fir低通滤波器matlab编程滤波前后图形
用MATLAB设计FIR数字滤波器

实验八 用MATLAB 设计FIR 数字滤波器(二)一、实验目旳:1、加深对窗函数法设计FIR 数字滤波器旳基本原理旳理解。
2、学习用MATLAB 语言旳窗函数法编写设计FIR 数字滤波器旳程序。
3、理解MATLAB 语言有关窗函数法设计FIR 数字滤波器旳常用函数用法。
二、实验原理:1、用窗函数法设计FIR 数字滤波器 FIR 数字滤波器旳系统函数为N-1-n n=0H(z)=h(n)z ∑这个公式也可以当作是离散LSI 系统旳系统函数M-m -1-2-mmm=0012m N -1-2-k-k12k k k=1bz b +b z +b z ++b z Y(z)b(z)H(z)====X(z)a(z)1+a z +a z ++a z1+a z ∑∑ 分母a 0为1,其他a k 全都为0时旳一种特例。
由于极点所有集中在零点,稳定和线性相位特性是FIR 滤波器旳突出长处,因此在实际中广泛使用。
FIR 滤波器旳设计任务是选择有限长度旳h(n),使传播函数H(e j ω)满足技术规定。
重要设计措施有窗函数法、频率采样法和切比雪夫等波纹逼近法等。
本实验重要简介窗函数法。
用窗函数法设计FIR 数字滤波器旳基本环节如下:(1)根据过渡带和阻带衰减指标选择窗函数旳类型,估算滤波器旳阶数N 。
(2)由数字滤波器旳抱负频率响应H(e j ω)求出其单位脉冲响应h d (n)。
可用自定义函数ideal_lp实现抱负数字低通滤波器单位脉冲响应旳求解。
程序清单如下:function hd=ideal_lp(wc,N) %点0到N-1之间旳抱负脉冲响应%wc=截止频率(弧度)%N=抱负滤波器旳长度tao=(N-1)/2;n=[0:(N-1)];m=n-tao+eps; %加一种小数以避免0作除数hd=sin(wc*m)./(pi*m);其他选频滤波器可以由低通频响特性合成。
如一种通带在ωc1~ωc2之间旳带通滤波器在给定N值旳条件下,可以用下列程序实现:Hd=ideal_lp(wc2,N)-ideal_lp(wc1,N)(3)计算数字滤波器旳单位冲激响应h(n)=w(n)h d(n)。
matlabfir滤波器设计

matlabfir滤波器设计在数字信号处理中,滤波器是一种常用的工具,用于处理信号的频率特性。
其中,FIR(有限脉冲响应)滤波器是一种常见的滤波器类型之一。
MATLAB提供了方便的工具和函数来设计和实现FIR滤波器。
在本文中,我们将介绍MATLAB中如何使用fir1函数来设计FIR滤波器。
要使用fir1函数设计FIR滤波器,需要指定滤波器的阶数和截止频率。
阶数决定了滤波器的复杂度,而截止频率则决定了滤波器的频率响应特性。
通过调整这两个参数,可以设计出不同类型的滤波器,如低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
接下来,我们可以使用fir1函数来设计一个简单的低通滤波器。
例如,我们可以指定一个4阶低通滤波器,截止频率为0.5(归一化频率,取值范围为0到1)。
通过调用fir1函数并传入相应的参数,即可得到设计好的滤波器系数。
设计好滤波器系数后,我们可以将其应用于信号处理中。
例如,我们可以使用filter函数来对信号进行滤波。
将设计好的滤波器系数和待处理的信号作为输入参数传入filter函数,即可得到滤波后的信号。
这样,我们就可以实现对信号的滤波处理。
除了fir1函数外,MATLAB还提供了其他用于滤波器设计的函数,如firpm、fircls、firls等。
这些函数可以实现更复杂的滤波器设计,满足不同的需求。
通过选择合适的函数和参数,可以设计出性能优越的滤波器,用于各种信号处理应用中。
MATLAB提供了强大的工具和函数来设计和实现各种类型的滤波器。
通过合理选择滤波器的阶数和截止频率,以及使用适当的函数来设计滤波器系数,可以实现对信号的有效滤波处理。
希望本文能够帮助读者了解MATLAB中fir1函数的使用方法,进一步掌握滤波器设计的技巧,提高信号处理的效率和质量。
使用MATLAB设计FIR滤波器

使⽤MATLAB设计FIR滤波器1. 采⽤fir1函数设计,fir1函数可以设计低通、带通、⾼通、带阻等多种类型的具有严格线性相位特性的FIR滤波器。
