一元一次方程应用-等积变形、行程问题
一元一次方程的应用—等积变形和行程问题
一元一次方程的应用——等积变形和行程问题一、教学目标1.通过分析图形问题中数量关系体会方程模型的作用,进一步提高学生分析问题、解决问题、敢于提出问题的能力;2.理解行程问题中数量之间的关系,能根据行程问题中的数量关系建立方程,进一步提高学生分析问题、解决问题的能力;3.通过实际问题的探讨,使学生在独立思考的过程中,进一步体会数学的应用价值,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望.二、教学重难点1.教学重点:掌握用一元一次方程解决实际问题的基本过程.2.教学难点:分清有关数量关系,正确找出作为列方程依据的主要等量关系.三、教学方法启发式、精讲精练四、教学过程(一)导入新课【情景引入】一支牙膏出口处直径为5mm,小明每次刷牙都挤出1cm 长的牙膏,这样一支牙膏可以用36次。
该品牌牙膏现推出新包装,只是将出口直径改为6mm,小明还是按习惯每次挤出1cm 长的牙膏,这样,这只牙膏能用多少次?(二)讲授新课1.等积变形问题例1:如图,用直径为200mm 的圆柱体钢,锻造一个长、宽、高分别为300mm 、300mm 和90mm 的长方体毛坯底板,应截取圆钢多少(圆柱的体积公式:体积 = 底面积高线长.计算时 取3.14.要求结果误差不超过1mm )?【想一想】问题1:题目中有哪些已知量和未知量?如何表示未知量?已知:圆钢直径(200mm )、长方体毛胚的长宽高(300mm 、300mm 、90mm ) 未知:圆钢的高设未知数:设应截取圆钢x 毫米问题2:分析题意,你能找到什么等量关系?等量关系:圆钢体积=长方体毛胚的体积问题3:如何根据等量关系“圆钢体积=长方体毛胚的体积”列出方程? 根据等量关系列出方程,得: 200x90 3003009030030022002⨯⨯=⎪⎭⎫ ⎝⎛x π 解方程,得:258≈x答:应截取258mm 长的圆柱体钢.【点拨】等积变形就是无论物体怎么变化都存在一个等量关系,即物体变化前后面积或体积不变.【归纳总结】列方程解应用题的一般步骤:1.设未知数:弄清题意和题中数量关系,用字母(如x,y)表示问题中的未知数;2.找等量关系:分析题意,找出相等关系;3.列出方程:根据相等关系,列出需要的代数式,并列出方程;4.解方程:解这个方程,求出未知数的值;5.检验作答:检查所得值是否正确和符合实际情形,并写出答案(包括单位名称).2.行程问题例2:为了适应经济发展,铁路运输再次提速.如果客车行驶的平均速度增加40km/h,提速后由合肥到北京1110km 的路程只需行驶10h.那么,提速前,这趟客车平均每时行驶多少千米?【分析】行程问题中常涉及的量有路程、平均速度和时间,它们之间的基本关系为:路程=平均速度×时间.【解答】设提速前客车平均每小时行驶xkm,那么提速后客车每小时行驶(x+40)km,客车行驶路程为1110km,平均速度为(x+40)km/h,所需时间是10h.根据题意,得10(x+40)=1110解方程,得x=71答:提速前这趟客车的平均速度为71km/h.例3 甲、乙两站相距480千米,一列慢车从甲站开出,每小时行90千米,一列快车从乙站开出,每小时行140千米.(1)慢车先开出1小时,快车再开,两车相向而行.问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行,多少小时后两车相距600千米?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600千米?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?【归纳总结】行程问题中一般涉及“路程”“速度”“时间”这三个量,且路程=速度×时间.行程问题分同向而行和相向而行两种情况,找等量关系时可以画线段示意图帮助分析.例4:汽船从甲地顺水开往乙地,所用时间比从乙地逆水开往甲地少1.5小时.已知船在静水的速度为18千米/小时,水流速度为2千米/小时,求甲、乙两地之间的距离?【分析】本题是行程问题,故有:路程=平均速度×时间;时间=路程÷平均速度.但涉及水流速度,必须要掌握:顺水速度=船速+水速;逆水速度=船速-水速.【解答】方法一:直接设元法解:设甲、乙两地的距离为x 千米,等量关系:逆水所用时间-顺水所用时间=1.5方法二:间接设元法解:设汽船逆水航行从乙地到甲地需x小时,则汽船顺水航行的距离是(18+2)(x-1.5)千米,逆水航行的距离是(18-2)x千米.等量关系:汽船顺水航行的距离=汽船逆水航行的距离环形跑道问题问题1:操场一周是400米,小明每秒跑5米,小华骑自行车每秒10米,两人绕跑道同时同地同向而行,他俩能相遇吗?问题2:操场一周是400米,小明每秒跑5米,小华骑自行车每秒10米,两人绕跑道同时同地同向而行,经过几秒钟两人第一次相遇?变式训练:操场一周是400米,小明每秒跑5米,小华骑自行车每秒10米,两人绕跑道同时同地相背而行,则两个人何时相遇?【当堂练习】1.一个宽为3cm的长方形与一个边长为6cm的正方形面积相等,则这个长方形的周长为()A.12cmB.18cmC.24cmD.30cm2.甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5千米,则乙的时速是()A.12.5千米/时B.15千米/时C.17.5千米/时D.20千米/时3.一个底面直径为16厘米的圆柱形木桶内装满水,水中淹没着一个底面直径为8厘米、高为15厘米的铁质小圆柱体.当铁质小圆柱体取出后,木桶内水面下降了多少?4.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,求船在静水中的速度.(三)课堂小结(四)课后作业p1.全品作业本5354五、板书设计等积变形和行程问题列方程解应用题的一般步骤:设未知数;找等量关系;列出方程;解方程;检验作答1.等积变形问题2.行程问题。
七年级一元一次方程解应用题
七年级一元一次方程解应用题一、行程问题。
1. 甲、乙两人相距285米,相向而行,甲从A地每秒走8米,乙从B地每秒走6米,如果甲先走12米,那么甲出发几秒与乙相遇?- 设甲出发x秒与乙相遇。
- 甲先走12米,然后甲、乙共同走的路程为(285 - 12)米。
- 甲的速度是每秒8米,乙的速度是每秒6米,根据路程 = 速度×时间,可列方程:8x+6(x - (12)/(8))=285(这里x-(12)/(8)表示乙走的时间,因为甲先走了12米这段时间乙没走)。
- 化简方程得8x + 6x-9 = 285。
- 移项合并得14x=294。
- 解得x = 21。
- 所以甲出发21秒与乙相遇。
2. 一艘船在两个码头之间航行,水流速度是3千米/小时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
- 设船在静水中的速度为x千米/小时。
- 顺水速度 = 船在静水中的速度+水流速度,即(x + 3)千米/小时;逆水速度=船在静水中的速度 - 水流速度,即(x-3)千米/小时。
- 根据路程相等,可列方程2(x + 3)=3(x - 3)。
- 展开括号得2x+6 = 3x - 9。
- 移项得3x-2x=6 + 9。
- 两码头之间的距离为2×(15 + 3)=36千米。
3. 甲、乙两人在400米的环形跑道上练习跑步,甲每秒跑6米,乙每秒跑4米。
若两人同时同地同向出发,几秒后两人首次相遇?- 设x秒后两人首次相遇。
- 同向出发首次相遇时,甲比乙多跑一圈,即400米。
- 根据路程差 = 速度差×时间,可列方程(6 - 4)x=400。
- 化简得2x = 400。
- 解得x = 200。
- 所以200秒后两人首次相遇。
二、工程问题。
4. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?- 设还需要x天完成。
- 把这项工程的工作量看作单位“1”,甲的工作效率是(1)/(10),乙的工作效率是(1)/(15)。
初一一元一次方程应用题八种类型解析与练习
初一一元一次方程应用题八种类型解析与练习列一元一次方程解应用题的一般步骤(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.1.和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.(3)增长量=原有量×增长率现在量=原有量+增长量2. 等积变形问题:“等积变形”是以形状改变而体积不变为前提.常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积.常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h= r2h②长方体的体积 V=长×宽×高=abc3. 劳力调配问题:这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变4. 数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c.(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.商品销售问题(1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价×100%(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18. 储蓄问题⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率(20%)1、一个两位数,十位上的数字与个位上的数字之和为11,如果把十位上的数字与个位上的数字对调,那么得到的新数就比原数大63,求原来的两位数。
列一元一次方程解应用题
