用坐标方法解决立体几何问题
一、用空间向量解决立体几何问题的思路1.坐标法2.基向量法如果在
一、用空间向量解决立体几何问题的思路1.坐标法:2.基向量法如果在所给问题中,不好寻找交于一点的互相垂直的三条直线,或者其坐标难于求出,这时常选图中不共面的三条直线上的线段构造基底,将所给问题的条件和待解决的结论,用基底及其线性表示来表达,通过向量运算来解决.二、空间中的角空间中的角包括两条异面直线所成的角、直线与平面所成的角、二面角.这些角都是通过两条射线所成的角来定义的,因而这些角的计算方法,都是转化为平面内线与线所成的角来计算的.确切地说,是“化归”到一个三角形中,通过解三角形求其大小.1.异面直线的夹角一般采用平移法,把它们化归到一个三角形中再通过解三角形求得.而利用向量法则可直接运用两直线的方向向量的夹角公式来求得.2.平面的斜线和它在平面内的射影所成的角是斜线和这个平面内的所有直线所成角中最小的,这个角就是斜线和平面所成的角.3.作二面角的平面角的常用方法有:(1)定义法:根据定义,以棱上任一点为端点,分别在两个半平面内作垂直于棱的两条射线,则形成二面角的平面角.(2)三垂线法:从二面角一个面内某个特殊点P作另一个面的垂线,过垂足A作二面角棱的垂线,垂足为B,连结PB,由三垂线定理得PB与棱垂直,于是∠PBA是二面角的平面角(或其补角).(3)垂面法:过二面角的棱上一点作平面与棱垂直,分别交两个面的交线,构成二面角的平面角.三、空间的距离1.(1)两点间的距离——连结两点的线段的长度.(2)点到直线的距离——从直线外一点向直线引垂直相交的直线,点到垂足之间线段的长度.(3)点到平面的距离——从平面外一点向平面引垂线,点到垂足间线段的长度.连接平面α外一点与平面α内任一点的线段中,垂线段最短.(4)平行直线间的距离——从两条平行线中一条上任意取一点向另一条直线引垂线,这点到垂足间线段的长度.(5)异面直线间的距离——两条异面直线的公垂线夹在这两条异面直线间的线段的长度.(6)直线与平面间的距离——如果一条直线和一个平面平行,从直线上任意一点向平面引垂线,这点到垂足间线段的长度.(7)两平行平面间的距离——两个平面的公垂线段的长度.2.求距离的一般方法和步骤求距离的思想方法和步骤与求角相似,其基本步骤是:①找出或作出有关距离的图形;②证明它符合定义;③在平面图形内计算.空间中各种距离的计算,最终都要转化为线段长度,特殊情况也可以利用等积法.四、平面的法向量1.如果表示向量a的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作a⊥α,如果a⊥α,那么向量a叫做平面α的法向量.2.求平面的法向量的方法二、用空间向量研究空间线面的平行与垂直关系1.用向量方法研究两直线间的位置关系设直线l1、l2的方向向量分别为a、b.(1)l1∥l2或l1与l2重合⇔a∥b⇔存在实数t,使a=t b.(2)l1⊥l2⇔a⊥b⇔a·b=0.2.用向量方法研究直线与平面的位置关系设直线l的方向向量为a,平面α的法向量为n,v1、v2是与α平行的两个不共线向量.(1)l∥α或l⊂α⇔存在两个实数λ、μ,使a=λv1+μv2⇔a·n=0.(2)l⊥α⇔a∥n⇔存在实数t,使a=t n.l⊥α⇔⎩⎨⎧a⊥v1a⊥v2⇔⎩⎨⎧a·v1=0a·v2=03.用向量方法研究两个平面的位置关系设平面α、β的法向量分别为n 1、n 2.(1)α∥β或α与β重合⇔n 1∥n 2⇔存在实数t ,使n 1=t n 2. (2)α⊥β⇔n 1⊥n 2⇔n 1·n 2=0.若v 1、v 2是与α平行的两个不共线向量,n 是平面β的法向量.则①α∥β或α与β重合⇔v 1∥β且v 2∥β⇔存在实数λ、μ,对β内任一向量a ,有a =λv 1+μv 2. ②α⊥β⇔⎩⎨⎧n ⊥v 1n ⊥v 2⇔⎩⎨⎧n ·v 1=0n ·v 2=0三、用向量法求空间的角 1.求异面直线所成的角设l 1与l 2是两异面直线,a 、b 分别为l 1、l 2的方向向量,l 1、l 2所成的角为θ,则〈a ,b 〉与θ相等或互补, ∴cos θ=|a ·b ||a |·|b |. 2.求直线与平面所成的角如图,设l 为平面α的斜线,l ∩α=A ,a 为l 的方向向量,n 为平面α的法向量,φ为l 与α所成的角,则sin φ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.3.求二面角平面α与β相交于直线l ,平面α的法向量为n 1,平面β的法向量为n 2,<n 1,n 2>=θ,则二面角α-l -β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n 1·n 2||n 1|·|n 2|.※四、用向量法求空间距离 1.求点到平面的距离如图所示,已知点B (x 0,y 0,z 0),平面α内一点A (x 1,y 1,z 1),平面α的一个法向量n ,直线AB 与平面α所成的角为φ,θ=〈n ,AB →〉,则sin φ=|cos 〈n ,AB →〉|=|cos θ|.由数量积的定义知,n ·AB →=|n ||AB →|cos θ,∴点B 到平面α的距离d =|AB →|·sin φ=|AB →|·|cos θ|=|n ·AB →||n |.2.求异面直线间的距离如右图,若CD 是异面直线a 、b 的公垂线,A 、B 分别为a 、b 上的任意两点,令向量n ⊥a ,n ⊥b ,则n ∥CD .则由AB →=AC →+CD →+DB →得,AB →·n =AC →·n +CD →·n +DB →·n ,∴AB →·n =CD →·n ∴|AB →·n |=|CD →|·|n | ∴|CD →|=|AB →·n ||n |∴两异面直线a 、b 间的距离为d =|AB →·n ||n |.3.求直线到平面的距离设直线a ∥平面α,A ∈a ,B ∈α,n 是平面α的法向量,过A 作AC ⊥α,垂足为C ,则AC →∥n ,∵AB →·n =(AC →+CB →)·n =AC →·n,∴|AB →·n |=|AC →|·|n |.∴直线a 到平面α的距离d =|AC →|=|AB →·n ||n |.4.求两平行平面间的距离(1)用公式d =|AB →·n ||n |求,n 为两平行平面的一个法向量,A 、B 分别为两平面上的任意两点.(2)转化为点面距或线面距求解.。
坐标法解立体几何
(一)本周学习与研究中的三个重点(一)本周学习与研究中的三个重点1、空间右手直角坐标系及其在空间右手直角坐标系下的向量坐标运算.、空间右手直角坐标系及其在空间右手直角坐标系下的向量坐标运算.空间直角坐标系是在仿射坐标系的基础上,选取空间任意一点O 和一个单位正交基底{}(按右手系排列)建立的坐标系.具体选择坐标系时,注意O 点的任意性,一方面既要有利于作图的直观性,另一方面又要注意有关要求点的坐标容易表示.有关要求点的坐标容易表示.在空间右手直角坐标系下的点,在空间右手直角坐标系下的点,向量坐标是唯一的,向量坐标是唯一的,向量坐标是唯一的,这一点的理解和证明可仿照向量分解定理的唯一性理解和证这一点的理解和证明可仿照向量分解定理的唯一性理解和证明.由此说明相等的向量其坐标是唯一的,这为后面的解题中常常需要进行向量的平移提供理论依据.明.由此说明相等的向量其坐标是唯一的,这为后面的解题中常常需要进行向量的平移提供理论依据.空间向量的坐标运算,加法、减法和数量积等与平面向量类似,具有类似的运算法则,同学们学习中可类比的学习.虽然一个向量在不同空间的表达方式不同,但其实质没变,即向量在平面上是用唯一确定的有序实数对表示,即=(x,y),而在空间则用唯一确定的有序实数组表示,即=(x,y,z).如向量的数量积在二维、三维空间都是这样定义的.不同点仅是向量在不同空间具有不同的表达形式.如在平面上,,在空间=(a 1,a 2,a 3), ,不论在平面或空间都有.2、空间两向量平行、垂直的充要条件、空间两向量平行、垂直的充要条件空间两向量平行时与平面两向量平行的表达式不一样,但实质是一致的,即对应坐标成比例,且比值为λ,空间两向量垂直的充要条件形式与平面向量里类似,仅多了一项基向量而已.两向量垂直的充要条件形式与平面向量里类似,仅多了一项基向量而已.3、空间两向量的夹角公式,距离公式,中点坐标公式、空间两向量的夹角公式,距离公式,中点坐标公式(1)(2)(3)为AB 的中点,的中点,则由可知夹角公式在平面向量正文里没有涉及,但可根据数量积的定义推出.这里应注意两向量夹角范围是:0°≤θ≤180°,当θ=0°时,表示两向量为同向共线向量,当θ=90°时,表示两向量垂直,当θ=180°时,表示两向量为反向共线向量.量为反向共线向量.两点间的距离公式是长度公式的推广.其推导过程是首先根据向量的减法,推出向量的坐标表示,然后再用长度公式推出.长度公式推出.这几个公式都与坐标原点的选取无关.这几个公式都与坐标原点的选取无关.(二)本周学习与研究中的两个难点(二)本周学习与研究中的两个难点1、空间任意一点的坐标确定、空间任意一点的坐标确定空间任一点P的坐标确定办法如下:过P分别作三个坐标平面的平行平面(或垂面),分别交坐标轴于A、B、C三点,|x|=OA,|y|=OB,|z|=OC,当方向相同时,x>0,反之x<0,同理,可确定y、z.具体理解,可以以长方体作为模型,以其一共点的三条棱,建立空间直角坐标系来理解.方体作为模型,以其一共点的三条棱,建立空间直角坐标系来理解.这其中同学们应准确判断一点在各坐标平面内的射影的坐标,并比较它们间的关系,以及一些特殊点,如落在坐标轴上的点的坐标形式等.标轴上的点的坐标形式等.2、距离公式,夹角公式的应用、距离公式,夹角公式的应用应用距离公式、夹角公式解决立体几何问题,关键在于选择建立适当的空间直角坐标系.它们在立体几何中的应用有:计算两异面直线所成角时,当用几何方法较困难时,可以建立适当的空间直角坐标系后,利用向量方法求解,此时应注意异面直线所成的角的范围与向量夹角范围的区别;求线段的长度时,有时用几何方法较难构造三角形,此时,可考虑应用向量方法,表示出线段两端点的坐标,然后再用两点间的距离加以解决.时,可考虑应用向量方法,表示出线段两端点的坐标,然后再用两点间的距离加以解决.。
立体几何点的求法
立体几何点的求法立体几何是研究三维空间中物体的形状、大小和位置关系的数学分支。
在立体几何中,点是最基本的元素,而求解点的位置是解决许多立体几何问题的关键。
下面将介绍立体几何点的求法。
一、坐标表示法在三维坐标系中,每个点都可以用一组有序数表示其位置。
这组有序数就是该点在三个坐标轴上的坐标值。
设一个点P(x,y,z),其中x、y、z分别为该点在x轴、y轴和z轴上的坐标值,则P可以表示为一个有序三元组(x,y,z)。
