七年级数学上册 两点之间的距离课件

合集下载

初二七年级数学上册专题2 数轴上的动点与两点之间的距离ppt课件

初二七年级数学上册专题2 数轴上的动点与两点之间的距离ppt课件

(2)七年级研究性学习小组在数学老师指导下,对式子|x+2|+|x-3|进行探究: ①|x-3|+|x+2|的值总是一个固 定的值为:__5__. ②请你在草稿纸上画出数轴,要使|x-3|+|x+2|=7,数轴上表示点的数x=_-__3_或.4
第1章 有理数
专题2 数轴上的动点与两点之间 的距离
武汉专版·七年级上册
1.(1)数轴上表示2和5的两点之间的距离是__3__;数轴上表示1和-3的两点之间的距离是__4__; (2)若数轴上表示x和-1的两点之间的距离是2,则x的值为-__3_或_.1
2.阅读下面材料: 在数轴上5与-2所对应的两点之间的距离:|5-(-2)|=7; 在数轴上-2与3所对应的两点之间的距离:|-2-3|=5; 在数轴上-8与-5所对应的两点之间的距离:|(-8)-(-5)|=3; 在数轴上点A,B分别表示数a,b,则A,B两点之间的距离AB=|a-b|=|b-a|. 回答下列问题: (1)数轴上表示-2和-5的两点之间的距离是__3__; 数轴上表示数x和3的两点之间的距离表示为_|_x-__3;| 数轴上表示数___x_和_-__2_的两点之间的距离表示为|x+2|;
③P 点对应的数时-16或 0. 3
(1)若点C在A,B两点之间,满足AC=BC,则C对应的数是___2_; (2)若点C在A,B两点之间,满足AC∶BC=1∶3,则点C对应的数是_-__5_; (3)若点C在数轴上,满足AC∶BC=1∶3,则点C对应的数是-__2_6_或;-5 (4)若点C在数轴上,满足AC+BC=32,则点C对应的数为-__1_4_或;18 (5)若点C在数轴上,满足AC-BC=12,则点C对应的数为_8___. (6)若点P,Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位/秒,4个单位/秒, 它们运动的时间为t秒.

七年级数学上册2.7有理数的减法用有理数减法求数轴上两点间的距离素材华东师大版(new)

七年级数学上册2.7有理数的减法用有理数减法求数轴上两点间的距离素材华东师大版(new)

用有理数减法求数轴上两点间的距离难易度:★★关键词:有理数答案:任意两个数的差(包括负数)的绝对值都表示数轴上两个点的距离。

也可直接用大数减去小数,不必考虑绝对值问题。

【举一反三】典例:要求出数轴上– 4和4.5所对应的两点之间的距离,可列算式 .思路导引:一般来说,求距离问题可转化为求绝对值问题.任意两个数的差(包括负数)的绝对值都表示数轴上两个点的距离.也可直接用大数减去小数,不必考虑绝对值问题。

数轴上–4和4.5所对应的两点之间的距离可列算式4.5—(-4)标准答案:4。

5—(—4)。

尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。

This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。

北师大版七年级数学上册复习课件 第四章 基本的平面图形 (共39张ppt)

北师大版七年级数学上册复习课件 第四章 基本的平面图形  (共39张ppt)
数学·课标版(BS)
第四章复习
方法技巧 通过观察、分析、综合、归纳、概括、推理、判断等一 系列探索活动,解答有关探索规律的问题,探索规律性问题 的特点是问题的结论或条件不直接给出,需要逐步确定所求 的结论和条件.
数学·课标版(BS)
第四章复习
试卷讲练

平面图形是七年级数学的重要组成部分,在各类考
(4)分类:小于平角的角可按大小分成三类:当一个角等 于平角的一半时,这个角叫做_直__角__;大于 0°角小于直角的角 叫做_锐__角__;大于直角而小于平角的角叫做__钝__角__.
数学·课标版(BS)__点__引出的一条射线,把这个角分成两 个__相__等___的角,这条射线叫做这个角的平分线.
上 ” , 那 么 小 亮 可 以 对 小 明 说 : “ 你 在 我 的 ________ 方 向
上.”( A )
A.南偏西 30°
B.北偏东 30°
C.北偏东 60°
D.南偏西 60°
2.在一次航海中,在一艘货轮的北偏东 54°的方向上有一 艘渔船,那么货轮在渔船的_南__偏__西__5_4_°_方向上.
[解析] 钟表被分成 12 格,每格的度数是 30°, 30°×2.5=75°.
数学·课标版(BS)
第四章复习
方法技巧 计算钟面上时针与分针的夹角,关键是确定时针
与分针相隔几个格.
数学·课标版(BS)
第四章复习
►考点三 规律探索性问题
如图 4-2,平面内有公共端点 的六条射线 OA,OB,OC,OD,OE, OF,从射线 OA 开始按逆时针方向依 次在射线上写出数字 1,2,3,4,5,6,7,…. 则“17”在射线__O__E__上;“2013”在射 线__O__C__上.