列一元一次方程解应用题(一)和、差、倍、分问题:1、一群老人去赶集,集上买了一堆梨,一人1个多一个,一人2个少2个,几位老人几个梨?2、七年级二班有45人报名参加了文学社或书画社,已知参加文学社的人数比参加书画社的人数多5人,两个社都参加的有20人,问参加书画社的有多少人?3、一群割草人要把两片草地的草割完.两片草地一大一小,大的比小的大一倍,大家都先在大片草地上割了半天,午后分成两组,一半人继续在大片草地上割,到下午收工时恰好割完;另一半人到小片草地上割,到收工时还剩下一小块,这一小块次日由一个人去割,恰好需要一天工夫.问:这群割草者共有多少人?4、甲、乙、丙三人拿出同样多的钱,合伙订购同种规格的若干件商品,商品买来后,甲、乙分别比丙多拿了7、11件商品,最后结算时,甲付给丙14元,那么,乙应付给丙 元。
(二)等积变形问题:1. 已知圆柱的底面直径是60毫米,高为100毫米,圆锥的底面直径是120毫米,且圆柱的体积比圆锥的体积多一半,求圆锥的高是多少?2、请根据图中给出的信息,列出正确的方程.小乌鸦,你飞到装有相同水量的小量筒,就可以喝到水了! x 58老乌鸦,我喝不到大量筒中的x3、如图是一块在电脑屏幕上出现的矩形块图,由6个颜色不同的正方形组成,设最小的一个正方形边长为1,求这个矩形块图的面积。
(三)调配问题:1、学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?2、七年级三班学生参加义务劳动,原来每组8人,后来根据需要重新编组,每组14人,这样比原来减少3组。
问这个班共有学生多少人?3、某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门). 安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%. 安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离. 假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么?4、甲、乙、丙三人在A、B两块地植树,其中甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地.已知甲、乙、丙每小时分别能植树8棵,6棵,10棵.若乙在A地植树10小时后立即转到B 地,则两块地同时开始同时结束;若要两块地同时开始,但A地比B地早9小时完成,则乙应在A地植树小时后立即转到B地.(四)行程问题。
一元一次方程实际应用题之等积变形问题
一元一次方程实际应用题之等积变形问题“等积变形”是以形状改变而体积不变为前提. 常见几何图形的周长、面积、体积公式:1.等长变形问题例题1:用一根长10米的铁丝围成一个长方形.使得长方形的长比宽多1.2米,此时长方形的长是多少米?宽是多少米?分析:抓住总长度不变,也就是长方形的周长等于10米。
可设宽为未知数,进而表示出长,等量关系为:2(长+宽)=10,把相关数值代入可求得宽,进而求得长即可。
解:设长方形的宽为x米,则长为(x+1.2)米.依题意得:2(x+1.2+x)=10,解得x=1.9,∴x=1.2+1.9=3.1,答:长方形的长为3.2米,宽为1.9米。
2.等体积变形问题例题2:要锻造直径为60mm,高为30mm的圆柱形毛坯,需截取直径为40mm的圆钢长是多少毫米?分析:抓住锻造前后的体积不变,此题的等量关系为:锻造前的体积=锻造后的体积.据此列方程求解。
要注意的是,题目中已知直径,需要转化为半径。
解:设需截取直径为40mm的圆钢长xmm,60÷2=30(mm)、40÷2=20(mm);依题意得:π×30^2×30=π×20^2×x解得:x=67.5例题3:有一段钢材可作一个底面直径 8 厘米,高 9 厘米的圆柱形零件。
如果把它改制成高是 12 厘米的圆锥形零件,零件的底面积是多少平方厘米?分析:根据“底面直径8厘米,高9厘米的圆柱形零件”,利用圆柱体积公式,可以求出圆柱的体积,又因为把圆柱形的零件改制成圆锥形零件时,此段钢的体积不变,根据体积不变列出方程求解。
解:零件的底面积是x平方厘米。
8÷2=4(厘米)依题意得:3×π×4^2×9=x×12解得:x=36π答:零件的底面积是36π平方厘米。
3.等面积变形问题例题4:如图,某小学将一块梯形空地改成宽为30m的长方形运动场地,要求面积不变.若在改造后的运动场地,小王、小李两人同时从点A出发,小李沿着长方形边顺时针跑,小王则是逆时针跑,并且小王每秒比小李多跑2m,经过10秒钟他们相遇.(1)求长方形的长;(2)求小王、小李两人的速度分析:(1)求得原梯形的面积,利用面积不变和长方形的面积求得长方形的长即可;(2)设小李的速度是xm/s,则小王的速度是(x+2)m/s,利用10秒钟他们相遇所走的路程为长方形的周长列出方程解决问题。
初一一元一次方程解应用题全部类型
1、和、差、倍、分问题;这类问题主要应搞清各量之间的关系,注意关键词语。
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多少、和、差、不足、剩余……”来体现。
例1、某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?分析:相等关系是:今年捐款=去年捐款×2+1000。
