整数的整除性

合集下载

第一讲整数的整除性

第一讲整数的整除性

第一讲 整数的整除性一、整除的概念·带余除法我们知道两个整数的和、差、积仍然是整数,但是用一不等于零的整数去除另一个整数所得的商却不一定是整数,因此我们引入整除的概念:定义1 设a ,b 是整数,b ≠ 0,如果存在整数q ,使得a = bq成立,则称b 整除a (或a 能被b 整除),记作a ∣b 。

此时,称a 是b 的倍数,b 是a 的约数(或因数)。

如果上述q 不存在,我们就说b 不整除a 或a 不能被b 整除,记作|b a /。

显然每个非零整数a 都有约数 ±1,±a ,称这四个数为a 的平凡约数,a 的另外的约数称为非平凡约数。

下面我们来讨论关于整除的基本性质.定理1(传递性) 如果a ,b 和c 是整数,且a ∣b ,b ∣c ,则a|c.证明因为a ∣b ,b ∣c ,所以存在整数e 和f ,使得b=ae ,c=bf .因此c=bf=(ae )f=a (ef ),从而得到a|c.例如,11|66而66|198,由上述定理可知11|198.定理2 如果a, b, c ,m ,n 为整数且c ∣a,c ∣b,则c ∣(ma+nb )证明 因为c ∣a ,c ∣b ,所以存在整数e 和f ,使得a=ce ,b=cf .因此 ma+nb=m (ce )+n (cf )=c (me+nf ),从而得到c ∣(ma+nb )定理3 如果a|b,c|d, 则ac|bd .下面的定理是关于整除性的一个重要结论.定理4(带余除法)如果a 、b 是整数且b≠0,则存在唯一的整数q 和r ,使得a=bq+r ,(0||r b ≤<).证明 (存在性)(i)当b>0时,作整数序列…,-3b,-2b,-b ,0,b ,2b ,3b, …若a 与上面序列中的某一项相等,则a=bq ,即a=bq+r,r=0.若a 与上面序列中的任一项都不相等,则a 必在此序列的某相邻两项之间,即有确定的整数q ,使bq<a<b(q+1).令r a bq =-,则0r b ≤<(ii )若0b <,则||0b >.由(i)知,存在整数s,t 满足||a b s t =+且0||t b ≤<.又因||b b =-,所以a bs t =-+.取q s =-,r t =,则有a bq r =+且0||r b ≤<.(惟一性)假设有两对整数q '、r '与q ''、r ''满足a = q ''b + r '' = q 'b + r ',0 ≤ r ', r '' < |b |,则 (q '' - q ')b = r ' - r '',因0 ≤ r ', r '' < |b |,所以|r ' - r ''| < |b |, 从而| (q '' - q ')b|= |q '' - q '||b|< |b|, 即|q '' - q '|<1,故|q '' - q '|=0 即q '' = q ' 从而r ' = r ''。

整除的性质和特征

整除的性质和特征

整除的性质和特征整除是数论中的一个重要概念,它描述了一个整数能够被另一个整数整除,也就是除法运算的结果是整数。

整除有着许多重要的性质和特征,下面将详细介绍。

1.定义:整数a能够被整数b整除,即b是a的因数,记作b,a,当且仅当存在一个整数c,使得a=b·c。

其中,c称为a除以b的商,b称为a的约数,a称为b的倍数。

2.可加性:如果c是a的一个约数,那么c也是a的倍数。

换句话说,如果一个整数能够整除a,那么它也能够整除a的倍数。

3.可乘性:如果b,a且c,a,那么b·c也,a。

换句话说,如果一个整数能够整除a和b,那么它也能够整除a与b的乘积。

4.整除的传递性:如果b,a且c,b,那么c,a。

换句话说,如果一个整数能够整除a和b,那么它也能够整除a。

5.算术基本定理:任意一个大于1的整数,都可以表达为多个质数的积。

这意味着,如果一个整数可以整除另一个整数,那么它必然可以整除这个整数的所有质因数。

6. 两个非零整数的最大公约数和最小公倍数:两个非零整数a和b的最大公约数(记作gcd(a,b))是能够同时整除a和b的最大正整数。

两个非零整数a和b的最小公倍数(记作lcm(a,b))是能够同时被a和b整除的最小正整数。

于是有gcd(a,b)·lcm(a,b)=a·b。

7.唯一分解定理:任何一个整数都能够唯一地分解为几个质数的乘积。

这个定理也说明了一个数的因数有限,不会无限增多。

8. 整除与除法的关系:一个整数a能够被b整除,相当于a除以b 的余数为0。

对于任意的整数a和b,总能够找到唯一的两个整数商q和余数r,使得a=bq+r,其中r满足0≤r<,b。

9. 整除与模运算的关系:一个整数a能够被b整除,等价于a除以b的余数为0,即a mod b = 0。

在模运算中,a mod b表示a除以b的余数。

10. 除法的消去律:如果一个整数a能够被b整除,那么对于任意的整数c,ac也能够被bc整除。

整数整除的概念和性质

整数整除的概念和性质

综合创新
24.重排任一个三位数三个位上的数字,得到 一个最大的数和一个最小的数,它们的差构 成另一个三位数(允许百位数字为0),再重复 以上的过程,问重复2003次后所得的数是多 少?证明你的结论. (2 0 0 4年武汉市选拔赛试题)
一.求被除数类
1. 同余加余,同差减差 例1.某数被7除余6,被5除余3,被3除余3,求此数最小是多少? 解:因为"被5除余3,被3除余3"中余数相同,即都是3(同余),所以要先求满足5和 3的最小数,[5、3]=15, 15+3=18, 18÷7=2……4不余6,(不对) 15×2=30 (30+3)÷7=4……5不余6(不对) (15×3+3)÷7=6……6(对) 所以满足条件的最小数是48。
能力拓展
21.将分别写有数码1,2,3,4,5,6,7,8, 9的九张正方形卡片排成一排,发现恰是一个 能被11整除的最大的九位数。请你写出这九 张卡片的排列顺序,并简述推理过程。 22.将糖果300粒、饼干210块和苹果163个平 均分给某班同学,余下的糖果、饼干和苹果 的数量之比是1:3:2.问该班有多少名同学? 23.已知质数p、q使得表达式(2p+1)/q及(2q3)/p都是自然数,试确定p2q的值。
练习题:
1. 一个三位数被37除余17,被36除余3,那么这个三位数是多少? 2. 已知整数n除以3余2,求n除以12的余数? 3. 某数除以13余5,除以17余8,除以21余4,求此数最小是多少? 4. 号码分别为101,126,173,193的四个运动员进行乒乓球比赛,规定每 两人比赛的盘数是他们号码的和被3除所得的余数。那么,打球盘数最多的运动 员打了多少盘? 5. 求21000除以13的余数是多少? 6. 当n是1到1992之间的一个自然数时,把它的各位数字相加,如果它的和 不是一个一位数,那么把它的各位数再相加,如此继续下去,直到得到一个从1 到9的一位数为止(例如:468→18→9)。问在1到1992这1992个自然数经过上 述方法处理后所得的1992个一位数中,3多还是4多?多几个? 7. 由2000个2组成的数除以13,所得的余数是几?

初中数学竞赛讲座-数论部分2(整数的整除性)

初中数学竞赛讲座-数论部分2(整数的整除性)

初中数学竞赛讲座-数论部分2(整数的整除性)第二讲整数的整除性一、基础知识:1.整除的基本概念与性质所谓整除,就是一个整数被另一个整数除尽,其数学定义如下.定义:设a,b是整数,b≠0.如果有一个整数q,使得a=bq,那么称a能被b整除,或称b整除a,并记作b|a.也称b是a的约数,a是b的倍数。

如果不存在这样的整数q,使得a=bq,则称a不能被b整除,或称b不整除a,记作b|a.关于整数的整除,有如下一些基本性质:性质1若a|b,b|c,则a|c证明:∵a|b,b|c,∴bap,cbq(p,q是整数),∴c(ap)q(pq)a,∴a|c性质2若a|b,b|a,则|a|=|b|.性质3若c|a,c|b,则c|(a±b),且对任意整数m,n,有c|(ma±nb).证明:∵a|b,a|c,∴bap,caq(b,q是整数),∴bcapaqa(pq),∴a|(bc)性质4若b|a,d|c,则bd|ac.特别地,对于任意的非零整数m,有bm|am性质5若a=b+c,且m|a,m|b,则m|c.性质6若b|a,c|a,则[b,c]|a.特别地,当(b,c)=1时,bc|a【此处[b,c]为b,c的最小公倍数;(b,c)为b,c的最大公约数】.性质7若c|ab,且(c,a)=1,则c|b.特别地,若p是质数,且p|ab,则p|a或p|b.性质8n个连续整数中,必有一个能被n整除.【特别地:两个连续整数必有一偶数;三个连续整数必有一个被3整除,如11,12,13中有3|12;41,42,43,44中有4|44;77,78,79,80,81中5|80.】二.证明整除的基本方法证明整除常用下列几种方法:(1)利用基本性质法;(2)分解因式法;(3)按模分类法;(4)反证法等.下面举例说明.例1若a|n,b|n,且存在整数某,y,使得a某+by=1,证明:ab|n.初中数学兴趣班系列讲座——数论部分唐一良数学工作室证明:由条件,可设n=au,n=bv,u,v为整数,于是n=n(a某+by)=na某+nby=abv某+abuy=ab(v某+uy)所以n|ab例2证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除.分析要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即可.证明:设三个连续的奇数分别为2n-1,2n+1,2n+3(其中n是整数),于是(2n-1)2+(2n+1)2+(2n+3)2+1=12(n2+n+1).所以12|[(2n-1)2+(2n+1)2+(2n+3)2].又n2+n+1=n(n+1)+1,而n,n+1是相邻的两个整数,必定一奇一偶,所以n(n+1)是偶数,从而n2+n+1是奇数,故24|[(2n-1)2+(2n+1)2+(2n+3)2].例3若整数a不被2和3整除,求证:24|(a2-1).分析因为a既不能被2整除,也不能被3整除,所以,按模2分类与按模3分类都是不合适的.较好的想法是按模6分类,把整数分成6k,6k+1,6k+2,6k+3,6k+4,6k+5这六类.由于6k,6k+2,6k+4是2的倍数,6k+3是3的倍数,所以a只能具有6k+1或6k+5的形式,有时候为了方便起见,也常把6k+5写成6k-1(它们除以6余数均为5).证明因为a不被2和3整除,故a具有6k±1的形式,其中k是自然数,所以a2-1=(6k±1)2-1=36k2±12k=12k(3k±1).由于k与3k±1为一奇一偶(若k为奇数,则3k±1为偶数,若k为偶数,则3k±1为奇数),所以2|k(3k±1),于是便有24|(a2-1).例4若某,y为整数,且2某+3y,9某+5y之一能被17整除,那么另一个也能被17整除.证明:设u=2某+3y,v=9某+5y.若17|u,从上面两式中消去y,得3v-5u=17某.①所以17|3v.因为(17,3)=1,所以17|v,即17|9某+5y.若17|v,同样从①式可知17|5u.因为(17,5)=1,所以17|u,即17|2某+3y.例5已知a,b是自然数,13a+8b能被7整除,求证:9a+5b都能被7整除.分析:考虑13a+8b的若干倍与9a+5b的若干倍的和能被7整除,证明13a+8b+4(9a+5b)=7(7a+4b)是7的倍数,又已知13a+8b是7的倍数,所以4(9a+5b)是7的倍数,因为4与7互质,由性质7|(9a+5b)例6已知a,b是整数,a2+b2能被3整除,求证:a和b都能被3整除.初中数学兴趣班系列讲座——数论部分唐一良数学工作室证明用反证法.如果a,b不都能被3整除,那么有如下两种情况:(1)a,b两数中恰有一个能被3整除,不妨设3|a,3b.令a=3m,b=3n±1(m,n都是整数),于是a2+b2=9m2+9n2±6n+1=3(3m2+3n2±2n)+1,不是3的倍数,矛盾.(2)a,b两数都不能被3整除.令a=3m±1,b=3n±1,则a2+b2=(3m±1)2+(3n±1)2=9m2±6m+1+9n2±6n+1=3(3m2+3n2±2m±2n)+2,不能被3整除,矛盾.由此可知,a,b都是3的倍数.例7已知a,b是正整数,并且a2+b2能被ab整除,求证:a=b.先考虑a,b互质的情况,再考虑一般情况。

