机械零件的磨损_图文
机械零件的磨损机理与疲劳分析
机械零件的磨损机理与疲劳分析引言:机械零件是构成各种机械设备的核心组成部分,其质量和可靠性直接影响着整个设备的性能和寿命。
在机械运动过程中,零件之间的接触和磨擦不可避免地会导致磨损和疲劳,从而降低机械零件的工作效率和寿命。
因此,研究机械零件的磨损机理与疲劳分析成为提高机械设备的性能和寿命的重要课题。
一、磨损机理磨损是机械零件在相对运动过程中表面材料的损失,主要包括磨粒磨损、疲劳磨损和润滑磨损等。
1. 磨粒磨损磨粒磨损是由于杂质等颗粒物进入零件表面的接触区域,与零件表面发生相对滑动而引起的既摩擦又磨损现象。
磨粒磨损会导致零件表面粗糙度增加,磨粒在摩擦接触区域形成凹槽和划痕,进一步加剧磨损。
2. 疲劳磨损疲劳磨损是由周期性应力作用引起的损伤,主要发生在机械零件承受往复或交变载荷的部位。
机械零件在往复运动过程中,由于应力的交变作用,材料表面会出现微裂纹,随着应力的不断作用,微裂纹会逐渐扩展并最终导致零件的疲劳破坏。
3. 润滑磨损润滑磨损是由于润滑油膜的破坏而引起的磨损现象。
当机械零件表面的润滑油膜无法保持稳定时,摩擦接触表面之间的直接接触会增加,摩擦热和摩擦力会增大,从而导致零件表面的磨损加剧。
二、疲劳分析疲劳分析是研究机械零件在循环加载下的疲劳性能和寿命的工程方法。
通过对零件材料的应力应变状态和疲劳强度的分析,可以判断零件在正常工况下的抗疲劳性能,并提出相应的改进措施。
1. 应力分析应力是导致机械零件疲劳破坏的主要因素。
在进行疲劳分析时,需要对零件所受的静态和动态载荷进行分析,计算出零件的应力分布情况,并结合材料的疲劳强度曲线,判断零件是否会发生疲劳破坏。
2. 循环载荷循环载荷是指在零件使用过程中的周期性变化的载荷。
循环载荷下,机械零件会发生应力集中和应力交变,进而引起疲劳裂纹和疲劳破坏。
因此,在疲劳分析中,需要对循环载荷进行精确的统计和计算,以准确评估零件在实际工作条件下的疲劳性能。
3. 疲劳强度分析疲劳强度是指材料在循环加载作用下能够承受的最大载荷水平。
第4章机械零件摩擦
气体润滑剂 液体润滑剂 固体润滑剂 半固体润滑剂
4.3 润滑剂、添加剂
1、润滑油
润滑油
机油:动物油、植物油 矿物油:来源充足、价格低廉、用途广。 化学合成油
评定指标 1)粘度:
① 动力粘度: 油呈层流分布,层与层之间 的摩擦剪应力τ应满足如下关系:
v
y
此式称为牛顿液体流动定律。
η——比例常数,即:流体动力粘度。表征液体内摩擦阻力大小。 单 位:国际单位: Pa.s(帕.秒) 绝对单位: 称为1P(泊) P=0.1Pa.s=100cP(厘泊)
粘着力Fa:两金属表面间互相粘着的凸峰剪断力。 犁刨力Fm:较硬的凸峰在较软的凸峰的犁刨作用。
因此,摩擦力为:
F fFn Fa Fm Fn( fa fm)
干摩擦特点:摩擦系数一般在f=0.1数量级,阻力大、 磨损重、发热高、易胶合、寿命短。
4.1 摩 擦
2、边界摩擦: 两金属表面间由于润滑油与金属表面的吸附作用,
4.3 润滑剂、添加剂
② 运动粘度
(Pa s) (kg / m3)
m2 / s
单 位:St(斯)。 换算关系:1St=1cm2/s=100cSt=10-4m2/s
1cSt=1mm2/s
注:根据国家标准GB443-84规定,润滑油在40℃的运动粘度中心 值作为润滑的牌号。 例如:牌号L-AN5润滑,在40℃时其运 动粘度为5.06cSt.