解:设去年为灾区捐款x元,由题意得,2x+1000=250002x=24000∴ x=12000答:去年该单位为灾区捐款12000元。
例2、旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?分析:等量关系为:油箱中剩余汽油+1=用去的汽油。
解:设油箱里原有汽油x公斤,由题意得,x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%去分母整理得,9x+20=5x+6x∴ 2x=20∴ x=10答:油箱里原有汽油10公斤。
2、等积变形问题:“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:原料体积=成品体积。
例3、现有直径为0.8米的圆柱形钢坯30米,可足够锻造直径为0.4米,长为3米的圆柱形机轴多少根?分析:等量关系为:机轴的体积和=钢坯的体积。
解:设可足够锻造x根机轴,由题意得,π()2×3x=π()2×30解这个方程得x=x=×10×==40答:可足够锻造直径为0.4米,长为3米的圆柱形机轴40根。
3、劳力调配问题:这类问题要搞清人数的变化,常见题型有(1)既有调入又有调出。
(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。
例4、有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的,应从乙队调多少人到甲队?分析:此问题中对乙队来说有调出,对甲队来说有调入。
20道一元一次方程应用题
列一元一次方程解应用题一、数字问题1、一个两位数十位上的数字与个位上的数字之和是6,把这个两位数加上18后,正好等于这个两位数的十位数字与个位数字对调后的两位数,请问这个两位数是多少?2、有一个三位数,其各位数字之和为16.,十位数字是个位数字与百位数字的和,若把百位与个位数字对调,那么新数比原数大594,求原数。
二、等积变形问题cm.求原来3、一块正方形铁皮,四角截去4个一样的小正方形,折成底面边长是50cm的无盖长方体盒子,容积是450003正方形铁皮的边长。
4、用直径为4cm的圆钢,锻造一个重0.62kg的零件毛坯,如果这种钢每立方厘米重7.8g,应截圆钢多长?5、把直径6cm,长16cm的圆钢锻造成半径为4cm的圆钢。
求锻造后的圆钢的长。
6、用长7.2m的木料做成如图所示的“日”字形窗框,窗的高比宽多0.6m。
求窗的高和宽。
(不考虑木料加工时损耗)7、直径为30厘米,高为50厘米的圆柱形瓶里存满了饮料,现把饮料倒入底面直径为10厘米的圆柱形小杯中,刚好倒满20杯,求小杯子的高。
三、利润率问题8、丽丽的妈妈到百盛商场给她买一件漂亮毛衣,售货员说:“这毛衣前两天打八折,今天又在八折的基础上降价10%,只卖144元,丽丽很快算出了这件毛衣的原标价,你知道是多少元吗?9、一种商品,甲提出按原价降低10元后卖掉,用售价的10%作积累;乙提出将原价降低20元卖掉,用售价的20%仍做积累,经测算两种积累一样多.则这种商品的原价是多少?10、某种商品因换季准备打折出售,如果按定价的七五折出售,将赔25元,而按定价的九折出售,将赚20元,这种商品的定价为多少元?11、某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?四、调配问题12、某厂一车间有64人,二车间有56人。
现因工作需要,要求第一车间人数是第二车间人数的一半。
问需从第一车间调多少人到第二车间?13、甲乙两车间各有工人若干,如果从乙车间调100人到甲车间,那么甲车间的人数是乙车间剩余人数的6倍;如果从甲车间调100人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。
一元一次方程应用-等积变形、行程问题1
(x+40)km/t
根据题意可得:10(x+4)=1100
考考你
1、某工厂锻造直径为60毫米,高20毫米的圆柱形 瓶内装水,再将瓶内的水倒入一个底面直径6厘米、 高10厘米的圆柱形玻璃杯中,能否完全装下?若 装不下,那么瓶内水面还有多高? 若未能装满, 求杯内水面离杯口的距离。
试一试
1、如图:用直径为200mm的圆柱体钢,锻造一个长、宽、 高分别为300mm,300mm和90mm的长方体毛坯,应 截取多少mm的圆柱体钢。
○200 300 90
把圆柱体锻造成长方体毛 坯,虽然形状改变了,但 前后的体积是相等的。
圆柱体体积=长方体体积
x
圆柱体体积 2 = r h 长方体体积 =abc
甲 乙
3、某人骑自行车预定用同样时间来回于甲、乙两地。来时 每小时行12km,结果迟到6min;回去时每小时行15km, 结果早到20min。试求甲、乙两地之间的路程和某人原定 的时间。 原定时间 实用时间 行驶速度 行驶距离
完 成 下 表 去 回 原定时间实用时间 行驶速度 行驶距离
若社原定时间为x 列出的方程是: 12(x+16)= 15(x-20)
8
7 甲班现有人数为 64 56(人). 8
代数解法:设甲班现有x人,则乙班现有x+14×220=x+8(人),
因此, ( x 8) x , x 56(人 ).