整除性和同余性的定义和性质

整除性和同余性的定义和性质

整除性和同余性的定义和性质整除性和同余性是数学中非常重要的概念。

它们在代数、数论以及计算机科学等众多学科中有着广泛的应用。

本文将从定义、性质等方面对整除性和同余性进行详细的介绍。

一、整除性的定义和性质1.1 定义整除性是指对于两个整数a和b,若存在另外一个整数k,使得a=k×b,则称a可以被b整除,b是a的因数,a是b的倍数。

通常记为b|a。

1.2 性质①任何整数都可以被1和其本身整除。

②如果b|a,且c|b,则c|a。

③如果b|a,且a|c,则b|c。

④如果b|a,且a|b,则a=b或a=-b。

⑤如果b|a且b≠0,则|b|≤|a|,并且|a|/|b|是一个整数。

1.3 应用整除性在代数学和数论中都有广泛的应用。

以代数为例,整除性是求最大公因数和最小公倍数的基本工具。

对于给定的两个整数a和b,可以通过求解它们的公共因子(即两者都能够整除的整数)的最大值来得到它们的最大公因数。

而最小公倍数则可以通过求解a和b之间的联通代数条件来得到。

二、同余性的定义和性质2.1 定义同余性是指对于任意的整数a和b,若它们的差a-b能够被某一个正整数m整除,则称a和b在模m意义下同余,记为a≡b(mod m)。

2.2 性质① (自反性) a≡a(mod m)。

② (对称性) 若a≡b(mod m),则b≡a(mod m)。

③ (传递性) 若a≡b(mod m),b≡c(mod m),则a≡c(mod m)。

④ (加减法性) 若a≡b(mod m),c≡d(mod m),则a±c≡b±d(mod m)。

⑤ (乘法性) 若a≡b(mod m),c≡d(mod m),则ac≡bd(mod m)。

2.3 应用同余性在计算机科学中有广泛的应用。

由于计算机只能计算有限集合中的元素,因此需要在有限范围内的数据上进行运算。

同余性可以将数据限制在一个固定的范围内,并保证运算后的结果还在这个范围内,从而避免了数据溢出或越界的问题。

数论讲义一:整除

数论讲义一:整除

数论讲义一:整除整除是整数的一个重要内容,这里仅介绍其中的几个方面:整数的整除性、最大公约数、最小公倍数、方幂问题。

Ⅰ.整数的整除性初等数论的基本研究对象是自然数集合及整数集合。

我们知道,整数集合中可以作加、减、乘法运算,并且这些运算满足一些规律(即加法和乘法的结合律和交换律,加法与乘法的分配律),但一般不能做除法,即,如是整除,,则不一定是整数。

由此引出初等数论中第一个基本概念:整数的整除性。

定理一:(带余除法)对于任一整数和任一整数,必有惟一的一对整数,使得,,并且整数和由上述条件惟一确定,则称为除的不完全商,称为除的余数。

若,则称整除,或被整除,或称的倍数,或称的约数(又叫因子),记为。

否则,| 。

任何的非的约数,叫做的真约数。

0是任何整数的倍数,1是任何整数的约数。

任一非零的整数是其本身的约数,也是其本身的倍数。

由整除的定义,不难得出整除的如下性质:(1)若(2)若(3)若,则反之,亦成立。

(4)若。

因此,若。

(5)、互质,若(6)为质数,若则必能整除中的某一个。

特别地,若为质数,(7)如在等式中除开某一项外,其余各项都是的倍数,则这一项也是的倍数。

(8)n个连续整数中有且只有一个是n的倍数。

(9)任何n个连续整数之积一定是n的倍数。

(10)二项式定理:;;经典例题:一、带余除法1.若是形如的数中最小的正整数,求证:;分析:利用带余除法,设2.为质数,,证明:被整除;分析:利用带余除法处理,可以设,再来表示二.若3.设和为自然数,使得被整除,证明:分析:根据恒等式4.为给定正整数,对任意,都有,证明:;分析:注意到,对任意,有三、利用牛顿二项式定理;;5.设都是正整数,,且,证明:;分析:首先由,而,讨论的奇偶性6.已知,定义,证明:;分析:当时,四、配对思想7.设为奇数,证明:;分析:由于,这些数的分子都是,分母都小于,因此想到用配对法做此题;五.反证法8.设,,而是一个不小于的正整数,证明:存在整数,使得;整除作业一1.设为有理数,为最小正整数,使得是整数,如果与是整数,证明:。

106 整数的整除性

106 整数的整除性

整数的整除性Division in the Integers定理(带余除法)设n和m都是整数且n≠0,则可以唯一地将m写为m = q⋅n + r,其中q和r是整数,且0 ≤r < |n|。

q称作商(quotient),r称作余数(remainder),记作r = m mod n。

☐例:⏹-29 = (-6)⋅5+1 ⏹143 = 11⋅13+0 ⏹915 = 11⋅78+57☐若余数r =0,则称m 能被n 整除(m is dividable by n),或n 整除m(n divides m),记作n|m。

☐此时,称m是n的一个倍数(multiple),称n是m的一个约数或因子(divisor)。

☐若n|m,则存在整数q 使得m=q n,且有n≤|m| 。

☐例⏹3|12⏹3|(-15)⏹12 的所有因子是{±1, ±2, ±3, ±4, ±6,±12}定理假设a, b, c 是整数,a≠0,则(a) 若a|b且a|c,则对于任意的整数x, y,有a|(xb+yc);(b) 若b≠0,a|b且b|c,则a|c;(c) 若b≠0,a|b且b|a,则a=±b。

☐证明若a|b且a|c,则对于任意的整数x, y,有a|(xb+yc)⏹若a|b且a|c,则存在整数k1及k2使a及c = k2a得b = k1⏹于是xb+yc = xk1a+yk2a = (xk1+yk2)a⏹即a|(xb+yc)定理对于任意正整数a,有a|a及1|a。

☐若大于1 的整数p的所有正因子只有p和1,则称其为质数或素数(prime);否则称其为合数(composite number)。

☐例⏹2, 3, 5, 7, 11, 13, 17, 19都是素数⏹而4, 6, 8, 9, 10, 12, 15, 16, 18都是合数☐定理有无穷多个素数。

☐证明.(反证法)⏹假设只有有穷多个素数,设为p1,p2,…,p n ⏹令m=p1p2…p n+1,显然有p i∤m,1 ≤i ≤n⏹因此要么m本身是素数,要么存在大于p n 的素数整除m,与假设产生矛盾。

整数的运算和性质

整数的运算和性质

整数的运算和性质整数是数学中的基础概念之一,其运算规则和性质在数学中有着重要的地位。

本文将围绕整数的运算和性质展开论述,包括整数的四则运算、整数的质数与合数性质、整数的奇偶性质以及整数的整除性质等。

通过深入探讨,我们将更好地理解和应用整数的运算和性质。

一、整数的四则运算整数的四则运算包括加法、减法、乘法和除法。

具体规则如下:1. 加法:整数相加遵循“正+正为正,负+负为负”的原则。

例如,2+3=5,(-2)+(-3)=-5。

2. 减法:整数相减可以转化为加法运算。

当减数为正整数,被减数为负整数时,减法可以转化为整数的加法。

例如,7-(-2)=7+2=9。

3. 乘法:整数相乘遵循“异号相乘得负,同号相乘得正”的原则。

例如,(-3)×(-4)=12,2×3=6。

4. 除法:整数之间的除法需要注意取整规则。

当除数和被除数同号时,商为正整数;当除数和被除数异号时,商为负整数。

例如,8÷(-2)=-4,(-6)÷2=-3。

二、整数的质数与合数性质质数是只能被1和自身整除的正整数,而合数是能够被其他正整数整除的正整数。

我们可以根据这一定义来判断一个整数是质数还是合数。

1. 质数:质数只有两个正因数,即1和自身。

例如,2、3、5、7等都是质数。

2. 合数:合数可以分解为两个以上的正整数相乘的形式。

例如,4=2×2,6=2×3,8=2×2×2等都是合数。

三、整数的奇偶性质整数可以分为奇数和偶数两类。

1. 奇数:奇数是不能被2整除的整数,其个位数字只能是1、3、5、7或9。

例如,1、3、5、7等都是奇数。

2. 偶数:偶数是能够被2整除的整数,其个位数字只能是0、2、4、6或8。

例如,2、4、6、8等都是偶数。

奇数和偶数之间有一些特殊的性质。

例如,两个奇数相加的结果是偶数,奇数与偶数相乘的结果是偶数,偶数与偶数相乘的结果是偶数等。

四、整数的整除性质整数的整除性质是指一个整数能否被另一个整数整除的规律。

整数的整除性

整数的整除性

整数的整除性1.整数的整除性的有关概念、性质(1)整除的定义:对于两个整数a、d(d≠0),若存在一个整数p,使得成立,则称d整除a,或a被d整除,记作d|a。

若d不能整除a,则记作d a,如2|6,4 6。

(2)性质1)若b|a,则b|(-a),且对任意的非零整数m有bm|am2)若a|b,b|a,则|a|=|b|;3)若b|a,c|b,则c|a4)若b|ac,而(a,b)=1((a,b)=1表示a、b互质,则b|c;5)若b|ac,而b为质数,则b|a,或b|c;6)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)例1 (1987年北京初二数学竞赛题)x,y,z均为整数,若11|(7x+2y-5z),求证:11|(3x-7y+12z)。

证明∵4(3x-7y+12z)+3(7x+2y-5z)=11(3x-2y+3z)而 11|11(3x-2y+3z),且 11|(7x+2y-5z),∴ 11|4(3x-7y+12z)又 (11,4)=1∴ 11|(3x-7y+12z).2.整除性问题的证明方法(1) 利用数的整除性特征(见第二讲)例2(1980年加拿大竞赛题)设72|的值。