七年级 第2讲 线段比较

七年级  第2讲  线段比较

第二讲 比较线段的长短一、两点间的距离两点的距离的定义:连接两点间的线段的长度,叫做这两点的距离. 例1 两点间的距离是指( )A .连接两点的线段的长度B .连接两点的线段C .连接两点的直线的长度D .连接两点的直线例2 如图所示,有一个正方体盒子放在桌面上,一只虫子在顶点A 处,一只蜘蛛在顶点B 处,蜘蛛沿着盒子表面准备偷袭虫子,那么蜘蛛要想最快地捉住虫子,应该怎样走?你能画出来吗?与你的同伴交流一下. 二、线段的基本事实关于线段的基本事实:两点的所有连线中,线段最短.简单说成:两点之间,线段最短. 例3〈实际应用题〉如图,小明家到小颖家有三条路,小明想尽快到小颖家,应选线路___.三、尺规作图及比较线段的长短尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图,利用尺规作图可以将一条线段移到另一条线段上.用直尺(无刻度)和圆规作一条线段等于已知线段的步骤:(1)利用直尺(无刻度)作一条射线AB ;(2)用圆规量出已知线段的长度a (测量时使圆规两只脚的顶点分别与线段两端点重合,则圆规两只脚的顶点之间的距离即为线段的长度);(3)在射线AB 上用圆规截取AC 使AC =a ,则线段AC 即为所求的线段,如图. 例4 如图,已知线段AB ,用尺规作一条线段等于已知线段AB . 线段长短的比较方法:(1)度量法,用刻度尺分别量出两条线段的长度再比较;(2)叠合法,使两条线段的一个端点重合,另一个端点在同一侧,从而比较出两条线段的长短. 四、线段的中点 1.中点的概念 :若点M 把线段AB 分成相等的两条线段AM 和BM , 则点M 叫线段AB 的中点. 2.对线段的中点的认识:(1)线段的中点是线段上的点,且把线段分成相等的两条线段; (2)一条线段的中点有且只有一个;(3)如图,若M 是AB 的中点,则①AM =BM = AB ;12②AB =2AM =2BM ;③AM +BM =AB 且AM =BM .反过来也成立.例5 已知M 是线段AB 上的一点,下列条件中不能判定M 是线段AB 的中点的是( )个. A .AB =2AM B .BM = AB C .AM =BM D .AM +BM =AB五、课堂检测1.把两点之间线段的__________,叫做这两点之间的距离.两点之间的距离是一个数,它不是线段. 2. 若点B 在直线AC 上,线段AB =10,BC =5,则A ,C 两点间的距离是( )A .5B .15C .5或15D .无法确定3.(中考•徐州)点A ,B ,C 在同一数轴上,其中点A ,B 表示的数分别为-3,1,若BC =2,则AC 等于( )A .3B .2C .3或5D .2或64.两点之间的所有连线中,__________最短.简单说成两点之间________最短. 5.如图,从A 地到B 地共有三条路,其中走________最近,理由是________________________.6.如图,建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,其运用到的数学原理是( )A .经过一点有无数条直线B .经过两点,有且仅有一条直线C .两点之间,线段最短D .以上都不对7.比较两条线段的长短,我们可以用刻度尺分别测量出它们的________来比较,即度量法,或者把其中的一条线段移到__________________作比较,即叠合法. 8.下列图形中能比较大小的是( )A .两条线段B .两条直线C .直线与射线D .两条射线9.如图,AB =CD ,则AC 与BD 的大小关系是( )A .AC >BDB .AC <BD C .AC =BDD .无法确定10.七年级一班的同学想举行一次拔河比赛,他们想从两条大绳中挑出一条较长的绳子,请你为他们选择一种合适的方法( )A .把两条大绳的一端对齐,另外两端在公共端点的同侧,然后拉直两条大绳,另一端在外面的即为长绳B .把两条绳子接在一起C .把两条绳子重合,观察另一端情况D .没有办法挑选11.把一条线段分成__________的两条线段的点,叫做线段的中点.若点M 是线段AB 的中点,则有AM =________= ________,或AB =2________=2________.121212.(中考•桂林)如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________.13.(中考•长沙)如图,C,D是线段AB上的两点,且D是线段AC的中点,若AB=10 cm,BC=4 cm,则AD的长为()A.2 cm B.3 cm C.4 cm D.6 cm14.已知线段AB=8 cm,点C是直线AB上一点,BC=2 cm,若M是AB的中点,N是BC的中点,则线段MN的长度是()A.5 cm B.7 cm或3 cm C.5 cm或3 cm D.7 cm15.已知数轴上有点A,B,C,它们所表示的有理数分别是6,-8,x.(1)求线段AB的长;(2)求线段AB的中点D表示的数;(3)已知AC=8,求x的值.16.平面上有A,B两点,且AB=7 cm.(1)若在该平面上找一点C,使CA+CB=7 cm,则点C在何处?(2)若使CA+CB>7 cm,则点C在何处?(3)是否存在点C,使得CA+CB<7 cm?17.已知线段a,b,c(a>c),如图所示.求作:线段AB,使AB=a+b-c.18.如图,已知点A,B,C,D,E在同一直线上,且AC=BD,点E是线段BC的中点.(1)点E是线段AD的中点吗?说明理由;(2)当AD=10,AB=3时,求线段BE的长度.19.如图,若线段AB =20 cm ,点C 是线段AB 上一点,M ,N 分别是线段AC ,BC 的中点. (1) 求线段MN 的长.(2)根据(1)中的计算过程和结果,设AB =a ,其他条件不变,你能猜出MN 的长度吗?请用一句简洁的话表达你发现的规律.【思路点拨】本题的解题关键是先将MN 分成MC ,NC 两段,而MC = AC ,NC = BC ,后又将 AC + BC 转化成 AB 进行计算.1212121212。