2)润滑性(油性) ——物理膜 润滑性是指润滑油中极性分子与金属表面吸附形成一层边界油
膜,以减小摩擦和磨损损性能。 适用于低速、重载或润滑不充分的场合。
3)极压性 ——(化学膜) 极压性能是润滑油中加入硫、氯、磷的有机极性化合物事,油
第一章机械零件失效的模式及其机理
第一章机械零件失效的模式与其机理在设备使用过程中,机械零件由于设计、材料、工艺与装配等各种原因,丧失规定的功能,无法继续工作的现象称为失效。
当机械设备的关键零部件失效时,就意味着设备处于故障状态。
机械零件失效的模式,即失效的外在表现形式,主要表现为磨损、变形、断裂等;而失效机理是指失效的物理、化学、机械等变化的过程和内在原因的实质。
第一节机械零件的磨损通常将磨损分为粘着磨损、磨料磨损、疲劳磨损、腐蚀磨损和微动磨损五种形式。
一、粘着磨损当构成摩擦副的两个摩擦外表相互接触并发生相对运动时,由于粘着作用,接触外表的材料从一个外表转移到另一个外表所引起的磨损称为粘着磨损。
粘着磨损又称粘附磨损。
二、磨料磨损磨料磨损又称磨粒磨损。
它是当摩擦副的接触外表之间存在着硬质颗粒,或者当摩擦副材料一方的硬度比另一方的硬度大得多时,所产生的一种类似金属切削过程的磨损,其特征是在接触面上有明显的切削痕迹。
磨料磨损是十分常见又是危害最严重的一种磨损。
其磨损速率和磨损强度都很大,致使机械设备的使用寿命大大降低,能源和材料大量损耗。
三、疲劳磨损疲劳磨损是摩擦外表材料微观体积受循环接触应力作用产生重复变形,导致产生裂纹和别离出微片或颗粒的一种磨损。
四、腐蚀磨损在摩擦过程中,金属同时与周围介质发生化学反响或电化学反响,引起金属外表的腐蚀产物剥落,这种现象称为腐蚀磨损。
它是在腐蚀现象与机械磨损、粘着磨损、磨料磨损等相结合时才能形成的一种机械化学磨损。
它是一种极为复杂的磨损过程,经常发生在高温或潮湿的环境,更容易发生在有酸、碱、盐等特殊介质条件下。
按腐蚀介质的不同类型,腐蚀磨损可分为氧化磨损和特殊介质下腐蚀磨损两大类。
五、微动磨损两个接触外表由于受相对低振幅振荡运动而产生的磨损叫做微动磨损。
它产生于相对静止的接合零件上,因而往往易被无视。
微动磨损的最大特点是:在外界变动载荷作用下,产生振幅很小〔一般为2-20微米〕的相对运动,由此发生摩擦磨损。
机械磨损的种类及解决方法
机械磨损的主要类型和解决方法许多机械的运行环境大多都很恶劣,受环境的影响机械零件的磨损也加快,零件的失效形式有很多,因磨损、变形、断裂、腐蚀和蠕变引起的零件失效是最主要的原因。
磨损是零件失效的主要形式,据统计有75%的机械零件是由于磨损而失效的。
多数机械设备由于负荷重、冲击大、温度高,工作环境恶劣等因素,机械磨损更为显著。
根据机械磨损产生的原因和磨损过程的本质,磨损又可分为黏着磨损、磨粒磨损、疲劳磨损和腐蚀磨损。
(1)黏着磨损:微观地看矿山机械零件表面都是凸凹不平的,两表面接触时,实际是局部的点接触。
在相对滑动和一定载荷作用下,接触点发生塑性变形或剪切,使零件表面温度升高,表面膜破裂,严重时表面金属软化或熔化。
此时接触面产生黏着,由于相对运动,旧的戳着点不断被剪断。
新的教着点又形成。
如此循环构成熟着磨损。
(2)磨粒磨损:硬的颗粒或凸起物在摩擦过程中引起材料脱落的现象称磨粒磨损。