解72=8×9,且(8,9)=1,所以只需讨论8、9都整除的值。

若8|,则8|,由除法可得b=2。

若9|,则9|(a+6+7+9+2),得a=3。

(2)利用连续整数之积的性质①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。

②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。

这个性质可以推广到任意个整数连续之积。

例3(1956年北京竞赛题)证明:对任何整数n都为整数,且用3除时余2。

证明∵为连续二整数的积,必可被2整除.∴对任何整数n均为整数,∵为整数,即原式为整数.又∵,2n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质,∴是能被3整除的整数.故被3除时余2.例4 一整数a若不能被2和3整除,则a2+23必能被24整除.证明∵a2+23=(a2-1)+24,只需证a2-1可以被24整除即可.∵2 .∴a为奇数.设a=2k+1(k为整数),则a2-1=(2k+1)2-1=4k2+4k=4k(k+1).∵k、k+1为二个连续整数,故k(k+1)必能被2整除,∴8|4k(k+1),即8|(a2-1).又∵(a-1),a,(a+1)为三个连续整数,其积必被3整除,即3|a(a-1)(a+1)=a(a2-1),∵3 a,∴3|(a2-1).3与8互质, ∴24|(a2-1),即a2+23能被24整除.(3)利用整数的奇偶性下面我们应用第三讲介绍的整数奇偶性的有关知识来解几个整数问题.例5 求证:不存在这样的整数a、b、c、d使:a·b·c·d-a=①a·b·c·d-b=②a·b·c·d-c=③a·b·c·d-d=④证明由①,a(bcd-1)=.∵右端是奇数,∴左端a为奇数,bcd-1为奇数.同理,由②、③、④知b、c、d必为奇数,那么bcd为奇数,bcd-1必为偶数,则a (bcd-1)必为偶数,与①式右端为奇数矛盾.所以命题得证.例6 (1985年合肥初中数学竞赛题)设有n个实数x1,x2,…,x n,其中每一个不是+1就是-1,且试证n是4的倍数.证明设(i=1,2,…,n-1),则y i不是+1就是-1,但y1+y2+…+y n=0,故其中+1与-1的个数相同,设为k,于是n=2k.又y1y2y3…y n=1,即(-1)k=1,故k为偶数,∴n是4的倍数.其他方法:整数a整除整数b,即b含有因子a.这样,要证明a整除b,采用各种公式和变形手段从b中分解出因子a就成了一条极自然的思路.例7 (美国第4届数学邀请赛题)使n3+100能被n+10整除的正整数n的最大值是多少?解n3+100=(n+10)(n2-10n+100)-900.若n+100能被n+10整除,则900也能被n+10整除.而且,当n+10的值为最大时,相应地n的值为最大.因为900的最大因子是900.所以,n+10=900,n=890.例8 (上海1989年高二数学竞赛)设a、b、c为满足不等式1<a <b<c的整数,且(ab-1)(bc-1)(ca-1)能被abc整除,求所有可能数组(a,b,c).解∵(ab-1)(bc-1)(ca-1)=a2b2c2-abc(a+b+c)+ab+ac+bc-1,①∵abc|(ab-1)(bc-1)(ca-1).∴存在正整数k,使ab+ac+bc-1=kabc, ②k=<<<<∴k=1.若a≥3,此时1=-<矛盾.已知a>1. ∴只有a=2.当a=2时,代入②中得2b+2c-1=bc,即 1=<∴0<b<4,知b=3,从而易得c=5.说明:在此例中通过对因数k的范围讨论,从而逐步确定a、b、c是一项重要解题技巧.例9 (1987年全国初中联赛题)已知存在整数n,能使数被1987整除.求证数,都能被1987整除.证明∵×××(103n+),且能被1987整除,∴p能被1987整除.同样,q=()且∴故、102(n+1)、被除,余数分别为1000,100,10,于是q表示式中括号内的数被除,余数为1987,它可被1987整除,所以括号内的数能被1987整除,即q能被1987整除.练习十六1.选择题(1)(1987年上海初中数学竞赛题)若数n=20·30·40·50·60·70·80·90·100·110·120·130,则不是n的因数的最小质数是().(A)19 (B)17 (C)13 (D)非上述答案(2)在整数0、1、2…、8、9中质数有x个,偶数有y个,完全平方数有z个,则x+y+z等于().(A)14 (B)13 (C)12 (D)11 (E)10(3)可除尽311+518的最小整数是().(A)2 (B)3 (C)5 (D)311+518(E)以上都不是2.填空题(1)(1973年加拿大数学竞赛题)把100000表示为两个整数的乘积,使其中没有一个是10的整倍数的表达式为__________.(2) 一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是_________.(3) (1989年全国初中联赛题)在十进制中,各位数码是0或1,并且能被225整除的最小自然数是________.3.求使为整数的最小自然数a的值.4.(1971年加拿大数学竞赛题)证明:对一切整数n,n2+2n+12不是121的倍数.5.(1984年韶关初二数学竞赛题)设是一个四位正整数,已知三位正整数与246的和是一位正整数d的111倍,又是18的倍数.求出这个四位数,并写出推理运算过程.6.(1954年苏联数学竞赛题)能否有正整数m、n满足方程m2+1954=n2.7.证明:(1)133|(11n+2+12n+1),其中n为非负整数.(2)若将(1)中的11改为任意一个正整数a,则(1)中的12,133将作何改动?证明改动后的结论.8.(1986年全国初中数学竞赛题)设a、b、c是三个互不相等的正整数.求证:在a3b-ab3,b3c-bc3,c3a-ca3三个数中,至少有一个能被10整除.9.(1986年上海初中数学竞赛题)100个正整数之和为101101,则它们的最大公约数的最大可能值是多少?证明你的结论.练习十六1.B.B.A2.(1)25·55.(2)27.3.由2000a为一整数平方可推出a=5.4.反证法.若是121的倍数,设n2+2n+12=121k(n+1)2=11(11k-1).∵11是素数且除尽(+1)2,∴11除尽n+1112除尽(n+1)2或11|11k-1,不可能.5.由是d的111倍,可能是198,309,420,531,642,753;又是18的倍数,∴只能是198.而198+246=444,∴d=4,是1984.7.(1)11n+2+122n+1=121×11n+12×144n=121×11n+12×11n-12×11n+12×144n=…=133×11n+12×(144n-11n).第一项可被133整除.又144-11|144n-11n,∴133|11n+2+122n+1.(2)11改为a.12改为a+1,133改为a(a+1)+1.改动后命题为a(a+1)+1|an+2+(a+1)2n+1,可仿上证明.8.∵a3b-ab3=ab(a2-b2);同理有b(b2-c2);ca(c2-a2).若a、b、c中有偶数或均为奇数,以上三数总能被2整除.又∵在a、b、c中若有一个是5的倍数,则题中结论必成立.若均不能被5整除,则a2,b2,c2个位数只能是1,4,6,9,从而a2-b2,b2-c2,c2-a2的个位数是从1,4,6,9中,任取三个两两之差,其中必有0或±5,故题中三式表示的数至少有一个被5整除,又2、5互质.9.设100个正整数为a1,a2,…,a100,最大公约数为d,并令则a1+a2+…+a100=d(a1′+a2′+…+a′100)=101101=101×1001,故知a1′,a2′,a′100不可能都是1,从而a′1+a′2+…+a′100≥1×99+2=101,d≤1001;若取a1=a2=a99=1001,a100=2002,则满足a1+a2+…+a100=1001×101=101101,且d=1001,故d的最大可能值为1001。

整数的整除特征范文

整数的整除特征范文

整数的整除特征范文以下是整数的整除特征的一些重要点:1.定义:如果一个整数a能整除另一个整数b,即b能够被a整除,则可以用以下符号表示:a,b。

读作"a整除b"或"a能整除b"。

例如:2,8,表示2能够整除82.整除性质:(a)整数可以整除0,即所有整数都能整除0。

(b)1可以整除任何整数,即对于任意整数a,都有1,a。

(c)0只能被自身整除,即只有0能够整除0,对于任意整数a,都有a,0。

3.除数与被除数的关系:(a)整数a能整除整数b,当且仅当存在整数c,使得a×c=b。

(表示为a,b)(b)如果整数a能够整除整数b和整数c,那么它也可以整除它们的和、差和乘积,即如果a,b且a,c,则a,(b+c)、a,(b-c)和a,(b×c)。

(c)如果整数a能够整除整数b,并且b能够整除整数c,那么a也能整除c,即如果a,b且b,c,则a,c。

4.整除与素数的关系:(a)素数是指除了1和自身之外没有其他正因数的整数。

素数只能被1和它自己整除。

(b)如果一个数能够整除一个素数p,那么这个数只能是1或p本身。

5.整除与因数的关系:(a)一个整数b的因数是能够整除b的整数。

通常以d,b表示d是b的因数,即d能整除b。

(b)如果整数d是整数b的因数,则存在整数k使得d×k=b。

这可以表示为d,b。

(c)一个整数b的所有正因数,包括1和b本身,构成了b的因数集合。

这个集合的元素个数称为b的因数个数。

6.最大公约数与最小公倍数:整数的整除特征在数论和代数中扮演着重要的角色。

它们被广泛应用于数值计算、代数方程式的求解、模运算以及其他数学领域的研究中。

理解整数的整除特征不仅可以帮助我们解决数学问题,还能够增强我们对整数运算性质的理解。

数论:概念和问题

数论:概念和问题

数论:概念和问题数论是数学的一个分支,研究整数的性质和关系。

它通常涉及整数的性质、整数的分解、整数的整除性以及整数的等式和不等式。

数论在密码学、计算机科学和数学竞赛等领域具有广泛的应用。

本文将介绍数论的基本概念和一些常见的数论问题。

一、整数和整除性整数是数论的基础,它包括正整数、负整数和零。

整除性是整数的重要性质之一,如果整数a可以被整数b整除,我们可以说b是a的因子,记为b|a。

例如,4可以整除12,我们可以表示为4|12。

如果整数a除以整数b得到的商是整数,我们可以说a能整除b,表示为a∣b。

例如,12可以被4整除,我们可以表示为12∣4。

整数的整除性有很多重要的性质,例如传递性、除法算法等。

二、质数和合数质数是只能被1和自身整除的整数,除了1以外没有其他的因子。

例如,2、3、5、7等都是质数。

与之相对的是合数,合数是除了1和自身之外还有其他因子的整数。

例如,4、6、8、9都是合数。

判断一个数是质数还是合数的方法之一是试除法,即将该数与2到其平方根之间的整数逐个相除,如果能整除,则为合数,否则为质数。

三、最大公约数和最小公倍数最大公约数(GCD)是指两个或更多整数共有的最大因子。

最小公倍数(LCM)是指两个或更多整数的公有倍数中最小的一个。

求解最大公约数和最小公倍数是数论的一个常见问题。

欧几里得算法是求解最大公约数的常用算法,它基于以下原理:对于两个整数a和b(且a > b),a和b的最大公约数等于b和a mod b的最大公约数。

利用欧几里得算法,我们可以高效地求得整数的最大公约数。

四、模运算模运算是数论中一个重要的概念,它表示在整数除法中的余数。

给定两个整数a和b,我们用a mod b来表示a除以b的余数。

模运算具有很多有用的性质,例如模运算的加法性质、减法性质和乘法性质。

此外,模运算也可以表示成同余的形式。

如果两个整数a和b满足a mod n = b mod n(其中n是一个正整数),则我们可以说a和b对于模n同余,记为a ≡ b (mod n)。

第1课 整数的整除性

第1课 整数的整除性

第1课数的整除性【知识要点】1、对于整数a和不为零的整数b,如果存在整数q,使得a=bq,则就称b整除a或a被b整除,记作b∣a.若b∣a,我们也称a是b倍数,b是a的约数(或因数);若b不能整除a,记作b a.2、带余除法:如果a、b是整数,b≠0,那么一定存在唯一的一对整数q、r,使得a=bq+r,其中0≤r ≤|b|.这也就是我们所熟知的关系式:被除数=除数×商+余数(0≤余数<除数).当r=0时,就是b∣a;反之,若有b∣a,则r=0.3、整除的一些基本性质(以下字母均表示整数)(1) 若a∣b,且b∣a,则a=±b;(2) 若a∣b,b∣c,则a∣c;(3) 若a∣b,m为整数,则若a∣mb;(4) 若a∣b,a∣c,则a∣(b+c);(5) 若a∣bc,且a与c互质,则a∣b.特别地,若质数p∣ab,则必有p∣a或p∣b;(6) 若b∣a ,c∣a,且b与c互质,则bc∣a.4、数的整除性的常见特征:对于具有某个条件的整数都能被某整数m整除,而不具备该条件的整数就不能被整数m整除,该条件就叫做能被整数m整除的特征.(1)整数a被2整除的特征是个位数是偶数;(2)整数a被3(或9)整除的特征是:各位数字之和是3(或9)的倍数;(3)整数a被5整除的特征是:个位数字是0或5;(4)整数a被4(或25)整除的特征是:末两位是4(或25)的倍数;(5)整数a被8(或125)整除的特征是:末三位是8(或125)的倍数;(6)整数a被11整除的特征是:a的奇数位数字之和与偶数位数字之和的差是11的倍数;(7) 整数a被7整除的特征是:这个数个位数字以前的数字组成的数与个位数字2倍的差能被7整除;(8) 整数a被7、11、13整除的特征是:这个数末三位数字所表示的数与末三位以前的数字所表示的数的差能被7、11、13整除;(9)k个连续的自然数中,至少有一个能被k整除;(10)k个连续的自然数的积必能被k!整除;(11)a、b为整数,n为自然数,则a n-b n能被a-b整除。