七年级数学两点间距离公式

七年级数学两点间距离公式

七年级数学两点间距离公式
七年级数学两点间距离公式有:
(1)|AB|=|x2-x1|;
(2)d=√[(x1-x2)²+(y1-y2)²]
例题1:|x+3|+|x-1|<4
解:∵|x+3|+|x-1|表示数轴上到-3和1对应点的距离之和,而和-3对应的点为A,和1对应点为B,|AB|=4。

当x<-3时,与x对应的点P到A、B两点的距离之和|PA|+|PB|>|AB|=4。

当-3≤x≤1时,与x对应的点P到A、B两点的距离之和为|AB|=4。

当x>1时,与x对应的点P到A、B两点的距离之和|PA|+|PB|>|AB|=4。

∴到-3和1对应点的距离之和小于4的点不存在。

例题2:
设两个点A、B以及坐标分别为A(x1,y1)、B(x2,y3),则A和B两点之间的距离为:d=√[(x1-x2)²+(y1-y2)²]。

数轴,为一种特定几何图形。

直线是由无数个点组成的集合,实数包括正实数、零、负实数也有无数个。

正因为它们的这个共性,所以用直线上无数个点来表示实数。

这时就用一条规定了原点、正方向和单位长度的直线来表示实数。

规定右边为正方向时,在这条直线上的两个数,右边上点表示的数总大于左边上点表示的数,正数大于零,零大于负数。

第三课时数轴上两点间的距离课件 2024-2025学年人教版数学七年级上册

第三课时数轴上两点间的距离课件  2024-2025学年人教版数学七年级上册
加法交换律:a+b=b+a
加法结合律:(a+b)+c=a+(b+c)
3.请说出有理数的减法法则?
减去一个数,等于加上这个数的相反数.
a-b=a+(-b)4.请出有理数加减混合运算?(1)利用有理数减法法则,将减法转化成加法;
(2)写成省略加号的和的形式,简化算式;
(3)运用加法交换律和结合律,使计算简便.
1.请说出有理数的加法法则?
(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝
对值的和.
(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符
号,且和的绝对值等于加数的绝对值中较大者与较小者的差.
互为相反数的两个数相加得0.
(3)一个数与0相加,仍得这个数.
2.请说出有理数的加法运算律?
在数轴上,点A,B分别表示数,.对于下列各组数,:
① = 2, = 6;
② = 0, = 6;
③ = 2, = −6;
④ = −2, = −6.
(1)观察点A,B在数轴上的位置,你能得出它们之间的距离
吗?
B
A
A
A
B
①当 = 2, = 6时, =
4

= 62−−26
A
B
a
b
AB= |a-b|
(3)一般地,你能发现点A,B之间的距离与数a,b之间的关系吗?
发现:所得的距离与这两数的差的绝对值相等.
例1. 求出下列每对数在数轴上对应点之间的距离及这两数的差:
(1)3 与-2;
(2)4 与 2
;(3)-4与 4;
(4)-5与-2.
你能发现所得的距离与这两数的差有什么关系吗?
2.数轴上两点之间的距离公式:

