卢淑华 《社会统计学》讲义
社会统计学讲义
《社会统计学》讲义教学目的和要求:通过本课程的学习,使学生熟悉常用的统计方法,并且学会如何将统计分析知识应用于社会调查研究之中,掌握统计方法的灵活运用。
本课程偏重统计方法的实际应用,而非其数理基础。
在教学过程中,注重对于不同统计分析方法适用条件的说明,统计公式的讲解,以及对于统计值意义的说明。
教学重点和难点:本课程的教学重点是不同统计分析方法所适用的条件以及统计值意义的解释。
难点是统计公式的讲解以及不同统计分析方法在实际社会调查研究中的应用。
教法特点说明:课堂讲授为主,注重对实例的讲解。
教材和参考书目:1、卢淑华著:《社会统计学(第三版)》,北京大学出版社,2007年。
2、李沛良著:《社会研究的统计应用》,社会科学文献出版社,2002年。
3、柯惠新等著:《调查研究中的统计分析法》,北京广播学院出版社,1992年。
4、风笑天著:《现代社会调查方法》,华中科技大学出版社,2001年。
5、袁方主编:《社会研究方法教程》,北京大学出版社,1997年。
第一章统计学简史教学目的和要求:通过本章的学习使学生了解统计学的产生、发展历程有初步的认识。
教学重点和难点:重点是国势学派与政治算数学派的差异,难点是文字记述与数字记述各自的特点。
教学方法:课堂讲授教学内容:一、统计学的起源统计技术:古埃及、古中国(大禹治水)统计学:17世纪中叶Status(拉丁词汇,国家、状态)——Statistics 研究国家的宏观状态①国势学②政治算术二、国势学(17世纪的德国)德国大学学派:H·Coring 用文字记录一个国家的状况和制度G·Achenwall 第一个定义——把国家的显著事项全部记录下来的学科三、政治算术(17世纪的英国)英国的经验主义者:用数量或数字的方法说明国家的特征J·Graunt 《关于伦敦死亡表的观察》用数量分析社会、政治问题William Petty 《政治算术》四、概率论(数理特征更加明显)1.J Bernoulli(贝努里)瑞士大数法则借助大数法则可以从社会现象复杂不定的偶然性中寻找规律,它说明了社会现象的稳定性2.Gauss(高斯)德国正态分布(中心极限定理的基础)五、数理统计学Adolphe Quetelet(阿道夫·凯特勒)法籍比利时人数理统计学派的创始人“经验社会学之父”《社会物理学》“平均人”六、描述统计高尔顿(F Galton)回归现象根据对1078对父、子身高的散布图发现,虽然身材高的父母比身材矮的父母倾向于有高的孩子。
社会统计学(卢淑华)_第六章
第一节 统计推论
一、统计推论:根据局部资料对总体特征进行推断 特点: 1、局部资料的特性在某种程度上能反映总体的特征 2、抽样结果不能恰好等于总体的结果
二、理论基础:概率论 三、内容:
1、通过样本对总体的未知参数进行估计(参数估计) 2、通过样本对总体的某种假设进行检验(假设检验)
第二节 名词解释
二、评价估计值的标准
1、无偏性:x 的均值等于待估参数μ
如果 Qˆ 是总体参数Q的估计值,且Qˆ 分布的均值有 E Qˆ 称 Qˆ 是Q的无偏估计。
Q,则
2、有效性:
1)方法:如果两个估计值Qˆ1 x1 x2 xn 及 Qˆ 2 x1 x2 xn ,它
都满足无偏性,那么当 Qˆ1 的方差比 Qˆ 2 的方差小时,则Q1 较 Q 2 更
有效。
2)增加样本容量可以有效的增加一次抽样接近待估参数的概率。
x 样本均值
2
的方差:Dx n
样本方差
S 2 的方差
:D2 S
4
n 2 1
3、一致性: 一个数的估计值要求随样本容量n的增大而以较
大的概率去接近被估计参数的值。
把样本容量为n时的估计值记作 Qˆ n ,如果 n
第五节 正态总体的区间估计
一、置信度、置信区间
如果用Qˆ x1 x2 xn 作为未知参数Q的估计值,那么区间
包含参数Q之概率为1
的关系表达式为
Q Q,
——置信区间(反映估计的准确性)
1
置信度(置信概率)(置信区间估计的可靠性)
显著性水平(置信区间不可靠的概率)
置信区间与置信度的关系:
社会统计学(卢淑华)-第三章
接上例。某天,随机抽出一份表格,发现有错 误,办公室主管想知道由第一、第二、第三个 工作人员所造成的概率是多少?
