(完整版)高中物理的二级结论及重要知识点总结

合集下载

(完整word版)高中物理二级结论

(完整word版)高中物理二级结论
y
速度反向延长交水平位移中点处, x2=2x1 ;
切总等于
x1 x2 β s
x

α
v
速度偏角的正切值等于 2 倍的位移偏角正切值。
③两个分运动与合运动具有等时性,且 t= 2 y ,由下降的高度决定,与初速 g
度 v0 无关;
④任何两个时刻间的速度变化量 v=g t ,且方向恒为竖直向下。 ⑤斜面上起落的平抛速度方向与斜面的夹角是定值。此夹角正切为斜面倾角正 切的 2 倍。 12、绳端物体速度分解(1)连接物体的初末位置,找到合速度方向。(2)分解: 分解成沿绳和垂直于绳两方向
a g sin g cos 物体在倾斜的皮带上上滑,物体无初速度或初速度小于皮带速度,一定有
a g cos g sin , 物 体 初 速 度 大 于 皮 带 速 度 , 则 物 体 加 速 度 一 定 为
a g sin g cos 5.两个原来一起运动的物体“刚好脱离”瞬间:
力学条件:貌合神离,相互作用的弹力为零。 运动学条件:此时两物体的速度、加速度相等,此后不等。
一无个,一定是弹力 二个(最多),弹力和摩擦力 12.在平面上运动的物体,无论其它受力情况如何,所受平面支持力和滑动
摩擦力的合力方向总与平面成= tan FN = tan 1 。
Ff
二、运动学
1、 在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以
地为参照物。
用平均速度思考匀变速直线运动问题,总是带来方便:思路是:位移→时间→
船与上游河岸夹角为 ,航程 s 最短 s=d (d 为河宽)此时时间不短
t d ( cos v水 )
v船 sin
v船
⑵当船速小于水速时 ①船头的方向垂直于水流的方向(河岸)时,所用

物理重要二级结论(全)

物理重要二级结论(全)
3.和为定值的两个电阻,阻值相等时并联值最大。
4.估算原则:串联时,大为主;并联时,小为主。
5.路端电压:纯电阻时 ,随外电阻的增大而增大。
6.并联电路中的一个电阻发生变化,电路有消长关系,某个电阻增大,它本身的电流小,与它并联的电阻上电流变大。
7.外电路中任一电阻增大,总电阻增大,总电流减小,路端电压增大。
七、静电场:
1.粒子沿中心线垂直电场线飞入匀强电场,飞出时速度的反向延长线通过电场中心。
2.
3.匀强电场中,等势线是相互平行等距离的直线,与电场线垂直。
4.电容器充电后,两极间的场强: ,与板间距离无关。
八、恒定电流
1.串连电路:总电阻大于任一分电阻;
, ; ,
2.并联电路:总电阻小于任一分电阻;
; ; ;
5.粒子沿直线通过正交电、磁场(离子速度选择器) , 。与粒子的带电性质和带电量多少无关,与进入的方向有关。
十一、电磁感应
1.楞次定律:(阻碍原因)
内外环电流方向:“增反减同”自感电流的方向:“增反减同”
磁铁相对线圈运动:“你追我退,你退我追”
通电导线或线圈旁的线框:线框运动时:“你来我推,你走我拉”
电流表: ;串联测同一电流,量程大的指针摆角小。
4.电压测量值偏大,给电压表串联一比电压表内阻小得多的电阻;
电流测量值偏大,给电流表并联一比电流表内阻大得多的电阻;
5.分压电路:一般选择电阻较小而额定电流较大的电阻
1)若采用限流电路,电路中的最小电流仍超过用电器的额定电流时;
2)当用电器电阻远大于滑动变阻器的全值电阻,且实验要求的电压变化范围大(或要求多组实验数据)时;
光滑,相对静止 弹力为零 相对静止 光滑,弹力为零
8.下列各模型中,速度最大时合力为零,速度为零时,加速度最大

高中物理二级结论(超全)

高中物理二级结论(超全)

l 中的 g
g
由重力和电场力的矢量和与摆球的质量
m 比值代替;若单摆处于由位于单摆悬点处的点电荷产生的电场中,
或磁场中,周期不变。
度: V 1
Rg , V 1
GM , V1 =7.9km/s
R
五、 动量和机械能中的“二次结论”
1.求机械功的途径:
( 1)用定义求恒力功。
( 2)用做功和效果(用动能定理或能量守恒)求功。
v0
2g
平抛物体运动中,两分运动之间分位移、分速度存在下列关系:
v y : v x 2 y : x 。即由原点( 0, 0)经
平抛由( x,y )飞出的质点好象由( x/2,0)沿直线飞出一样,如图 1 所示。
(x/2,0)
O
x
(x,y)
v
y
图1
v水
v船 θ
v合
(a)
图2
v合
v船
θ
v水
(b)
另一种表述:合速度与原速度方向的夹角的正切值等于合位移与原速度方向的夹角的正切值的
则合外力 F= m 1 a1+m2 a2+m 3 a,则支持力 N 为 m(g+a);
12、用长为 L 的绳拴一质点做圆锥摆运动时,则其周期同绳长
L、摆角 θ、当地重力加速度 g 之间存在
T2
L cos 关系。
g
13、若物体只在重力作用下则有:
系在绳上的物体在竖直面上做圆周运动的条件是:
v高
gl ,绳改成杆后,则 v 最高 0 均可,在最高点
Gm=gR2 。
22、若行星表面的重力加速度为 g,行星的半径为 R,则环绕其表面的卫星最低速度
均密度为
,则卫星周期的最小值 T 同 、 G 之间存在