2整数的整除性

2整数的整除性

第2讲 整数的整除性知识要点:1. 1整除任何整数,0被任何整数整除;2. 被一些特殊数(3、4、5、9、11……)整除的规律;3. 带余除法;4. 若c b a c a b a ±则,,;5. ;mm b a b a ⇔ 6. c a b a bc a 则且,1),(,=;7. 若一些数整除某数A ,则这些数的最小公倍数(特别当互质时)也整除A ; 8. 对于整数x 、y ,有:)()(为正奇数时;为正整数时n y x y x n y x y x nn n n ++--; 9. 记S (n)为n 的各位数字和,则)(9n S n -;10. 设P (x )是整系数多项式,则对于整数x 、y ,有)()(y P x P y x --;特别地,)0()(P x P x -。

例题选讲:1. 接连写出19至80的数1920…7980,求证:7879801920211980 。

2. 将所有七位数(允许首位为0,以及全为0)按任意顺序排成一排,求证:所得的70000000位数被239整除。

3. 在每张卡片上各写着从11111到99999的五位数,然后将这些数任意排成一排,证明:所得的444445位数不可能是2的幂。

4.任意18个连续的不超过2005的正整数中,至少有一个被其各位数字之和整除。

5.证明:由1,2,3,4,5,6,7组成的任何两个七位数中,没有一个整除另一个。

6.在100 100的方格表的每个方格中均填写着1个非0数码,已知沿着各行的100个100位数均可被11整除,试问在沿着各列填写的100个100位数中是否可能恰好有99个被11整除?7.圆上有3k个数码,已知从某一位起把这些数按顺时针方向记下,得到的一个3k位数能被27整除,证明:如果从任何一位起把这些数码按顺时针方向记下的话,那么所得的一个3k位数也能被27整除。

8. 两人一起写一个由1,2,3,4,5这5个数码组成的2k 位数,第一个人写第一位数码,第二个人写第二位数码,第三位数码仍由第一人写,以此类推。

数字的整除关系

数字的整除关系

数字的整除关系数字的整除关系在数学中有着重要的应用和意义。

整除关系可以理解为一个数能够被另一个数整除,也就是说,当一个数能够被另一个数整除时,我们称它为前者的倍数,而后者则称作前者的约数。

本文将探讨整数的整除关系,包括其定义、性质以及应用。

一、整除关系的定义在数学中,我们定义“整除”为:若整数a和b满足存在一个整数k,使得a=k*b,那么我们说a能够被b整除。

符号表示为a|b,读作“a能够整除b”。

例如,当a=6,b=3时,6能够被3整除,记作6|3。

这是因为6=2*3,存在k=2使得a=k*b成立。

二、整除关系的性质1. 自反性:任何整数a都能够整除自身。

即a|a对任意整数a成立。

2. 传递性:如果a能够被b整除,且b能够被c整除,则a能够被c 整除。

即若a|b且b|c,那么a|c。

3. 对称性:如果a能够被b整除,那么b也能够被a整除。

即若a|b,则b|a。

4. 整数的整除关系是偏序关系。

偏序关系指的是具有自反性、传递性和反对称性的关系。

三、整除关系的应用整除关系在数学中有广泛的应用,以下是一些常见的应用场景。

1. 素数判定在素数判断中,整除关系能够帮助我们确定一个数是否为素数。

一个数是素数,当且仅当它只能够被1和它本身整除。

因此,对于一个待判断的数n,我们只需要判断它能够整除2到√n之间的数即可。

2. 公约数和最大公约数在求解公约数和最大公约数时,整除关系是非常重要的。

公约数是指能够同时整除两个或多个数的数,而最大公约数则是这些公约数中最大的一个。

通过求解两个数的最大公约数,我们可以化简分数、约分、求解线性方程等。

3. 常用分数计算在我们进行分数的加减乘除等运算时,整除关系也是不可或缺的。

在求解分数的最简形式时,我们需要找到分子和分母的最大公约数,然后将两者都除以最大公约数,得到的结果即为最简分数。

4. 除法运算在除法运算中,除数整除被除数得到商和余数。

这种整除关系在计算机程序设计中经常被使用,例如,判断两个数是否能够整除,或者求取一组数除以某个数的商和余数。

初中数学整数的整除性重要知识点归纳

初中数学整数的整除性重要知识点归纳

Let the past things pass, and we must let them go.勤学乐施积极进取(页眉可删)初中数学整数的整除性重要知识点归纳如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。

整数的整除性(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

(3)若一个整数的数字和能被3整除,则这个整数能被3整除。

(4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。

(5)若一个整数的末位是0或5,则这个数能被5整除。

(6)若一个整数能被2和3整除,则这个数能被6整除。

(7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7 的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

(8)若一个整数的未尾三位数能被8整除,则这个数能被8整除。

(9)若一个整数的数字和能被9整除,则这个整数能被9整除。

(10)若一个整数的末位是0,则这个数能被10整除。

(11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

11的倍数检验法也可用上述检查7的`「割尾法」处理!过程唯一不同的是:倍数不是2而是1!(12)若一个整数能被3和4整除,则这个数能被12整除。

(13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

整数的整除性

整数的整除性

(a1 , a2 , , an ) = 1 时,我们就说 a1 , a2 , , an 是互素的
定义 7 如果 n ≥ 2 是整数,而 a1 , a2 , , an 和 m 都是正整数.又设 a1 | m, a2 | m, , an | m ,则
m 叫做 a1 , a2 , , an 的公倍数.公倍数中最小的那一个数叫做 a1 , a2 , , an 的最小公倍数.
(a, b) = (b, r ) a 和 b 的最大公因数等于 b 和 r 的最大公因数,即
辗转相除法:又名欧几里得算法(Euclidean algorithm)乃求两个正整数之最大公因子的算 法。它是已知最古老的算法, 其可追溯至 3000 年前. 算法:当 a mod b = 0 时 gcd( a, b) = b ,否则 gcd( a, b) = gcd(b, a mod b) 定义 6 如果 n ≥ 2 是整数,而 a1 , a2 , , an 都是正整数,当这些数的最大公因数是 1,即
a = bq + r , 0 ≤ r < b 成立.
1.2 素数和复合数
定义 2 一个大于 1 的正整数,只能被 1 和它本身整除,不能被其他正整数整除,这样的正 整数叫做素数(有的书上叫做质数). 定义 3 一个正整数除了能被 1 和它本身整除外还能被其他的正整数整除,这样的正整数叫 做复合数. 定义 4 如果一个正整数 a 有一个因数 b ,而 b 又是素数,则 b 叫做 a 的素因数. 引理 5 如果 a 是一个大于 1 的整数,则 a 的大于 1 的最小因数一定是素数. 引理 6 如果 a 是一个大于 1 的整数,而所有 ≤ 引理 7 有无限多个素数.
p 169
− 1, 76 × 3169 + 1

整数的整除性

整数的整除性

整数的整除性中学时期(40多年前)构造了生成整除性判别法的方法,感到是雕虫小技,一直没有正式发表过。

看到大家有兴趣,就发表吧!一个数是否含有2、3、4、5、9、10、11这些因子的判别方法大家都比较熟悉,比如根据数的末位数字是否能被2、5和10整除,就可判别该数是否含有2、5和10的因子;根据各位数字之和能否被3和9整除,就可判别该数是否含有3和9的因子;根据末两位数能否被4整除,就可判别该数是否含有4的因子;根据奇数位数字之和是否等于偶数位数字之和,就可判别该数是否含有11的因子。

那么7、13,17,19等等因子该如何判别,有没有一个统一的方法呢?下面我们给出构造素因子判断方法的方法,这是一个与记数法有关的方法,而我们给出的是十进制记数法下的判断方法,因为记数法基底所包含的因子判断十分简单,只要看末位数字就可以了,所以只讨论与基底互素因子的判断方法。

这里我们对于末位数字是1、3、7、9的数N,我们找一个数a,使得aN的末位数字是9,于是m=aN+1,不过我们取m=(aN+1)/10。

对于数S=10k+b是否包含因子N=10x+c(其中k和x是正整数,b是0到9的数字,c是1、3、7、9之一),我们的判别方法是:判别k+bm即可。

我们称之为割加判别法,因为其过程是割下末位数字b,乘上m加到前面去,这个过程反复进行直到变成易于判断的小整数为止。

例1.我们判断3021是否能被19整除。

按照我们的方法,有a=1(因为1乘19末位数字是9),于是m=(aN+1)/10=(1x19+1)/10=2,于是割下末位1,乘以2,加到前面302上,得到304;再割下末位4,乘以2,加到前面30上,得到38,可以看到38能被19整除,于是判断3021也能被19整除。

例2.判断1554能否被7整除。

按照我们的方法,有a=7(因为7乘7末位数字是9),于是m=(aN+1)/10=(7x7+1)/10,得到割加因子m=5。

初中数学 第19章整数的整除性(上半部分)

初中数学 第19章整数的整除性(上半部分)