第二节 概率分布、均值不方差
一、概率分布:
随机现象一共有多少种结果,以及每种结果伴随的概率。
1、离散型随机变量及其概率分布——分布列
概率分布:P X i Pi
例1:10人中,女性3人,抽3人,女性人数的概率分布。
③ 求[ E()]2P·( =xi)
④ 2=
5、方差的性质
① 常数的方差为0
② D(+C)= D()
③ D(C·)=DC2 ·()
④ 两个独立变量
D(+ )= D()+D( )
推广n个
例题
12名学生,3女,9男。任抽一人,如为女 生,则不放回,再抽一人,直到抽到男生 为止,求,抽到男生以前已抽出的女生人 数的数学期望与方差。
PAB PA P B A 或 PAB PB P A B
推论: PA1 A2 An PA1 AP1 A2PAn A1 A2 An
例题1
某城市中,有60%的家庭订阅日报,有80% 的家庭有电视机,假定这两个事件是独立 的,随机抽出一个家庭,发现既订日报又 有电视机的概率?
答案
PAi
B
PAi
• PB PB
Ai
其中
n
PB
i 1
PAi • PB Ai
全概例:
有三个工作人员被指定复制某种表格。某一人 复制了这种表格的40%,第二人复制了35%, 第三人复制了23%,第一人的错误率为0.04, 第二人的错误率为0.06,第三人的错误率为 0.03。随机抽一份表格,这份表格有错误的概 率为多少?
集
社会统计学(卢淑华),第十章
调查过程不应给被调查者带来身体或心理 上的伤害,避免涉及敏感或隐私问题。
数据处理与分析中的伦理问题
数据真实性
在处理和分析数据时,应确保数 据的真实性和完整性,避免篡改
、伪造或选择性使用数据。
数据安全性
采取必要的技术和管理措施, 确保数据的安全存储和传输, 防止数据泄露、损坏或丢失。
数据分析的客观性
报告统计结果时,应提供足够的信息 和数据支持结论,避免选择性报告或 隐瞒不利结果。
避免过度解读
在解释统计结果时,应避免过度解读 或夸大其意义,以免误导读者或产生 不必要的恐慌。
尊重被调查者的权益
在报告统计结果时,应注意保护被调 查者的隐私和权益,避免泄露个人信 息或造成不必要的伤害。
THANK YOU
社会问题调查
通过问卷调查、访谈、观察等方 法收集数据,了解社会问题的现
状、原因和影响。
社会问题分析
运用统计分析方法对调查数据进 行处理和分析,揭示社会问题的
本质和规律。
社会问题解决方案
基于分析结果,提出针对性的解 决方案和建议,为政府和社会各
界提供参考。
社会政策的制定与评估
社会政策制定
01
运用统计数据和分析结果,为政府制定社会政策提供科学依据
04
因子分析
一种通过降维技术,将多个相关变量简化为少数几个 综合变量的统计分析方法。
05
聚类分析
一种根据样本或变量之间的相似性或距离,将其分为 不同类别的统计分析方法。
02
描述性统计方法
频数分布与图形表示
频数分布表
将数据进行分类,并统计各类别出现的次数,形成 频数分布表,以直观展示数据的分布情况。
SAS是一款高级统计分析软件 ,具有强大的数据处理、分析 和可视化功能,适用于大规模 数据处理和复杂统计分析。
(完整word版)卢淑华 《社会统计学》讲义
社会统计学讲义第一章导论一、社会统计学1、社会统计学是运用统计的一般原理,对社会各种静态结构与动态趋势进行定量描述或推断的一种专门方法和技术。
研究对象:概括而言是指社会现象的数量方面。
2、选择统计分析方法的原则是根据研究目的和资料本身的特点选择。
3、统计分析的作用:(1)可对资料进行简化和描述;(2)可对变量间的关系进行描述和深入地分析(统计分析通过事后解释使得探讨变量间复杂的因果联系成为可能);(3)可通过样本资料推断总体(通过参数估计和假设检验,将样本推论到总体并指出这种推论的误差及做出这种推论的把握有多大)。
4、社会统计的基本程序(1)制定计划;(2)统计调查;(3)统计整理;(4)统计分析;(5)统计报告。
5、几个基本概念(1)总体与单位总体又称母体,是作为统计研究对象的、由许多具有共性的单位构成的整体。
构成总体的每一个个体称为总体单位,简称单位或个体。
3个基本特征:大量性、同质性和变异性。
(2)标志与变量总体的每个单位都具有许多属性和特性,说明总体单位属性或数量特征的名称在统计上称为标志,分为数量标志和品质标志。