高中物理重要二级结论(全)

高中物理重要二级结论(全)

六、静电场:
1.粒子沿中心线垂直电场线飞入匀强电场,飞出时速度的反向延长线通过电场中心。 2.
a bc
+q
E
-q
Eb=0;Ea>Eb;Ec>Ed;方向如图示;abc 比较 b 点电势最低, 由 b 到∞,场强先增大,后减小,电势减小。
+4q
a -q
bc E
Eb=0,a,c 两点场强方向如图所示
a bc
SⅠ:SⅡ:SⅢ=1:3:5
④ΔS=aT2
Sn-Sn-k= k aT2 a=ΔS/T2
a =( Sn-Sn-k)/k T2
位移等分(S0): ① 1S0 处、2 S0 处、3 S0 处···速度比:
V1:V2:V3:···Vn=1 : 2 : 3 : : n
第1页(共 14 页)
② 经过 1S0 时、2 S0 时、3 S0 时···时间比: 1 : 2 : 3 : : n )
要通过最高点,小球最小下滑高度为 2.5R 。 H
3)竖直轨道圆运动的两种基本模型
R
绳端系小球,从水平位置无初速度释放下摆到最低点:
T=3mg,a=2g,与绳长无关。
“杆”最高点 vmin=0,v 临 = gR ,
v > v 临,杆对小球为拉力
v = v 临,杆对小球的作用力为零
v < v 临,杆对小球为支持力 4)重力加速度, 某星球表面处(即距球心 R):g=GM/R2
S
S
动摩擦因数处处相同,克服摩擦力做功 W = µmg S
四、动量
1.反弹:△p = m(v1+v2)
2.弹开:速度,动能都与质量成反比。
3.一维弹性碰撞: V1'= [(m1—m2)V1 + 2 m2V2]/(m1 + m2) V2'= [(m2—m1)V2 + 2 m1V1]/(m1 + m2)

高中物理的二级结论及重要知识点总结

高中物理的二级结论及重要知识点总结

高中物理的二级结论及重要知识点一.力 物体的平衡:1.几个力平衡,则一个力是与其它力合力平衡的力.2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小.三个大小相等的力平衡,力之间的夹角为1200.3.物体沿斜面匀速下滑,则μα=tg .4.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。

此时速度、加速度相等,此后不等.5.同一根绳上的张力处处相等,大小相等的两个力其合力在其角平分线上.6.物体受三个力而处于平衡状态,则这三个力必交于一点(三力汇交原理).7.动态平衡中,如果一个力大小方向都不变,另一个力方向不变,判断第三个力的变化,要用矢量三角形来判断,求最小力时也用此法. 二.直线运动:1.匀变速直线运动:平均速度: T S S V V V V t 2221212+=+==时间等分时: S S aT n n -=-12 ,中间位置的速度:V V V S212222=+,纸带处理求速度、加速度: T S S V t2212+= ,212T S S a -=,()a S S n T n =--121 2.初速度为零的匀变速直线运动的比例关系:等分时间:相等时间内的位移之比 1:3:5:……等分位移:相等位移所用的时间之比3.竖直上抛运动的对称性:t 上= t 下,V 上= -V下4.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。

先求滑行时间,确定了滑行时间小于给出的时间时,用V 2=2aS 求滑行距离.5.“S=3t+2t 2”:a=4m/s2 ,V0=3m/s.6.在追击中的最小距离、最大距离、恰好追上、恰好追不上、避碰等中的临界条件都为速度相等.7.运动的合成与分解中:船头垂直河岸过河时,过河时间最短.船的合运动方向垂直河岸时,过河的位移最短.8.绳端物体速度分解:对地速度是合速度,分解时沿绳子的方向分解和垂直绳子的方向分解. 三.牛顿运动定律:1.超重、失重(选择题可直接应用,不是重力发生变化)超重:物体向上的加速度时,处于超重状态,此时物体对支持物(或悬挂物)的压力(或拉力)大于它的重力.失重:物体有向下的加速度时,处于失重状态,此时物体对支持物(或悬挂物)的压力(或拉力)小于它的重力。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

物理重要二级结论一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

5.物体沿倾角为α的斜面匀速下滑时, μ= tan α 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7.绳上的张力一定沿着绳子指向绳子收缩的方向。

8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G。

9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。

用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ): ① 1T 内、2T 内、3T内······位移比:S 1:S 2:S 3=12:22:3② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比:)::3:2:1n n::3:2:1 F已知方向 F 2的最小值F 2的最小值F 2的最小值F 2③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。

高中物理二级结论(超全)

高中物理二级结论(超全)