利用坐标表示法可以求解两个点之间的距离。
设两个点P1(x1,y1,z1)和P2(x2,y2,z2),则它们之间的距离d为:d = √[(x2-x1)^2 + (y2-y1)^2 + (z2-z1)^2]二、向量表示法向量是指具有大小和方向的量,用箭头来表示。
在三维空间中,每个向量都可以用一个有序三元组(a,b,c)来表示。
利用向量表示法可以求解线段或线段所在直线上某一点的位置。
设一个线段AB,其起始端点为A(x1,y1,z1),终止端点为B(x2,y2,z2),则该线段的向量为:AB = (x2-x1, y2-y1, z2-z1)如果需要求解线段AB上距离A点m倍长度的点P,则可以用以下公式计算P的坐标值:P = A + m(AB)其中,m为实数。
三、平面方程表示法平面是指在三维空间中,由无限多个点组成的一个二维图形。
在立体几何中,平面通常用方程表示。
设一个平面P,其方程为ax+by+cz+d=0。
其中a、b、c是平面法向量的三个分量,d是平面与原点的距离。
对于一个给定的点Q(x,y,z),如果Q在该平面上,则有:ax+by+cz+d=0如果需要求解过三个已知点A(x1,y1,z1)、B(x2,y2,z2)和C(x3,y3,z3)的平面方程,则可以用以下公式计算a、b、c和d:a = (y2-y1)(z3-z1)-(z2-z1)(y3-y1)b = (z2-z1)(x3-x1)-(x2-x1)(z3-z1)c = (x2-x1)(y3-y1)-(y2-y1)(x3-x1)d = -ax_0-by_0-cz_0其中,(x_0, y_0, z_0)为三个点的重心坐标。
空间立体几何坐标法向量法求线面交点坐标-概述说明以及解释
空间立体几何坐标法向量法求线面交点坐标-概述说明以及解释1.引言1.1 概述空间立体几何是数学中的一个重要分支,它研究三维空间中的几何结构和性质。
在空间立体几何中,线和面是两个基本的几何元素,线面交点坐标的求解是一个常见且重要的问题。
本文主要介绍了两种方法来求解线面交点的坐标:坐标法和向量法。
通过这两种方法,可以方便地求解线面交点的坐标,进而解决一些实际问题。
通过本文的学习,读者将能够掌握空间立体几何中线面交点坐标的求解方法,为进一步深入学习和应用空间几何提供了基础。
同时,本文还将探讨线面交点坐标的应用和展望,展示其在现实生活中的重要性和价值。
1.2 文章结构:本文主要分为引言、正文和结论三部分。
引言部分将从概述、文章结构和目的三个方面介绍本文的主要内容和研究背景。
正文部分将分为三个小节,首先是关于空间立体几何概念的介绍,接着是详细讨论如何利用坐标法求解线面交点坐标的方法,最后则是向量法求解线面交点坐标的具体过程。
结论部分将总结本文的主要观点和研究成果,探讨该方法的应用前景,并进行最终的结语。
1.3 目的:本文旨在介绍如何利用空间立体几何中的坐标法和向量法来求解线面交点坐标的方法。
通过深入讨论这两种方法的原理和步骤,我们希望读者能够更加深入地理解空间几何中的相关概念,并能够灵活运用这些方法解决实际问题。
通过掌握线面交点坐标求解的技巧,读者能够提升空间几何解题的效率和准确性,同时也能够为进一步学习和研究提供一定的参考和指导。
希望本文能够为读者提供一定的启发和帮助,让大家在空间几何学习中取得更好的成绩和收获。
2.正文2.1 空间立体几何概念空间立体几何是几何学中研究三维空间中图形与几何体的一门学科,是平面几何的延伸和拓展。
在空间立体几何中,我们不再局限于研究平面上的图形,而是考虑到三维空间中的物体和结构。
在空间立体几何中,我们研究的主要对象包括点、线、面和体。
点是空间中的一个位置,用于确定空间中的一个具体位置;线是由无数个点按照一定规律连成的直线段;面是由无数个点和线按照一定规律组成的平面图形;而体则是由无数个面组成的一个三维实体。
解说立体几何中的“坐标法”
解说立体几何中的“坐标法”江苏省姜堰中学张圣官(225500)空间直角坐标系是现行高中数学新增加的内容,在使用上就是把空间的点、向量先用坐标表示,然后利用坐标来计算有关角的大小与线段的长度,或者判断与证明线线、线面以及面面的位置关系。
利用“坐标法”解(证)立体几何题,所作的辅助线明显比纯几何推理需要作的要少,且思路简单明了,更易于程序化来解题。
用“坐标法”解题是数与形结合的典范,它特别适用于易于建立空间直角坐标系的图形(如正方体等)。
下面分别介绍在空间直角坐标系中如何确定点的坐标、常见特殊点的坐标特点及利用“坐标法”解(证)立体几何题的步骤。
一、如何确定空间点的坐标空间点的坐标是有序实数对(x,y,z),其中的三数x,y,z包含坐标的符号与坐标的绝对值。
要确定一个点的坐标,应先判断三个坐标的符号,然后再确定三个坐标的绝对值。
1.点的坐标的符号判断点在坐标平面上的射影位于坐标轴的正方向,则这点对应的坐标的符号为正,否则符号为负。
如点位于x轴正方向,则横坐标为正;点位于z轴负方向,则竖坐标为负。
2.点的坐标的绝对值确定过这个点向三个坐标平面作垂线,看垂线段平行于哪个轴,则这条线段的长度就是该点的绝对值。
如这条垂线段平行于y轴且长度为a,则点的纵坐标的绝对值是a;如这条垂线段平行于z轴且长度为a,则点的竖坐标的绝对值是a 。
二、常见特殊点的坐标特点1.坐标轴上点的坐标的特点①x轴上的点的纵坐标和竖坐标均为0,形如(a,0,0);②y轴上的点的横坐标和竖坐标均为0,形如(0,a,0);③z轴上的点的横坐标和纵坐标均为0,形如(0,0,a)。
2.坐标平面上点的坐标的特点①XOY平面上所有点的竖坐标是0,形如(a,b,0);②YOZ平面上所有点的横坐标是0,形如(0,a,b);③ZOX平面上所有点的纵坐标是0,形如(a,0,b)。
三、利用“坐标法”解(证)立体几何题的步骤第一步,建立坐标系通常取垂直且相交于同一点的三条直线作为三条坐标轴,它们的交点作为原点,并选取适当的单位长度;第二步,表示点的坐标将题中相关点(即在问题中出现的且要求的点)用坐标表示,这一步是解(证)题的关键;第三步,表示向量的坐标根据点的坐标可以求出所需要的向量的坐标,即用向量终点的坐标减去起点的坐标;第四步,求出问题的解将点或向量的坐标代入公式(如两向量的夹角公式等);第五步,作出结论根据上一步所求得的结果,作出问题的正确结论。
坐标法求立体几何题“四步曲”
\ 槡 迄 (槡, —x + y — 2 =0 , 取 y = 1 得 m =
1, 0).
] 迄 —4 =0.
烄 何仃= , MN = 0
—
0
烆狀 烄 狇 厂 狀 且
DN 所以 槡
,取 =—1得 = (2,0,—1).
烆 狆一 厂 A1N = 0.
— 2 =专题突破
微专题突破
坐标法 求立体 几何题“四步曲
南京市第九中学张荣彬
。乜 狓 、狔 、狕 犼 在空间直角坐标系 w中,分别取与 轴 轴 轴方向相同的单位向量i, ,k 狓 作为基底,对于空间任意一个向量a,根据空间向量基本定理,存在唯一的有序实数组( , 狔 狕 狓 狔 狕 , ),使a=xi+yj +zk,则称( , , )为向量a的坐标.空间向量的坐标化,为我们证明
“ 图形中的对称关系建系.不管何种情形,都是要利用、发现或构造图形中 三垂直”的关系. (1) ; 题目的背景是长方体、正四棱柱、正方体、直角四面体时,建系无悬念
(2) 正棱锥可以利用底面中心及高所在的直线建系;底面是菱形的直四棱柱,如例1,可
利用所给的菱形特征或利用菱形对角线性质(如图3)来建系;对于正三棱柱通常可以参照图
一
得
• DE = 0
+ +4c = 0, 取
=0,
, 広 , / c = 1得k = (4, 0, 1),由于k • MN = 0 因MN 平面C】DE 所以MN 平面C】DE.
犿 狕 狀 狆 厂 (2)设 = (x, y , )为平面A1MA的法向量, =( ,q , )为平面A1MN的法向量
烄 D \m • A1M = 0,
D
数学解决立体几何问题的四种常用方法
数学解决立体几何问题的四种常用方法数学作为一门科学,其应用范围及其广泛。
在解决现实生活中的各种问题中,立体几何问题是其中之一。
在本文中,将介绍数学解决立体几何问题的四种常用方法,分别是平面几何方法、向量法、投影法和立体坐标法。
一、平面几何方法平面几何方法是解决立体几何问题最常用的方法之一。
该方法的基本思想是将立体几何问题转化为平面几何问题来求解。
具体来说,可以通过绘制立体几何图形的几个视图,将其分解为多个平面几何图形,然后利用平面几何中的定理和性质进行求解。
例如,对于一个立方体求其体积,可以将其展开成一个平面图形,然后计算出展开图形的面积。
再根据立方体的性质,将展开图形的面积乘以立方体高度所得的积即为立方体的体积。
二、向量法向量法是一种几何分析方法,可以有效地解决立体几何问题。
该方法利用向量的运算和性质,将立体几何问题转化为向量计算问题来求解。
在利用向量法解决立体几何问题时,首先需要确定坐标系,并定义几何体的位置和方向。
然后,通过向量运算来计算几何体的性质。
例如,对于一个平行六面体的体积,可以通过计算其底面向量与高度向量的叉积来求解。
三、投影法投影法是解决立体几何问题的另一种常用方法。
该方法利用几何体在不同平面上的投影关系,将立体几何问题转化为投影几何问题来求解。
具体来说,可以通过绘制几何体在不同平面上的投影图形,并利用投影几何的定理和性质进行求解。
例如,对于一个棱柱在某个平面上的截面积,可以通过计算棱柱的投影图形在该平面上的面积来求解。
四、立体坐标法立体坐标法是一种通过引入三维坐标系来解决立体几何问题的方法。
该方法通过确定几何体的坐标,将立体几何问题转化为坐标几何问题来求解。
在利用立体坐标法解决立体几何问题时,首先需要建立一个三维坐标系,并确定几何体的坐标。
然后,通过坐标运算来计算几何体的性质。
例如,对于一个球体求其体积,可以根据球体的坐标及其半径,利用坐标运算公式计算出体积。
总结起来,数学解决立体几何问题的常用方法有平面几何方法、向量法、投影法和立体坐标法。
例说用坐标法解立体几何问题
(5) 点到平面的距离
空 间距离多可转化为点面距离, 用坐标 方 法求点面距离其一般步骤为: 先确定平面 a 的一个法向量n , 点尸是平面a 内的任意一点,
那 点 。 平 “ 距 为 一i 书丫卫 么 P到 面的 离 “ '
即 P
对值.
_ _. _ _
“_ 、. _ _
}P
. nl
在平面。 法向 方向 的 量n 上投影的 绝
刀 户= x 石 y 刀 , 从而 杏+ 老
瓦 育= DIP + x赫 + y庞 ,
由 蔺 土万 , 刀 刀 杏 ;育土刀 定x,y 的 老确 值, 最 计 后 算ID} I 即 点 到 BDE 的 离 9 为 D, 面 距 .