即甲班现有56人,乙班现有64人. 对比两种解法可以看出: 算术解法是把未知量置于特殊地位,设法用已知量组 成的混合运算式表示出来(在条件较复杂时,列出这样的 式子往往比较困难); 代数解法是把未知量与已知量同等对待 (使未知量在分 析问题的过程中也能发挥作用 ) ,找出各量之间的等量关 系,建立方程.
完整)初一一元一次方程应用题八种类型解析与练习
完整)初一一元一次方程应用题八种类型解析与练习初一一元一次方程应用题八种类型解析与练要解一元一次方程的应用题,我们需要遵循以下一般步骤:1)审题:弄清题意。
2)找出等量关系:找出能够表示本题含义的相等关系。
3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程。
4)解方程:解所列的方程,求出未知数的值。
5)检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案。
下面是八种常见类型的应用题:1.和、差、倍、分问题:1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
我们可以利用增长量等于原有量乘以增长率,现在量等于原有量加上增长量的公式来解决这类问题。
2.等积变形问题:等积变形”是以形状改变而体积不变为前提。
常用等量关系为:①形状面积变了,周长没变;②原料体积等于成品体积。
我们可以利用常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变的原则来解决这类问题。
3.劳力调配问题:这类问题要搞清人数的变化,常见题型有:1)既有调入又有调出;2)只有调入没有调出,调入部分变化,其余不变;3)只有调出没有调入,调出部分变化,其余不变。
4.数字问题1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9,1≤b≤9,1≤c≤9)则这个三位数表示为:100a+10b+c。
2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。
我们可以抓住数字间或新数、原数之间的关系找等量关系列方程。
5.商品销售问题1)商品利润=商品售价-商品成本价。
2)商品利润率=商品利润÷商品成本价×100%。
一元一次方程应用题分类训练
一元一次方程应用题分类训练列方程解应用题,是初中数学的重要内容之一。
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;下面老师就从以下几个方面分门别类的对常见的数学问题加以阐述,希望对同学们有所帮助.1. 和、差、倍、分问题:(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
例1.根据2001年3月28日新华社公布的第五次人口普查统计数据,截止到2001年11月1日0时,全国每10万人中具有小学文化程度的人口为35701人,比1990年7月1日减少了3.66%,1990年6月底每10万人中约有多少人具有小学文化程度?分析:等量关系为:2. 等积变形问题:“等积变形”是以形状改变而体积不变为前提。
常用等量关系为:①形状面积变了,周长没变;②原料体积=成品体积。
例2. 用直径为90mm的圆柱形玻璃杯(已装满水)向一个由底面积为1251252⨯mm内高为81mm的长方体铁盒倒水时,玻璃杯中的水的高度下降多少mm?(结果保留整数π≈314.)分析:等量关系为:圆柱形玻璃杯体积=长方体铁盒的体积3. 劳力调配问题:这类问题要搞清人数的变化,常见题型有:(1)既有调入又有调出;(2)只有调入没有调出,调入部分变化,其余不变;(3)只有调出没有调入,调出部分变化,其余不变。
例3. 机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?4. 比例分配问题:这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。
常用等量关系:各部分之和=总量。
例4.三个正整数的比为1:2:4,它们的和是84,那么这三个数中最大的数是几?5. 数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c。
列一元一次方程解应用题的几种常见题型及其特点
列一元一次方程解应用题的几种常见题型及其特点列一元一次方程解应用题是初一数学教学中的一大重点,而列一元一次方程解应用题又是学生从小学升入中学后第一次接触到用代数的方法处理应用题。
因此,认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题大有帮助。
(1)和、差、倍、分问题。
此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。
审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。
类似于:甲乙两数之和56,甲比乙多3(乙是甲的1/3),求甲乙各多少?这样的问题就是和倍问题。
问题的特点是,已知两个量之间存在合倍差关系,可以求这两个量的多少。