可变的品质标志无法用数值表示,我们称之为变项;可变的数量标志能够用数值表示,我们称之为变量。
(3)指标与指标体系统计指标是反映总体(或样本总体)的数量特征的概念或范畴。
一个完整的统计指标由两部分构成:指标名称和指标数值。
在社会统计中,如要全面把握对象总体情况,就不能单凭一个指标,而要靠一组相互联系的并与之相适应的指标来完整地反映对象总体。
指标体系就是一系列有内在联系的统计指标的集合体。
二、社会调查研究的程序社会学研究之阶段与步骤(1)确定课题:来源与社会学理论、当前社会现实和要解决的实际问题;具有强烈的时代感、为国家现代化服务;(2)了解情况:查阅文献和向有经验、有知识的人了解,运用个案调查、典型调查进行探索性研究;(3)提出一定的想法和建立假设:差异式、函数式;(4)建立概念和测量方法:采用适当的术语和概念;操作化定义;概念的表现形式往往具有多值性;(5)设计问卷:内容包括事实、态度与看法、行为趋向、理由;方式有固定答题式和自由答题式;(6)试填问卷:发现不周或遗漏之处在试填阶段予以纠正;(7)调查实施(抽样调查):从局部推论到全体(8)校核与登录(9)统计分析与命题的检验:检验最初研究阶段的命题或假设是否得到证实或部分证实,在此基础上对研究内容提出建议和确定进一步的研究方案。
社会统计学(卢淑华)-第三章
B=该家庭有电视机 P(A)=0.60 P(B)=0.80 P(AB)=0.60*0.80=0.48
例题2
对同一目标进行3次射击,第一、二、三、 次射击命中的概率分别是:0.3,0.4,0.6,求 在这三次射击中恰有一次命中的概率。
答案
Ai=第i次射击命中 A=恰有一次命中 P(A)
x2
Px1 x2 x dx x1
概率密度 x 存在以下性质:
1)x 0
2)
xdx 1
3、分布函数
1)定义:F(x)=P( x) 意义:随机变量从最远的起点(- )到所研究的x点所有概率的总和。
2)对于离散型随机变量,则:依据概率的加法定理:例
F x P x P xi
1、离散型随机变量
方差:D E E 2 x E 2 Pi
ii
2、连续型随机变量
方差:D
x
E
2
xdx
标准差 : D
3、方差和标准差都反映了随机变量的可能值密集在数学 期望周围的程度。方差值越小,密集程度越高;反之则方
差值较大。
4、计算过程
① 利用公式求 E()=
② 求[ E()]2
例2:两名孕妇,生女婴的概率分布。
性质:1) Pk 0
2) PK 1 K 1
分布列表明全部概率在各可能取值之间的分布规律,全面描叙离散随机变量
的统计规律
2、连续型随机变量及其概率分布 ——概率密度函数
概率密度
:
x
P
lim
x 0
x
x 2
x
x
x
2
任意两点(X1,X2)之间的概率为:
三种情况:
1、不可能事件Ø 概率 P()=0 2、必然事件S 概率 P(S)=1 3、必然与不可能之间E 概率 0 P(E) 1
社会统计学(卢淑华)PPT培训课件
例:
根据生命表,年龄为60岁的人,可望活 到下年的概率P=0.95。设某单位年龄为 60岁的人共有10人,问:
(1)其中有9人活到下年的概率为多少 (2)至少有9人活到下年的概率为多少 (3)至多有9人活到下年的概率为多少
第四节 多项分布
以三项分布作为研究对象,依此类推
三项分布: P x1 , x2 , x3 n! P P P 1 x1 2 2x 3 x3
x
x nx
n
xa
例:
教师中吸烟的比例为50%,随机抽查教 师10人,求概率:
1、全不吸烟 2、1人吸烟 3、至少2人吸烟 4、2-4人吸烟
三、二项分布的数学期望
E
n
x
P
n
x
x
x
Cp q x
n
nx
n
p
x 0
x 0
5、二项分布的方差等于
2
2
6、查表方法
3、二点分布----一次贝努里试验的概率分布; 二项分布----n次贝努里试验的概率分布;
4、二点分布是二项分布的特殊情况
5、二点分布 :
变量的取值只有两类 ;
x
0
p
q
代码:0、1 ;
1
p
分布列:
6、二点分布的性质 1)P(=0)>0 P(=1) >0 2)P(=0)+ P(=1)=q+p=1 3)二点分布的期望与方差
如:同一地点的交通事故。
例
某城市一交叉路口每年平均发生交通事 故5起,如果交通事故的发生服从泊松分 布,在指定的一年内以下交通事故发生 的概率是多少?