第三篇 初等数论 第19章 整数的整除性§19.1整除19.1.1★证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除. 解析 要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即可.设三个连续的奇数分别为21n -、21n +、23n +(其中n 是整数),于是()()()()22222121231121n n n n n -+++++=++.所以()()()22212|212123n n n ⎡⎤-++++⎣⎦.又()2111n n n n ++=++,而n 、1n +是相邻的两个整数,必定一奇一偶,所以()1n n +是偶数,从而21n n ++是奇数,故()()()22224212123n n n ⎡⎤-++++⎣⎦.19.1.2★★若x 、y 为整数,且23x y +,95x y +之一能被17整除,那么另一个也能被17整除. 解析 设23u x y =+,95x y =+.若17|u ,从上面两式中消去y ,得 3517v u x -=. ①所以17|3v . 因为(17,3)=1,所以17|v 即17|95x y +.若17|v ,同样从①式可知17|5u .因为(17,5)=1,所以17|u ,即17|23x y +. 19.1.3★★设n 是奇数,求证: 60|6321n n n ---.解析 因为260235=⨯⨯,22、3、5是两两互质的,所以只需证明22、3、5能整除6321n n n ---即可. 由于n 是奇数,有22|62n n -,22|31n +, 所以22|6231n n n ---; 又有3|63n n -,3|21n +, 所以3|6321n n n ---; 又有5|61n -,5|32n n +, 所以5|6321n n n ---.所以60|6321n n n ---. 评注 我们通常把整数分成奇数和偶数两类,即被2除余数为0的是偶数,余数为1的是奇数.偶数常用2k 表示,奇数常用21k +表示,其实这就是按模2分类.又如,一个整数a 被3除时,余数只能是0、1、2这三种可能,因此,全体整数可以分为3k 、31k +、32k +这三类形式,这是按模3分类.有时为了解题方便,还常把整数按模4、模5、模6、模8等分类,但这要具体问题具体处理.19.1.4★★设n 为任意奇正整数,证明:15961000270320n n n n +--能被整除. 解析 因为200621759=⨯⨯,所以为证结论成立,只需证n 为奇正整数时,15961000270320n n n n +--能被2、17、59整除.显然,表达式能被2整除. 应用公式,n 为奇数时,()()121n n n n n a b a b a a b b ---+=+-++, ()()121n n n n n a b a b a a b b ----=-+++.由于159610005944+=⨯,2703205910+=⨯,所以15961000270320n n n n +--能被59整除.又159627013261778-==⨯,10003206801740-==⨯,所以15961000270320n n n n +--能被17整除.19.1.5★★若整数a 不被2和3整除,求证:()224|1a -.解析 因为a 既不能被2整除,也不能被3整除,所以,按模2分类与按模3分类都是不合适的.较好的想法是按模6分类,把整数分成6k 、61k +、62k +、63k +、64k +、65k +这六类.由于6k 、62k +、64k +是2的倍数,63k +是3的倍数,所以a 只能具有61k +或65k +的形式,有时候为了方便起见,也常把65k +写成61k -(它们除以6余数均为5). 故a 具有61k ±的形式,其中k 是整数,所以()()222161136121231a k k k k k -=±-=±=±.由于k 与31k ±为一奇一偶(若k 为奇数,则31k ±为偶数,若k 为偶数,则31k ±为奇数),所以()2|31k k ±,于是便有()224|1a -.19.1.6★★★求证:31n +(n 为正整数)能被2或22整除,但不能被2的更高次幂整除. 解析 按模2分类.若2n k =为偶数,k 为正整数,则 ()22313131n k n +=+=+.由3k 是奇数,()23k 是奇数的平方,奇数的平方除以8余1,故可设()2381k l =+,于是()3182241n l l +=+=+,41l +是奇数,不含有2的因数,所以31n +能被2整除,但不能被2的更高次幂整除. 若21n k =+为奇数,k 为非负整数,则()()()22131313313811461n k k l l ++=+=⋅+=++=+.由于61l +是奇数,所以此时31n +能被22整除,但不能被2的更高次幂整除. 19.1.7★★设p 是质数,证明:满足22a pb =的正整数a 、b 不存在. 解析 用反证法.假定存在正整数a 、b ,使得 22a pb =.令() , a b d =,1a a d =,1b b d =,则()11 , 1a b =.所以222211a d pb d =,2211a pb =,所以21|p a .由于p 是质数,可知,1|p a .令12a pa =,则22221a p pb =,所以2221pa b =.同理可得,1|p b .即1a 、1b 都含有p 这个因子,这与()11 , 1a b =矛盾.19.1.8★★如果p 与2p +都是大于3的质数,那么6是1p +的约数.解析 每一整数可以写成6n 、61n -、61n +、62n -、62n +、63n +中的一种(n 为整数),其中6n 、62n -、62n +、63n +在1n ≥时都是合数,分别被6、2、2、3整除.因此,质数p 是61n -或61n +的形式. 如果()611p n n =+≥,那么()263321p n n +=+=+是3的倍数,而且大于3,所以2p +不是质数.与已知条件矛盾. 因此()611p n n =-≥.这时 16p n +=是6的倍数.评注 本题是将整数按照除以6,所得的余数分为6类. 质数一定是61n +或61n -的形式.当然,反过来,形如61n -或61n +的数并不都是质数.但可以证明形如61n -的质数有无穷多个,形如61n +的质数也有无穷多个.猜测有无穷多个正整数n ,使61n -与61n +同为质数.这是孪生质数猜测,至今尚未解决. 19.1.9★★已知a 、b 是整数,22a b +能被3整除,求证:a 和b 都能被3整除. 证 用反证法.如果a 、b 不都能被3整除,那么有如下两种情况:(1)a 、b 两数中恰有一个能被3整除,不妨设3|a ,3b .令3a m =,31b n =±(m 、n 都是整数),于是()222222996133321a b m n n m n n +=+±+=+±+,不是3的倍数,矛盾.(2)a ,b 两数都不能被3整除.令31a m =±,31b n =±,则()()2222223131961961a b m n m m n n +=++±=±++±+()22333222m n m n =+±±+,不能被3整除,矛盾.由此可知,a 、b 都是3的倍数.19.1.10★★若正整数x 、y 使得2x x y+是素数,求证:x y ≤.解析 设2x p x y=+是素数,则()py x x p =-,所以()|p x x p -,故|p x ,或者|p x p -,故可得|p x ,且p x <.令x kp =,k 是大于1的整数,则()1y x k x =-≥.19.1.11★证明:形如abcabc 的六位数一定被7、11、13整除.解析100171113abcabc abc abc =⨯=⨯⨯⨯. 由此可见,abcabc 被7、11、13整除.19.1.12★任给一个正整数N ,把N 的各位数字按相反的顺序写出来,得到一个新的正整数N ',试证明:N N '-被9整除.解析N 除以9,与N 的数字和除以9,所得余数相同.N '除以9,与N '的数字和除以9,所得余数相同.N 与N '的数字完全相同,只是顺序相反,所以N 与N '的数字和相等.N 除以9与N '除以9,所得的余数相同,所以N N '-被9整除.19.1.13★19991999199919991999N =连写个.求N 被11除所得的余数.解 显然,N 的奇数位数字和与偶数位数字和的差为()1999999119998⨯+--=⨯.19998⨯除以11的余数与88⨯除以11的余数相同,即余数为9.从而N 除以11,所得的余数为9. 19.1.14★在568后面补上三个数字,组成一个六位数,使它能被3、4、5分别整除.符合这些条件的六位数中,最小的一个是多少? 解析 要命名这个六位数尽可能小,而且能被5整除,百位数字和个位数字都应选0.这样,已知的五个数位上数字之和是5+6+8+0+0=19.要使这个六位数能被3整除,十位上可填2、5、8.由能被4整除的数的特征(这个数的末两位数应该能被4整除)可知,应在十位上填2.这个六位数是568020.19.1.15★★已知四位数abcd 是11的倍数,且有b c a +=,bc 为完全平方数,求此四位数. 解析在三个已知条件中,b c a +=说明给出b 和c ,a 就随之给定,再由11|abcd ,可定d .而bc 为完全平方数,将b 和c 的取值定在两位平方数的十位和个位数字范围中,只要从这个范围中挑选符合要求的即可.由bc 完全平方数,只可能为16、25、36、49、64、81这六种情况.由b c a +=,此时相应的a 为7、7、9、13、10、9.其中13和10显然不可能是四位数的千位数字.在716d 、725d 、936d 、981d ,这四种可能性中,由11|abcd ,应有()()11|d b a c +-+.()()11|176d +-+时,d 可为1; ()()11|275d +-+时,这种d 不存在; ()11|396d +-+时,d 可为1;()11|891d +-+时,d 可为2.故满足条件的四位数有:7161、9361、9812.评注bc 为完全平方数,表示bc 是两位整数,0b ≠,因此,不考虑00、01、04、09这四种情况,否则还应加上1012、4048、9097这三个四位数.19.1.16★★用0,1,2,…,9这十个数字组成能被11整除的最大的十位数是多少? 解析 因为0+1+2+…+9=45.这个最大十位数若能被11整除,其奇数位上数字之和与偶数位上的数字之和的差(大减小)为0或11的倍数.由于这十个数字之和是45(奇数),所以这个差不可能是0、22、44(偶数).若这个差为33,则只能是396-,但0+1+2+3+4=10,即最小的五个数字之和都超过6,不可能.若这个差为11,()4511228+÷=,452817-=.如果偶数位为9、7、5、3、1,其和为25;奇数位为8、6、4、2、0,其和为20.交换偶数位上的1与奇数位上的4,可得偶数位上的数为9、7、5、4、3,奇数位上的数为8、6、2、1、0.19.1.17★★一个六位数88的倍数,这个数除以88所得的商是多少? 解析 设这个六位数为1234A B ,因为它是88的倍数,而88811=⨯,8与11互质,所以,这个六位数既是8的倍数,又是11的倍数.由1234A B 能被8整除,可知34B 能被8整除(一个数末三位组成的数能被8整除,这个数就能被8整除),所以B 是4.由能被11整除的数的特征(一个数奇数位数字之和与偶数位数字之和的差能被11整除,这个数就能被11整除),可知奇数位数字之和与偶数位数字之和的差()()234144A A ++-++=-能被11整除,则40A -=,即4A =. 124344881413÷=.所以,这个六位数是124344的商是1413.19.1.18★★如果六位数105整除,那么,它的最后两位数是多少? 解析 因为这个六位数能被105357=⨯⨯,3、5、7这三个数两两互质,所以,这个六位数能同时被3、5、7整除.根据能被5整除的数的特征,它的个位数可以是0或5.根据能被3整除的数的特征,可知这个六位数有如下七种可能:199320,199350,199380,199305,199335,199365,199395.而能被7整除的数的特征是:这个数的末三位数字所表示的数与末三位以前的数字所表示的数的差(以大减小)能被7整除.经试算:395199196-=,196能被7整除.所以,199395能被105整除,它的最后两位数是95.19.1.19★★形如1993199319931993520n 个,且能被11整除的最小数是几?解析 本题实质上确定n 的最小值.利用被11整除的数的特征:偶数位数字之和与奇位数字之和的差能被11整除.该数的偶数位数字之和为122n +,奇数位数字之和为105n +,两者之差为()12210523n n n +-+=-.要使()11|23n -,不难看出最小的7n =,故所求最小数为71993199319931993520个.19.1.20★★★是否存在100个不同的正整数,使得它们的和与它们的最小公倍数相等? 解析 存在满足条件的100个数.事实上,对任意正整数()3n ≥,下述n 个数3,23⨯,223⨯,…,223n -⨯,13n -, 它们的最小公倍数为123n -⨯,和为221222132323233323233n n n n ----+⨯+⨯++⨯+=+⨯++⨯+33211113232333323n n n n n -----=+⨯++⨯+==+=⨯.所以,这几个数的和等于它们的最小公倍数.取100n =,可知存在符合要求的100个数.19.1.21★★下面这个41位数20555个 2099个能被7整除,问中间方格代表的数字是几?解析 因为5555555111111=⨯,9999999111111=⨯,11111137111337=⨯⨯⨯⨯,所以555555和999999都能被7整除,那么由18个5和18个9分别组成的18位数,也能被7整除.而原数=185230555000个个1851890999+个个,因此右边的三个加数中,前后两个数都能被1整除,那么只要中间的能被7整除,7整除.把拆成两个数的和: 5599BA B +.因为7|55300,7|399336+=. 评注 记住111111能被7整除很有用.19.1.22★★一位魔术师让观众写下一个六位数a ,并将a 的各位数字相加得b ,他让观众说出a b -中的5个数字,观众报出1、3、5、7、9,魔术师便说出余下的那个数,问那个数是多少? 解析 由于一个数除以9所得的余数与这个数的数字和除以9所得的余数相同,所以a b -是9的倍数.