基本方法是:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。
(2)等积变形问题。
此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
(3)调配问题。
从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。
(4)行程问题。
要掌握行程中的基本关系:路程=速度×时间。
相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。
追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。
环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
航行问题:速度关系是:①顺水速度=静水中速度+水流速度;②逆水速度=静水中速度-水流速度。
飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。
(5)工程问题。
基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
一元一次方程的应用第1课时 等积变形与行程问题
B.8 cm
C.10 cm
D.12 cm
4.将内半径为20 cm的圆柱形水桶里的水往另一个小的圆柱形水桶内倒,直到
倒满为止.已知小圆柱形水桶的内半径为10 cm,高是15 cm.当小水桶倒满时,
大水桶的水面下降了_________cm.
3.75
5.(例题1变式)一个长方体合金底面长80、宽60、高100,现要锻压成新的长方体, 其底面为边长40的正方形,求新长方体的高.
沪科版
第3章 一次方程与方程组
3.2 一元一次方程的应用
第1课时 等积变形与行程问题
知识点❶:等积变形问题[0考/8年]
1.长与宽之和为40 cm的长方形,满足长比宽多5 cm,求它的长和宽.设宽为
x cm,则所列方程正确的是( )
A
A.x+(x+5)=40 B.x+(x-5)=40
C.x+(x+5)=80 D.x+(x-5)=80
13.已知三年前,A 的年龄是 B 的年龄的 5 倍,现在 A 的年龄是 B 的 年龄的 4 倍,则 A 现在的年龄是_4_8__岁.
14.(安徽模拟)《九章算术》中有这样一道题,原文如下: 今有凫起南海,七日至北海;雁起北海,九日至南海,今凫雁俱起,问何日相 逢? 译文为:野鸭从南海起飞,7天飞到北海;大雁从北海起飞,9天飞到南海,野 鸭与大雁从南海和北海同时起飞相向而行,经过几天相遇? 请解答上述问题.
解:设经过 x 天相遇,依题意,得:x7+x9=1,解得:x=6136.答:经 过6136天相遇.
15.A,B两地相距480 km,C地在A,B两地之间.一辆轿车以100 km/h的速度 从A地出发匀速行驶,前往B地.同时,一辆货车以80 km/h的速度从B地岀发,匀 速行驶,前往A地.
初中数学:一元一次方程13种应用题型附知识点
初中数学:一元一次方程13种应用题型附知识点(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如语文资料、数学资料、英语资料、物理资料、化学资料、地理资料、政治资料、历史资料、艺术资料、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of educational materials for everyone, such as language materials, mathematics materials, English materials, physical materials, chemical materials, geographic materials, political materials, historical materials, art materials, other materials, etc. Please pay attention to the data format and writing method!初中数学:一元一次方程13种应用题型附知识点一、知识框架二、方程的有关概念1.方程:含有未知数的等式就叫做方程。
苏教版初一上册用一元一次方程解决问题知识汇总及专项练习
用一元一次方程解决问题的一般步骤:审清题意、设未知数(元)、列出方程、解方程、写出答案。
关键在于抓住问题中的数量之间的相等关系,列出方程。
【题型1】月历中数之间的关系问题:同一横行中,后一个数比前一个数多1,同一竖列中,下一个数比上一个多7。
【题型2】比赛问题:胜、负、平局。
【题型3】年龄问题:随着年龄变化但年龄差始终不变。
【题型4】等积变形问题:变形前的体积=变形后的体积:【题型5】盈余"和"不足"问题:用两种不同的方法描述量。
基本相等关系是:盈时的总量一盈的数量=亏时的总量+亏的数量。