社会统计学(卢淑华),第五章
卡方分布性质
性质1 如果随机变量 1 , 2 ,…… k 相互独立,
2
量:
x
2
1
2
i
k 2 i 1
仍然服从自由度为k的 X2 的平方分布。
性质2:
如果随机变量 和 独立,并且分别服 从自由度为K1与K2的X2 分布,则其和 服从自由度为K1 + K2的X2分布。
,求
2)P 1.3 3)P1.3 2.3
2、ξ 满足N 0,1 ,P 0.05 ,求λ 值。 3、ξ 满足 N 50,52 ,求 P 61
第四节 常用统计分布
一、X2分布(卡方分布) 1、设随机变量 1,2, k 相互独立,且都服
三、切贝谢夫大数定理
1、定义:设随机变量 , …是相互独立服 从 同 一 分 布 , 并 且 有 数 学 期 望 E i 差 Di 2 ,那么对于任何一个正数 ,
1
2
有: n 为 1 , 2 …n个随即变量的平均值 2、含义:当实验次数n足够大时,n个随机变 量的平均值 与单个随机变量的数学期望 的 差可以任意的小,这个事实以接近于1的很大 概率来说是正确的,即 趋近于数学期望 3、实际:意义可以用抽样的均值 做为总体均
P 2 z 2 0.9546
P 3 z 3 0.9973
例:
例1:σ相同而µ 不同。学习成绩:甲位于一班, 乙位于二班。一班平均成绩80分,二班平均成绩 60分,甲成绩80分,乙成绩80分。σ相同,为 10,比较二者在班上的成绩。 例二: µ 相同而σ不同:如果 1 2 60
社会统计学(卢淑华)-第一章
资料的对象 3)要把握统计分析的前提是否满足:资料的信度和效度;
资料收集的科学性;资料在总体中的分布。
统计分析中常见的错误
社会统计学
社会统计学以德国为中心;克里斯首创 认为社会统计学是一门社会科学,研究
社会变动与规律性 研究对象是社会总体而不是个体,大量
观察、研究内在联系,才能揭示其规律 性。
社会统计学的两大流派
❖ 社会指标学派 ❖ 描述统计学派
社会指标
用来测定某一社会要素状态的统计量。 社会指标举例:
检验;定类-定距:方差分析;
定序变量
初级定量测定 除类别、属性之分外,还有等级、秩序
之分 如:教育程度;社会经济地位 定序-定序:等级相关
定距变量
除定类、定序外,取值之间有标准化的 量度
可进行加减运算,但不能进行乘除运算 典型例子:智商测定 定距-定距:回归与相关
定比变量
除定类、定序、定距之特征外,取值可 构成一个有意义的比例
有一个绝对固定的、非任意的零点 可进行乘除运算 绝大多数经济变量可进行定比测定 如:年龄;收入;
知识回顾 Knowledge Review
祝您成功!