设余下的那个数为x ,则 ()9|13579x +++++, 即()9|7x +,由于09x ≤≤,所以,2x =.19.1.23★★若p 、q 、21p q -、21q p-都是整数,并且1p >,1q >.求pq 的值.解析 若p q =,则 212112p p q p p--==- 不是整数,所以p q ≠.不妨设p q <,于是2121212p q q q q q --<<=≤,而21p q -是整数,故211p q -=,即21q p =-.又 214334q p p p p--==- 是整数,所以p 只能为3,从而5q =.所以 3515pq =⨯=.19.1.24★★★试求出两两互质的不同的三个正整数x 、y 、z 使得其中任意两个的和能被第三个数整除. 解析 题中有三个未知数,我们设法得到一些方程,然后从中解出这些未知数.不妨设x y z <<,于是y z x +、z x y +、x yz+都是正整数.先考虑最小的一个:12x y z z z z++<=≤,所以1x yz+=,即z x y =+.再考虑z x y +,因为()|y z x +,即()|2y y x +,所以|2y x ,于是2212x y y y <=≤, 所以21xy=,即2y x =,从而这三个数为x 、2x 、3x .又因为这三个数两两互质,所以1x =. 所求的三个数为1、2、3.19.1.25★★★求所有的有理数a ,使得421a -≤,并且44127a A a -=为整数.解析 由条件,可知1344a ≤≤.当14时,0A =是整数;下面考虑1344a <≤的情形,此时设pa q =,p 、q 为正整数,且() , 1p q =.则由()34427p q p A q -=为正整数和() , 1p q =可知4|4q q p -,进而|4q q p -,导致|q p ,再结合() , 1p q =,得1q =. 于是()3427p p A -=,又114a p =>.故3p ≤,易知仅当3p =时A 为正整数. 综上可知,满足条件的14a =或13. 19.1.26★★设正整数x 、y 、r 、t 满足1100x y r t <<<≤≤.求x ry t+的最小值. 解析 由条件,可知11111121100100100100100100x r r y y y t y y y ++++=++=≥≥≥. 等号在()() , , , 1 , 10 , 11 , 100x y r t =时取到,因此所求的最小值为21100. 19.1.27★★已知正整数a 、b 、p 、q 、r 、s 满足条件1qr ps -=,p a rq b s<<.证明:b q s +≥. 解析 由条件,可知pb aq <,as br <,故 1pb aq +≤, ① 1as br +≤. ②将①s ⨯与②q ⨯,然后相加,得 psb s q brq ++≤.结合1rq ps -=,可知b q s +≥.19.1.28★★★将正整数N 接写在任意一个正整数的右面(例如,将2接写在35的右面得352),如果得到的新数都能被N 整除,那么N 称为“魔术数”.问:在小于130的正整数中有多少个魔术数? 解析 设P 为任意一个正整数,将魔术数()130N N <接后得PN ,下面对N 为一位数、两位数、三位数分别进行讨论.(1)当N 为一位数时,10PN P N =+,依题意|N PN ,则|10N P .由于需对任意数P 成立,故|10N .所以N =1,2,5.(2)当N 为两位数时,100PN P N =+,依题意|N PN ,则|100N P ,故|100N .所以N =10,20,25,50.(3)当N 为三位数时,1000PN P N =+,依题意|N PN ,则|1000N P ,故|1000N .所以100N =,125.综上所述,魔术数的个数为9个. 评注 (1)我们可以证明:k 位魔术数一定是10k 的约数.事实上,设N 是k 位魔术数,将N 接写在正整数P 的右面得:10k PN P N =⨯+,由魔术数定义可知:|N PN ,因而10k P ⨯也能被N 整除,所以|10k N .这样我们有:一位魔术数为1,2,5;二位魔术数为10,20,25,50;三位魔术数为100,125,200,250,500; 三位或三位以上的魔术数,每种个数均为5.(2)这里将问题分成几种情况去讨论,对每一种情况都增加了一个前提条件,从而降低了问题的难度,使问题较容易解决.19.1.29★★一个正整数如果从左读到右与从右到左读所得的结果相同,则称这个数为回文数.例如:1,343及都是回文数,但则不是.请问能否找到个不同的回文数122005 , , , n n n ,使得122005110 , 110 , , 110n n n +++也都是回文数?解析 取回文数10999901n =,则11011000011n +=也是回文数.因为n 中9的数目可以任选,可取110901n =,2109901n =,…,20052005910999901n =个,因此我们可以找到个回文数满足题目所要求的条件.19.1.30★★将个同学排成一行,并从左向右编为1至号.再从左向右从1到11地报数,报到11的同学原地不动,其余同学出列.留下的同学再次从左向右从1到11地报数,报到11的同学留下,其余同学出列.留下的同学第三次从左向右1到11报数,报到11的同学留下,其余同学出列.问最后留下的同学有多少人?他们的编号是几号? 解 由题意,第一次报数后留下的同学,他们的编号必为11的倍数. 第二次报数后留下的同学,他们的编号必为211121=的倍数. 第三次报数后留下的同学,他们的编号必为3111331=的倍数.因此,最后留下的同学编号为1331的倍数,我们知道从1~中,1331的倍数只有一个,即1331号.所以,最后留下一位同学,编号为1331.19.1.31★★★甲、乙两人进行了下面的游戏.两人先约定一个整数N ,然后由甲开始,轮流把0、1、2、3、4、5、6、7、8、9这十个数字之一填入下面的任一方格中.□□□□□□每一方格只填一个数字,六个方格都填上数字(数字可重复)后,就形成一个六位数,如果这个六位数能被N 整除,就算乙胜;如果这六位数不能被N 整除,就算甲胜.设N 小于15,那么当N 取哪几个数时,乙才能取胜?解析N 取偶数,甲可以在最右边方格里填一个奇数(六位数的个位),就使六位数不能被N 整除,乙不能获胜.5N =,甲可以在六位数的个位填一个不是0或5的数,甲就获胜.上面已经列出了乙不能获胜的N 的取值情况. 如果1N =,很明显乙必获胜.如果3N =或9,那么乙在填最后一个数时,总是能把六个数字之和凑成3的整数倍或9的整数倍.因此乙必获胜. 当7N =,11,13时是本题最困难的情况.注意到100171113=⨯⨯,乙就有一种必胜的办法.我们从左往右数这六个格子,把第一与第四,第二与第五,第三与第六配对,甲在一对格子的一格上填某一个数字后,乙就在这一对格子的另一格子上填同样的数字,这就保证所填成的六位数能被1001整除,这个六位数就能被7、11或13整除,故乙就能获胜. 综合起来,使乙获胜的N 是1、3、7、9、11、13.19.1.32★★小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,问小明家原来的电话号码是多少? 解析设原来电话号码的六位数为abcdef ,则经过两次升位后电话号码的八位数为28a bcdef .根据题意,有 8128abcdef a bcdef ⨯=.记43210101010x b c d e f =⨯+⨯+⨯+⨯+, 于是5568110812081010a x a x ⨯⨯+=⨯+⨯+,解得 ()125020871x a =⨯-. 因为5010x <≤,所以()5012502087110a ⨯-<≤, 故1282087171a <≤. 因为a 为整数,所以2a =.于是 ()125020871282500x =⨯-⨯=.所以,小明家原来的电话号码为282500. 19.1.33★★若a 是不超过1000的正整数,且247a a ++是最简分数,则a 的取值有多少个? 解析 因为2723444a a a a +=-+++,所以()4 , 231a +=,由于23是质数,所以4a +不是23的倍数即可,在5,6,…,1004中,23的倍数有43个,所以满足条件的正整数a 有100043957-=个.19.1.34★★★★在各位数码各不相同的10位数中,是11111的倍数的数共有多少个.解析 设这个10位数为abcdefghij ,因为这10位数的各位数码各不相同,所以a 、b 、c 、d 、e 、f 、g 、h 、i 、j 是0 , 1 , 2 , , 9的一个排列,故 45a b c d e f g h i j +++++++++=.所以9|abcdefghij .因为11111|abcdefghij 且(11111,9)=1,所以99999|abcdefghij ,即599999|10abcde fghij ⨯+.又99999|99999abcde ⋅,所以99999|abcde fghij +.因为0999992abcde fghij <+<⨯,所以99999abcde fghij +=, 所以9a f b g c h d i e j +=+=+=+=+=.而99081726354=+=+=+=+=+,所以,符合题意的数共有 54543212432123456⨯⨯⨯⨯⨯-⨯⨯⨯⨯=(个).19.1.35★★★从1,2,…,9这九个数字中,每次取出3个不同的数字组成三位数,求其中能被3整除的三位数的和. 解析 对于固定的三个不同的非零数字a 、b 、c ,任意排列,可得6个不同的三位数,它们的和为()2111a b c ++⨯.因为()3|3|abc a b c ⇔++,所以有以下两种情况:(1)a 、b 、c 除以3所得的余数相同,即a 、b 、c 取成{}1 , 4 , 7,或{}2 , 5 , 8,或{}3 , 6 , 9,这样得到的()332118⨯⨯⨯=个的三位数的总和为 ()()()21472583691119990++++++++⨯=⎡⎤⎣⎦. (2)a 、b 、c 除以3所得的余数各不相同,不妨设a 取自{}1 , 4 , 7,b 取自{}2 , 5 , 8,c 取自{}3 , 6 , 9,这种三位数共有()333321162⨯⨯⨯⨯⨯=个.对于固定的a ,易知b 、c有339⨯=种取法,因而这162个三位数的和为 ()91239211189910++++⨯⨯=.综合(1)、(2),可知,所求的满足条件的三位数总和为 9990+89910=99900.19.1.36★★★证明一个正整数,当且仅当它不是2的整数幂时,可以表示成若干个(至少两个)连续正整数的和. 解析 当且仅当,有两方面的意思.一方面,当一个正整数不是2的整数幂时,它可以表示成几个连续正整数的和.另一方面,如果一个正整数可以表示成几个连续正整数的和,那么它一定不是2的整数幂.设n 不是2的整数幂.这时n 可以写成 2k n h =⋅,h 是大于1的奇数. ①我们可将n 写成h 个连续正整数的和.中间一个是2k ,它的两侧是21k -与21k +,再向外分别写22k -与22k +,…,直至122k h --与122k h -+(h 是奇数,所以12h -是整数),即()()132********k k k k kh h n --⎛⎫⎛⎫=-+-++-+++++ ⎪ ⎪⎝⎭⎝⎭312222k k h h --⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭.另一方面,设n 是()1h h >个连续正整数1k +,2k +,…,k h +的和,则()()()()()11122122k k h hn k k k h k h h +++=++++++==++,其中h 与21k h ++奇偶性不同,即至少有一个是大于1的奇数.所以这时n 不是2的整数幂. 评注 2的整数幂没有大于1的奇约数.所以一个整数,如果有大于1的奇约数就一定不是2的整数幂.19.1.37★★★玛丽发现将某个三位数自乘后,所得乘积的末三位数与原三位数相同.请问:满足上述性质的所有不同的三位数的和是多少? 解析设三位数为abc ,则21000abc k abc =+, 即()33125abc abc k -=⋅,而(), 11abc abc -=,所以,32|abc ,且35|1abc -;或者32|1abc -,且35|abc . (1)若32|abc ,且35|1abc -,则1125abc -=,375,625,875,只有376abc =使得32|abc ,故此时376abc =满足题意.(2)若32|1abc -,且35|abc ,则125abc =,375,625,875,只有625abc =使得32|1abc -,故此时625abc =满足题意.所以,所求的和为376+625=1001.19.1.38★★★我们知道,4998约分后是12,但按下面的方法,居然也得14941:29882==.试求出所有分子和分母都是十进制两位正整数,分子的个位数与分母的十位数相同,且具有上述“奇怪”性质的真分数.解析 设真分数ab bc 具有上述性质,则ab bc <,且1ab acbc =<,于是 1010a b ab c c+=+,故()910ac b a c =-.若()9|10a c -,则()9|a c -,但是9a c -<,所以0a c -=,矛盾.故9不整除10a c -,所以3|b .(1)若3b =,则310ac a c =-,于是10333131a a c a a -==+++,所以()()31|3a a +-,而331a a -<+,故只能是3a =,从而3c =,矛盾.(2)若6b =,则()3210ac a c =-,于是2021263232a a c a a -==+++,当6a >时,021232a a <-<+,此时c 不是整数;当6a =时,6c =,矛盾;当6a <时,应有12232a a -+≥,所以2a ≤,而当1a =时,4c =,此时,满足题意的真分数为1664,当2a =时,5c =,此时,满足题意的真分数为2665.(3)若9b =,则10ac a c =-,于是10101011a c a a ==-++,所以,()1|10a +,故a =1,4,9. 当1a =时,5c =,此时,满足题意的真分数为1995;当4a =时,8c =,此时,满足题意的真分数为4998;当9a =时,9c =,矛盾.综上所述,满足题意的真分数为:1664,2665,1995,4998. 19.1.39★★★在1,2,3,…,1995这1995个数中,找出所有满足下面条件的数a :()1995a +能整除1995a ⨯.解析 19951995aa+是一个整数.这个式子的分子、分母都有a ,所以应当先进行变形,使得分子不含有a .