据国外统计,在冶金矿山机械工业中,由于磨粒磨损而引起的损失约占成本的40%;在煤炭工业中占成本的30%。
所以由磨粒磨损引起零件失效所占比例是较高的。
(3)表面疲劳磨损:疲劳磨损是机械表面有摩擦存在的情况下,同时存在交变接触应力致使表面产生初生的显微裂纹,并不断发展引起材料微粒脱落的现象。
例如滚动轴承滚动体表面、齿轮齿面分度圆附近、钢轨与轮的接触表面等,常出现小麻点或痘斑状凹坑,这就是典型的表面疲劳磨损所致。
疲劳磨损与零件疲劳破坏的主要区别是前者存在摩擦和磨损,表面发生塑性变形和发热现象,且受液体润滑介质的影响。
而后者主要受交变应力作用引起疲劳破坏。
(4)腐蚀磨损:当两表面在腐蚀环境(气体或液体)中摩擦时,会在机械表面上产生反应生成物,反应生成物与表面结合能力弱,在不断的摩擦中一般都会磨掉,磨掉后露出的金屈又迅速生成新的反应物,如此反复形成腐蚀磨损。
它与一般化学府蚀的根本区别是后者没有摩擦。
为了解决机械磨损的问题,需要减少机械部件之间以及机械部件与其他颗粒物的接触面及摩擦力,减少机械与腐蚀环境的接触。
机械零件的磨损 - 粘着磨损机理
机械零件的磨损 - 粘着磨损机理粘着磨损又称为粘附磨损,是指当构成摩擦副的两个摩擦表面相互接触并发生相对运动时,由于粘着作用,接触表面的材料从一个表面转移到另一个表面所引起的磨损。
根据零件摩擦表面的破坏程度,粘着磨损可分为轻微磨损、涂抹、擦伤、撕脱和咬死等五类。
1.粘着磨损机理擦副的表面即使是抛光得很好的光洁表面,但实际上也还是高低不平的。
因此,两个金属零件表面的接触,实际上是微凸体之间的接触,实际接触面积很小,仅为理论接触面的1%~1‰。
所以即使在载荷不大时,单位面积的接触应力也很大,如果当这一接触应力大到足以使微凸体发生塑性变形,并且接触处很干净,那么这两个零件的金属面将直接接触而产生粘着。
当摩擦表面发生相对滑动时,粘着点在切应力作用下变形甚至断裂,造成接触表面的损伤破坏。
这时,如果粘着点的粘着力足够大,并超过摩擦接触点两种材料之一的强度,则材料便会从该表面上被扯下,使材料从一个表面转移到另一个表面。
通常这种材料的转移是由较软的表面转移到较硬的表面上。
在载荷和相对运动作用下,两接触点间重复产生“粘着一剪断一再粘着”的循环过程,使摩擦表面温度显著升高,油膜破坏,严重时表层金属局部软化或熔化,接触点产生进一步粘着。
在金属零件的摩擦中,粘着磨损是剧烈的,常常会导致摩擦副灾难性破坏,应加以避免。
但是,在非金属零件或金属零件和聚合物件构成的摩擦副中,摩擦时聚合物会转移到金属表面上形成单分子层,凭借聚合物的润滑特性,可以提高耐磨性,此时粘着磨损则起到有益的作用。
2.减少或消除粘着磨损的对策摩擦表面产生粘着是粘着磨损的前提,因此,减少或消除粘着磨损的对策就有两方面。
(1)控制摩擦表面的状态摩擦表面的状态主要是指表面自然洁净程度和微观粗糙度。
摩擦表面越洁净,越光滑,越可能发生表面的粘着。
因此,应当尽可能使摩擦表面有吸附物质、氧化物层和润滑剂。
例如,润滑油中加入油性添加剂,能有效地防止金属表面产生粘着磨损;而大气中的氧通常会在金属表面形成一层保护性氧化膜,能防止金属直接接触和发生粘着,有利于减少摩擦和磨损。
模具摩擦磨损课件
2 摩擦与磨损
❖ 摩擦三种状态(干摩擦、边界摩擦及润 滑摩擦)与磨损。