例 2 (2004 年天津卷理) 如图3, 在四棱
锥 尸一ABCD 中, 底面ABCD 是正方形, 侧棱 P D 土 底面 ABCD ,P D = DC ,E 是 P C 的中 点, EF 土 P B 交 P B 于点F . 作
2006 年第6 期
中学数 学
例 说 用坐 标法 解 立 放 n 何 问题
225002 江苏省扬州大学附属中学 昌 明 (垂直) 的判定. 此外, 平面与平面的平行也可用共面向 量定理证得. 《 普通高中数学课程标准》 将空间向量引 入中学数学, 并用它研究空间线、 面的位置关 系, 计算空间角与距离, 使几何 问题代数化, 与立体几何传统的解法相比较, 向量法降低 了对 图形的处理技巧, 也不需要很强的逻辑 推理, 为解决立体几何 问题注入 了新的活力. 空间线面位置关系的判定、 空间角与距 离的计算是立体几何的重要内容, 也是历届 高考的重点和热点. 近年来, 随着空间向量的 普及与推广, 利用向量解决立体几何问题 已 越来越受到重视, 尤其是利用坐标方法证明 平行、 垂直问题, 进行空间角与距离的计算 已 成为近年来考查学生运用向量方法解决立体 几何问题的重点. 本文通过数例, 谈谈用坐标 法求解立体几何问题的常规解题思路. 我们可以把立体几何问题大体上分为两 类: 一类是空间线、 面的位置关系; 另一类是 空间角与距离的计算.
立体几何建坐标系
立体几何建坐标系全文共四篇示例,供读者参考第一篇示例:立体几何建坐标系是描述和研究立体图形的重要工具之一。
在三维空间中,我们通常使用三维直角坐标系来描述立体图形的位置和形状。
这种坐标系由三个相互垂直的坐标轴组成,分别是x轴、y轴和z 轴,它们分别对应三维空间中的长度、宽度和高度。
在这个坐标系中,每个点都可以通过三个坐标值来表示,分别表示点在x轴、y轴和z轴上的位置。
用立体几何建坐标系描述一个物体时,首先需要确定一个原点,该原点是坐标轴的交点,通常我们取它为立体图形的重心或者其特定的某一个点。
然后,可以通过在坐标轴上确定一个单位长度来建立坐标系的比例尺。
接下来,可以通过测量物体在x、y、z三个方向上的长度、宽度和高度,来确定物体各个点的坐标值,从而描述整个物体的形状和位置。
利用立体几何建坐标系可以方便地计算立体图形的体积、表面积、中心质心等属性。
通过将三维立体图形分解成一系列的立方体、长方体或圆柱体等基本的几何图形,可以利用数学方法求解各部分的体积,并将它们相加得到整个立体图形的体积。
而对于复杂的立体图形,可以将其分解成多个简单的几何图形,再逐一计算其属性,最后综合得出结果。
这样的方法虽然有时会比较繁琐,但是却是一种较为准确和可靠的计算方式。
立体几何建坐标系不仅可以用于描述静态的立体图形,还可以用于描述立体图形的运动和变形。
通过不断变化物体各个点的坐标值,可以描述其在三维空间中的移动、旋转、缩放等动作。
通过改变一个立方体各个顶点的坐标值,可以实现它在空间中的旋转或者平移。
通过计算不同时间点上各个点的坐标值,可以还原出整个立体图形的运动轨迹,从而研究它的运动规律。
利用立体几何建坐标系还可以进行三维坐标系下的几何投影。
在三维空间中,物体的形状对应着它在每个坐标轴的投影,在三维坐标系下可以进行正投影、侧视投影等操作,将三维空间中的立体图形映射到二维平面上,便于我们观察和研究。
这种投影方法在建筑设计、工程制图等领域中有着广泛的应用。
平面直角坐标系在立体几何中的应用
平面直角坐标系在立体几何中的应用张薇[摘要]谈到直角坐标系在立体几何中的应用,大家往往会想到建立空间直角坐标系来解决立体几何中的问题,然而有些情况下我们不需要建立或者不适宜建立空间直角坐标系,但在几何体的平面中又有线线垂直的,可以考虑建立平面直角坐标系来解决问题.这种方法通常用于立体几何中求解点到线的距离的问题.本文以2个题目为例来说明利用平面直角坐标系解决立体几何中的点到线的距离的问题的优点及使用情况. 关键词:平面直角坐标系 立体几何 应用建立直角坐标系解决立体几何中的问题适用于几何体中出现或比较容易作出线面垂直,并且面内容易作出线线垂直,各点坐标容易求出的题目.然而有时在求点到线的距离时我们不需要建立空间直角坐标,只要面内有线线垂直,我们也可以建立平面直角坐标系来解决问题.例一.如图,已知半平面l αβ=,A 、B 是l 上的两个点,C 、D 在半平面β内,且DA α⊥,CB α⊥,4,6,8AD AB BC ===,在半平面α上有一个动点P ,使得APD BPC ∠=∠,求四棱锥P ABCD -体积的最大值.分析:由DA α⊥,CB α⊥,得D A A P ⊥,,CB BP αβ⊥⊥.设APD BPC α∠=∠=,得4tan tan DA PA αα==,8tan tan CB PB αα==,所以有2PB PA =.由于底面ABCD 的面积已定,要使四棱锥P ABCD -最大,只要使高最大,即P 点到平面ABCD 的距离最大.又由于αβ⊥,所以P 到平面ABCD 的距离即为P 到AB 的距离.接下来的处理方式有以下:方式一:P 到AB 的距离即为ABP ∆的高,要使高最大,则在底边AB 已定的情况下ABP ∆的面积最大,问题转化为求ABP ∆面积最大.设APB θ∠=,由余弦定理得222222cos 54cos AB PA PB PA PB PA PA θθ=+-⋅⋅=-⋅所以2254cos AB PA θ=-, 则ABP ∆的面积221sin 36sin sin sin 254cos 54cos AB S PA PB PA θθθθθθ⋅=⋅⋅=⋅==--, 所以()()54cos 36sin 54cos 36sin S S S θθθθθϕ-=⇒=+=+, 所以()sin θϕ+=, 因为4tan 036S ϕ=>,所以02πϕ<<,又因为0θπ<<,所以302πθϕ<+<,所以()sin 1θϕ+≤,即1≤,解得012S <≤,即ABP ∆面积最大值为12,所以对应的ABP ∆的高的最大值为4,从而可求得四棱锥P ABCD -体积最大值为48.方式二:在平面α内以AB 中点为坐标原点,以AB 所在直线为x 轴,建立平面直角坐标系,则()()3,0,3,0A B -.设(),P x y ,由2PB PA =得P 点的轨迹方程为()22516x y ++=,可得04y ≤≤,即P 到AB 的距离最大为4,从而可求得四棱锥P ABCD -体积最大值为48.小结:对比以上两种处理方式可以看出,在本题中,因为解决问题的关键在于求出P 到AB 的距离,所以在平面α上建立平面直角坐标系求出P 的轨迹方程,从而得到P 点的纵坐标的取值范围会更加简便,而且方式一还涉及到求形如()sin 0cos a b x y bd c d x +=≠+的函数的值域问题,这个知识点对学生来说是个难点,不好处理,而且运算量大,容易出错.例二.在三棱锥P ABC -中,PA ⊥平面ABC ,ABC ∆是直角三角形,AC CB ⊥,2PA =,CA =2CB =,E 为BC 的中点,CF AB ⊥于点F ,CF 交AE 于点M ,求M 到平面PBC 的距离.分析:本题有线面垂直,因此可以用等体积法来求点M 到平面PBC 的距离.如图所示,设M 到平面PBC 的距离的距离为d ,由于PA ⊥平面ABC ,所以P 到平面ABC 的A距离为PA ,则有P CMB M PBC V V --=,即1133CMB PBC PA S d S ∆∆⋅⋅=⋅⋅,易证PC CB ⊥,所以PBC S ∆易求,这样解决整个题目的关键就在于求出CMB S ∆,而CMB ∆中,CB 已知,只要求CB 边上的高也就是M 到CB 的距离h .处理方式有以下:方式一:由CA =2CB =,AC CB ⊥,可得60ABC ∠=,又由CF AB ⊥可得30FCB ∠=,3CF AF ==.下面我们用分析法来找思路:要求M 到CB 的距离,只要求出CM 的长⇐MF 的长⇐tan MAF ∠⇐用正弦定理结合平方关系求出sin ,cos MAF MAF ∠∠,即sin ,cos BAE BAE ∠∠.而要求出sin BAE ∠,就要先用勾股定理求出AE 长.解答过程如下:因为AC CB ⊥,E 为BC 的中点,所以由勾股定理得:AE ==由正弦定理:sin sin AE BE ABC BAE=∠∠ 可得sin 26BAE ∠= 由平方关系可得cos 26BAE ∠=即cos MAF ∠=tan MAF ∠= 因为tan MF AF MAF =⋅∠=,所以CM CF MF =-= 所以M 到CB 的距离sin 7h CM MCE =⋅∠=. 方式二:因为AC CB ⊥,所以以C 为原点,CB 所在直线为x 轴,CA 所在直线为y 轴来建立平面直角坐标系,则()0,0C,(0,A ,()2,0B ,()1,0E ,所以有直线AE 方程为0y +-=, 直线CF 方程为3y x =, 设(),M x y ,则由6077x y y x y ⎧⎧=+-=⎪⎪⎪⇒⎨⎨=⎪⎪=⎩⎪⎩, 则M 到CB的距离7h y ==. 小结:对比以上两种处理方式可以看出,因为本题的关键在于求出M 到CB 的距离h ,而ABC ∆为直角三角形,M 点为AE 和CF 的交点,显然是建立平面直角坐标系比较容易求.总结:对于立体几何里面求点到线的距离的问题,我们解法上不必拘泥于几何法解或建立空间直角坐标系来解,有时我们在几何体的某个面上建立适当的平面直角坐标系会更加有利于问题的解决.。
建立空间直角坐标系解立体几何题
建立空间直角坐标系解立体几何题在学习立体几何过程中,建立空间直角坐标系可以帮助我们更好地理解和解决相关问题。
这篇文章将探讨如何建立空间直角坐标系,并以一个例题为例来说明该方法的应用。
建立空间直角坐标系的步骤如下:1.选取坐标原点一般情况下,我们可以选择立方体的一个顶点作为坐标原点。
选取坐标原点后,我们可以通过标定其他点与坐标原点的坐标值来建立坐标系。
2.确定坐标轴在空间中,我们可以有三个互相垂直的坐标轴,分别为x轴、y轴和z轴。
我们可以根据需要确定坐标轴的正方向,比如我们可以规定x轴正方向为从左往右,y轴正方向为从下往上,z轴正方向为从内往外。
3.标定坐标值在空间中,每一个点都可以用三个实数x、y、z来表示它在坐标系中的位置。
我们可以通过直接测量或者运用勾股定理等方法来确定每个点的坐标值。
一般情况下,我们可以将领角所在的平面作为xoy平面,将底面所在的平面作为xz平面,将右侧面所在的平面作为yz平面,这样有助于我们更方便地标定坐标值。
以一个例题来说明建立空间直角坐标系的应用:已知四面体ABCD的底面ABCD为边长为2的正方形,其上面一点P距离底面ABCD的距离为1,求点P到四面体的距离。
利用空间直角坐标系来解决该题可以大大简化计算过程。
我们可以将坐标系建在ABCD正方形所在的平面上,以AB为x轴,以AD为y轴,以垂直于该平面的方向为z轴。
在该坐标系中,我们可以标定A点坐标为(0, 0, 0),将B点的坐标作为x轴正方向单位向量(1, 0, 0),C点的坐标作为y轴正方向单位向量(0, 1, 0),D 点的坐标作为z轴正方向单位向量(0, 0, 1)。
通过该坐标系,我们可以算得点P的坐标为(1, 1, 1)。
接下来,我们可以利用向量点积公式计算点P到四面体的高:|AP·N|/|N| = |(1, 1, 1)·(1, 1, 0)|/√2 ≈ 1.22因此,点P到四面体的距离约为1.22。
课题空间向量坐标法在立体几何解题中的应用一
利用空间向量坐标法解决立体几何问题,必须先建立空间直角坐标系,然后把向量通过坐标形式表示出来,而其他的则完全可以通过运用向量的有关知识使问题得到解决。因此,这种方法的关键在于能够选取适当的直线建立空间直角坐标系。能用这种方法解题的立体几何模型一般是具有较多垂直关系的正方体、长方体、直(正)棱柱、正棱锥或有一条侧棱垂直于底面的棱锥等。
例3.(专题复习(三).例5)
如图所示,已知四边形ABCD、EADM和MDCF都是边长为a的正方形,
点P、Q分别是ED和AC的中点,求:
(2)P点到平面EFB的距离;
(3)异面直线角坐标系D—x y z,则
D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),
如图,建立空间直角坐标系G—x y z,则
G(0 , 0 ,0),D(0, , 0),B( ,0, 0),A(0,- , 0),P(0,0, ),
∴ =( ,0, 0), =(0, , ), =(0,a,0),
∴ · =0, · =0,
∴ ⊥ , ⊥ ,即BG⊥AP,BG⊥AD,
∴BG⊥面PAD.