联合国有关组织规定: 若低于0.2表示收入绝对平均; 0.2-0.3表示比较平均; 0.3-0.4表示相对合理; 0.4-0.5表示收入差距较大; 0.6以上表示收入差距悬殊。
二、社会学不社会统计学
1、社会学研究的重要环节 ▲课题---了解课题---假设---术语---问卷---调查---校核---统计
社会统计学(卢淑华),第一章资料
一、社会统计学的发展
统计学的两大流派:数理统计学派和社 会统计学派
数理统计学派的原创始人是比利时的A ·凯特靳, 其最大的贡献就是将法国的古典概率引入统计 学,用纯数学的方法对社会现象进行研究; 社会统计学派的首倡者是德国的K·克尼斯,他 认为统计研究的对象是社会现象,研究方法为 大量观察法。
例:中学升学率调查
课题确定:升学率差异较大;学生择校
初探:收集文献,前人研究;咨询相关人员; 典型个案观察(好坏各2-3所中学)
假设:构思影响因素:1、师资专业水平,2、 学生入学水平,3、父母教育水平;
师资水平高
升学率高
入学成绩好
升学率高
父母教育水平高
升学率高
续例
操作化定义:如,师资:学历、职称、 获奖等;学生水平:考分、地域、性别 等;父母水平:学历、职业、教育子女的 时间等(注意:每一个定义就是一个变量, 要注意变量的各种可能取值)
1、混淆统计联系与因果关系 根据观测数据得到的统计联系(如相关 关系)只是因果关系存在的必要条件, 而不是充分条件。
2、事后解释错误 将探测性研究或描述性研究得到的理论 假设反过来作为假设检验来看待。
统计分析中常见的错误
3、生态学错误 混淆宏观模式与微观模式。 如:教育、经济水平越高的地区生育水平 越低,不能引申为个人教育水平与生育 水平的关系。 4、还原论错误 根据较低层次研究单位的分析结果推断较 高层次单位的运行规律。
联合国有关组织规定: 若低于0.2表示收入绝对平均; 0.2-0.3表示比较平均; 0.3-0.4表示相对合理; 0.4-0.5表示收入差距较大; 0.6以上表示收入差距悬殊。
二、社会学不社会统计学
1、社会学研究的重要环节 ▲课题---了解课题---假设---术语---问卷---调查---校核---统计
社会统计学(卢淑华),第十一章
系数。
d yx
ns nd ns nd n y
d
xy
ns nd ns nd nx
d yx :仅考虑在y方向的同分对 d xy :仅考虑在x方向的同分对
.
三、s值检验
H0: s 0
H1: s 0
统计量:
S
z —N(0,1)
Se
s ns nd
Y\x
10
1
12
4
32
2
22
4
23
4
32
2
12
1
12
5
.
4、 Gamma系数的PRE性质:
PRE ns nd ns nd 与G系数相同
5、当定序变量只有两种等级 G
n1 n4 n3 n2
不计符号时(方向)与Q系数相同
.
三、 Gamma系数的检验
H0: r0
H1: r0
统计量:
z G 1 G2
ns nd n
.
例:在某地选取409名已婚男人,研究他们对 母亲的感情会否影响他们对婚姻的适应,并问 是否有总体推论价值。
婚姻适应
丈夫对母亲的感情
平淡 不错 良好 很好
差
32 41 26 28 127
一般
28 47 41 22 138
很好
15 69 61 59 204
75 157 128 109 409
.
每对父子(女)作为一个观测单元,将其等 级写成一个集合:如(1,2)
将等级差平方后求和 其极值会是怎样?
.
r 1、相关系数 s
以等级差的平方和为基础来讨论等级相关。
社会统计学,卢淑华(第4版),第7,8章.pptx
假设检验的基本步骤
第1步:提出原假设和备择假设。 支持的命题为:备择假设 备择假设的对立面则为原假设 第2步:选择适当的检验统计量(test statistic) ,并 根据样本信息计算检验统计量的值
估计量-假设(H 0 )值 标准化检验统计量= 标准误差
第3步:选择显著性水平,确定临界值
总体参数的区间估计
用样本信息检验总体信息
第七章 假设检验 Hypothesis testing
一、假设检验的基本内容
(一)假设检验的基本思想 假设检验(hypothesis testing)是除参数估计之 外的另一类重要的统计推断问题。它的基本思想可以 用小概率原理来解释。所谓小概率原理,就是认为小 概率事件在一次试验中是几乎不可能发生的。也就是 说,如果对于总体的某个假设是真实的,那么不利于 或不可能支持这一假设的小概率事件A在一次试验中 几乎是不可能发生的,要是一次试验中事件A竟然发 生了,我们就有理由怀疑这一假设的真实性,拒绝这 一假设。