❖ 关于摩擦,在有关方面课中已作过详细 分析,本课程不再赘述。这里仅就各种 摩擦状态下的磨损情况(有磨屑的产生) 简要予以说明。
1、干摩擦与磨损
干摩擦是指没有任何污染(表层吸 附物:油膜、氧或水分薄膜及其它非固 体的第三种物质薄膜)的固体之间的摩 擦。
控制磨损方法有:
保护层原则,包括使用润滑剂,表面膜, 油漆,电镀,磷化化学处理,火焰处理等。
转化原则,通过选择金属副、硬度、表 面光洁度、接触压力等使磨损由破坏性转化到 可容性。
更换原则,采用经济的可更换磨损元件, 以便在“磨坏”时予以更换。
以上这些方法不但适用于粘磨,而且也适 用于磨粒磨损。
二、磨粒磨损
会议上的调查报告指出:国家分给机械部
钢材有一半作为配件,而配件又大部分用于 维修。如1974年汽车产值16.6亿元,耗用 钢材27万吨,配件产值为14亿元,耗用钢 材23万吨,这其中绝大部分用于维修易磨 损件,可见磨损问题在我国也相当严重。
关于磨损研究是投资少、收益大。美 国机械工程协会报告讲:1976年美花在交 通运输、发电、透平机械和工业生产四个主 要领域中关于发展摩擦磨损方面研究费用为 2400万美元,而总节约量估计为美国每年 能源消耗的11%,相当于160亿美元。
如果在任一瞬间都有几个结点存在,则真实触
面 Ar 为:
d 2
Ar n ( 4 )
(2)
将(1)和(2)联立可得:
n
4 Ar
d 2
4W
3 ypd 2
(3)
再假定,在滑过等于结点直径d的距离后, 原结点撕裂,并同时形成新结点,因此在每单 位滑动距离中重新生成结点的次数必须为1/d, 而每单位滑动距离中重新生成结点的总数为:
磨损及磨损理论
磨损及磨损理论
第二节 粘着磨损
1 定义:
粘
当摩擦副相对滑动时, 由于粘着效应
着
所形成结点发生剪切断裂,被剪切的材
磨
料或脱落成磨屑,或由一个表面迁移到
损
另一个表面,此类磨损称为粘着磨损。
2 粘着磨损机理:
当摩擦副接触时,接触首先发生在少数几 个独立的微凸体上。因此,在一定的法向载荷 作用下,微凸体的局部压力就可能超过材料的 屈服压力而发生塑性变形,继而使两摩擦表面 产生粘着(焊接) 。当微凸体相对运动时,相 互焊接的微凸体发生剪切、断裂。脱落的材料 或成为磨屑,或发生转移。如撕断处在焊接的 部位,不发生物质的转移。如撕断处不在焊接
所以磨损是机器最常见、最大量的一种失效方式。据调查轮,胎压联痕(SEM 邦德国在1974年钢铁工业中约有30亿马克花费在维修上,其5中000X) 直接由于磨损造成的损失占47%,停机修理所造成的损失与磨损 直接造成的损失相当,如果再加上后续工序的影响,其经济损失 还需加上10%一20%。
磨损及磨损理论
(4)
对于弹性材料,σy≈H/3,H为布氏硬度值,则式(4)可变为:
第三节机械零件的摩擦磨损和润滑ppt课件
以上这些,都是摩擦现象
ppt课件
6
讲授新课
这节课同学们要学习以下知识 : 1、熟记机械零件摩擦、磨损和润滑的基本概
念 2、了解机械零件的摩擦类型 3、了解机械零件的磨损类型及磨损过程 4、了解机械零件的润滑类型
ppt课件
7
一、基本概念
1、摩擦
摩擦是两相互接触的物体有相对运动或相对运动趋势时, 在接触处产生阻力的现象。按用途,摩擦可分为有益摩擦 和有害摩擦。
2、磨损