方法二:∵侧面PAD是正三角形,G是AD的中点,
因此,求两条异面直线a和b的距离,可不必通过先找出这两条异面直线的公垂线段,再求其公垂线段的长度求得。求两条异面直线a和b的距离,还有如下两种常见的思路:
思路一:求这两条异面直线中的一条直线(如a)上的某一点到过另一条直线(如b)且与这条直线(如a)平行的平面的距离;
思路二:先求直线a、b上方向向量 、 的法向量 和向量 (点A,B分别在异面直线a,b上),再求向量 、 的单位法向量 ,最后代入式子| · |。
∴ · =0,即 ⊥ ,
∴BG⊥面PAD.
坐标法在立体几何中的应用
坐标法在立体几何中的应用摘要:找寻或构建共点的三条两两相互垂直的直线,是建立空间直角坐标系的前提。
可以把要求的量、相关已知量从原来图形中剥离出来,构造一个恰当的几何模型。
建模思想以坐标法作为解题工具,可以较为简便地证明立体几何中的平行、垂直等位置关系,以及求解异面直线夹角、线面角、二面角、点到平面的距离等,降低立体几何对空间想象的难度,有入门快、易接受的功效。
关键词:线面角线线角量量角立体几何问题一般有综合法、空间向量法两种解法,而空间向量法作为解题工具在解题过程中思维自然、较少添加辅助线,学生易于接受。
特别是证明平行、垂直等位置关系,求异面直线夹角、线面角、二面角、点到平面的距离,有综合法无以能及的功效。
按解答形式分;空间向量法又分向量法和坐标法两种,坐标法解立体几何问题是高考重点考查内容,应用非常广泛,本文在此对它的解题结构及其应用进行剖析。
运用坐标法解立体几何,有三个环节需要突破:1 建系所谓建系,就是建立空间直角坐标系,依据空间几何图形的结构特征,找寻或构建共点的三条两两相互垂直的直线,建立空间直角坐标系,并把相关点、向量用坐标表示出来。
例1:如图1,在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,E为棱CC1上异于C、C1的一点,EA⊥EB1.已知AB=,BB1=2,BC=2,∠BCC1=.求二面角A-EB1-A1的平面角的正切值。
解析:以B为原点,分别以BB1,BA所在直线为y轴、z轴,过B点垂直于平面AB1的直线为x轴建立空间直角坐标系。
则:B(0,0,0),A(0,0,),B1(0,2,0),C,,0,C1,,0∴BA=(0,0,),设E,ɑ,0 (-0,则B(,-b,0),容易得到·=0,·=0从而证得:PC⊥平面BDE(Ⅱ)∵=(0,0,2),=(,-b,0)设=(x,1,z)为平面PAB的一个法向量,则·=0·=0解得:=(b ,1,0),同理设=(p,q,1)为平面PBC的一个法向量,解得:=(,—,1),∵平面PAB⊥平面PBC ∴·=0解得:=(,-,1),又∵=(-,-,2),构建“点面距”模型与图2类似(略)∵sinα=∣cosθ∣= ∴α=30°∴PD与平面PBC所成角为30°坐标法在立体几体中的应用充分体现了数形结合思想、将空间元素的位置关系向数量关系转化的思想,培养了学生将形式逻辑证明向数值计算转化、以及使用向量代数方法解决立体几何问题的能力,数的表述性代替了形的直观性,可操作性强,大大降低了立体几何对空间想象的难度,方法具有普及性。
第34讲 利用坐标法解决立体几何的角度与距离问题(解析版)
第34讲 利用坐标法解决立体几何的角度与距离问题参考答案与试题解析一.选择题(共1小题)1.(2021•南岗区校级期中)如图,三棱锥A BCD -中,90DAB DAC BAC ∠=∠=∠=︒,1AB AD AC ===,M ,N 分别为CD ,BC 的中点,则异面直线AM 与DN 所成角余弦值为( )A .16B C D .56【解答】解:三棱锥A BCD -中,90DAB DAC BAC ∠=∠=∠=︒,建立空间直角坐标系, 如图所示:由于1AB AD AC ===,M ,N 分别为CD ,BC 的中点, 所以(0A ,0,0),11(0,,)22M ,(0D ,0,1),11(,22N ,0),则11(0,,)22AM =,11(,,1)22DN =-,所以异面直线AM 与DN 所成角余弦值3cos ||||||AM DN AM DN θ== 故选:B .二.解答题(共21小题)2.(2021•凉山州模拟)如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=︒,PA ⊥底面ABCD ,且2PA AD AB BC ===,M 、N 分别为PC ,PB 的中点.(1)求证:PB DM ⊥;(2)求二面角A MD C --的正弦值.【解答】解:(1)证明:PA ⊥面ABCD ,AD ⊂面ABCD ,AD PA ∴⊥, 90BAD ∠=︒,AD AB ∴⊥, PAAB A =,PA ,AB ⊂面PAB ,AD ∴⊥面PAB ,PB ⊂面PAB ,AD PB ∴⊥,又PAB ∆中,AP AB =,N 为PB 的中点,AN PB ∴⊥, ANAD A =,AN ,AD ⊂平面AND ,PB ∴⊥面AND ,又N ,M 分别为PB ,PC 的中点, //MN BC ∴,//BC AD ,//MN AD ∴,N ∈面AND ,M ∴∈面AND ,MN ∴⊂面AND ,PB DM ∴⊥.(2)解:以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系, 设22PA AD AB BC ====,则(0A ,0,0),(0P ,0,2),(2C ,1,0),(0D ,2,0),(1M ,12,1), 设面AMD 的法向量(m x =,y ,)z , (0AD =,0,2),(1AM =,12,1), 20102AD m y AM m x y z ⎧==⎪⎨=++=⎪⎩,取1x =,得(1m =,0,1)-, 设面CMD 的法向量(n x =,y ,)z ,(2DC =,1-,0),(1DM =,32-,1),20302DC n x y DM n x y z ⎧=-=⎪⎨=-+=⎪⎩,取1x =,得(1n =,2,2), cos ,||||32m n m n m n <>==-∴二面角A MD C --.3.(2021•荔湾区校级期末)如图,在平行四边形ABCD 中,2AB BC =,120ABC ∠=︒,E 为线段AB 的中点,将ADE ∆沿在直线DE 翻折成△A DE ',使平面A DE '⊥平面BCD ,F 为线段A C ''的中点.(1)求证://BF 平面A DE '.(2)设M 为线段DE 的中点,求直线FM 与平面A DE '所成角的大小. (3)若2BC =,求三棱锥A DEF '-的体积.【解答】解:(1)证明:取CD 中点G ,连结GF ,BG , 在平行四边形ABCD 中,2AB BC =,120ABC ∠=︒,E 为线段AB 的中点,将ADE ∆沿在直线DE 翻折成△A DE ',使平面A DE '⊥平面BCD ,//GF A D ∴',//BGDE, GFBG G =,A DDE D '=,∴平面//A DE '平面BGF ,BF BGF ⊂,//BF ∴平面A DE '.(2)解:取CD 中点G ,连结EG 、AG 、DE ,A M ', 设2BC =,则四边形AEGD 是边长为2的菱形,且60DAE ∠=︒,MA ME ∴⊥,由平面A DE '⊥平面BCD ,F 为线段A C ''的中点.A M ∴'⊥平面AEGD ,以M 为原点,MA 为x 轴,ME 为y 轴,MA '为z 轴,建立空间直角坐标系,则(0M ,0,0),(0A ',0,(0D ,1-,0),(C -,1,0),(F ,12,(3FM =,12-,,平面A DE '的法向量(1m =,0,0),设直线FM 与平面A DE '所成角为θ, 则||3sin ||||FM n FM n θ==,60θ∴=︒. ∴直线FM 与平面A DE '所成角的大小为60︒.(3)解:2BC =,∴由(2)得(F 12,平面A DE '的法向量(1m =,0,0),1(2MF =-,∴点F 到平面A DE '的距离||3||MF m d m ==. 122A DES'=⨯∴三棱锥A DEF '-的体积:113A DEF F A DE V V '--'===.4.(2021•和平区校级月考)如图,四棱锥P ABCD -中,PAD ∆是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,222PC AD DC CB ====,E 为PD 的中点.(1)证明://CE 平面PAB ;(2)求直线CE与平面PAB间的距离.【解答】(1)证明:取PA的中点M,连接BM、EM,E为PD的中点,//EM AD∴,12EM AD BC==,∴四边形BCEM为平行四边形,//CE BM∴,CE⊂/平面PAB,BM⊂平面PAB,//CE∴平面PAB.(2)解://CE平面PAB,∴点E到平面PAB的距离即为所求.222PC AD DC CB====,取AD的中点N,连接BN、PN,则四边形BCDN为矩形,1BN CD==PAD∆是以AD为斜边的等腰直角三角形,PN AD∴⊥,112PN AD==,BN AD⊥,PN BN N=,PN、BN⊂平面PNB,AD∴⊥平面PNB,//BC AD,BC∴⊥平面PNB,BC⊂平面ABCD,∴平面ABCD⊥平面PNB,以B为原点,BC、BN分别为x、y轴,在平面PNB内,作Bz⊥平面ABCD,建立如图所示的空间直角坐标系,则(0B,0,0),(1A,1-,0),(1D,1,0)BC⊥平面PNB,BC PB∴⊥,在Rt PBC∆中,PB===1BN PN==,120PNB∴∠=︒,∴点3(2P ,0,5(4E ,12, ∴3(2BP =,0,(1BA =,1-,0),5(4BE =,12, 设平面PAB 的法向量为(n x =,y ,)z ,则00n BP n BA ⎧⋅=⎪⎨⋅=⎪⎩,即3020x x y ⎧+=⎪⎨⎪-=⎩, 令1x =,则1y =,z =∴(1n =,1,,∴点E 到平面PAB的距离514||||||n BE d n +⋅==, 故直线CE 与平面PAB. 5.(2021•沙坪坝区校级月考)如图,在四棱锥P ABCD -中,PAD ∆是以AD 为斜边的等腰直角三角形,//BC AD ,CD AD ⊥,PC 222AD DC CB ===,E 为PD 上一点. (1)若E 为PD 的中点,证明://CE 平面PAB ; (2)若直线CE 与底面ABCD ,求二面角P AB E --的正弦值.