()19951995199519951995199519951995199519951995a a a a a+-⨯⨯==-+++.根据已知,19951995a a +是整数,所以199519951995a⨯+是整数.因为22221995199535719⨯=⨯⨯⨯,所以它的因数1995a +可以通过检验的方法定出.注意11995a ≤≤,所以199519953990a <+≤.如果1995a +不被19整除,那么它的值只能是以下两种: 223573675⨯⨯=,223572205⨯⨯=.如果1995a +被19整除,而不被219整除,那么它的值只能是以下两种: 237192793⨯⨯=,257193325⨯⨯=.如果1995a +被219整除,那么它的值只能是以下两种: 27192527⨯=,223193249⨯=.于是满足条件的a 有6个,即从以上1995a +的6个值分别减去1995,得出的6个值: 1680,210,798,1330,532,1254.评注 形如ac a b +的式子,可以化成cbc a b-+.使得只有分母含a ,而分子不含a .这种方法有点像假分数化成带分数.19.1.40★★★在1,2,…,这个正整数中,最多可以取出多少个数,使得所取出的数中任意三个数之和都能被33整除? 解析 首先,如下61个数:11,11+33,11233+⨯,…,()1160331991+⨯=满足题设条件.另一方面,设12n a a a <<<是从1,2,…,中取出的满足题设条件的数,对于这n 个数中的任意4个数 , , , i j k m a a a a ,因为()33|i k m a a a ++,()33|j k m a a a ++,所以()33|j i a a -. 因此,所取的数中任意两个之差都是33的倍数.设133i i a a d =+, 2 , 3 , , i n =.由()12333|a a a ++,得()12333|33333a d d ++. 所以133|3a ,111|a ,即111a ≥.1201011613333n n a a d --=<≤,故60n d ≤,所以,61n ≤. 综上所述,n 的最大值为61.19.1.41★★★圆周上放有N 枚棋子,如图所示.B 点的棋子紧邻A 点的棋子.小洪首先拿走B 点的棋子,然后顺时针每隔1枚拿走2枚棋子.这样连续转了10周.9次越过A ,当将要第10次越过A 取走其他棋子时,小洪发现圆周上余下20多枚棋子.若N 是14的倍数,请帮助小洪精确计算一下圆周上还有多少枚棋子. 解析 如果在A 、B 之间再添一枚棋子,并在第一次取棋子时将它取走,那么每一次都是在相邻3枚棋子中取走2枚,所以每取一周,剩下的棋子是上一次剩下的13.设最后剩下a 枚棋子.根据分析所说 1013N a +=, ① 即1031N a =⨯-.因为N 是14的倍数,所以N 是偶数,a 是奇数.又N 是7的倍数,而10539==(7的倍数)+52=(7的倍数)+4,所以41a -是7的倍数.因为a 是20与29之间的奇数,将a =21,23,25,27,29代入41a -,逐一检验,只有a =23时,4191713a -==⨯是7的倍数. 所以圆周上还有23枚棋子. 评注 在A 、B 之间添上一枚棋子,使得取棋子有明显的规律,从而得到①.这是一种很巧妙的想法.在计算103除以7的余数时,可以将其中7的倍数抛弃,直至出现小于7的4.这是常用的方法.19.1.42★★★★求证:对1i =,2,3,均有无穷多个正整数n ,使得n ,2n +,28n +中恰有i 个可表示为三个正整数的立方和. 解析 三个整数的立方和被9除的余数不能为4或5,这是因为整数可写为3k 或31k ±(k是整数),而()33393k k =⨯,()()332319331k k k k ±=±+±.对1i =,令()33312n m =--(m 是正整数),则n 、28n +被9除的余数分别为4、5,故均不能表示为三个整数的立方和,而()()()3332313131n m m m +=-+-+-.对2i =,令()331222n m =-+(m 是正整数)被9除的余数为5,故不能表示为三个整数的立方和,而()3323126n m +=-++, ()333283155n m +=-++.对3i =,令3216n m =(m 是正整数)满足条件: ()()()333345m m m m =++, ()3332611n m +=++,()33328613n m +=++.§19.2奇数与偶数19.2.1★设有101个自然数,记为12101 , , , a a a .已知12310123101a a a a s ++++=是偶数,求证:13599101a a a a a +++++是偶数. 解析 ()1359910123451001012244100100a a a a a s a a a a a a +++++=-++++++是偶数.19.2.2★设121998 , , , x x x 都是1+或者1-.求证:12319982319980x x x x ++++≠.解析()12319981351997231998351997x x x x x x x x ++++=++++()241998241998x x x ++++.因为131997 , 3 ,, 1997x x x 这999个数均为奇数,所以它们的和为奇数,于是B12199821998x x x +++=奇数0≠.19.2.3★★设()12 , , , 4n x x x n >为1+或为1-,并且123423451230n x x x x x x x x x x x x +++=.求证:n 是4的倍数. 解析 设12342345123 , , , n x x x x x x x x x x x x 中1+有k 个,于是1-也有k 个,故2n k =为偶数.把12342345123 , , , n x x x x x x x x x x x x 这n 个数相乘,得()()4121kn x x x =-,所以()11k-=.故k 是偶数,从而n 是4的倍数.19.2.4★某次数学竞赛,共有40道选择题,规定答对一题得5分,不答得1分,答错倒扣1分.证明:不论有多少人参赛,全体学生的得分总和一定是偶数. 解析 我们证明每一个学生的得分都是偶数.设某个学生答对了a 道题,答错了b 道题,那么还有40a b --道题没有答.于是此人的得分是()5404240a a b b a b +---=-+,这是一个偶数.所以,不论有多少人参赛,全体学生的得分总和一定是偶数. 19.2.5★把前50个正整数分成两组,使第一组内各数之和等于第二组内各数之和,能办到吗?说明你的理由. 解析 不能办到.如果能办到,那么所有数加起来应该是第一组内各数之和的2倍,是偶数,但这50个数的总和为5051125025512⨯+++==⨯是个奇数,矛盾!19.2.6★设1,2,3,…,9的任一排列为129 , , , a a a ,求证:()()()129129a a a ---是一个偶数.解析 因为()()()()()()123912912391290a a a a a a a -+-+-++-=+++-+++=是偶数,所以,()()()1291 , 2 ,, 9a a a ---这9个数中必定有一个是偶数,从而可知()()()129129a a a ---是偶数.解析2 由于1,2,…,9中只有4个偶数,所以1a 、3a 、5a 、7a 、9a 中至少有一个是奇数,于是11a -、33a -、55a -、77a -、99a -中至少有一个是偶数,从而()()()129129a a a ---是偶数.19.2.7★有n 个数12 , , , n x x x ,它们中的每一个数或者为1,或者为1-,如果1223110n n n x x x x x x x x -++++=,求证:n 是4的倍数. 解析 我们先证明2n k =为偶数,再证k 也是偶数.由于12 , , , n x x x 的绝对值都是1,所以12231 , , , n x x x x x x 的绝对值也都是1,即它们或者是为1+,或者为1-,设其中有k 个1-,由于总和为0,故1+也有k 个,从而2n k =. 下面我们来考虑()()()12231n x x x x x x ⋅⋅⋅.一方面,有()()()()122311kn x x x x x x ⋅⋅⋅=-,另一方面,有()()()()212231121n n x x x x x x x x x ⋅⋅⋅==.所以()11k-=,故k 是偶数,从而n 是4的倍数.19.2.8★★设a 、b 是正整数,且满足关系式()()1111111111123456789a b +-=.求证:a b -是4的倍数. 解析 由已知条件可得11111a +与11111b -均为奇数,所以a 、b 均为偶数,又由已知条件()111112468a b ab -=+,因为ab 是4的倍数,24684617=⨯也是4的倍数,所以()11111a b ⨯-是4的倍数,故a b -是4的倍数.19.2.9★★9999和99!(注:99!123499=⨯⨯⨯⨯⨯,读作99的阶乘)能否表示成为99个连续的奇数的和? 解析 (1)9999能.因为()()()()999898989898999998999699299992=-+-++-+++++()()989899969998+++.即9999能表示为99个连续奇数的和. (2)99!不能.因为99!12399=⨯⨯⨯⨯是一个偶数,而99个连续奇数之和仍为奇数,所以99!不能表示为99个连续奇数之和. 评注 如果答案是肯定的,我们常常将满足题意的例子举出来或造出来,这称为构造法. 如果答案是否定的,常常采用反证法,找出其中的矛盾. 19.2.10★★代数式rvz rey suz swx tuy tvx --++-. ①中,r 、s 、t 、u 、v 、w 、x 、y 、z 可以分别取1+或1-. (1)证明:代数式的值都是偶数; (2)求这个代数式所能取到的最大值. 解析 (1)①式中共有6项,每项的值都是奇数(1+或1-),所以它们的代数和为偶数.(2)显然,①式的值6≤,但它取不到6这个值,事实上,在rvz 、rwy -、suz -、swx 、tuy 、tvx -这六项中,至少有一项是1-,要证明这一点,将上面这6项相乘,积是 ()21rstuvwxyz -=-.所以六项中,至少有一项是1-,这样,六项和至多是514-=.在u 、x 、y 为1-,其他字母为1时,①式的值是4,所以①的最大值为4. 评注 本例中的代数式实际上是行列式 r s t u v w x y z的展开式,行列式是一个很有用的工具,在今后的学习中还会遇到.19.2.11★★★在n n ⨯(n 为奇数)方格表里的每一个方格中任意填上一个1+或1-,在每一列的下面写上该列所有数的乘积,在每行的右面写上该行所有数的乘积,求证:这个乘积的和不等于0. 解析 设每列下面的数为12 , , , n a a a ,每行右面的数为12 , , , n b b b ,依题意得1i a =+或1-,1i b =+或\1-, 1 , 2 , , i n =,若这2n 个乘积的和为0,即12120n n a a a b b b +++++++=,则这2n 个数中1+的个数与1-的个数一样多,都是n 个,但事实上,因为 1212n n a a a b b b =,()21212121n n n a a a bb b a a a ==.所以这2n 个数中1-的个数为偶数,即n 为偶数,矛盾.19.2.12★★在黑板上写上1,2,…,,,只要黑板上还有两个或两个以上的数,就擦去其中任意两个数a 和b ,并写上a b -,问最后黑板上剩下的数是奇数还是偶数? 解析因为a b -与a b -有相同的奇偶性,而a b -又与a b +有相同的奇偶性,因此a b-与a b +具有相同的奇偶性.所以黑板上剩下的数的奇偶性与20012002122001*********⨯+++==⨯的奇偶性相同,是奇数.19.2.13★★把图中的圆圈任意涂上红色或蓝色,问有没有可能使得在同一条直线上的红圈数都是奇数?请说明理由.解析 如果每条线上红圈都是奇数个,那么5条线上的红圈数相加仍是奇数.但另一方面,由于每个圈都在两条直线上,因而相加时每个红圈都被计算了两次,从而相加的总和应该是偶数.两方面的结果是矛盾的.因此,不可能使同一条线上的红圈数都是奇数.19.2.14★★围棋盘上有1919⨯个交叉点,在交叉点上已经放满了黑子与白子,并且黑子与白子相间地放,即黑子(白子)的上、下、左、右都放着白子(黑子).问能否把这些黑子全部移到原来白子的位置上,而白子也全移到原来的黑子的位置上? 解析 不能.因为1919361⨯=是奇数,所以,必有奇数个白子,偶数个黑子;或者奇数个黑子,偶数个白子.即黑、白子数必然一奇一偶.奇数不可能等于偶数,所以无法使黑子与白子的位置对调.19.2.15★★参加会议的人,有不少互相握过手.握手的次数是奇数的那部分人,人数是奇数还是偶数?为什么? 解析 由于每握一次手,握手的两个人,每一个都握了一次手.因此每握一次手,两个人握手次数的和就是2次.所以,全部与会的人握手的总次数必定是偶数.我们把参加会议的人分成两类,甲类握手次数是偶数,乙类握手次数是奇数,甲类人握手的总次数显然是偶数.注意甲类人握手的总次数加上乙类人握手的总次数等于全部与会的人握手的总次数,所以乙类人握手的总次数也应当是偶数.由于乙类人每人握手的次数都是奇数,而偶数个奇数相加,和才能为偶数,因此,乙类人必为偶数个,即握手次数是奇数的那部分人,人数是偶数.19.2.16★★设标有A 、B 、C 、D 、E 、F 、G 记号的七盏灯顺次排成一行,每盏灯安装一个开关.现在A 、C 、E 、G 四盏灯开着,其余三盏灯是关的.小刚从灯A 开始,顺次拉动开关.即从A 到G ,再从A 到G ,这样拉动了1999次开关后,哪几盏灯是开的? 解析 一盏灯的开关被拉动奇数次后,改变状态,即开的变成关的,关的变成开的.一盏灯的开关被拉动偶数次后,不改变状态,即开的仍为开的,关的仍为关的.因此本题的关键是计算各盏灯被拉次数的奇偶性.由 199972854=⨯+,可知,A 、B 、C 、D 四盏灯的开关各被拉动了286次,而E 、F 、G 三盏灯的开关各被拉动了285次.所以,A 、B 、C 、D 四灯不改变状态,E 、F 、G 三灯改变状态.由于开始时A 、C 、E 、G 四灯是开着的.因此,最后A 、C 、F 三灯是开着的.19.2.17★★桌上放着七只杯子,杯口全朝上,每次翻转四个杯子.问能否经过若干次这样的翻动,使全部的杯子口都朝下? 解析 不可能.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