磨损是摩擦体接触表面的材料在相对运动中由于机械作 用,或伴有化学作用而产生的不断损耗的现象。
3、润滑
润滑是向承载的两摩擦表面之间注入润滑剂,以降低摩 擦阻力和减缓磨损的技术措施。它的作用除了能显著提高 机械的使用性能和寿命并减少能耗之外,还可以起到冷却、 吸振、防锈的作用。
ppt课件
8
二、机械中的摩擦
特点:摩擦副的表面不直接接触,摩擦因数小(f≈0.001-0.01), 是理想的摩擦状态。
ppt课件
10
(4)混合摩擦
定义: 兼有干摩擦、边界摩擦和液体摩擦中的两种摩擦状态以上 的一种摩擦状态,称为混合摩擦。
特点:摩擦表面有少量的直接接触,大部分处于液体摩擦,故摩 擦和磨损优于边界摩擦,但比液体摩擦差。
ppt课件
22
教学反思
在教学中以学生的探究讨论为主教师讲解为 辅,为了实现培养操作技能型人才,在教学中应 注重操作能力的培养,注重理论与实际相结合, 提高学生分析问题解决实际问题的能力。能用辩 证的观点解决生产实际活动中遇到的问题。
ppt课件
23
板书设计
第三节 机械零件的摩擦、 磨损和润滑
一、机械中的摩擦 1、摩擦的定义 2、摩擦的分类 3、干摩擦、边界摩
机械零件的摩擦、磨损和润滑
磨损的原因和影响因素
1 表面间相对运动
表面间相对运动会导致 磨损,特别是在高压和 高温环境下。
2 材料硬度差异
硬度差异大的材料更容 易磨损,以及表面光滑 度和润滑情况。
3 外部环境条件
外部环境条件,如温度、 湿度和污染物等,也会 影响磨损。
磨损和材料选择
合理选择磨损较小的耐磨材料 可以减少零件磨损和更好地保 护机械零件。
常见的机械零件摩擦、磨损和润滑问题
1
齿轮磨损
齿轮因长时间高速运动摩擦会导致磨
轴承润滑
2
损,需要定期润滑和维护。
轴承需要良好的润滑来减少摩擦和磨
损,保持稳定的工作状态。
3
链条润滑
链条需要适量的润滑剂以减少链环之 间的摩擦和磨损。
机械零件的摩擦、磨损和润滑
在机械工程中,摩擦、磨损和润滑是至关重要的概念。了解它们的定义、原 因和方法可以帮助我们更好地设计和维护零件。
摩擦的定义和类型
摩擦定义
摩擦是指两个物体之间因接触而产生的阻碍相对运动的力。
静摩擦和动摩擦
静摩擦是物体相对静止时的摩擦力,动摩擦是物体相对运动时的摩擦力。
滚动摩擦和滑动摩擦
是机械零件不可避免的现象,要注意减少磨 损并延长零件使用寿命。
是最常用的减少摩擦和磨损的方法,选择适 当的润滑剂和方式很关键。
有效减少摩擦、磨损和提高润滑的技巧 和方法
正确润滑
选择适合的润滑剂和方法, 根据工作条件和需求进行定 期润滑。
பைடு நூலகம்
合理设计
在设计阶段考虑摩擦和磨损 因素,合理选择材料和结构。
机械零件的摩擦、磨损和润滑12
定义: 摩擦面不加 润滑剂时的摩擦称为干 摩擦。 特点:物体表面直 接接触,摩擦因数大( f>0.3),摩擦力大, 磨损和发热严重,应尽 量避免干摩擦。
(2)边界摩擦
定义:在摩擦副间施 加润滑剂后,使摩擦副的 表面吸附一层极薄的润滑 剂模,这种摩擦状态称为 边界摩擦。 特点:润滑剂模强度 低,易破裂,引起摩擦副 部分表面直接接触而磨损 ,磨损和摩擦状况比干摩 擦要好, f≈0.1-0.3 。
Ⅱ稳定磨损阶段:
经磨合后的摩擦副表面粗糙度值降低,在稳定 磨损阶段磨损率趋于稳定和缓和,经历的时间较长 ,标志着零件的使用寿命。