原假设 H0 原假设(null hypothesis)通常是研究 者想收集证据予以反对的假设,也称为 零假设,用表示。一般来说,原假设建 立的依据都是已有的、具有稳定性的, 从经验看,没有发生条件的变化,是不 会被轻易否定的。换句话讲,进行假设 检验的基本目的,就在于作出决策:接 受原假设还是拒绝原假设。
临界值计算 比较判断
由于 z 2.77 z 1.645
故不能拒绝原假设。
例6(P251) H0:μ≤20
右侧检验 H1:μ>20 假设设定
分析:正态总体,方差未知,小样本
统计量选择
统计量计算
23.5 20 t 3.5 s/ n 3/ 9
x 0
社会统计学(卢淑华),第十章ppt课件
第十讲 列联表
第一节 概念 1、研究内容 1)研究两定类变量的关系 2)为研究y的分类是否与x之分类有关,将
可编辑课件
30
E1即为猜错人数之和。 推广:
E1 n*1 (1 n*1 ) n*2 (1 n*2 ) n*r (
n
n
n 1
n
r
2
n j1 * j
可编辑课件
31
知道x与y有关后:用y的条件分布来猜y值 当x=男生时 随机10人,猜对聊天的人数:10×10/50 猜错的人数:10-10×10/50 随机40人,猜对游戏的人数:40×40/50 猜错的人数:40-40×40/50 猜错二者相加:=(10-10×10/50)+(40-40×40/50)
在1,1之间。
可编辑课件
20
1、 系数
ad bc
a bc d a cb d
0 ——当两变量相互独立
1 —— b、c为零, 值最大1
a、d为零, 值最小-1
1 ——一般情况
前例中计算
可编辑课件
21
2、Q系数
Q ad - bc ad bc
当a、b、c、d中有一个是零时,则 Q 1
x2 i 1
ni Ei2 Ei
~
2
r 1
3、
4、比较
可编辑课件
16
例:以下是老、中、青三代对某影片的抽 样,能否认为三代人对该影片评价有显 著差异
老
中
青
很高
社会统计学(卢淑华),第十一章
当全为同序对时:
a 取值:
1 当全为异序对时: 1
1,1
2、
b
当出现同分对时:
b
n n 1 1 nn 1 T nn 1 T 2 2
s d x y
T :变量x方向的全部同分对数
x
T :变量y方向的全部同分对数
y
1 Tx C t i (t i 1) 2 t i Txi TXiyj
活动能力名次 1 2 3 4 5 6 7 8 9 10
智商 110 110 105 95 120 94 100 105 105 110
第二节 Gamma等级相关
一、名词 1、同序对:x的变化方向与y的变化方向相 同。 2、异序对:x的变化方向与y的变化方向相 反。
3、同分对:存在相同等级 变量x具有相同等级 x同分对 变量y具有相同等级 y同分对 变量x、y都具有相同等级 x、y同分对
:异序对数目
不考虑同分对时,当数据均为同序对 G 1
不考 1,1
3、利用列联表中频次计算
n和 n
s
d
已知列联表,求同序、异序对
Y\x 10 12 32 1 4 2 23 32 12 4 2 1
22
4
12
5
4、 Gamma系数的PRE性质: PRE 与G系数相同 5、当定序变量只有两种等级
6 d i2
n
等级差的平方和为: 2 d i2 xi yi
则: rs 1
n n 1
i 1 2
外貌等级:1;2;3; 4;5;6;恋爱的6对 男女学生配对如表:
社会统计学(卢淑华版)ppt课件
⑴自变量A的检验 检验统计量:
根据给定的显著性水平α,查出临界值 。如果
,
则不拒绝原假设。否则,拒绝原假设。
⑵自变量B的检验
检验统计量:
根据给定的显著性水平α,查出临界值 。如果
,
则不拒绝原假设。否则,拒绝原假设。 31
5、交互作用显著情况下,自变量A、B显著性的检验 交互作用显著情况下,自变量A、B的检验方法要根据变 量A和B的性质来确定。如果某变量的取值是固定的,则 该变量属于固定变量。如果变量所涉及的测试个体是随 机选择的,则该变量属于随机变量。根据A、B性质的不 同,可以分为三种模型: ⑴固定模型:A、B都是固定变量 对于固定模型,F检验分母项就用剩余误差项(RSS)的均方
• 若原假设(自变量对因变量没有影响)成立,组 间均方与组内均方的数值就应该很接近,它们的 比值就会接近1;若原假设不成立,组间均方会大 于组内均方,它们之间的比值就会大于1。当这个
比值大到某种程度时,就可以说不同水平之间存 在着显著差异,即自变量对因变量有影响。
• 三、方差分析的基本假定
• 1、每个总体都应服从正态分布
然后选择【确定】
第4步:当对话框出现时
在【输入区域 】方框内键入数据单元格区域
在【】方框内键入0.05(可根据需要确定) 在【输出选项 】中选择输出区域
22
• 例 三个地区家庭人口数的抽样调查如下表所示, 试问这三地区的平均家庭人口有没有显著差异?