高中物理二级结论集温馨提示 1、“二级结论”就是常见知识与经验得总结,都就是可以推导得。

2、先想前提,后记结论,切勿盲目照搬、套用。

3、常用于解选择题,可以提高解题速度。

一般不要用于计算题中。

一、静力学:1.几个力平衡,则一个力就是与其它力合力平衡得力。

2.两个力得合力:F 大+F 小F 合F 大-F 小。

三个大小相等得共面共点力平衡,力之间得夹角为1200。

3.力得合成与分解就是一种等效代换,分力与合力都不就是真实得力,求合力与分力就是处理力学问题时得一种方法、手段。

4.三力共点且平衡,则(拉密定理)。

5.物体沿斜面匀速下滑,则。

6.两个一起运动得物体“刚好脱离”时:貌合神离,弹力为零。

此时速度、加速度相等,此后不等。

7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。

因其形变被忽略,其拉力可以发生突变,“没有记忆力”。

8.轻弹簧两端弹力大小相等,弹簧得弹力不能发生突变。

9.轻杆能承受纵向拉力、压力,还能承受横向力。

力可以发生突变,“没有记忆力”。

10、轻杆一端连绞链,另一端受合力方向:沿杆方向。

10、若三个非平行得力作用在一个物体并使该物体保持平衡,则这三个力必相交于一点。

它们按比例可平移为一个封闭得矢量三角形。

(如图3所示)11、若F 1、F 2、F 3得合力为零,且夹角分别为θ1、θ2、θ3;则有F 1/sin θ1=F 2/sin θ2=F 3/sin θ3,如图4所示。

12、已知合力F 、分力F 1得大小,分力F 2于F 得夹角θ,则F 1>Fsin θ时,F 2有两个解:;F 1=Fsin θ时,有一个解,F 2=Fcos θ;F 1<Fsin θ没有解,如图6所示。

13、在不同得三角形中,如果两个角得两条边互相垂直,则这两个角必相等。

14、如图所示,在系于高低不同得两杆之间且长L 大于两杆间隔d 得绳上用光滑钩挂衣物时,衣物离低杆近,且AC 、BC 与杆得夹角相等,sin θ=d/L,分别以A 、B 为圆心,以绳长为半径画圆且交对面杆上、两点,则与得交点C 为平衡悬点。

高中物理二级结论(超全)

高中物理二级结论(超全)

高中物理二级结论集温馨提示 1、“二级结论〞是常见知识和经验的总结,都是可以推导的。

2、先想前提,后记结论,切勿盲目照搬、套用。

3、常用于解选择题,可以提高解题速度。

一般不要用于计算题中。

一、静力学:1.几个力平衡,如此一个力是与其它力合力平衡的力。

2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。

三个大小相等的共面共点力平衡,力之间的夹角为1200。

3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。

4.三力共点且平衡,如此312123sin sin sin F F F ααα==〔拉密定理〕。

5.物体沿斜面匀速下滑,如此tan μα=。

6.两个一起运动的物体“刚好脱离〞时:貌合神离,弹力为零。

此时速度、加速度相等,此后不等。

7.轻绳不可伸长,其两端拉力大小相等,线上各点力大小相等。

因其形变被忽略,其拉力可以发生突变,“没有记忆力〞。

8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。

9.轻杆能承受纵向拉力、压力,还能承受横向力。

力可以发生突变,“没有记忆力〞。

10、轻杆一端连绞链,另一端受合力方向:沿杆方向。

10、假如三个非平行的力作用在一个物体并使该物体保持平衡,如此这三个力必相交于一点。

它们按比例可平移为一个封闭的矢量三角形。

〔如图3所示〕11、假如F 1、F 2、F 3的合力为零,且夹角分别为θ1、θ2、θ3;如此有F 1/sin θ1=F 2/sin θ2=F 3/sin θ3,如图4所示。

12、合力F 、分力F 1的大小,分力F 2于F 的夹角θ,如此F 1>Fsin θ时,F 2有两个解:θθ22212sin cos F F F F -±=;F 1=Fsin θ时,有一个解,F 2=Fcos θ;F 1<Fsin θ没有解,如图6所示。

13、在不同的三角形中,如果两个角的两条边互相垂直,如此这两个角必相等。

(完整版)高中物理二级结论小结

(完整版)高中物理二级结论小结

高考物理 “二级结论”集一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。

2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。

三个大小相等的共点力平衡,力之间的夹角为1200。

3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。

4.三力共点且平衡,则312123sin sin sin F F F ααα==(拉密定理)。

5.物体沿斜面匀速下滑,则tan μα=。

6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。

此时速度、加速度相等,此后不等。

7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。

因其形变被忽略,其拉力可以发生突变,“没有记忆力”。

8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。

9.轻杆能承受纵向拉力、压力,还能承受横向力。

力可以发生突变,“没有记忆力”。

二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物; 在处理动力学问题时,只能以地为参照物。

2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便:T S S V V V V t 2221212+=+==3.匀变速直线运动:时间等分时, S S aT n n -=-12,位移中点的即时速度V V V S 212222=+,V V S t22>纸带点痕求速度、加速度:TS S V t 2212+=,212T S S a -=,()a S S n T n =--121 4.匀变速直线运动,v0 = 0时:时间等分点:各时刻速度比:1:2:3:4:5 各时刻总位移比:1:4:9:16:25 各段时间内位移比:1:3:5:7:9 位移等分点:各时刻速度比:1∶2∶3∶…… 到达各分点时间比1∶2∶3∶…… 通过各段时间比1∶()12-∶(23-)∶……5.自由落体:n秒末速度(m/s):10,20,30,40,50n秒末下落高度(m):5、20、45、80、125第n秒内下落高度(m):5、15、25、35、456.上抛运动:对称性:t t下上=,v v=下上,22mvhg=7.相对运动:共同的分运动不产生相对位移。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