七年级数学人教版(上册)第3课时线段的基本事实及两点间的距离

七年级数学人教版(上册)第3课时线段的基本事实及两点间的距离

的有( A )
①用两颗钉子就可以把木条固定在墙上;
②植树时,只要栽下两棵树,就可以把同一行树大致栽在同一条直
线上;
③从 A 到 B 架设电线,总是尽可能沿线段 AB 架设;
④把弯曲的公路改直,就能缩短路程.
A.①②
B.①③
C.②④
D.③④
3.如图,A,B 是公路 l 两旁的两个村庄,若两村要在公路上合 修一个汽车站 P,使它到 A,B 两村的距离之和最小,试在 l 上标注 出点 P 的位置,并说明理由.
5.如图,线段 AB=8 cm,延长 AB 到点 C.若线段 BC 的长是 AB 长的一半,则 A,C 两点之间的距离为 12 cm.
6.下图是某住宅小区的平面图,点 B 是该小区某快递点的位置, 其余各点为居民楼,图中各条线为小区内的小路,则从居民楼点 A 到
快递点 B 的最短路径是( D )
A.A-C-G-E-B B.A-C-E-B C.A-D-G-E-B D.A-F-E-B
7.如图,平面上画有 A,B,C,D 四个村庄,为解决当地缺水 问题,政府准备修建一个蓄水池,不考虑其他因素,请你画出蓄水 池 P 的位置,使它与 4 个村庄的距离之和最小.
解:如图,连接 AC,BD 的交点即为 P 点的位置.
第四章 几何图形初步
4.2 直线、射线、线段
第3课时 线段的基本事实及两点间的距离
知识点 1 线段的基本事实 1.某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图), 发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一 现象的数学知识是两点之间,线段最短 .
2.下列生活、生产现象中,不能用“两点之间,线段最短”来解释
8.(教材 P130 习题 T11 变式)如图所示,有一个圆柱形纸筒, 一只虫子在点 B 处,一只蜘蛛在点 A 处,蜘蛛沿着纸筒表面准备捕 捉虫子,那么蜘蛛想要最快地捉住虫子,应怎样爬行?

北师大版(2024新版)七年级数学上册第四章课件:第四章 基本的平面图形 小结与复习

北师大版(2024新版)七年级数学上册第四章课件:第四章 基本的平面图形 小结与复习
北师大版 七年级(上册) 2024新版教材
第四章 基本的平面图形 小结与复习
知识梳理
基 本 平 面 图 形
直线 两点确定一条直线
线段 射线
两点之间线段最短 线段的中点 线段比较长短
角的定义

角平分线
角比较大小
尺规作图
知识梳理
基 本 平 面 图 形
多边形
定义 对角线 正多边形
定义

弧 扇形
圆心角
知识回顾

是否 可以 度量
不能 度量
不能 度量
表示方法
表示 方法
备注
作图 描述
射线 AB
A,B两点 以A为端点
有序,端 作射线
点在前
AB
直线
AB 或直 线BA 或直线
a
A,B两点
无序
过A,B两点 作直线AB
知识回顾
2.两点确定一条直线 经过两点有且只有一条直线.
二、比较线段的长度 1.线段的基本事实 两点之间的所有连线中,线段__最__短___. 简述为:两点之间,线段__最__短____ .
基础巩固
4.下午2时15分到5时30分,时钟的时针转过的度数 为__9_7_.5_°_.
解析:时钟被分成12个大格,相当于把圆分成12等份, 每一等份等于30°. 分针转360°时,时针转一格,即30°. 从2时15分到5时30分,时针走了(3.5-0.25)格, 即30°×(3.5-0.25)=97.5°.
知识回顾
4.角的度量 (1)角的度量单位是度、分、秒. (2)它们之间的关系是六十进制的,即1°=60′,1′=60″.
5.方向角 借助角表示方向,通常以正北或正南为基准,配以偏 西或偏东的角度来描述方向.