§0-3 机械零件的摩擦、磨损和润滑
Ⅲ 剧烈磨损阶段:该阶段磨损率急剧增高,表现 为机械效率下降,可能产生异常噪声和振动,摩擦 副温度迅速升高,表面发生严重破坏。因此,必须 在摩擦副进入该阶段之前及时进行检修。
(1)磨合阶段 (2)稳定磨损阶段 (3)剧润滑
Ⅰ:磨合阶段
该阶段磨损量较大,经短时间磨合后,摩擦副的表 面粗糙度值由大变小,实际接触面积由小变大,磨损率 由大变小,为进入稳定磨损阶段创造了条件。因此,磨 合是一种有益磨损。
§0-3 机械零件的摩擦、磨损和润滑
§0-3 机械零件的摩擦、磨损和润滑
3、弹性流体动力润滑是研究点、线接触摩擦 副的流体动力和润滑问题,由于接触面积 小,单位压力大,必须考虑流体动力效应、 润滑油压力、粘度特性和接触体弹性形变 的联合作用。 4、边界润滑是指两个接触体的表面并未完全 被润滑油膜隔开,存在明显的微凸体接触 的状态。 5、混合润滑是介于边界润滑和弹性流体动力 润滑之间的状态。
§0-3 机械零件的摩擦、磨损和润滑 1、流体润滑 (1)流体静力润滑是利用外部供油系统 将 高压油强行输入摩擦副表面之间,依靠 静压承载油膜把两表面完全隔开,从而获 得流体润滑。
第三章 磨损及磨损理论
c.材料的组织结构和表面处理
多相金属比单相金属的抗粘着磨损能力高;金 属中化合物相比单相固溶体的粘着倾向小。
通过表面处理技术在金属表面生成硫化物、磷 化物或氯化物等薄膜可以减少粘着效应,同时 表面膜限制了破坏深度,提高抗粘着磨损的能 力。
d.元素周期表中的B族元素,如锗、银、镉、铟、 锡、锑、铊、铅、铋与铁的冶金相容性差,抗 粘着磨损性能好。而铁与A族元素组成的摩擦副 粘着倾向大。
b. 相同金属或冶金相溶性大的材料摩擦副易发生 粘着磨损。异种金属或冶金相溶性小的材料摩 擦副抗粘着磨损能力较高。金属与非金属摩擦 副抗粘着磨损能力高于异种金属摩擦副。
应避免使用同种金属或冶金相溶性大的金属组成 摩擦副。
冶金的相(互)溶性:两种金属能在固态互相溶解的性能。 摩擦的相(互)溶性:一定配对材料在发生摩擦和磨损时抵 抗粘着的性能。 一般,冶金相溶性好的金属摩擦副,其摩擦相溶性就差, 相同金属摩擦副,摩擦互溶性最差。
③ 速度的影响
随着滑动速度的变化,磨损类型由一种形式转变为另一种 形式。 如图(a)所示,当摩擦速度很低时,主要是氧化磨损,出 现Fe2O3的磨屑,磨损量很小。 随速度的增大,氧化膜破裂,金属的直接接触,转化为粘 着磨损,磨损量显著增大。 滑动速度再高,摩擦温度上升,有利于氧化膜形成,又转 为氧化磨损,磨屑为Fe3O4,磨损量又减小。 如摩擦速度再增大,将再次转化为粘着磨损,磨损量又开 始增加。
它们不产生切削作用,因此Ks值明显减小。
图(b)是滑动速度保持一定而改变载荷所得到的钢对钢磨
损实验结果。
载荷小产生氧化磨损, 磨屑主要是Fe2O3;
当载荷达到W0后, 磨屑是FeO、Fe2O3 和Fe3O4的混合物。 载荷超过临界载荷Wc以后, 便转入危害性的粘着磨损。
磨损特性曲线2
磨损特性曲线2机械零件的磨损过程通常经历不同的磨损阶段,直至失效。
如图给出典型的磨损特性曲线(浴盆曲线):图磨损特性曲线图中的纵坐标表示单位时间的磨损量,称磨损率。