物理重要二级结论一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsin sin sin 321F FF == 4.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

5.物体沿倾角为α的斜面匀速下滑时, μ= tan α 6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7.绳上的张力一定沿着绳子指向绳子收缩的方向。

8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N 不一定等于重力G。

9.已知合力不变,其中一分力F 1大小不变,分析其大小,以及另一分力F 2。

用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ): ① 1T 内、2T 内、3T内······位移比:S 1:S 2:S 3=12:22:3② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比: )::3:2:1n n::3:2:1 F已知方向 F 2的最小值F 2的最小值F 2的最小值F 2③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。

高中物理二级结论(超全)

高中物理二级结论(超全)

高中物理二级结论集温馨提示 1、“二级结论〞是常见知识和经验的总结,都是可以推导的。

2、先想前提,后记结论,切勿盲目照搬、套用。

3、常用于解选择题,可以提高解题速度。

一般不要用于计算题中。

一、静力学:1.几个力平衡,那么一个力是与其它力合力平衡的力。

2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。

三个大小相等的共面共点力平衡,力之间的夹角为1200。

3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。

4.三力共点且平衡,那么312123sin sin sin F F F ααα==〔拉密定理〕。

5.物体沿斜面匀速下滑,那么tan μα=。

6.两个一起运动的物体“刚好脱离〞时:貌合神离,弹力为零。

此时速度、加速度相等,此后不等。

7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。

因其形变被忽略,其拉力可以发生突变,“没有记忆力〞。

8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。

9.轻杆能承受纵向拉力、压力,还能承受横向力。

力可以发生突变,“没有记忆力〞。

10、轻杆一端连绞链,另一端受合力方向:沿杆方向。

10、假设三个非平行的力作用在一个物体并使该物体保持平衡,那么这三个力必相交于一点。

它们按比例可平移为一个封闭的矢量三角形。

〔如图3所示〕11、假设F 1、F 2、F 3的合力为零,且夹角分别为θ1、θ2、θ3;那么有F 1/sin θ1=F 2/sin θ2=F 3/sin θ3,如图4所示。

12、合力F 、分力F 1的大小,分力F 2于F 的夹角θ,那么F 1>Fsin θ时,F 2有两个解:θθ22212sin cos F F F F -±=;F 1=Fsin θ时,有一个解,F 2=Fcos θ;F 1<Fsin θ没有解,如图6所示。

13、在不同的三角形中,如果两个角的两条边互相垂直,那么这两个角必相等。

(完整word版)高中物理重要二级结论(全)

(完整word版)高中物理重要二级结论(全)

物理重要二级结论(选)一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:2121F F F F F +≤≤- 方向与大力相同3.两个分力F 1和F 2的合力为F ,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

4.已知合力不变,其中一分力F 1大小不变,分析其大小, 以及另一分力F 2。

用“三角形”或“平行四边形”法则 二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32 ② 1T 末、2T 末、3T 末······速度比:v 1:v 2:v 3=1:2:3③ 第一个T 内、第二个T 内、第三个T 内···的位移之比: S Ⅰ:S Ⅱ:S Ⅲ=1:3:5 ④ΔS=aT 2 S n -S n-k = k aT 2 a =ΔS/T 2 a =( S n -S n-k )/k T 2 2.匀变速直线运动中的平均速度 3.匀变速直线运动中的中间时刻的速度 中间位置的速度4.竖直上抛运动同一位置 v 上=v 下 运动的对称性6.“刹车陷阱”,应先求滑行至速度为零即停止的时间t 0 ,确定了滑行时间t 大于t 0时,用as v t 22= 或S =v o t /2,求滑行距离;若t 小于t 0时2021at t v s += TS S v v v v t t 222102/+=+==-202/t t v v v v +==-22202/t t v v v +=F已知方向F 2的最小值F 2的最小值F 2的最小值F 25.绳端物体速度分解:沿绳方向的分速度相等7m/s 2)v 0=A (m/s ) 8.追赶、相遇问题匀减速追匀速:恰能追上或恰好追不上v 匀=v 匀减v 0=0的匀加速追匀速:v 匀=v 匀加 时,两物体的间距最大Smax = 同时同地出发两物体相遇:位移相等,时间相等。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

创作编号:BG7531400019813488897SX创作者:别如克*物理重要二级结论一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:2121FFFFF+≤≤-方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即γβαsinsinsin321FFF==4.两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

5.物体沿倾角为α的斜面匀速下滑时,μ= tanα6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7.绳上的张力一定沿着绳子指向绳子收缩的方向。