【解答】(1)证明:取线段PA 的中点M ,连结EM ,BM ,因为线段PD 的中点为E ,线段PA 的中点为M ,所以//EM AD 且12EM AD =, 又四边形ABCD 中,//BC AD ,2AD BC =,所以//EM BC ,EM BC =, 所以四边形BCEM 为平行四边形,所以//CE BM , 因为BM ⊂平面PAB ,CE⊂/平面PAB , 所以//CE 平面PAB ;(2)解:已知PAD ∆是以AD 为斜边的等腰直角三角形,2AD =, 所以PD 1PC CD ==,所以222PC PD CD =+, 由勾股定理的逆定理可得,CD PD ⊥,又CD AD ⊥,AD PD D =,AD ,PD ⊂平面PAD ,所以CD ⊥平面PAD ,因为CD ⊂平面ABCD ,所以平面ABCD ⊥平面PAD ,取AD 的中点O ,连结PO ,OB ,则PO AD ⊥,又PO ⊂平面PAD ,平面ABCD ⋂平面PAD AD =,所以PO ⊥平面ABCD ,四边形ABCD 中,//BC AD ,2AD BC =,所以四边形BCDO 是平行四边形,所以//BO CD ,BO CD =,所以BO AD ⊥,以O 为坐标原点,以OB ,OD ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系如图所示,所以(0A ,1-,0),(1B ,0,0),(1C ,1,0),(0D ,1,0),(0P ,0,1), 则(0,1,1),(1,0,0)DP CD =-=-, 设(0,,),(0,1)DE DP λλλλ==-∈, 所以(1,,)CE CD DE λλ=+=--, 平面ABCD 的法向量可取(0,0,1)n =, 因为直线CE 与底面ABCD,||||||CE n CEn ⋅=,解得13λ=, 所以11(1,,)33CE =--,则21(0,,)33E ,所以51(0,,),(1,1,0)33AE AB ==,设平面ABE 的法向量为(,,)m x y z =, 所以00m AE m AB ⎧⋅=⎪⎨⋅=⎪⎩,所以51033y z x y ⎧+=⎪⎨⎪+=⎩, 令1y =,则1x =-,5z =-,所以(1,1,5)m =--, 又(0,1,1)AP =,设平面PAB 的法向量为(,,)p a b c =, 则有00p AP p AB ⎧⋅=⎪⎨⋅=⎪⎩,所以00b c a b +=⎧⎨+=⎩,令1b =,则1c =-,1a =-,所以(1,1,1)p =--, 所以7cos ,||||9m p m p m p ⋅<>==,所以242sin ,1,m p cos m p <>=-<>=,所以二面角P AB E --.6.(2021•江苏一模)如图,在四棱锥P ABCD -中,PAD ∆是以AD 为斜边的等腰直角三角形,//BC AD ,AB AD ⊥,222AD AB BC ===,PC =E 为PD 的中点. (1)求直线PB 与平面PAC 所成角的正弦值;(2)设F 是BE 的中点,判断点F 是否在平面PAC 内,并请证明你的结论.【解答】解:(1)取AD 中点O ,连接OP 、OC ,PAD ∆是以AD 为斜边的等腰直角三角形,所以OP AD ⊥,1OP OA OD ===,因为//BC AD ,AB AD ⊥,222AD AB BC ===,所以四边形ABCO 为边长为1的正方形,所以OC AD ⊥,又因为PC =,所以222PC OP OC =+,所以PO OC ⊥, 所以OA 、OC 、OP 两两垂直,建立如图所示的空间直角坐标系, (1A ,0,0),(1B ,1,0),(0C ,1,0),(0P ,0,1),平面PAC 的法向量为(1n =,1,1),(1PB =,1,1)-, 所以直线PB 与平面PAC 所成角的正弦值为||13||||3PB n PB n ⋅==⋅⋅.(2)连接AF ,(1D -,0,0),1(2E -,0,1)2,1(4F ,12,1)4,3(4AF =-,12,1)4,点F到平面PAC的距离为||||3AF nn⋅==,所以点F在平面PAC内.7.(2021•房山区一模)如图,四棱锥P ABCD-中,PAD∆是以AD为斜边的等腰直角三角形,PD CD==2PC=,//12BC AD=,CD AD⊥.(Ⅰ)求证:CD⊥平面PAD;(Ⅱ)若E为PD中点,求CE与面PBC所成角的正弦值;(Ⅲ)由顶点C沿棱锥侧面经过棱PD到顶点A的最短路线与PD的交点记为F.求该最短路线的长及PFFD的值.【解答】(Ⅰ)证明:PD CD=2PC=,222CD PD PC∴+=,CD PD∴⊥,又CD AD⊥,PD AD D=,CD∴⊥平面PAD.(Ⅱ)解:取AD的中点O,连接OP,OB,PA PD=,PO AD∴⊥.CD⊥平面PAD,PO⊂平面PAD,PO CD∴⊥,又AD CD D=,PO∴⊥平面ABCD,//12BC AD =,CD AD ⊥.∴四边形BCDO 是矩形,OB OD ∴⊥.以点O 为坐标原点建立空间直角坐标系O xyz -,如图所示则C ,(0P ,0,1),(0D ,1,0),B ,(0E ,12,1)2, ∴11(,)22CE =--,(2,0,1),(0,1,0)PB BC =-=,设面PBC 的法向量(,,)n x y z =,则0n PB n BC ⎧⋅=⎪⎨⋅=⎪⎩,即00z y -==⎪⎩,令1x =可得(1n=,0.22cos ,||||5CE nCE n CE n -⋅∴<>===⋅设CE 与面PBC 所成角为θ,∴15sin |cos ,|CE n θ=<>=.(Ⅲ)解:CD ⊥平面PCD ,PD ⊂面PAD , CD PD ∴⊥,PDC ∴∆为等腰直角三角形,作出平面APD 和平面PCD 的侧面展开图,如图所示:连接AC 交PD 于F ,则AC 为最短路线,90APD PDC '∠=∠=︒,//AP DC '∴=,∴四边形ADC P '为平行四边形,F ∴与E 重合,∴最短路线长为22AF ==,此时1PF FD=.8.(2021春•湖北期末)如图,四棱锥S ABCD -中,//AB CD ,BC CD ⊥,侧面SAB 为等边三角形,4AB BC ==,2CD SD ==. (1)求证:SD AB ⊥;(2)求AB 与平面SBC 所成的角的正弦值.【解答】解:(1)证明:四棱锥S ABCD -中,//AB CD ,BC CD ⊥, 侧面SAB 为等边三角形,4AB BC ==,2CD SD ==.AD ∴=4SA AB ==,222SA SD AD ∴+=,SD SA ∴⊥,同理得SD SB ⊥, SASB S =,SD ∴⊥平面SAB ,AB ⊂平面SAB ,SD AB ∴⊥.(2)解:以D 为原点,在平面ABCD 内过D 作DC 的垂线为x 轴,DC 为y 轴, 过D 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,(4A ,2-,0),(4B ,2,0),(0C ,2,0),(1S ,0,,(4CB =,0,0),(1CS =,2-,(0AB =,4,0),设平面SBC 的一个法向量是(n x =,y ,)z ,则4020n CB x n CS x y ⎧⋅==⎪⎨⋅=-=⎪⎩,取2z =,得(0n =2),设AB 与平面SBC 所成的角为θ,则||4sin ||||7n AB n AB θ⋅===⋅.AB ∴与平面SBC .9.(2021•天山区校级期末)如图,在三棱锥P ABC -中,AB BC ⊥,12AB BC PA ==,点O ,D 分别是AC ,PC 的中点,OP ⊥底面ABC .(1)求证://OD 平面PAB ;(2)求直线OD 与平面PBC 所成角的正弦值.【解答】证明:(1)点O ,D 分别是AC ,PC 的中点, //OD PA ∴又OD ⊂/平面PAB ,PA ⊂平面PAB //OD ∴平面PAB ;(2)连接OB ,AB BC =,点O 是AC 的中点, OB AC ∴⊥又OP ⊥底面ABC .故可以O 为坐标原点,建立如图所示的空间直角坐标系 令112AB BC PA ===,AB BC ⊥,则2OA OB OC ===,2OP =则(0O ,0,0),B 0,0),(0C ,0),(0P ,0,(0D∴(0OD =,(BC =-,0),(0PC =,设(m x =,y ,)z 是平面PBC 的一个法向量 则00m BC m PC ⎧=⎪⎨=⎪⎩,即00y y ⎧+=⎪⎪-=令1z =,则(7m =,1) 直线OD 与平面PBC 所成角θ满足: ||210sin ||||m OD m OD θ== 故直线OD 与平面PBC10.(2012秋•小店区校级月考)如图,四边形ABCD 中(图1),E 是BC 的中点,2DB =,1DC =,BC ,AB AD ==1)沿直线BD 折起,使二面角A BD C --为60︒(如图2)(1)求证:AE ⊥平面BDC ;(2)求异面直线AB 与CD 所成角的余弦值; (3)求点B 到平面ACD 的距离.【解答】解:(1)如图1取BD 中点M,连接AM,ME.因AB AD==AM BD∴⊥(3)⋯(1分)因2DB=,1DC=,BC=满足:222DB DC BC+=,所以BCD∆是BC为斜边的直角三角形,BD DC⊥,因E是BC的中点,所以ME为BCD∆的中位线1//2ME CD,ME BD ∴⊥,12ME=⋯(2分)AME∴∠是二面角A BD C--的平面角,60AME∴∠=︒⋯(3分)AM BD⊥,ME BD⊥且AM、ME是平面AME内两相交于M 的直线BD∴⊥平面AEM AE⊂平面AEM,BD AE∴⊥⋯(4分)因AB AD==,2DB=,ABD∴∆为等腰直角三角形,∴112AM BD==,22212cos124AE AM ME AM ME AME=+-∠=+-⨯2221AE ME AM∴+==,AE ME∴⊥⋯(6分)BD M E∴,BD⊂面BDC,ME⊂面BDC,AE∴⊥平面BDC⋯(7分)(2)如图2,以M为原点MB为x轴,ME为y轴,建立空间直角坐标系,(8分)则由(1)及已知条件可知(1B ,0,0),1(0,,0)2E ,1(0,2A ,(1D -,0,0),(1C -,1,0), 13(1,,),(0,1,0)2AB CD =--=-,⋯(9分)设异面直线AB 与CD 所成角为θ, 则cos ||||||AB CDAB CD θ=⋯(10分)1==⋯(11分)(3)由13(1,,),(0,1,0)2AD CD =---=-,可知(3,0,2)n =-满足,0,0n AD n CD ==,n 是平面ACD 的一个法向量,⋯(12分) 记点B 到平面ACD 的距离d , 则AB 在法向量n 方向上的投影绝对值为d 则||||AB nd n =⋯(13分), 所以7d ==(14分)11.(2010•浙江)如图,在矩形ABCD 中,点E ,F 分别在线段AB ,AD 上,243AE EB AF FD ====.沿直线EF 将AEF ∆翻折成△A EF ',使平面A EF '⊥平面BEF .(Ⅰ)求二面角A FD C '--的余弦值;(Ⅱ)点M ,N 分别在线段FD ,BC 上,若沿直线MN 将四边形MNCD 向上翻折,使C 与A '重合,求线段FM 的长.【解答】解:(Ⅰ)取线段EF 的中点H ,连接A H ',因为A E A F '='及H 是EF 的中点,所以A H EF '⊥,又因为平面A EF '⊥平面BEF . 如图建立空间直角坐标系A xyz -则(2A ',2,,(10C ,8,0), (4F ,0,0),(10D ,0,0).故(2FA '=-,2,,(6FD =,0,0). 设(n x =,y ,)z 为平面A FD '的一个法向量,22060x y x ⎧-++=⎪⎨=⎪⎩,取z =,则(0,n =-. 又平面BEF 的一个法向量(0,0,1)m =, 故3cos ,||||n m n m n m ⋅〈>==⋅.(Ⅱ)设FM a =,则(4M a +,0,0), 因为翻折后,C 与A 重合,所以CM A M =',故,222222(6)80(2)2a a -++=--++,得214a =, 经检验,此时点N 在线段BC 上, 所以214FM =. 方法二:(Ⅰ)解:取线段EF 的中点H ,AF 的中点G ,连接A G ',A H ',GH . 