【题型6】行程问题:(1)相遇、追及问题:甲的行程+乙的行程=甲、乙两人总的行程追者的路程=前者的路程+原本的路程(2)顺流与逆流问题:顺流速度=静水速度+水流速度逆流速度=静水速度一水流速度【题型7】工作总量问题:若问题中没有具体的工作总量,往往把全部工作量看成1。
工作总量=工作效率×工作时间各部工作分量之和=总量【题型8】配套问题:列比例式构造方程。
(通过比例关系明确数量之间的关系。
)【题型9】售价(标价)、成本(进价)、利润的关系:商品的利润=商品的售价一商品的成本 商品的售价=商品的成本×(1±盈利%/亏损%) 利润率=(商品的利润/商品的成本)x100% 商品的利润=商品的成本×利润率商品打X 折(10X%)后的售价=商品的标价x 折扣(10X )。
【题型10】银行储蓄问题:年存储利息=本金X 年利率X 年数【题型11】数字问题:两位数的数字之和=十位的数字×10+个位的数字。
【题型12】和差倍分问题:利用和倍差倍解方程。
【题型13】分量与总量问题:各分量之和=总量【题型14】分段收费【题型15】方案问题【题型1】月历中数之间的关系问题例1:某月的月历上竖列相邻的三个数的和是39,则该列的第一个数是( )。
A.6B.12C.13D.14例2:小丽在2月的月历上圈出5 个数,呈“十字框”形,它们的和是 55,则中间的数是( )。
七年级数学(上册)一元一次方程应用题专题讲解(超全超详细)
一元一次方程应用题专题讲解列方程解应用题,是初中数学的重要内容之一。
许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题,可以培养我们分析问题,解决问题的能力。
因此我们要努力学好这部分知识。
一、列方程解应用题的一般步骤(解题思路)(1)审——审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设——设出未知数:根据提问,巧设未知数.(3)列——列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答——检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。
(一)和、差、倍、分问题——读题分析法这类问题主要应搞清各量之间的关系,注意关键词语。
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套……”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.1.倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。
2.多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。
增长量=原有量×增长率现在量=原有量+增长量例1.某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?例2.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?(二)等积变形问题等积变形是以形状改变而体积不变为前提。
初一数学一元一次方程应用题
一元一次方程的应用一、和、差、倍、分问题:1.某校初三年级甲、乙两班学生人数相等,甲班男女人数之比为4:5,乙班男生人数占全班人数的60%,假设把甲乙两班合成一个新团队,那么新团队男生人数比女生人数多4人,求新团队总人数.2.一群学生前往位于青田县境内的滩坑电站建立工地进展社会实践活动,男生戴白色平安帽,女生戴红色平安帽.休息时,他们坐在一起,大家发现了一个有趣的现象,每位男生看到白色的平安帽和红色的一样多,而每位女同学看到白色的平安帽是红色的平安帽的2倍.求这群学生的总人数.3.目前XX市小学和初中在任校生共有约128万人,其中小学生在校人数比初中生在校人数的2倍多14万人(数据来源:2005学年度XX市教育统计手册).(1)求目前XX市在校的小学生人数和初中生人数;(2)假设今年小学生每人需交杂费500元,初中生每人需交杂费1000元,而这些费用全部由XX市政府拨款解决,那么XX市政府要为此拨款多少?4.某城市现有42万人口,方案一年后城镇人口增加0.8%,农村人口增加1.1%,这样全市人口将增加1%,求这个城市现有的城镇人口数和农村人口数.二、劳力调配问题:12多28人,因有紧急任务,需从乙队抽调21 某公司有两个工程队,甲工程队人数比乙工程队人数的2到甲队,这时甲队人数刚好是乙队人数的3,问该公司两个工程队共有多少人?三、配套问题:1.箭鹿服装厂要生产某种型号学生服一批,每3米长的某种布料可以做上衣2件或裤子3条,一件上衣和一条裤子为一套,方案用600米长的这种布料生产学生服,应分别用多少布料生产上衣和裤子,才能恰好配套?共能生产多少套?2.某车间有技术工人85人,平均每人每天可加工甲种部件16个或乙种部件10个,两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?四、等积变形问题:在一只底面直径为30厘米,高为8厘米的圆锥形容器中倒满水,然后将水倒入一只底面直径为10厘米的圆柱形空容器里,圆柱形容器中的水有多高?五、行程问题:1.某人从家里骑自行车到学校。