8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N不一定等于重力G。

9.已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。

用“三角形”或“平行四边形”法则F已知方向F2的最小值F2的最小值F2的最小值F2二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动) 时间等分(T ): ① 1T 内、2T 内、3T 内······位移比:S 1:S 2:S 3=12:22:32② 1T 末、2T 末、3T 末······速度比:V 1:V 2:V 3=1:2:3 ③ 第一个T 内、第二个T 内、第三个T 内···的位移之比:S Ⅰ:S Ⅱ:S Ⅲ=1:3:5④ΔS=aT 2 S n -S n-k = k aT 2 a=ΔS/T 2 a =( S n -S n-k )/k T 2位移等分(S 0): ① 1S 0处、2 S 0处、3 S 0处···速度比:V 1:V 2:V 3:···V n =② 经过1S 0时、2 S 0时、3 S 0时···时间比: ③ 经过第一个1S 0、第二个2 S 0、第三个3 S 0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v 1,后一半时间v 2。

高中物理二级结论总结

高中物理二级结论总结

高中物理二级结论总结引言高中物理是一门以观察、实验和推理为基础的科学学科,通过对物理现象的研究,我们可以更好地理解我们所处的世界。

在高中物理研究的过程中,我们掌握了很多基本概念和理论,并且通过实验验证了这些理论。

本文将对高中物理的二级结论进行总结,帮助我们巩固知识,并将其应用到实际问题中。

一、运动学1. 匀速直线运动- 匀速直线运动的速度和位移成正比。

- 匀速直线运动的速度不变,加速度为零。

2. 加速直线运动- 加速直线运动的速度和位移不成正比。

- 加速直线运动的速度随时间变化,加速度不为零。

3. 自由落体运动- 自由落体运动的加速度在近地面条件下近似为重力加速度g。

- 自由落体运动的时间与物体下落的高度无关,只与初速度和加速度有关。

二、力学1. 牛顿第一定律- 牛顿第一定律也称为惯性定律,物体在无外力作用下保持静止或匀速直线运动。

2. 牛顿第二定律- 牛顿第二定律描述了物体的加速度与作用力之间的关系:F = ma。

- 物体的加速度与作用力成正比,质量越大,加速度越小。

3. 牛顿第三定律- 牛顿第三定律描述了物体间相互作用力的性质:作用力和反作用力大小相等,方向相反,作用在不同物体上。

三、能量1. 动能- 动能是物体运动时具有的能量,计算公式为:Ek = 1/2 *mv^2,其中m为物体质量,v为物体速度。

2. 势能- 势能是物体由于位置的不同而具有的能量,常见的势能有重力势能和弹性势能。

3. 动能定理- 动能定理描述了物体受力时动能的变化:ΔEk = W,其中ΔEk为动能的变化量,W为物体所受的合外力所做的功。

结论高中物理学习的过程中,我们通过实验和理论推导,掌握并验证了许多二级结论。

这些结论帮助我们更好地理解了物理现象,并将其应用到实际生活中解决问题。

从运动学到力学再到能量,我们逐渐建立了关于物理世界的基本认知,为进一步深入研究和应用物理学打下了坚实的基础。

高中物理重要二级结论(全)汇总(最新整理)

高中物理重要二级结论(全)汇总(最新整理)

向左传:△t = (K+3/4)T K=0、1、2、3…) S = Kλ+(λ-△X) (K=0、1、2、3…) 六、热和功 分子运动论∶ 1.求气体压强的途径∶①固体封闭∶《活塞》或《缸体》《整体》列力平衡方程 ;
②液体封闭:《某液面》列压强平衡方程 ; ③系统运动:《液柱》《活塞》《整体》列牛顿第二定律方程。
1.平衡位置:振动物体静止时,∑F 外=0 ;振动过程中沿振动方向∑F=0。 2.由波的图象讨论波的传播距离、时间和波速:注意“双向”和“多解”。
3.振动图上,振动质点的运动方向:看下一时刻,“上坡上”,“下坡下”。
4.振动图上,介质质点的运动方向:看前一质点,“在上则上”,“在下则下”。
5.波由一种介质进入另一种介质时,频率不变,波长和波速改变(由介质决定)
vo g
2H g
同一位置 v 上=v 下 7.绳端物体速度分解
v v
点光源

平面镜 ω θ
8.“刹车陷阱”,应先求滑行至速度为零即停止的时间 t0 ,确定了滑行时间 t 大于 t0 时,用
vt2 2as

S=vot/2,求滑行距离;若
t
小于
t0

s
v0t
1 2
at
2
9.匀加速直线运动位移公式:S = A t + B t2 式中 a=2B(m/s2) V0=A(m/s)
F2 F
④ΔS=aT2
Sn-Sn-k= k aT2 a=ΔS/T2 a =( Sn-Sn-k)/k T2
位移等分(S0): ① 1S0 处、2 S0 处、3 S0 处···速度比:V1:V2:V3:···Vn=
1: 2 : 3 :: n

高中物理的重要知识点及二级结论new(上)

高中物理的重要知识点及二级结论new(上)