语法形式:b = fir1(n, wn)b = fir1(n, wn, ‘ftype’)b = fir1(n, wn, ‘ftype’, window)b = fir1(n, wn, ‘ftype’, window, ‘noscale’)参数的意义及作⽤:b:返回的FIR滤波器单位脉冲响应,脉冲响应为偶对称,长度为n+1;n:滤波器的介数;wn:滤波器的截⽌频率,取值范围为0<wn<1,1对应信号采样频率⼀半。
如果wn是单个数值,且ftype参数为low,则表⽰设计截⽌频率为wn的低通滤波器,如果ftype参数为high,则表⽰设计截⽌频率为wn的⾼通滤波器;如果wn是有两个数组成的向量[wn1wn2],ftype为stop,则表⽰设计带阻滤波器,ftype为bandpass,则表⽰设计带通滤波器;如果wn是由多个数组成的向量,则根据ftype的值设计多个通带或阻带范围的滤波器,ftype为DC-1,表⽰设计的第⼀个频带为通带,ftype为DC-0,表⽰设计的第⼀个频带为阻带;window:指定使⽤的窗函数,默认为海明窗;noscale:指定是否归⼀化滤波器的幅度。
⽰例:N=41; %滤波器长度fs=2000; %采样频率%各种滤波器的特征频率fc_lpf=200;fc_hpf=200;fp_bandpass=[200 400];fc_stop=[200 400];%以采样频率的⼀半,对频率进⾏归⼀化处理wn_lpf=fc_lpf*2/fs;wn_hpf=fc_hpf*2/fs;wn_bandpass=fp_bandpass*2/fs;wn_stop=fc_stop*2/fs;%采⽤fir1函数设计FIR滤波器b_lpf=fir1(N-1,wn_lpf);b_hpf=fir1(N-1,wn_hpf,'high');b_bandpass=fir1(N-1,wn_bandpass,'bandpass');b_stop=fir1(N-1,wn_stop,'stop');%求滤波器的幅频响应m_lpf=20*log(abs(fft(b_lpf)))/log(10);m_hpf=20*log(abs(fft(b_hpf)))/log(10);m_bandpass=20*log(abs(fft(b_bandpass)))/log(10);m_stop=20*log(abs(fft(b_stop)))/log(10);%设置幅频响应的横坐标单位为Hzx_f=0:(fs/length(m_lpf)):fs/2;%绘制单位脉冲响应%绘制单位脉冲响应subplot(421);stem(b_lpf);xlabel('n');ylabel('h(n)');subplot(423);stem(b_hpf);xlabel('n');ylabel('h(n)');subplot(425);stem(b_bandpass);xlabel('n');ylabel('h(n)');subplot(427);stem(b_stop);xlabel('n');ylabel('h(n)');%绘制幅频响应曲线subplot(422);plot(x_f,m_lpf(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(424);plot(x_f,m_hpf(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(426);plot(x_f,m_bandpass(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);subplot(428);plot(x_f,m_stop(1:length(x_f)));xlabel('频率(Hz)','fontsize',8);ylabel('幅度(dB)','fontsize',8);2. 采⽤fir2函数设计,函数算法是:⾸先根据要求的幅频响应向量形式进⾏插值,然后进⾏傅⾥叶变换得到理想滤波器的单位脉冲响应,最后利⽤窗函数对理想滤波器的单位脉冲响应激进型截断处理,由此得到FIR滤波器系数。
实验3 用MATLAB窗函数法设计FIR滤波器

实验10 用MATLAB 窗函数法设计FIR 滤波器一、实验目的㈠、学习用MA TLAB 语言窗函数法编写简单的FIR 数字滤波器设计程序。
㈡、实现设计的FIR 数字滤波器,对信号进行实时处理。
二、实验原理㈠、运用窗函数法设计FIR 数字滤波器与IIR 滤波器相比,FIR 滤波器在保证幅度特性满足技术要求的同时,很容易做到有严格的线性相位特性。
设FIR 滤波器单位脉冲响应)(n h 长度为N ,其系统函数)(z H 为∑-=-=10)()(N n n zn h z H)(z H 是1-z 的)1(-N 次多项式,它在z 平面上有)1(-N 个零点,原点0=z 是)1(-N 阶重极点。