6.3 线段的长短比较 教学课件 (共28张PPT)

6.3 线段的长短比较 教学课件 (共28张PPT)

讲授新课
作一条线段等于已知线段 已知:线段 a,作一条线段 AB,使 AB=a. 第一步:用直尺画射线 AF; 第二步:用圆规在射线 AF 上截取 AB = a. 所以线段 AB 为所求线段.
a Aa B F
在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.
讲授新课
尺规作图的要点: 1.直尺只能用来画线,不能量距; 2.尺规作图要求作出图形,说明结果,并保留作图痕迹.
生活中我们常常会比较两个物体的长短。如图两支铅笔 谁长?
我们可以把两支铅笔看成两条线段,这样我们就把实际 问题转化为了几何问题.
讲授新课
思考:怎样比较两条线段的长短??
Aa B
(1)度量法 用刻度尺量出它们的 长度,再进行比较.
Cb
D
(2) 叠合法 将其中一条线段“移动”, 使其一端点与另一线段的 一端点重合,两线段的另 一端点均在同一射线上.
(2)连接两点的线段叫两点间的距离;
(3)两点之间所有连线中,线段最短;
(4)射个
C.3个
D.4个
当堂检测
2.某同学用剪刀沿直线将一片平整的银杏叶减掉一部分(如图),发现剩下的银
杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是(

A.两点之间线段最短 C.垂线段最短
解:作图步骤如下:
aa b
(1)作射线 AM;
A B1 B2
BM
(2)在 AM 上顺次截取 AB1=a,B1B2=a,
B2B=b,则线段 AB=2a+b.
讲授新课 知识点三 有关线段的基本事实
探究
我要去书店 怎么走呀?
商场
礼堂
书店
讲授新课
根据生活经验,容易发现: 两点之间的所有连线中,线段最短

初中数学人教七年级上册第一章有理数数轴上两点间的距离PPT

初中数学人教七年级上册第一章有理数数轴上两点间的距离PPT

|AD| |AD|
|AC| |AC|
|BA| |BA|
BA
CA D
-4 -3 -2
-1
0
1
2
3
4
x
变式2:
某公共汽车运营线路AB线上有A、B、C、D四个汽车站, 现在要在AB线路上修一个加油站,要求A、 B、C、D到加 油站的路程和最短,加油站应建在哪里?
课堂小结:
今天你学会了什么? 解决了什么? 你有什么发现? 你感受最深的是什么?
课堂检测:
1、数轴上A对应的数为a,B对应的数为b,在数轴上A、B两点之间的距离( )。
2、AB=|a-b|,|x-4|的几何意义是( );|x+4|的几何意义是( )。 3.数轴上表示2和5两点之间的距离是( ),数轴上表示1和﹣3的两点之间 的距离是( )。 4.数轴上表示x和﹣2的两点之间的距离表示为( )。 5.若x表示一个有理数,则|x﹣1|+|x+3|有最小值是( )
B
A
C
-4 -3 -2 -1
0
1
2
3
4
x
探究二:最小值问题
练习:当代数式|x-4|+|x-1|取最小值时,相应x的
取值范围是(
),最小值为( )
|CA| |AB|
C
A
B
-4 -3 -2
-1
0
1
2
3Байду номын сангаас
4
x
变式1:
点A、B、C、D在数轴上分别表示有理数x、-1、2、3,则
|x-3|+|x-2| +|x+1|有没有最小值,此时x的值又是多少?
1
2

4.1线段、射线、直线 第2课时课件2024-2025学年北师大版七年级数学上册+

4.1线段、射线、直线 第2课时课件2024-2025学年北师大版七年级数学上册+

【培优练】 9.(推理能力、运算能力)如图,P是线段AB上任意一点,AB=15 cm,C,D两点分别从点 P,B处出发,同时向点A运动,且点C的运动速度为2 cm/s,点D的运动速度为3 cm/s,运动 的时间为t s.(其中一点到达点A时,两点停止运动) (1)若AP=10 cm. ①运动1 s后,求CD的长; ②当点D在线段PB上运动时,试说明:AC=2CD. (2)如果t=3时,CD=1 cm,试探索AP的长.
4.如图,点C,D在线段AB上,且AC=CD=DB,点E是线段AB的中点.若AD=8,则CE的长为 ___2___.
【解析】因为AC=CD=DB,点E是线段AB的中点,AD=AC+CD=8,所以AC=CD=DB=4, 所以AB=3AC=12,AE=12AB=6, 则CE=AE-AC=6-4=2.
【能力练】 5.如图,线段AB=20,C为AB的中点,D为CB上一点,E为DB的中点,且EB=3,则CD等于( C )
【解析】因为P为线段AB的中点, 所以AP=BP.因为M为PB的三等分点, 所以BP=3PM,所以AM=4PM. 因为AM=4 cm,所以PM=1 cm.
4.如图,已知CB=13AB,AC=13AD,如果CB=2,求线段CD的长.
【解析】因为CB=13AB,AC=AB+BC,所以CB=14AC.因为AC=13AD,所以CB=112AD,CD= 23AD.又因为CB=2,所以AD=12BC=24,所以CD=24×23=16.
(2)当t=3时,CP=2t=6 cm,DB=3t=9 cm, 当点D在点C的右边时,如图:
因为CD=CP-PD=CP+AB-AP-DB=6+15-AP-9=1(cm),所以AP=11 cm; 当点D在点C的左边时,如图:

最新人教初中数学七年级上册《4.2 直线、射线、线段》精品教学课件 (18)

最新人教初中数学七年级上册《4.2 直线、射线、线段》精品教学课件 (18)

n(n-1)
2
条线段。
辨一辨 判断下列说法是否正确.
(1)画一条2cm的直线.
(× )
(2)如图,直线 AB和直线AC表示的是同
一条直线.
A BC
( √)
(3)如上图,射线AB和射线AC表示的是同一条射线( .√)
(4)两点之间所有的连线中,直线最短
( ×)
(5)两点之间的线段叫做两点之间的 距离.
直线 m
在射线的表示法中,要注意两点: ①端点的字母 O 写在首位;② 两个字母不能调换位置;
生活中我们常常用到两点确定一条 直线,你能举几个例子吗?
两点确定一条直线的应用:
植树时,只要定出两个树坑的位置就 能确定同一行的树坑所在的直线。
两点确定一条直线的应用:
1、植树时,只要定出两个树坑的位置就能确定同 一行的树坑所在的直线。
1A
B 记作:直线AB ( √ )
2O
P
记作:射线PO ( × )
3a
b 记作:直线ab ( × )
4A
B 记作:线段BA ( √ )
如图,已知三点A、B、C (1)画线段AB (2)画射线AC (3)画直线BC
A
C B
问题 & 探索
每一个点与其余三个点可组成三条线段
共有4×3条
·· · ·
( ×)
下列图形能相交的是( D )
A
B
C
D
练习 按下列语句画出图形:
(1)直线EF经过点C;
(2) 点A在直线 l 外
E
F
(1) C
A (2)
l
a
(3)
b
(3)经过点O的三条线段a、b、c;

北师大版七年级上册数学4.1.2 比较线段的长短PPT课件

北师大版七年级上册数学4.1.2 比较线段的长短PPT课件

a
b
2a
b
A 2a-b B
探究新知
知识点 4 线段的中点
A
MB
在一张纸上画一条线段,折叠纸片,使线段的端 点重合,折痕与线段的交点处于线段的什么位置?
探究新知
A
MB
如图,点M 把线段 AB 分成相等的两条线段AM 与BM, 点 M 叫做线段AB 的中点.类似地,还有线段的三等分点、 四等分点等.
相等的线段?
小提示:在可打开角度 的最大范围内,圆规可 截取任意长度,相当于 可以移动的“小木棍”.
探究新知
讨论 你们平时是如何比较两个同学的身高的?你能从 比身高的方法中得到启示来比较两条线段的长短吗?
探究新知
比较两个同学高矮的方法:
①用卷尺分别度量出两个同学的身高,将所得的
数值进行比较.
——度量法.
DB
所以
AC
=CB

1 2
AB

1 2
×6
= 3 (cm).
因为D是线段CB的中点,
所以
CD

1 2
CB=
1 2
×3

1.5 (cm).
所以 AD = AC + CD = 3 + 1.5 = 4.5 (cm).
巩固练习
变式训练
1.如图,点C 是线段AB 的中点,若AB = 8 cm,则AC = 4 cm.
北师大版 数学 七年级 上册
4.1.2 比较线段的长短
素养目标
3. 理解线段中点、等分点的意义,能够运用线段的和、 差、倍、分关系求线段的长度.
2. 会用尺规画一条线段等于已知线段,会比较两条线 段的长短.
1. 了解两点间距离的意义,理解“两点之间,线段最 短”的线段性质,并学会运用.

最新人教版初中七年级数学【第四章 4.2.4两点之间的距离】教学课件

最新人教版初中七年级数学【第四章 4.2.4两点之间的距离】教学课件

情境导入 C
B
两点之间的距 离
小汽车要去地点G
A
D
小狗沿AB路线直奔骨头 升降电梯设计成
沿CD路线直上直下
车可以沿从E 到F再到G的路线, 也可以沿着EG路 线直达
实验探索
问题:一只兔子从A地去B地摘红萝卜,怎样走最近?①线 Nhomakorabea②②
A
B