因为A E A F '='及H 是EF 的中点, 所以A H EF '⊥又因为平面A EF '⊥平面BEF , 所以A H '⊥平面BEF , 又AF ⊂平面BEF , 故A H AF '⊥,又因为G 、H 是AF 、EF 的中点, 易知//GH AB , 所以GH AF ⊥, 于是AF ⊥面A GH ',所以A GH ∠'为二面角A DH C '--的平面角,在Rt △A GH '中,A H '=,2GH =,A G '=所以cos A GH '∠=.故二面角A DF C '--. (Ⅱ)解:设FM x =, 因为翻折后,C 与A '重合, 所以CM A M =',而222228(6)CM DC DM x =+=+-,222222222(2)2A M A H MH A H MG GH x '='+='++=+++,故222222(6)80(2)2x x -++=--++ 得214x =,经检验,此时点N 在线段BC 上, 所以214FM =.12.(2021•五莲县期中)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,//BE CF ,90BCF CEF ∠=∠=︒.AD =2EF =.(1)求证://AE 平面DCF ;(2)当AB 的长为何值时,二面角A EF C --的大小为60︒.【解答】证明:(1)过E 作EG CF ⊥于G ,连接DG ,则四边形BCGE 为矩形. 又ABCD 为矩形,AD ∴平行且等于EG ,∴四边形ADGE 为平行四边形,//AE DG ∴,AE ⊂/平面DCF ,DG ⊂平面DCF ,//AE ∴平面DCF .解:(2)分别以直线BE 、BC 、BA 所在的直线为x 轴,y 轴,z 轴,建立空间直角坐标系,依题意可得:(0B ,0,0),(0C 0),(3E ,0,0),(4F 0), 设AB m =,则(0A ,0,)m .(3AE =,0,)m -,(1EF =0),平面CEF 的法向量(0m =,0,1). 设平面AEF 的法向量(n x =,y ,)z ,则30n AE x mz n EF x ⎧⋅=-=⎪⎨⋅==⎪⎩,取9z =,得(3n m =,,9)(8分) 二面角A EF C --的大小为60︒, ||cos60||||12n m n m m ⋅∴︒==⋅92m =. ∴当92AB =时,二面角A EF C --的大小为60︒.(12分)13.(2014秋•成都校级月考)在如图所示的几何体中,EA ⊥平面ABC ,DB ⊥平面ABC ,AC BC ⊥,2AC BC BD AE ===,M 是AB 的中点.(Ⅰ) 求证:CM EM ⊥;(Ⅱ) 求CM 与平面CAE 所成角的大小;(Ⅲ) 求平面ABC 与平面CDE 所成锐二面角的余弦值.【解答】证明:(Ⅰ)分别以CB ,CA 所在直线为x ,y 轴,过点C 且与平面ABC 垂直的直线为z 轴,建立如图所示的空间直角坐标系C xyz -设AE a =,则(M a ,a -,0),(0E ,2a -,)a , 所以(CM a =,a -,0),(EM a =,a ,)a -,∴()0()0CM EM a a a a a =⨯+-⨯+⨯-=,CM EM ∴⊥.解:(2)平面CAE 的法向量(1n =,0,0),(CM a =,a -,0), 设CM 与平面CAE 所成角为θ,则||sin ||||2CM n CM n aθ===,45θ=︒,∴直线CM 与平面CAE 所成的角为45︒.(3)(2D a ,0,2)a ,(2CD a =,0,2)a ,(0CE =,2a -,)a , 设平面CDE 的法向量(m x =,y ,)z ,则20220m CE ay az m CD ax az ⎧=-+=⎪⎨=+=⎪⎩,令1y =,得(2m =-,1,2),平面ABC 的法向量(0p =,0,1), 设平面ABC 与平面CDE 所成锐二面角为θ, 则||2cos ||||3m p m p θ==.∴平面ABC 与平面CDE 所成锐二面角的余弦值为23.14.(2021•天津二模)如图,DC ⊥平面ABC ,//EB DC ,24AC BC EB DC ====,90ACB ∠=︒,P 、Q 分别为AE ,AB 的中点.(1)证明://PQ 平面ACD .(2)求异面直线AB 与DE 所成角的余弦值; (3)求平面ACD 与平面ABE 所成锐二面角的大小.【解答】(1)证明:P 、Q 分别是AE 、AB 的中点, //PQ BE ∴,12PQ BE =, 又//DC BE ,12DC BE =, //PQ DC ∴,PQ ⊂/平面ACD ,DC ⊂平面ACD , //PQ ∴平面ACD ;(2)解:DC ⊥平面ABC ,90ACB ∠=︒,以点C 为坐标原点,分别以CD ,CA ,CB 的方向为x ,y ,z 轴的正方向建立空间直角坐标系.则(0C ,0,0),(0A ,4,0),(0B ,0,4),(2D ,0,0),(4E ,0,4), (0,4,4)AB =-,(2,0,4)DE =,10cos ,||||AB DE AB DE AB DE ∴<>==,∴异面直线AB 与DE ; (3)解:由(Ⅱ)可知(0,4,4)AB =-,(4,4,4)AE =-, 设平面ABE 的法向量为(,,)n x y z =.则4404440n AB y z n AE x y z ⎧=-+=⎪⎨=-+=⎪⎩,取1z =,得(0,1,1)n =. 由已知可得平面ACD 的法向量为(0CB =,0,4), 2cos ,||||n CB n CB n CB ∴<>== 故所求平面ACD 与平面ABE 所成锐二面角的大小为45︒.15.(2011•浙江)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知8BC =,4PO =,3AO =,2OD = (Ⅰ)证明:AP BC ⊥;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.【解答】解:以O 为原点,以AD 方向为Y 轴正方向,以射线OP 的方向为Z 轴正方向,建立空间坐标系,则(0O ,0,0),(0A ,3-,0),(4B ,2,0),(4C -,2,0),(0P ,0,4) ()I 则(0AP =,3,4),(8BC =-,0,0)由此可得0AP BC ⋅=∴AP BC ⊥即AP BC ⊥()II 设PM PA λ=,1λ≠,则(0PM λ=,3-,4)- (4BM BP PM BP PA λ=+=+=-,2-,4)(0λ+,3-,4)- (4AC =-,5,0),(8BC =-,0,0)设平面BMC 的法向量(a a =,b ,)c 则00BM a BC a ⎧⋅=⎪⎨⋅=⎪⎩ 4(23)(44)080a b c a λλ--++-=⎧⎨-=⎩令1b =,则(0a =,1,23)44λλ+- 平面APC 的法向量(b x =,y ,)z 则00AP b AC b ⎧⋅=⎪⎨⋅=⎪⎩ 即340450y z x y +=⎧⎨-+=⎩令5x =则(5b =,4,3)- 由0a b ⋅= 得2343044λλ+-⋅=- 解得25λ=故3AM =综上所述,存在点M 符合题意,此时3AM =16.(2015秋•江西月考)如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,111AA A B AC ===. (1)证明:平面ABC ⊥平面1A BC ;(2)在线段1BB 上是否存在点E ,使得二面角1E AC B --?若存在确定点E 的位置,若不存在,说明理由.【解答】证明:(Ⅰ)设BC 的中点为O ,11A B A C ==,BC = 1AO BC ∴⊥,且12A O =, 又90BAC ∠=︒,2AB AC ==,AO BC ∴⊥,且AO =,2221124AO AO AA ∴+=+=, 1AO AO ∴⊥,1AO ∴⊥面ABC ,又1A O ⊂平面1A BC ,∴平面1A BC ⊥平面ABC .解:(Ⅱ)如图,以OA ,OB ,1OA 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则A ,(0B0),(0C,0),1(0A ,0,2), 平面1A BC 的法向量(1m =,0,0), 设11BE BB AA λλ==,(01)λ,则(BE =-,0,2)λ,点E 的坐标为(,2)λ, 设平面1EAC 的法向量为(n x =,y ,)z , 由1n CA ⊥,n CE ⊥,得2020z x z λ+=++=⎪⎩,取1z =,得22(n =-+1),10|cos ,|m n <>=,∴=解得1λ=,∴在线段1BB 上存在点E ,使得二面角1E AC B --,且点E 与点1B 重合.17.(2021春•东湖区校级期中)如图,在三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 是11B C 的中点.(1)证明:1A D ⊥平面1A BC ;(2)求二面角11B A D B --的平面角的正切值.【解答】(1)证明:2AB AC ==,D 是11B C 的中点.111A D B C ∴⊥,11//BC B C ,1A D BC ∴⊥,1A O ⊥面ABC ,1//A D AO ,1AO AO ∴⊥,1AO BC ⊥ BCAO O =,11AO A D ⊥,1A D BC ⊥ 1A D ∴⊥平面1A BC(2)解,如图,以BC 中点O 为坐标原点,以OB 、OA 、1OA 所在直线分别为x 、y 、z 轴建系.则1BC AO =易知1(A B C ,1(0,A D B ,1(0,A D =,(BD =-设平面1A BD 的法向量为(,,)m x y z =,由,100m A D m BD ⎧=⎪⎨=⎪⎩得00⎧=⎪⎨+=⎪⎩,取1z =,得(7,0,1)m =又平面11A DB 的法向量为(0,0,1)n =,cos ,412m n ∴<>==⨯∴二面角11A BD B --18.(2021•舒城县校级开学)如图,已知多面体111ABC A B C -,1A A ,1B B ,1C C 均垂直于平面ABC ,120ABC ∠=︒,14A A =,11C C =,12AB BC B B ===. (1)证明:111AB AC ⊥;(2)求直线1AC 与平面1ABB 所成的角的正弦值.【解答】(1)证明:以A 为原点,AC ,1AA 所在直线分别为y ,z 轴,在平面ABC 内作Ax AC ⊥,建立如图所示的空间直角坐标系,则(0A ,0,0),1(1B 2),1(0A ,0,4),1(0C ,1),∴1(1AB =2),11(0A C =,3)-,∴11132(3)0AB A C ⋅=⨯⨯-=,即111AB AC ⊥.(2)解:由(1)可知,1(0AC =,1),(1AB =0),1(1AB =2), 设平面1ABB 的法向量为(n x =,y ,)z ,则100n AB n AB ⎧⋅=⎪⎨⋅=⎪⎩,即020x x z ⎧=⎪⎨+=⎪⎩,令1y =,则x =0z =,∴(3n =-,1,0), 设直线1AC 与平面1ABB 所成的角为θ,则sin |cos n θ=<,111||||||||2n AC AC n AC ⋅>===⋅⨯, 故直线1AC 与平面1ABB . 19.