因此,)(z H 永远是稳定的。
稳定和线性相位特性是FIR 滤波器突出的优点。
FIR 滤波器的设计任务是选择有限长度的)(n h ,使传输函数)(ωj e H 满足技术要求。
主要设计方法有窗函数法、频率采样法和切比雪夫等波纹逼近法。
本实验主要介绍用窗函数法设计FIR 数字滤波器。
图7-10-1 例1 带通FIR 滤波器特性㈡、 用MATLAB 语言设计FIR 数字滤波器例1:设计一个24阶FIR 带通滤波器,通带为0.35<ω<0.65。
其程序如下b=fir1(48,[0.35 0.65]);freqz(b,1,512)可得到如图7-10-1 所示的带通FIR滤波器特性。
由程序可知,该滤波器采用了缺省的Hamming窗。
例2:设计一个34阶的高通FIR滤波器,截止频率为0.48,并使用具有30dB波纹的Chebyshev窗。
其程序如下Window=chebwin(35,30);b=fir1(34,0.48,'high',Window);freqz(b,1,512)可得到如图7-10-2 所示的高通FIR滤波器特性。
图7-10-2 例2 高通FIR滤波器特性例3:设计一个30阶的低通FIR滤波器,使之与期望频率特性相近,其程序如下 f=[0 0.6 0.6 1];m=[1 1 0 0];b=fir2(30,f,m);[h,w]=freqz(b,1,128);plot(f,m,w/pi,abs(h))结果如图7-10-3所示。
低通滤波matlab

低通滤波matlab低通滤波是数字信号处理中常用的一种滤波方式。
其主要作用是去除高频分量,保留低频分量,从而使信号更加平滑。
Matlab提供了许多低通滤波函数,本文结合实例介绍了常用的几种。
一、FIR低通滤波FIR(Finite Impulse Response,有限冲激响应)低通滤波是数字信号处理中常用的滤波器之一。
它的设计方法是通过选择一组合适的滤波器系数来实现滤波的目的。
Matlab中提供了fir1函数用于设计FIR低通滤波器。
FIR滤波器的特点是具有线性相位,因此在滤波后不会改变信号的相位。
下面是一个例子,在Matlab中生成一个含有高频和低频分量的信号:```matlab t = linspace(0, 1, 1000); y =sin(2*pi*50*t) + sin(2*pi*500*t); ```可以看到,y信号中含有50Hz和500Hz两个频率分量。
接下来,我们使用fir1函数设计一个通带截止频率为200Hz的FIR低通滤波器,并将信号y通过该滤波器过滤掉高频分量,得到滤波后的信号:```matlab b = fir1(50, 200/(1000/2), 'low');y_filtered = filter(b, 1, y); ```fir1函数的第一个参数表示滤波器的阶数,第二个参数表示滤波器的通带截止频率,第三个参数表示滤波器的类型,这里选择低通滤波器。
filter函数用于将信号通过滤波器进行滤波,第一个参数表示滤波器系数,第二个参数表示单位脉冲响应,第三个参数表示待滤波信号。
最后,将原信号和滤波后的信号进行对比,可以看到滤波后的信号已经去除了500Hz的高频分量:```matlab plot(t, y); hold on; plot(t,y_filtered); hold off; legend('Original Signal','Filtered Signal'); ```二、IIR低通滤波IIR(Infinite Impulse Response,无限冲激响应)低通滤波是另一种常用的滤波器。
利用MATLAB窗函数法设计一个可实现的FIR低通滤波器。

一、实验目的1.掌握在MATLAB中窗函数的使用方法,了解不同窗函数之间的差别。
2.使用窗函数法设计一个可实现的FIR低通滤波器。
3.观察在相同长度下,不同的窗函数设计出来的滤波器有什么差别。
4.观察同一个窗在不同长度下设计出来的滤波器有什么差别。
二、实验条件PC机,MATLAB7.0三、实验内容1)通过help查找窗函数在MATLAB中如何实现通过example了解MATLAB中窗函数的实现,并且利用矩形窗,汉宁窗,哈明窗,布莱克曼窗和凯塞窗来进行接下来的实验。
2)设计物理可实现的低通滤波器设计思路:因为要设计FIR有限脉冲响应滤波器,通常的理想滤波器的单位脉冲响应h是无限长的,所以需要通过窗来截断它,从而变成可实现的低通滤波器。
