;Wn = [0.3 0.7];Btype = 'low';FIR_filter = fir1(N, Wn, Btype);第四步,使用FIR滤波器进行滤波使用filter函数,可以将设计好的FIR滤波器应用到加载的数据上,进行滤波操作。

Y_filtered = filter(FIR_filter, 1, X);其中,FIR_filter是设计好的FIR滤波器,X是加载的待滤波数据,Y_filtered是经过滤波器处理后的数据。

第五步,可视化输出结果通过绘制函数将滤波器的输入和输出信号进行可视化处理,观察滤波效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.00750.0021-0.0014-0.0024-0.0018-0.0008
第三部分:原信号波形
将附件4中的dat文件利用识别软件读取其中的数据,共1024个点,存在TXT文档中,取名bv.txt,并复制到matlab的work文件夹。
在matlab中编写如下程序:
x0=load('zhendong.txt');%找到信号数据地址并加载数据。
Matlab
附件txt中的数字是一个实测振动信号,采样频率为5000Hz,试设计一个长度为M=32的FIR低通滤波器,截止频率为600Hz,用此滤波器对此信号进行滤波。
要求:
(1)计算数字截止频率;
(2)给出滤波器系数;
(3)绘出原信号波形;
(4)绘出滤波后的信号波形;
解答过程:
第一部分:数字截止频率的计算
在matlab窗口中输入如下程序,即可得到滤波后的波形图:
x0=load('zhendong.txt');
t=0:1/5000:1023/5000;
figure(1);
plot(t,x0);
xlabel('t/s');
ylabel('幅值');
fs=5000;
n=32;
Wn=0.24;
b=fir1(n,Wn);%求滤波系数
-0.0242-0.0374-0.02990.00870.07560.15370.21660.24070.2166Columns 19 through 27
0.15370.07560.0087-0.0299-0.0374-0.0242-0.00540.00770.0110Columns 28 through 33
y0=filter(b,1,x0);%用matlab自带的filter函数进行滤波
figure(2);
plot(t,y0);
xlabel('t/s');
ylabel('幅值');
程序运行后就可以得到滤波后的波形,如下图所示:
0.6
0.4
0.2
0


-0.2
-0.4
-0.6
-0.8
00.050.1
t/s0.150.20.25
t=0:1/5000:1023/5000;%将数据的1024个点对应时间加载
figure(1);
plot(t,x0);
xlabel('t/s');
ylabel('幅值');
运行之后就得到如下波形,即振动信号的原始波形图:
1.5
1
0.5


0
-0.5
-1
-1.5
00.050.1
t/s0.150.20.25第四部分:滤波后的波形图
数字截止频率等于截止频率除以采样频率的一半,即
n=600/5000/2=0.24第二部分:滤波器系数的确定
在matlab中输入如下程序,即可得到滤波器系数:
n=32
Wn=0.24
b=fir1(n,Wn)
得到的滤波器系数b为
Columns 1 through 9
-0.0008-0.0018-0.0024-0.00140.00210.00750.01100.0077-0.0054C
相关文档
最新文档