整数的整除性
竞赛讲座02

.的有关概念、性质
整除的定义:对于两个整数a、d,若存在一个整数p,使得成立,则称d整除a,或a被d整除,记作d|a。

若d不能整除a,则记作da,如2|6,46。

性质
)若b|a,则b|,且对任意的非零整数有b|a
)若a|b,b|a,则|a|=|b|;
)若b|a,c|b,则c|a
)若b|ac,而=1=1表示a、b互质,则b|c;
)若b|ac,而b为质数,则b|a,或b|c;
)若c|a,c|b,则c|,其中、n为任意整数
例1x,y,z均为整数,若11|,求证:11|。

证明∵4+3=11
而11|11,
且11|,
∴11|4
又=1
∴11|.
整除性问题的证明方法
利用数的整除性特征
例2设72|的值。

解72=8×9,且=1,所以只需讨论8、9都整除的值。

若8|,则8|,由除法可得b=2。

若9|,则9|,得a=3。

利用连续整数之积的性质
①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。

②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。

这个性质可以推广到任意个整数连续之积。

例3证明:对任何整数n都为整数,且用3除时余2。

证明
∵为连续二整数的积,必可被2整除.
∴对任何整数n均为整数,
∵为整数,即原式为整数.
又∵
n、2n+1、2n+2为三个连续整数,其积必是3的倍数,而2与3互质,
∴是能被3整除的整数.
故被3除时余2.
例4一整数a若不能被2和3整除,则a2+23必能被24整除.
证明∵a2+23=+24,只需证a2-1可以被24整除即可.
∵2.∴a为奇数.设a=2+1,
则a2-1=2-1=42+4=4.
∵、+1为二个连续整数,故必能被2整除,
∴8|4,即8|.
又∵,a,为三个连续整数,其积必被3整除,即3|a=a,∵3a,∴3|.3与8互质,∴24|,即a2+23能被24整除.
利用整数的奇偶性
下面我们应用第三讲介绍的整数奇偶性的有关知识来解几个整数问题.
例5求证:不存在这样的整数a、b、c、d使:
a•b•c•d-a=①
a•b•c•d-b=②
a•b•c•d-c=③
a•b•c•d-d=④
证明由①,a=.
∵右端是奇数,∴左端a为奇数,bcd-1为奇数.
同理,由②、③、④知b、c、d必为奇数,那么bcd为奇数,bcd-1必为偶数,则a必为偶数,与①式右端为奇数
矛盾.所以命题得证.
例6设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,

试证n是4的倍数.
证明设,
则yi不是+1就是-1,但y1+y2+…+yn=0,故其中+1与-1的个数相同,设为,于是n=2.又y1y2y3…yn=1,即=1,故为偶数,
∴n是4的倍数.
其他方法:
整数a整除整数b,即b含有因子a.这样,要证明a整除b,采用各种公式和变形手段从b中分解出因子a就成了一条极自然的思路.
例7使n3+100能被n+10整除的正整数n的最大值是多少?
解n3+100=-900.
若n+100能被n+10整除,则900也能被n+10整除.而且,当n+10的值为最大时,相应地n的值为最大.因为900的最大因子是900.所以,n+10=900,n=890.
例8设a、b、c为满足不等式1<a<b<c的整数,且能被abc整除,求所有可能数组.
解∵
=a2b2c2-abc+ab+ac+bc-1,①
∵abc|.
∴存在正整数,使
ab+ac+bc-1=abc,②
=<<<<
∴=1.
若a≥3,此时
=-<矛盾.
已知a>1.∴只有a=2.
当a=2时,代入②中得2b+2c-1=bc,
即1=<
∴0<b<4,知b=3,从而易得c=5.
说明:在此例中通过对因数的范围讨论,从而逐步确定a、b、c是一项重要解题技巧.
例9已知存在整数n,能使数被1987整除.求证数
都能被1987整除.
证明∵×××,且能被1987整除,∴p能被1987整除.
同样,
q=


故、102、被除,余数分别为1000,100,10,于是q表示式中括号内的数被除,余数为1987,它可被1987整除,所以括号内的数能被1987整除,即q能被1987整除.
练习二
.选择题
若数n=20•30•40•50•60•70•80•90•100•110•120•130,则不是n的因数的最小质数是.
1713非上述答案
在整数0、1、2…、8、9中质数有x个,偶数有y个,完全平方数有z个,则x+y+z等于.
13121110
可除尽311+518的最小整数是.
35311+518以上都不是
.填空题
把100000表示为两个整数的乘积,使其中没有一个是10的整倍数的表达式为__________.
一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是_________.
在十进制中,各位数码是0或1,并且能被225整除的最小自然数是________.
求使为整数的最小自然数a的值.
证明:对一切整数n,n2+2n+12不是121的倍数.
设是一个四位正整数,已知三位正整数与246的和是一位正整数d的111倍,又是18的倍数.求出这个四位数,并写出推理运算过程.
能否有正整数、n满足方程2+1954=n2.
证明:133|,其中n为非负整数.
若将中的11改为任意一个正整数a,则中的12,133将作何改动?证明改动后的结论.
设a、b、c是三个互不相等的正整数.求证:在a3b-ab3,b3c-bc3,c3a-ca3三个数中,至少有一个能被10整除.
100个正整数之和为101101,则它们的最大公约数的最大可能值是多少?证明你的结论.
练习参考答案
1.B.B.A
2.25•55.27.
3.由XXa为一整数平方可推出a=5.
4.反证法.若是121的倍数,设n2+2n+12=121k2=11.∵11是素数且除尽2,
∴11除尽n+1112除尽2或11|11k-1,不可能.
5.由是d的111倍,可能是198,309,420,531,642,753;又是18的倍数,∴只能是
198.而198+246=444,∴d=4,是1984.
7.11n+2+122n+1=121×11n+12×144n=121×11n+12×11n-12×11n+12×144n=…=133×11n+12×.项可被133整除.又144-11|144n-11n,∴133|11n+2+122n+1.
11改为a.12改为a+1,133改为a+1.改动后命题为a+1|an+2+2n+1,可仿上证明.8.∵a3b-ab3=ab;同理有b;ca.若ab、c中有偶数或均为奇数,以上三数总能被2整除.又∵在a、b、c中若有一个是5的倍数,则题中结论必成立.若均不能被5整除,则a2,b2,c2个位数只能是1,4,6,9,从而a2-b2,b2-c2,c2-a2的个位数是从1,4,6,9中,任取三个两两之差,其中必有0或±5,故题中三式表示的数至少有一个被5整除,又2、5互质.
9.设100个正整数为a1,a2,…,a100,最大公约数为d,并令
则a1+a¬2+…+a100=d=101101=101×1001,故知a1′,a2′,a′100不可能都是1,从而a′1+a′2+…+a′100≥1×9
9+2=101,d≤1001;若取a1=a2=a99=1001,a100=2002,则满足a1+a2+…+a100=1001×101=101101,且d=1001,故d的最大可能值为1001。

相关文档
最新文档