程序如下:clc;clear all;omga_d=pi/5;omga=0:pi/30:pi;for N=3:4:51;w1= window(@blackman,N);w2 = window(@hamming,N);w3= window(@kaiser,N,2.5);w4= window(@hann,N);w5 = window(@rectwin,N);M=floor(N/2);subplot(311);plot(-M:M,[w1,w2,w3,w4,w5]); axis([-M M 0 1]);legend('Blackman','Hamming','kaiser','hann','rectwin');n=1:M;hd=sin(n*omga_d)./(n*omga_d)*omga_d/pi;hd=[fliplr(hd),1/omga_d,hd];h_d1=hd.*w1';h_d2=hd.*w2';h_d3=hd.*w3';h_d4=hd.*w4';h_d5=hd.*w5';m=1:M;H_d1=2*cos(omga'*m)*h_d1(M+2:N)'+h_d1(M+1);H_d2=2*cos(omga'*m)*h_d2(M+2:N)'+h_d2(M+1);H_d3=2*cos(omga'*m)*h_d3(M+2:N)'+h_d3(M+1);H_d4=2*cos(omga'*m)*h_d4(M+2:N)'+h_d4(M+1);H_d5=2*cos(omga'*m)*h_d5(M+2:N)'+h_d5(M+1);subplot(312);plot(omga,[H_d1,H_d2,H_d3,H_d4,H_d5]);legend('Blackman','Hamming','kaiser','hann','rectwin');subplot(313);plot(abs([fft(h_d1);fft(h_d2);fft(h_d3);fft(h_d4);fft(h_d5)] )');pause();end程序分析:整个对称窗的长度为N,然而为了在MATLAB中看到窗函数在负值时的形状需将N 变为它的一半,即为2M+1个长度。
基于MATLAB设计FIR滤波器

基于MATLAB设计FIR滤波器FIR(Finite Impulse Response)滤波器是一种数字滤波器,它具有有限的冲激响应长度。
基于MATLAB设计FIR滤波器可以使用signal工具箱中的fir1函数。
fir1函数的语法如下:b = fir1(N, Wn, window)其中,N是滤波器的阶数,Wn是截止频率,window是窗函数。
要设计一个FIR低通滤波器,可以按照以下步骤进行:步骤1:确定滤波器的阶数。
阶数决定了滤波器的截止频率的陡峭程度。
一般情况下,阶数越高,滤波器的陡峭度越高,但计算复杂度也会增加。
步骤2:确定滤波器的截止频率。
截止频率是指在滤波器中将信号的频率限制在一定范围内的频率。
根据应用的需求,可以选择适当的截止频率。
步骤3:选择窗函数。
窗函数是为了在时域上窗口函数中心增加频率衰减因子而使用的函数。
常用的窗函数有Hamming、Hanning等。
窗函数可以用来控制滤波器的幅度响应特性,使得它更平滑。
步骤4:使用fir1函数设计滤波器。
根据以上步骤确定滤波器的阶数、截止频率和窗函数,可以使用fir1函数设计FIR滤波器。
具体代码如下:N=50;%设定阶数Wn=0.5;%设定截止频率window = hanning(N + 1); % 使用Hanning窗函数步骤5:使用filter函数对信号进行滤波。
设计好FIR滤波器后,可以使用filter函数对信号进行滤波。
具体代码如下:filtered_signal = filter(b, 1, input_signal);其中,input_signal是输入信号,filtered_signal是滤波后的信号。
以上,便是基于MATLAB设计FIR滤波器的简要步骤和代码示例。
根据具体需求和信号特性,可以进行相应的调整和优化。
基于Matlab的FIR滤波器设计与实现

基于Matlab的FIR滤波器设计与实现⼀、摘要 前⾯⼀篇⽂章介绍了通过FDATool⼯具箱实现滤波器的设计,见“”,这⾥通过⼏个例⼦说明采⽤Matlab语⾔设计FIR滤波器的过程。
⼆、实验平台 Matlab7.1三、实验原理 以低通滤波器为例,其常⽤的设计指标有:1. 通带边缘频率f p(数字频率为Ωp)2. 阻带边缘频率f st (数字频率为Ωst)3. 通带内最⼤纹波衰减δp=-20log10(1-αp),单位为 dB4. 阻带最⼩衰减αs=-20log10(αs),单位为 dB5. 阻带起伏αs6. 通带峰值起伏αp 其中,以1、2、3、4条最为常⽤。