两点之间的所有连线中,线段最短
实验探索 问题:有什么方法来说明线路②是最短的呢?
河道由弯曲改直, A、B两地间 的距离由长变短(因为“两点之 间,线段最短”)
解释与应用 问题2:如图,公园里修建了曲折迂回的桥,这与 修一座笔直的桥相比,对游人观赏湖面风光起什 么作用?用你所学的知识说明其中的道理。
增加了桥的长度
容纳更多的游人
增加了行走的路程
巩固与提高
1.如果线段AB=5cm ,BC=3cm ,且点A、B、C三点在同
连接AB
连接两点间的线段的长度, 叫做两点间的距离.
概念辨析
1.判断:两点之间的距离是指两点之间的线段.
( ×)
线段的长度
2.如右图:这是A、B两地之间的 公路,在公路工程改造计划时, 为使A、B两地行程最短,应如 何设计线路?在图中画出并说 出你的理由.
“两点之间,线段最短”
概念辨析
3.下列说法正确的是( D )
A. 连接两点的线段叫做两点间的距离 B. 两点间的连线的长度,叫做两点间的距离 C.连接两点的直线的长度,叫做两 点间的距离 D.连接两点的线段的长度,叫做两点间的距离
AB两点之间的距离能说是线段AB吗? 因为线段AB
是一个几何图形,
而AB两点间的距离是一个数值.

湘教版七年级上册数学第1章 有理数 数轴、相反数与绝对值 数轴 授课课件

湘教版七年级上册数学第1章 有理数 数轴、相反数与绝对值 数轴 授课课件

感悟新知
总结
知3-讲
有关移动的题目,一要看准移动的方向;二要 注意移动的距离.
感悟新知
知3-练
1.如图,数轴上A,B两点所表示的数分别是-4和
2,点C是线段AB的中点,则点C所表示的数是
________. -1
感悟新知
知3-练
2.如图,数轴上表示-2 的点 A 到原点的距离是( B )
A.-2 B.2 C.-12
感悟新知
例3 画一条数轴,并标出表示下列各数的点: 知2-练
-5,1.5,-3.5,4.5,-1 , 7 . 2 10
解:所画数轴及各数在数轴上对应的点如图所示.
感悟新知
总结
知2-讲
在数轴上标点主要分两步:一是根据数的正负性 确定点在原点的左侧还是右侧,二是根据数值自大 小确定点离原点几个单位长度。
感悟新知
(4)怎样移动A,B,C中的两个点,才能使三个 知3-练 点表示的数相同?有几种移动的方法?
解:使三个点表示的数相同共有三种移动方法: 第一种:把点A向右移动2个单位,点C向左移动5 个单位;第二种:把B点向左移动2个单位,C点 向左移动7个单位;第三种:把A点向右移动7个 单位,B点向右移动5个单位.
感悟新知
结论
要点精析:
数轴的两个基本的应用:
一是知点读数,二是知数画点,
即:数
点(形),
它是最直观知知的点数读画数数点形结合体.
知2-讲
感悟新知
结论
知2-讲
易错警示:虽然教轴上的一个点可以表示一个有理 数,一个有理数也可以用一个点表示, 但数轴上的点并不都表示有理数,比如π 这样的数也能用数轴上的点来表示,但 它不是有理数.
感悟新知

《直线、射线、线段》公开课课件PPT1

《直线、射线、线段》公开课课件PPT1

DB
二、线段的和、差、倍、分
在直线上画出线段 AB=a ,再在 AB 的延长线上画线 段 BC=b,线段 AC 就是 a 与 b的和,记作 AC= a+b . 如果在 AB 上画线段 BD=b,那么线段 AD 就是 a与 b 的 差,记作AD= a–b.
a+b
a
b
A
a–b D b B
C
二、线段的和、差、倍、分
典型例题:
【例3】 如图,AB+BC > AC,AC+BC > AB,AB+AC > BC (填
“>”“<”或“=”). 其中蕴含的数学道理是 两点之间线段最短 . A
B
C
典型例题:
【例4】在一条笔直的公路两侧,分别有 A,B 两个村庄, 如图,现在
要在公路 l 上建一个汽车站 C,使汽车站到 A,B 两村庄的距离之和最小, 请在图中画出汽车站的位置.
——度量法.
②让两个同学站在同一平地上,脚底平齐,观看
两人的头顶,直接比出高矮.
——叠合法.
一、线段的比较 试比较线段AB,CD的长短.
A
B
C
D
(1) 度量法;
(2) 叠合法
将其中一条线段“移”到另一条线段上,使其一端点与另 一线段的一端点重合,然后观察两条线段另外两个端点的位 置作比较.
C (A)
求线段的长度时,当题目中涉及到线段 长度的比例或倍分关系时,通常可以设未知 数,运用方程思想求解.
三、有关线段的基本事实
议一议 如图:从 A 地到 B 地有四条道路,除它们外 能否再修一条从 A 地到 B 地的最短道路?如果能, 请你联系以前所学的知识,在图上画出最短路线.