(2021•滁州期末)如图,已知在直四棱柱(侧棱垂直底面的棱柱)1111ABCD A B C D -中,AD DC ⊥,//AB DC ,1222DC DD AD AB ====(1)求证:DB ⊥平面11B BCC .(2)求1BC 与平面1A BD 所成的角的余弦值; (3)求二面角11A DB C --的正弦值.【解答】证明:(1)以D 为原点,DA 、DC 、1DD 所在直线分别为x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系,则(0D ,0,0),(1B ,0,0),1(0C ,2,2),(0C ,2,0), (1DB =,1,0),(1BC =-,1,0),1(0BB =,0,2), 1100DB BC =-++=,BD BC ∴⊥,10DB BB =,1BD BB ∴⊥, 1BB BC B =,DB ∴⊥平面11B BCC .解:(2)设(n x =,y ,)z 为平面1A BD 的一个法向量, 1(1DA =,0,2),(1DB =,1,0),则1200n DA x z n DB x y ⎧=+=⎪⎨=+=⎪⎩,取1z =,得(2n =-,2,1), 又1(1BC =-,1,2),设1BC 与平面1A BD 所面1A BD 所成角为θ, 则11||6sin ||||n BC n BC θ== 1BC ∴与平面1A BD . (3)由(2)知平面1A BD 的一个法向量为(2n =-,2,1), 设(m x =,y ,)z 为平面1C BD 的一个法向量, 1(1BC =-,1,2),(1DB =,1,0),则1200n BC x y z n DB x y ⎧=-++=⎪⎨=+=⎪⎩,取1x =-,得(1m =,1-,1), 设二面角11A DB C --的平面角为θ, 则|cos |||||||33m n m n θ===,sin θ∴==. ∴二面角11A DB C --.20.(2015秋•辽宁校级月考)如图,在四棱锥P ABCD -中,PA ⊥面ABCD ,2AB BC ==,AD CD ==PA ,G 为线段PC 上的点,120ABC ∠=︒(Ⅰ)证明:BD ⊥面PAC ; (Ⅱ)求PC 与面PBD 所成的角; (Ⅲ)若G 满足PC ⊥面GBD ,求PGGC的值.【解答】解:(1)设ACBD O =,2AB BC ==,AD CD =ABD CBD ∴∆≅∆,ABD CBD ∴∠=∠,ABO CBO ∴∆≅∆,BD AC ∴⊥,PA ⊥面ABCD ,PA BD ∴⊥,PAAC A =,BD ∴⊥面PAC .解:(2)以O 为坐标原点,以OC 和OD 所在直线为x 轴和y 轴,建立空间直角坐标系Oxyz ,(P 0,(0B ,1-,0),(0D ,2,0),C 0,0),设面PBD 的法向量为(,,)n x y z =,则(3,1,PB =-,(0,3,0)BD =,(23,0,PC =, n PBn BD⎧⊥⎪⎨⊥⎪⎩由,得030y y -==⎪⎩,取1x =,得(1,0,1)n =, ∴10cos ,10||||PC n PC n PC n 〈〉==,∴10sin |cos ,|PC n θ=〈〉=, 即PC 与面PBD所成角为, (3)设(G x ,y ,)z ,CG CP λ=,得(,)(x y z λ=-得0x y z ⎧=⎪=⎨⎪=⎩,即)G , ∴(3)BG =由BG PC ⊥,得25λ=,即32PG GC =.21.(2021•龙岗区校级期中)如图,在三棱台ABC DEF -中,平面ACFD ⊥平面ABC ,45ACB ACD ∠=∠=︒,2DC BC =.(1)证明:BC BD ⊥;(2)求二面角F CD B --的正弦值.【解答】(1)证明:如图,过点D 作DO AC ⊥,交AC 与点O ,连接OB , 由45ACD ∠=︒,DO AC ⊥,所以CD =,由平面ACFD ⊥平面ABC ,平面ACFD ⋂平面ABC AC =,DO ⊂平面ACFD , 故DO ⊥平面ABC ,又BC ⊂平面ABC , 所以DO BC ⊥,由45ACB ∠=︒,12BC CD ==,则BO BC ⊥, 又DOBO O =,DO ,BO ⊂平面BDO ,所以BC ⊥平面BDO , 又DB ⊂平面BDO , 故BC DB ⊥;(2)解:以点O 为坐标原点,建立空间直角坐标系如图所示,设2CD BC ==则(0O ,0,0),(1B ,1,0),(0C ,2,0),(0D ,0,2), 所以(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-,(0,2,0)OD =, 设平面BCD 的法向量为(,,)n x y z =,则00n BC n CD ⎧⋅=⎪⎨⋅=⎪⎩,即0220x y y z -+=⎧⎨-+=⎩, 令1x =,则1y z ==,故(1,1,1)n =,设平面FCOD 的法向量为(,,)m a b c =,则00m OC m OD ⎧⋅=⎪⎨⋅=⎪⎩,即2020c b =⎧⎨=⎩, 令1x =,则(1,0,0)m =,所以|||cos ,|||||13m n m n m n ⋅<>===⨯故二面角F CD B --=.22.(2021•新疆模拟)如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,AC =(1)求证:DB ⊥平面ABC ; (2)求平面ABE 与平面ADC 所成二面角大小的余弦值.【解答】证明:(1)以D 为原点,DE 为x 轴,DC 为y 轴,在过D 作平面BCDE 垂线为z 轴,建立空间直角坐标系,则(0D ,0,0),(1B ,1,0),(0A ,2,(0C ,2,0),(1DB =,1,0),(0CA =,0,(1CB =,1-,0), 0DB CA =,0DB CB =,DB CA ∴⊥,DB CB ⊥,CA CB C =,DB ∴⊥平面ABC .解:(2)平面ADC 的法向量(1n =,0,0),(1E ,0,0),(1EA =-,2,(0EB =,1,0), 设平面ABE 的法向量(m x =,y ,)z ,则200m EA x y m EB y ⎧=-++=⎪⎨==⎪⎩,取1z =,得(2,0,1)m =, 设平面ABE 与平面ADC 所成二面角大小为θ,则||2cos ||||3m n m n θ===.∴平面ABE 与平面ADC .。
《用坐标方法解决几何问题》 学习任务单
《用坐标方法解决几何问题》学习任务单一、学习目标1、理解坐标方法在解决几何问题中的基本思想和重要性。
2、掌握建立平面直角坐标系来表示几何图形的方法。
3、学会运用坐标运算求解几何图形的长度、面积、角度等相关问题。
4、能够通过坐标方法证明几何中的一些定理和结论。
二、学习内容1、坐标方法的基本概念(1)平面直角坐标系的构成要素,包括坐标轴、原点、单位长度等。
(2)点在平面直角坐标系中的坐标表示,以及坐标与点的位置关系。
2、几何图形的坐标表示(1)直线、线段、三角形、四边形等常见几何图形顶点坐标的确定。
(2)通过坐标描述几何图形的位置和形状特征。
3、坐标运算与几何量的计算(1)两点间距离公式的推导和应用。
(2)中点坐标公式的推导和应用。
(3)利用向量的坐标运算求线段的长度、夹角等。
4、用坐标方法证明几何定理(1)以三角形的勾股定理为例,通过建立坐标系进行证明。
(2)平行四边形的性质定理在坐标方法下的证明。
三、学习资源1、教材:《数学》(必修 X)相关章节。
2、在线课程:具体在线课程名称及链接3、相关数学学习网站:列举一些网站四、学习方法1、预习教材相关内容,初步了解坐标方法的基本概念和原理。
2、观看在线课程,加深对知识点的理解和掌握。
3、完成教材中的例题和练习题,巩固所学知识。
4、参与学习小组讨论,分享学习心得和解题方法。
五、学习活动1、自主学习(1)认真阅读教材,标记重点和难点。
(2)完成教材中的预习习题,检验自己的预习效果。
2、课堂学习(1)跟随老师的讲解,深入理解坐标方法在几何问题中的应用。
(2)积极参与课堂讨论和互动,提出自己的疑问和想法。
3、实践应用(1)完成课后作业,运用所学知识解决实际几何问题。
(2)尝试用坐标方法解决一些拓展性的几何难题,提升自己的能力。
六、学习评估1、作业完成情况:按时、认真完成课后作业,作业的正确率和规范性作为评估的重要依据。
2、课堂表现:积极参与课堂讨论,回答问题的准确性和思维的活跃度。
立体几何建系方法
立体几何建系方法
立体几何建系方法是指在解决立体几何问题时,建立相应的坐标系或者辅助图形来辅助计算。
以下是一些常用的立体几何建系方法:
1. 建立坐标系:可以通过建立平面直角坐标系或者空间直角坐标系,将三维问题转化为二维平面上的问题。
通过引入坐标系,可以方便地表示点、向量、直线、平面等几何元素,并可以利用坐标系的性质来进行计算。
2. 投影建系:投影建系是指通过将立体图形进行投影,将三维问题转化为二维平面上的问题。
常见的投影建系方法有平面投影、轴测投影、透视投影等。
3. 建立辅助图形:在解决立体几何问题时,可以通过建立一些辅助图形来辅助计算。
常见的辅助图形有平行四边形、三角形、圆等。
通过建立辅助图形,可以改变原问题的形式,从而更容易进行计算。
4. 应用剖分方法:剖分方法是指将复杂的立体图形剖分为简单的几何元素,从而简化计算过程。
常见的剖分方法有平分法、中分法、垂分法等。
5. 利用对称性:利用图形的对称性可以简化计算过程。
通过找出图形的对称中心、对称轴等,可以将问题降低到简化的情况,减少计算难度。
这些建系方法可以根据具体问题的需要进行灵活运用,对于不同类型的立体几何问题,选择合适的建系方法可以极大地简化计算过程,提高计算效率。
(整理)直角坐标系解决立体几何问题
在立体几何中引入向量之前,求角与距离是一个难点,在新课标中,从向量的角度来研究空间的点、线、面的关系,我们只要通过两个向量的数量积运算、运用向量的模、平面的法向量就可以解决常见的角与距离的问题。
而且,运用向量来解题思路简单、步骤清楚,对学生来说轻松了很多。
重点:用空间向量数量积及夹角公式求异面直线所成角。
难点:建立恰当的空间直角坐标系关键:几何问题转换为代数问题及正确写出空间向量的坐标。
Ⅰ、空间直角坐标系的建立空间向量的数量积公式(两种形式)、夹角公式和空间向量的数量积的几何性质。
(用媒体分步显示下列内容) 1. 向量的数量积公式(包括向量的夹角公式):若与的夹角为θ(0≤θ≤π),且={x 1,y 1,z 1},={x 2,y 2,z 2},则 ⑴ a ·b =|a ||b |cos θ 或 a ·b = x 1x 2+y 1y 2+z 1z 2 ⑵若与非零向量 cos θ=222222212121212121x z z y y x x zy x z y ++⋅++++2. 向量的数量积的几何性质:⑴两个非零向量与垂直的充要条件是·=0⑵两个非零向量a 与b 平行的充要条件是a ·b =±|a ||b | 利用空间向量知识求异面直线所成角的一般步骤: (1)根据图形建立合理的空间直角坐标系; (2)确定关键点的坐标; (3)求空间向量的夹角; (4)得出异面直线的所成角。
D 1xy o. Mxyo. M平面直角坐标系空间直角坐标系z用向量解决角的问题 ①两条异面直线a 、b 间夹角在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>=。