家庭人口数
甲地
2 6 4 13 5 8 4 6
地区
5
第一节 方差分析的原理
• 对于因素的每一个水平,其观察值是来自服从正态 分布总体的简单随机样本。
• 2、各个总体的方差必须相同 • 各组观察数据是从具有相同方差的总体中抽取的。 • 3、观察值是独立的 • 四、问题的一般提法
社会统计学 卢淑华
社会统计学社会统计学是一门研究社会现象和问题的统计学科。
它通过收集、整理和分析大量社会数据,提供了对社会行为、社会关系和社会结构的科学视角。
社会统计学可以帮助我们理解社会的变迁和发展趋势,为社会科学研究和决策提供数据支持。
一、社会统计学的定义和作用社会统计学是统计学的一个重要分支,它关注社会领域的统计数据和现象。
社会统计学包括以下几个方面的研究内容:1.社会人口统计学:研究人口的数量、分布、结构和变动趋势等问题,包括人口普查、人口调查和人口统计分析等方法。
2.社会经济统计学:研究社会经济活动的数量、结构和变动趋势等问题,包括就业率、收入分配、消费水平等指标的统计分析。
3.社会调查统计学:研究社会问题和社会行为的数据收集和分析方法,包括问卷调查、面访调查和实地观察等技术手段。
4.社会健康统计学:研究社会健康问题的统计数据和分析方法,包括疾病发生率、医疗资源分布和保健水平等指标的统计分析。
5.社会环境统计学:研究社会环境问题的统计数据和分析方法,包括自然资源利用、环境污染和生态平衡等指标的统计分析。
社会统计学的作用主要体现在以下几个方面:1.揭示社会现象的特征:社会统计学通过大量统计数据的分析,能够揭示社会现象的数量、分布和变动趋势等特征,帮助我们更好地理解社会。
2.分析社会问题的原因:社会统计学可以对社会问题进行定量分析,帮助我们找到问题的原因和影响因素,为制定解决方案提供依据。
3.评估社会政策效果:社会统计学可以用于对社会政策的实施效果进行评估,了解政策对社会的影响程度和效果,为政策调整和优化提供参考。
4.提供决策支持:社会统计学可以为政府、企业和组织等提供科学的决策支持,帮助他们做出准确的决策,提高工作效率和决策的科学性。
二、社会统计学的方法和技术社会统计学主要依靠大量数据的收集、整理和分析来揭示社会现象和问题。
以下是一些常用的社会统计学方法和技术:1.问卷调查:通过编制调查问卷,对一定群体进行调查,收集社会数据和意见信息。
社会统计学(卢淑华),第十二章
第五节 用回归方程迚行预测
求y的区间估计值
y1 a x1 e1
y2 a x2 …… e2 yn a xn en
e , e e 相互独立。都服从相同的正态分
1 2
布
ห้องสมุดไป่ตู้
N 0, 2
n
,则随机变量y的标准化:
y y
S y
tn 2 服从自由度为n-2的t分布
生的误差
3)回归平方和:通过回归直线解释 掉的误差。
RSS
n
i 1
yˆi y
2
3、统计量:
F
RSS ESS n2
F 1, n 2
TSS
2
x n 1
2
RSS
2
x 1
2
ESS
2
x n 2
2
如果 F F 拒绝 H 0 。
例:统计某城市家具销售额y(万元)与 新建住宅面积x(千平方米),得如下资 料:
当x x 0时,置信度为1 a的y区间估计为: [ yˆ0 t 2 S yˆ 0 , yˆ0 t 2 S yˆ 0 ]. 其中:
1 x 0 x S 1
2
S yˆ 0
n
L
S
y yˆ
2
xx
n2
L
xx
x i
x
2
表示x与y两变量观测值相对其各自均值 所造成的共同平均偏差。协方差的数量
可以作为变量线性相关程度的度量。
2、相关系数
x x y y xi x yi y