华师大版七年级数学上册 2.2.1 《数轴》 课件 (23张PPT)

华师大版七年级数学上册 2.2.1 《数轴》  课件 (23张PPT)
3
选取某一长度作为 单位长度,规定直线上向右的方向为 正方向
这样的直线叫做数轴。
2020/7/14
7
数轴的特征
数轴的特征
1、数轴是一条直线 原点
2、数轴的三要素 正方向 单位长度
2020/7/14
8
想一想
(1)画数轴的步骤是什么?
总结数轴的画法(见后面)
(2)根据上述实例的经验,“原点”起什么作用?
(2)数轴有“三要素” :原点、单位长度和正 方向。
(3)“规定”是指原点 位置、正方向的选取和 单位长度的大小都根据 需要而定。
02两点应用
(1)根据有理数在数轴上 找点;
(2)根据数轴上的点读出 表示的有理数。
简单的说:一是知数画点; 二是知点读数。
03与有理数 的关系
所有的有理数都可 用数轴上的点表示出来 ,但数轴上的点表示不 一定都是有理数,两者 不是一一对应关系。
2020/7/14
14
课堂小练2
例3:如图,数轴上的点A、B、C、D分别表示哪个有理数?
.C
-3 -2
B. D.
-1 0
A.
12
解析:考虑两个方面:(1)点的位置:原点表示0,原点右边的 点表示正数,原点左边的点表示负数;(2)点到原点的距离是 几个单位长度。
2020/7/14
15
课堂小练2
例4:画出数轴,并在数轴上画出表示下列各数的点。
c 0b a
D. a,b,表示负数,c表示正数
2020/7/14
17
知识点3:数轴上两点间的距离
想一想:如图,数轴上有三点A, B, C.
A.
B
C
..
-6 -5 -4 -3 -2 -1 0 1 2 3 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、已知线段AB=5cm,延长AB到C,使AC=17cm, 取线段BC的中点D,求AD的长
练一练
(1) 判 断 : 两 点 之 间 的 距 离 是 指 两 点 之 间 的 线 段 。
( 错)
(2)如图:这是A、B两地之间的公路,在公路工程改造 计划时,为使A、B两地行程最短,应如何设计线路? 在图中画出。你的理由是
FC D
EB
如图,线段AB与
线段CD的交点E 为所求的点,即
A
消费场所建在E
点位置最合适。
连接两点间的线段的长度,叫做这两点的距离。
练习
1、下面两根粗细不同的木料,哪一根较长,你可用哪 几种方法来比较?
A、度量法
B、叠合法
2、怎样比较多边形中各边 的长短?
A
B AC< CD
CD > AB
D C
3、M是线段AB上的一点,其中不能判定点 M是线段AB中点的是( A ) A、AM+BM=AB B、AM=BM C、AB=2BM
B.
A
两点之间线段最短
趣味思考: 有条小河L,点A,B表示在河两岸的两个
村庄,现在要建造一座小桥,请你找出造桥的 位置,使得A,B两村的路程最短,并说明理由。
A
L
桥 B
问:若要在西湖风 景区建造一个消费 场所,为了方便游 客,要求是到图中 四个红色的旅游区 的距离之和最短, 请问应该建造在何 处?
MN = 8 RN。
今天你收获了吗?相信你 肯定是收获了,因为老师 看到了许多同学很想起来 总结一下!
-- 线段的性质
学习目标
1.正确掌握线段的性质
2.理解点到直线的距离
3.经历利用所学知识解决实际,使学生 能体会概念学习的重要性
1、已知线段AB,线段CD,如何比较两条线 段的长短?
A
B
C
D
2、思考:我们过了哪些办法比较呢?
目测法
度量法
叠合法
线段的性质:两点的所有连线中, 线段最短,简单地说,两点之间线段最短
4、线段AB=6厘米,点C在直线AB上,
且BC=3厘米,则线段AC的长为( c)
A、3厘米 B、9厘米 C、3厘米或9厘米
5、如果线段AB=5厘米,BC=3厘米那么A,C
两A、点8间厘的米距离B是、(2C厘米) C、无法确定
6、已知线段MN,取M
一天,小丑鱼和它 的朋友在海里游玩, 碰到了凶恶的鲨鱼 NICK,小丑 鱼和它 的朋友为了逃到安 全地带,有三条路 可以选择,你猜它 们将选择哪条路?
连接两点间的线段的长度,叫做这两点的距离。
① ② ③
安全 的家
1、下列说法正确的是( D ) A、连结两点的线段叫做两点间的距离 B、两点间的连线的长度,叫做两点间的距离 C、连结两点的直线的长度,叫做两点的距离 D、连结两点的线段的长度,叫做两点间的距离
相关文档
最新文档