通常在磨合期内,磨损率比较大,并是递降的。
然后进入一个较长时间的稳定期,磨损率较小并保持不变。
直至某一点,斜率陡升,这预兆着磨损急剧增大,失效即将发生。
对于一些磨损过程,例如滚动轴承或齿轮中发生的表面疲劳磨损,开始时磨损率可能为零,当工作时间达到一定数值后,点蚀开始出现并迅速扩展,磨损率迅速上升,很快发展为大面积剥落和完全失效。
磨损阶段的描述:1.磨合阶段(I阶段)又称跑合阶段。
新的摩擦副表面具有一定的表面粗糙度。
在载荷作用下,由于实际接触面积较小,故接触应力很大。
因此,在运行初期,表面的塑性变形与磨损的速度较快。
随着磨合的进行,摩擦表面粗糙峰逐渐磨平,实际接触面积逐渐增大,表面应力减小,磨损减缓。
一个崭新的,即加工后未经摩擦的固体表面总具有一定的表面粗糙度和比较尖锐的微凸体尖峰,实际上两个表面之间通过微凸体进入真实接触的面积是很小的。
在这些接触着的微凸体之间会产生很大单位面积接触压力,乃至超过材料的屈服强度,并造成微凸体材料的迁移,以及接触面之间的变形在局部微区产生很高的温度,致使接触面发生熔焊,随即又由于表面之间的相对运动而被撕裂。
同时微凸体在相对运动过程中也很容易发生碰撞、折断、划伤。
因此在磨合阶段,摩擦副表面的磨损量迅速增加,并达到较高的磨损率。
另一方面由于加工和装配等工况原因,使接触表面之间的间隙不均匀,从而难以形成稳定的油膜,这时的润滑状态处于一种从边界润滑到混合润滑的过度;随着磨合阶段的结束,微凸体不断被磨平,促使它们之间的接触面积不断增大,而单位面积的接触压力随之减小,同时通过一定的磨损之后,摩擦副的间隙趋于均匀,油膜得以建立,即进一步向完全流体动力润滑过度;于是磨损率也随之减小,并向稳定磨损阶段过度。
磨合阶段的轻微磨损为正常运行、稳定运转创造条件。
摩擦学原理(第5章磨损规律)
5.2.3 表面品质与磨损
• 摩擦副所处的工况条件不同,最优粗 糙度也不同。在繁重工况条件下,由 于摩擦副的磨损严重,因而最优粗糙
度也相应增大。如图5.11所示,工况
条件包含摩擦副的载荷、滑动速度的 大小、环境温度和润滑状况等。
HR0
图5.11 不同工况
HR 的值 0
5.2.3 表面品质与磨损
• 图5.12说明:不同粗糙度的表面在磨合过程中粗糙度的变化。在一定的 工况条件下,不论原有的粗糙度如何,经磨合后都会达到与工况相适应 的最优粗糙度。此后,表面粗糙度稳定在最优粗糙度下持续工作。
5.1.2 磨合磨损
1.表面形貌与性能的变化
• 生产实践中,主要有四种磨合方式,即干摩擦条件下的磨合、普通润滑 油中的磨合、添有磨料润滑油中的磨合和电火花磨合。在有润滑油的磨 合磨损中,除粘着磨损和磨粒磨损主要机理外,同时还存在化学磨损、 疲劳磨损、冲蚀磨损、气蚀磨损和电化磨损等多种复杂机理。在添有磨 料润滑油中的磨合中,采用的磨料有微米固体颗粒和纳米固体颗粒,研 究人员将微米和纳米固体粉末混合在一起作为磨料,取得了较好的磨合 效果。电火花磨合是利用放电原理使运转的摩擦副达到磨合的目的。 • 不同摩擦副结构和性质以及不同磨合工况,其磨合磨损机理的构成都不 一样。
1.表面形貌与性能的变化
Ra
磨合过程中粗糙度Ra 值的变化
1.表面形貌与性能的变化
图5.4表示较硬摩擦副 表面磨合前后表面形 貌变化。磨合使接触 面积显著地增加和峰 顶半径增大。