高中物理的重要知识点及二级结论(上)一.力物体的平衡:1)常见的力1.重力G=mg (方向竖直向下,g=9.8m/s2≈10m/s2,作用点在重心,适用于地球表面附近)2.胡克定律F=kx{方向沿恢复形变方向,k:劲度系数(N/m),由弹簧自身决定;x:形变量(m)}3.滑动摩擦力F=μF N{与物体相对运动方向相反,μ:摩擦因数,F N:正压力(N)}{摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定}4.静摩擦力0 ≤ f静≤ fm(与物体相对运动趋势方向相反,fm为最大静摩擦力){fm略大于μF N,一般视为fm≈μF N}摩擦力的方向与物体的运动方向可能相同、可能相反,也可能不共线,但与物体间相对运动或趋势的方向一定相反。

计算摩擦力时的三点注意(1)首先分清摩擦力的性质,因为只有滑动摩擦力才能利用公式计算,静摩擦力通常只能用平衡条件或牛顿定律来求解。

(2)公式F=μFN中FN为两接触面间的正压力,与物体的重力没有必然联系,不一定等于物体的重力。

(3)滑动摩擦力的大小与物体速度的大小无关,与接触面积的大小也无关。

5.万有引力F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2,方向在它们的连线上)6.静电力F=kQ1Q2/r2 (k=9.0×109N•m2/C2,方向在它们的连线上)7.电场力F=Eq (E:场强N/C,q:电量C,正电荷受的电场力与场强方向相同)8.安培力F=BILsinθ (θ为B与L的夹角,当L⊥B时:F=BIL,B//L时:F=0)9.洛仑兹力f=qVBsinθ (θ为B与V的夹角,当V⊥B时:f=qVB,V//B时:f=0){安培力与洛仑兹力方向均用左手定则判定}2)力的合成与分解1.同一直线上力的合成同向:F=F1+F2,反向:F=F1-F2 (F1>F2)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。

高中物理重要二级结论(全)

高中物理重要二级结论(全)

物理重要二级结论一、静力学1.几个力平衡,则任一力是与其他所有力的合力平衡的力。

三个共点力平衡,任意两个力的合力与第三个力大小相等,方向相反。

2.两个力的合力:方向与大力相同3.拉密定理:三个力作用于物体上达到平衡时,则三个力应在同一平面内,其作用线必交于一点,且每一个力必和其它两力间夹角之正弦成正比,即4.两个分力F1和F2的合力为F,若已知合力(或一个分力)的大小和方向,又知另一个分力(或合力)的方向,则第三个力与已知方向不知大小的那个力垂直时有最小值。

5.物体沿倾角为α的斜面匀速下滑时,μ= tanα6.“二力杆”(轻质硬杆)平衡时二力必沿杆方向。

7.绳上的张力一定沿着绳子指向绳子收缩的方向。

8.支持力(压力)一定垂直支持面指向被支持(被压)的物体,压力N不一定等于重力G。

9.已知合力不变,其中一分力F1大小不变,分析其大小,以及另一分力F2。

用“三角形”或“平行四边形”法则二、运动学1.初速度为零的匀加速直线运动(或末速度为零的匀减速直线运动)时间等分(T):① 1T内、2T内、3T内······位移比:S1:S2:S3=12:22:32② 1T末、2T末、3T末······速度比:V1:V2:V3=1:2:3③ 第一个T内、第二个T内、第三个T内···的位移之比:SⅠ:SⅡ:SⅢ=1:3:5④ΔS=aT2 Sn-Sn-k= k aT2 a=ΔS/T2 a =( Sn-Sn-k)/k T2位移等分(S0):① 1S0处、2 S0处、3 S0处···速度比:V1:V2:V3:···Vn=② 经过1S0时、2 S0时、3 S0时···时间比:③ 经过第一个1S0、第二个2 S0、第三个3 S0···时间比2.匀变速直线运动中的平均速度3.匀变速直线运动中的中间时刻的速度中间位置的速度4.变速直线运动中的平均速度前一半时间v1,后一半时间v2。