5、6条在程序中估算滤波器阶数等参数时会⽤到。
数字频率 = 模拟频率/采样频率四、实例分析例1 ⽤凯塞窗设计⼀FIR低通滤波器,通带边界频率Ωp=0.3pi,阻带边界频率Ωs=0.5pi,阻带衰减δs不⼩于50dB。
⽅法⼀:⼿动计算滤波器阶数N和β值,之后在通过程序设计出滤波器。
第⼀步:通过过渡带宽度和阻带衰减,计算滤波器的阶数B和β值。
第⼆步:通过程序设计滤波器。
程序如下:b = fir1(29,0.4,kaiser(30,4.55));[h1,w1]=freqz(b,1);plot(w1/pi,20*log10(abs(h1)));axis([0,1,-80,10]);grid;xlabel('归⼀化频率/p') ;ylabel('幅度/dB') ;波形如下:⽅法⼆:采⽤[n,Wn,beta,ftype] = kaiserord(f,a,dev)函数来估计滤波器阶数等,得到凯塞窗滤波器。
这⾥的函数kaiserord(f,a,dev)或者kaiserord(f,a,dev,f s): f为对应的频率,f s为采样频率;当f⽤数字频率表⽰时,f s则不需要写。
a=[1 0]为由f指定的各个频带上的幅值向量,⼀般只有0和1表⽰;a和f长度关系为(2*a的长度)- 2=(f的长度) devs=[0.05 10^(-2.5)]⽤于指定各个频带输出滤波器的频率响应与其期望幅值之间的最⼤输出误差或偏差,长度与a相等,计算公式:阻带衰减误差=αs,通带衰减误差=αp,可有滤波器指标中的3、4条得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三部分:原信号波形
将附件4中的dat文件利用识别软件读取其中的数据,共1024个点,存在TXT文档中,取名bv.txt,并复制到matlab的work文件夹。
在matlab中编写如下程序:
x0=load('zhendong.txt');%找到信号数据地址并加载数据。
Matlab
附件txt中的数字是一个实测振动信号,采样频率为5000Hz,试设计一个长度为M=32的FIR低通滤波器,截止频率为600Hz,用此滤波器对此信号进行滤波。
要求:
(1)计算数字截止频率;
(2)给出滤波器系数;
(3)绘出原信号波形;
(4)绘出滤波后的信号波形;
解答过程:
第一部分:数字截止频率的计算
在matlab窗口中输入如下程序,即可得到滤波后的波形图:
x0=load('zhendong.txt');
t=0:1/5000:1023/5000;
figure(1);
plot(t,x0);
xlabel('t/s');
ylabel('幅值');
fs=5000;
n=32;
Wn=0.24;
b=fir1(n,Wn);%求滤波系数
-0.0242-0.0374-0.02990.00870.07560.15370.21660.24070.2166Columns 19 through 27
0.15370.07560.0087-0.0299-0.0374-0.0242-0.00540.00770.0110Columns 28 through 33
y0=filter(b,1,x0);%用matlab自带的filter函数进行滤波
figure(2);
plot(t,y0);
xlabel('t/s');
ylabel('幅值');
程序运行后就可以得到滤波后的波形,如下图所示:
0.6
0.4
0.2
0
幅
值
-0.2
-0.4
-0.6
-0.8
00.050.1
t/s0.150.20.25
t=0:1/5000:1023/5000;%将数据的1024个点对应时间加载
figure(1);
plot(t,x0);
xlabel('t/s');
ylabel('幅值');
运行之后就得到如下波形,即振动信号的原始波形图:
1.5
1
0.5
幅
值
0
-0.5
-1
-1.5
00.050.1
t/s0.150.20.25第四部分:滤波后的波形图
数字截止频率等于截止频率除以采样频率的一半,即
n=600/5000/2=0.24第二部分:滤波器系数的确定
在matlab中输入如下程序,即可得到滤波器系数:
n=32
Wn=0.24
b=fir1(n,Wn)
得到的滤波器系数b为
Columns 1 through 9
-0.0008-0.0018-0.0024-0.00140.00210.00750.01100.0077-0.0054C