高中物理二级结论总结

高中物理二级结论总结

高中物理二级结论总结
1. 速度和加速度结论:
- 加速度为常数时,速度随时间线性增加。

- 当速度为常数时,加速度为零。

2. 运动物体的作用力和反作用力结论:
- 作用力和反作用力大小相等,方向相反,且作用于不同的物体上。

- 作用力和反作用力不会互相抵消,因为它们作用在不同的物体上。

3. 牛顿第一定律结论:
- 物体静止或匀速直线运动时,其速度不会改变,除非有外力作用。

- 外力的存在才能改变物体的运动状态。

4. 牛顿第二定律结论:
- 物体受到的加速度与施加在物体上的力成正比,与物体的质量成反比。

- F = m * a,其中 F 是作用在物体上的合力,m 是物体的质量,a 是物体的加速度。

5. 牛顿第三定律结论:
- 对于任何作用力,都会存在一个大小相等、方向相反的反作
用力。

- 作用力和反作用力作用在不同的物体上。

6. 动能和功结论:
- 动能是物体因运动而具有的能量,可分为动能和势能。

- 动能的大小取决于物体的质量和速度,可用公式 K = 1/2 * m
* v^2 计算。

- 功是力对物体做的功,可用公式 W = F * d * cosθ 计算,其中
F 是力,d 是力的作用距离,θ 是力和位移之间的夹角。

以上是高中物理二级的结论总结。

这些结论是物理学的基础,
可以帮助理解物体运动的特性和力的作用原理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SSVt221
,212TSSa,aSSnTn121
.初速度为零的匀变速直线运动的比例关系:
等分时间:相等时间内的位移之比 1:3:5:……
等分位移:相等位移所用的时间之比
.竖直上抛运动的对称性:t
= t下,V上= -V下
.“刹车陷阱”:给出的时间大于滑行时间,则不能用公式算。先求滑行时间,确定了滑行时
;V
=16.7km/s
.地球同步卫星:T=24h,h=3.6×104km=5.6R
(地球同步卫星只能运行于赤道
.卫星的最小发射速度和最大环绕速度均为V=7.9km/s,卫星的最小周期约为86分钟(环
)
.双星引力是双方的向心力,两星角速度相同,星与旋转中心的距离跟星的质量成反比。
。物体在恒力作用下不可能作匀速圆周运动
①题目要求电压或电流从零可调(校对电路、测伏安特性曲线),一定要用分压式。
②滑动变阻器的最大值比待测电阻的阻值小很多时,限流式不起器安全时用分压式。
④分压和限流都可以用时,限流优先(能耗小)。
.伏安法测量电阻时,电流表内、外接的选择:
①R
远大于RA时,采用内接法,误差来源于电流表分压,测量值偏大;
.一定质量的理想(分子力不计)气体,内能看温度,做功看体积,吸热放热综合以上两项用
.电势能的变化与电场力的功对应,电场力的功等于电势能增量的负值(减少量):
电EW。
.粒子飞出偏转电场时“速度的反向延长线,通过沿电场方向的位移的中心”。
.讨论电荷在电场里移动过程中电场力的功基本方法:把电荷放在起点处,标出位移方向和
V2=2aS求滑行距离.
.“S=3t+2t2”:a=4m/s2 ,V
=3m/s.
.在追击中的最小距离、最大距离、恰好追上、恰好追不上、避碰等中的临界条件都为速度
.
.运动的合成与分解中:
船头垂直河岸过河时,过河时间最短.
船的合运动方向垂直河岸时,过河的位移最短.
.绳端物体速度分解:对地速度是合速度,分解时沿绳子的方向分解和垂直绳子的方向分
≥MB时,B球有最大值,A球有最
M
<MB时,A球最小值为零,B球速度可求,但不为极值.(如图)
.解决动力学问题的三条思路:
物理规律 适用的力 能研究的量 不能研究的量 运用的场合
运动定律加
恒力 S,V,t 无 恒力作用过程
动量定理
恒力或变力 V,t S 运动传递过程
动能定理
恒力或变力 V,S t 能量转化过程
.物体做简谐振动:
①在平衡位置达到最大值的量有速度、动能
②在最大位移处达到最大值的量有回复力、加速度、势能
③通过同一点有相同的位移、速率、回复力、加速度、动能、势能、可能有不同的运动方向
.由波的图象讨论波的传播距离、时间、周期和波速等时:注意“双向”和“多解”
分子质量m=M/N (M为摩尔质量,N为阿伏加德罗常数);分子体积为V
=V/N (V为摩尔体积,注
:如果是气体,则为分子的占有体积)
布朗运动是微粒的运动,不是分子的运动.
分子势能用分子力做功来判断,r
处分子势能最小,分子力为零.
.分析气体过程有两条路:一是用参量分析(PV/T=C)、二是用能量分析(ΔE=W+Q)。内能变
7)除重力和弹簧弹力以外的力做功等于机械能的增加
8)功能关系:摩擦生热Q=f·S
(f滑动摩擦力的大小,ΔE损为系统损失的机械能,
为系统增加的内能)
9)静摩擦力可以做正功、负功、还可以不做功,但不会摩擦生热;滑动摩擦力可以做
,但会摩擦生热。
10)作用力和反作用力做功之间无任何关系, 但冲量等大反向。一对平衡力做功不是
.传送带以恒定速度运行,小物体无初速放上,达到共同速度过程中,相对滑动距离等于
.
.发动机的功率P=Fv,当合外力F=0时,有最大速度v
=P/f (注意额定功率和实际功
.
.00≤α<900 做正功;900<α≤1800做负功;α=90o不做功(力的方向与位移(速度)方
).
.能的其它单位换算:1kWh(度)=3.6×106J,1eV=1.60×10-19J.
=0,
,一起向前;质量相等,速度交换;小碰大,向后转)
211122112112,mmVmVmmVmmV
.A追上B发生碰撞,满足三原则:
①动量守恒 ②动能不增加 ③合理性原则{A不穿过B(VV
B)}
.小球和弹簧:①A、B两小球的速度相等为弹簧最短或最长或弹性势能最大时
②弹簧恢复原长时,A、B球速度有极值:若M
=r),
EPm42;
.含电容电路中,电容器是断路,电容不是电路的组成部分,仅借用与之并联部分的电压。
. 考虑电表内阻的影响时,电压表和电流表在电路中, 既是电表,又是电阻。
. 选用电压表、电流表:
① 测量值不许超过量程。
② 测量值越接近满偏值(表针偏转角度越大)误差越小,一般应大于满偏值的三分之一。
.开普勒第三定律:T2/R3=K(=4π2/GM){K:常量(与行星质量无关,取决于中心天体的质
)}.
.万有引力定律:F=GMm/r2 =mv2/r=mω2r=m4π2r/T2 (G=6.67×10-11N·m2/kg2)
.地球表面的万有引力等于重力:GMm/R2=mg;g=GM/R2 (黄金代换式)
物体的平衡:
.几个力平衡,则一个力是与其它力合力平衡的力.
.两个力的合力:F
大+F小F合F大-F小.
三个大小相等的力平衡,力之间的夹角为1200.
.物体沿斜面匀速下滑,则tg.
.两个一起运动的物体“刚好脱离”时:
貌合神离,弹力为零。此时速度、加速度相等,此后不等.
.同一根绳上的张力处处相等,大小相等的两个力其合力在其角平分线上.
,并用W=FS计算其大小;或用W=qU计算.
处于静电平衡的导体内部合场强为零,整个是个等势体,其表面是个等势面.
电场线的疏密反映E的大小;沿电场线的方向电势越来越低;电势与场强之间没有联系.
.电容器接在电源上,电压不变; 断开电源时,电容器电量不变;改变两板距离,场强不变。
.电容器充电电流,流入正极、流出负极;电容器放电电流,流出正极,流入负极。
带电粒子在交变电场中的运动:
①直线运动:不同时刻进入,可能一直不改方向的运动;可能时而向左时而向右运动;可能往
(可用图像处理)
②垂直进入:若在电场中飞行时间远远小于电场的变化周期,则近似认为在恒定电场中运动
处理为类平抛运动);若不满足以上条件,则沿电场方向的运动处理同①
③带电粒子在电场和重力场中做竖直方向的圆周运动用等效法:当重力和电场力的合力沿半
②R
远大于RX时,采用外接法,误差来源于电压表分流,测量值偏小.

XRR大于XVRR时, 采用内接法;AXRR小于XVRR时, 采用外接法
电压表或电流表中,电流大小与其偏转角成正比,一般有左进左偏,右进右偏
测电阻常用方法:
①伏安法 ②替代法 ③半偏法 ④比较法
已知内阻的电压表可当电流表使用;已知内阻的电流表可当电压表使用;已知电流的定值电
.物体受三个力而处于平衡状态,则这三个力必交于一点(三力汇交原理).
.动态平衡中,如果一个力大小方向都不变,另一个力方向不变,判断第三个力的变化,
.
.匀变速直线运动:
平均速度:
SSVVVVt222121
时间等分时: SSaT
n12 ,
中间位置的速度:
VV
12222,
纸带处理求速度、加速度:
.
超重、失重(选择题可直接应用,不是重力发生变化)
.
物体有向下的加速度时,处于失重状态,此时物体对支持物(或悬挂物)的压力(或
(加速度向下为g).
.沿光滑物体斜面下滑:a=gSin
时间相等: 450时时间最短: 无极值:
4 3.一起加速运动的物体: M1和M2 的作用力为FmmmN212,与有无摩擦(相同)无关,平面、斜面、竖直都一样. 4.几个临界问题: gtga 注意角的位置! 弹力为零 弹力为零 5.速度最大时往往合力为零: 6.牛顿第二定律的瞬时性: 不论是绳还是弹簧:剪断谁,谁的力立即消失;不剪断时,绳的力可以突变,弹簧的力不可突变. 四.圆周运动、 万有引力: 1.向心力公式:vmRfmRTmRmRmvF22222244. 2.同一皮带或齿轮上线速度处处相等,同一轮子上角速度相同. 3.在非匀速圆周运动(竖直平面内的圆周运动)中使用向心力公式的办法:沿半径方向的合力是向心力. 4.竖直平面内的圆运动: (1)“绳”类:最高点最小速度 (此时绳子的张力为零),最低点最小速度 (2)“杆”:最高点最小速度0(此时杆的支持力为mg),最低点最小速度
,当其合力沿半径指向圆心处速度最小.
沿电场线的方向电势越来越低,电势和场强大小没有联系.
十.恒定电流:
电流的微观定义式:I=nqsv
.等效电阻估算原则:电阻串联时,大的为主;电阻并联时,小的为主。
.电路中的一个滑动变阻器阻值发生变化,有并同串反关系:电阻增大,与它并联的电阻上
, 与它串联的电阻上电流或电压变小;电阻减小,与它并联的电阻上电流或电
。圆周运动中的追赶问题(钟表指针的旋转和天体间的相对运动):1
1TtTt,其中
<T2。
.求功的途径:
①用定义求恒力功. ②用动能定理(从做功的效果)或能量守恒求功.
③由图象求功. ④用平均力求功(力与位移成线性关系).
⑤由功率求功.
.功能关系--------功是能量转化的量度,功不是能.
相关文档
最新文档