注意,由于两向量的夹角范围为[]︒︒180,0,而异面直线所成角的范围为()︒<<︒900α,若两向量夹角α为钝角,转化到异面直线夹角时为180°α-例1:在长方体ABCD-A 1B 1C 1D 1中,AB=BC=4,AA 1=6, 求异面直线DA 1与AC 1的所成角;分析:在此题的解答中,设计如下问题贯穿整个过程以期共同解高。
建坐标系解立体几何含解析
立体几何——建坐标系1.如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形. AB=BC=2,CD=SD=1.Ⅰ证明:SD⊥平面SAB;Ⅱ求AB与平面SBC所成的角的大小.2.如图,在四面体ABOC中, OC⊥OA, OC⊥OB, ∠AOB=120°,且OA=OB=OC=1.Ⅰ设P为AC的中点, Q在AB上且AB=3AQ. 证明:PQ⊥OA;Ⅱ求二面角O-AC-B的平面角的余弦值.3.如图, 在正三棱柱ABC-A1B1C1中, AB=4,AA1=7,点D是BC的中点,点E在AC上,且DE⊥A1E.Ⅰ证明:平面A1DE⊥平面ACC1A1;Ⅱ求直线AD和平面A1DE所成角的正弦值.4.如图, 在直三棱柱ABC-A1B1C1中, AB=1, AC=AA1=3,∠ABC=60°.Ⅰ证明:AB⊥A1C;Ⅱ求二面角A-A1C-B的大小.5.四棱锥A-BCDE中, 底面BCDE为矩形, 侧面ABC⊥底面BCDE, BC=2, CD=2, AB=AC.Ⅰ证明:AD⊥CE;Ⅱ设侧面ABC为等边三角形, 求二面角C-AD-E的大小.6.如图, 正三棱柱ABC-A1B1C1的所有棱长都为2, D为CC1中点.Ⅰ求证:AB 1⊥平面A 1BD; Ⅱ求二面角A-A 1D-B 的大小.7.如图, 在三棱锥V-ABC 中, VC ⊥底面ABC, AC ⊥BC, D 是AB 的中点, 且AC=BC=a ,∠VDC=θ)(20πθ<<.Ⅰ求证:平面VAB ⊥平面VCD;Ⅱ试确定θ的值, 使得直线BC 与平面VAB 所成的角为6π. 8.如图, △BCD 与△MCD 都是边长为2的正三角形, 平面MCD ⊥平面BCD, AB ⊥平面BCD, AB=2.Ⅰ求直线AM 与平面BCD 所成角的大小; Ⅱ求平面ACM 与平面BCD 所成二面角的正弦值.9.如图, 在四棱锥P-ABCD 中, PD ⊥平面ABCD, PD=DC=BC=1, AB=2, AB ∥DC, ∠BCD=90°.Ⅰ求证:PC ⊥BC;Ⅱ求点A 到平面PBC 的距离.10.如图, 直三棱柱ABC-A 1B 1C 1中, AC=BC, AA 1=AB, D 为BB 1的中点, E 为AB 1上的一点, AE=3EB 1.Ⅰ证明:DE 为异面直线AB 1与CD 的公垂线;Ⅱ设异面直线AB 1与CD 的夹角为45°, 求二面角A 1-AC 1-B 1的大小.11.如图, 四棱锥S-ABCD 中, 底面ABCD 为矩形, SD ⊥底面ABCD, AD=2, DC=SD=2. 点M 在侧棱SC 上, ∠ABM=60°.Ⅰ证明:M 是侧棱SC 的中点;Ⅱ求二面角S-AM-B 的大小.12.如图, 直三棱柱ABC-A 1B 1C 1中, AB ⊥AC, D 、E 分别为AA 1、B 1C 的中点, DE ⊥平面BCC 1.Ⅰ证明:AB=AC;Ⅱ设二面角A-BD-C 为60°, 求B 1C 与平面BCD 所成的角的大小.13.如图, 四棱锥P-ABCD 的底面是正方形, PD ⊥底面ABCD,点E 在棱PB 上. Ⅰ求证:平面AEC ⊥平面PDB;Ⅱ当PD=2AB 且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.14. 如图, 在四棱锥P-ABCD 中, 底面ABCD 是矩形, PA ⊥平面ABCD, PA=AD=4, AB=2.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M.Ⅰ求证:平面ABM ⊥平面PCD; Ⅱ求直线PC 与平面ABM 所成的角; Ⅲ求点O 到平面ABM 的距离.15.如图, 四棱锥S-ABCD 的底面是正方形, SD ⊥平面ABCD, SD=2a, AD=a 2, 点E 是SD 上的点, 且DE=a λ0<λ≤2.Ⅰ求证:对任意的λ∈0, 2,都有AC ⊥BE;Ⅱ设二面角C-AE-D 的大小为θ, 直线BE 与平面ABCD 所成的角为ϕ. 若1tan tan =•ϕθ, 求λ的值.16.如图, 在五面体ABCDEF 中, AB ∥DC, ∠BAD=2π, CD=AD=2. 四边形ABFE 为平行四边形, FA ⊥平面ABCD, FC=3, ED=7. 求:Ⅰ直线AB 到平面EFCD 的距离;Ⅱ二面角F-AD-E的平面角的正切值.17.如图, 设动点P在棱长为1的正方体ABCD-A1B1C1D1的对角线BD1上, 记λ=BDPD11.当∠APC为钝角时, 求λ的取值范围.答案与解析1.解法一:Ⅰ取AB中点E, 连结DE, 则四边形BCDE为矩形, DE=CB=2. 连结SE, 则SE⊥AB, SE=. 又SD=1, 故ED2=SE2+SD2, 所以∠DSE为直角. 3分由AB⊥DE, AB⊥SE, DE∩SE=E, 得AB⊥平面SDE, 所以AB⊥SD, SD与两条相交直线AB、SE都垂直, 所以SD⊥平面SAB. 6分Ⅱ由AB⊥平面SDE知, 平面ABCD⊥平面SDE. 作SF⊥DE, 垂足为F, 则SF⊥平面ABCD, SF==. 作FG⊥BC, 垂足为G, 则FG=DC=1. 连结SG, 则SG⊥BC. 又BC⊥FG, SG∩FG=G, 故BC⊥平面SFG, 平面SBC⊥平面SFG. 9分作FH⊥SG, H为垂足, 则FH⊥平面SBC. FH==, 即F到平面SBC的距离为. 由于ED∥BC, 所以ED∥平面SBC, E到平面SBC的距离d也为.设AB与平面SBC所成的角为α, 则sin α==, α=arcsin. 12分解法二:以C为坐标原点, 射线CD为x轴正半轴, 建立如图所示的空间直角坐标系C-xyz.设D1, 0, 0, 则A2, 2, 0、B0, 2, 0.又设Sx, y, z, 则x>0, y>0, z>0.Ⅰ=x-2, y-2, z, =x, y-2, z, =x-1, y, z,由||=||得=, 故x=1. 由||=1得y2+z2=1, 又由||=2得x2+y-22+z2=4, 即y2+z2-4y+1=0, 故y=, z=. 3分于是S, =,==·=0, ·=0. 故DS⊥AS, DS⊥BS, 又AS∩BS=S, 所以SD⊥平面SAB. 6分Ⅱ设平面SBC的法向量a=m, n, p,则a⊥, a⊥, a·=0, a·=0. 又==0, 2, 0, 故9分取p=2得a=-, 0, 2. 又=-2, 0, 0, cos<, a>==. 故AB与平面SBC所成的角为arcsin. 12分2.解法一:Ⅰ在平面OAB内作ON⊥OA交AB于N, 连结CN. 在△AOB中, ∵∠AOB=120°且OA=OB, ∴∠OAB=∠OBA=30°. 在Rt△AON中, ∵∠OAN=30°, ∴ON=AN. 在△ONB中, ∵∠NOB=120°-90°=30°=∠OBN, ∴NB=ON=AN. 又AB=3AQ, ∴Q为AN的中点. 在△CAN中, ∵P, Q分别为AC, AN的中点, ∴PQ∥CN. 由OA⊥OC, OA⊥ON知:OA⊥平面CON. 又NC平面CON, ∴OA⊥CN. 由PQ∥CN, 知OA⊥PQ.Ⅱ连结PN, PO.由OC⊥OA, OC⊥OB知:OC⊥平面OAB. 又ON平面OAB, ∴OC⊥ON. 又由ON⊥OA知:ON⊥平面AOC. ∴OP是NP在平面AOC内的射影. 在等腰Rt△COA中, P为AC的中点, ∴AC⊥OP. 根据三垂线定理,知:AC⊥NP. ∴∠OPN为二面角O-AC-B的平面角. 在等腰Rt△COA中, OC=OA=1, ∴OP=. 在Rt△AON 中, ON=OAtan 30°=, ∴在Rt△PON中, PN==, ∴cos∠OPN===.解法二:Ⅰ取O为坐标原点, 以OA, OC所在的直线为x轴, z轴, 建立空间直角坐标系O-xyz如图所示.则A1, 0, 0, C0, 0, 1, B. ∵P为AC的中点, ∴P. ∵=, 又由已知, 可得==. 又=+=. ∴=-=, ∴·=·1, 0, 0=0. 故⊥.Ⅱ记平面ABC的法向量n=n1, n2, n3, 则由n⊥, n⊥, 且=1, 0, -1,得故可取n=1, , 1. 又平面OAC的法向量为e=0, 1, 0. ∴cos<n,e>==. 二面角O-AC-B的平面角是锐角, 记为θ, 则cos θ=.3.Ⅰ如图所示, 由正三棱柱ABC-A1B1C1的性质知AA1⊥平面ABC.又DE平面ABC, 所以DE⊥AA1. 而DE⊥A1E, AA1∩A1E=A1, 所以DE⊥平面ACC1A1.又DE平面A1DE, 故平面A1DE⊥平面ACC1A1. Ⅱ解法一:过点A作AF垂直A1E于点F, 连结DF. 由Ⅰ知, 平面A1DE⊥平面ACC1A1, 所以AF⊥平面A1DE. 故∠ADF是直线AD和平面A1DE 所成的角.因为DE⊥平面ACC1A1, 所以DE⊥AC. 而△ABC是边长为4的正三角形, 于是AD=2,AE=4-CE=4-CD=3. 又因为AA1=, 所以A1E===4, AF==,sin∠ADF==. 即直线AD和平面A1DE所成角的正弦值为.解法二:如图所示, 设O是AC的中点, 以O为原点建立空间直角坐标系, 则相关各点的坐标分别是A2, 0, 0, A12, 0, ,D-1, , 0, E-1, 0, 0.易知=-3, , -, =0, -, 0, =-3, , 0. 设n=x, y, z是平面A1DE的一个法向量, 则解得x=-z, y=0. 故可取n=, 0, -3.于是cos<n, >===-.由此即知, 直线AD和平面A1DE所成角的正弦值为.4.解法一:Ⅰ证明:∵三棱柱ABC-A1B1C1为直三棱柱, ∴AB⊥AA1. 在△ABC中, AB=1, AC=, ∠ABC=60°, 由正弦定理得∠ACB=30°, ∴∠BAC=90°, 即AB⊥AC.∴AB⊥平面ACC1A1, 又A1C平面ACC1A1, ∴AB⊥A1C. Ⅱ如图, 作AD⊥A1C交A1C于D点, 连结BD, 由三垂线定理知BD⊥A1C, ∴∠ADB为二面角A-A1C-B的平面角. 在Rt△AA1C中,AD===,在Rt△BAD中, tan∠ADB==, ∴∠ADB=arctan, 即二面角A-A1C-B的大小为arctan.解法二:Ⅰ证明:∵三棱柱ABC-A1B1C1为直三棱柱,∴AA1⊥AB, AA1⊥AC. 在△ABC中, AB=1, AC=, ∠ABC=60°. 由正弦定理得∠ACB=30°, ∴∠BAC=90°, 即AB⊥AC. 如图, 建立空间直角坐标系, 则A0, 0, 0, B1, 0, 0, C0,, 0, A10, 0, , ∴=1, 0, 0, =0, , -. ∵·=1×0+0×+0×-=0, ∴AB⊥A1C.Ⅱ如图, 可取m==1, 0, 0为平面AA1C的法向量,设平面A1BC的法向量为n=l, m, n, 则·n=0, ·n=0, 又=-1, , 0, ∴∴l=m, n=m. 不妨取m=1, 则n=, 1, 1.cos<m, n>===,∴二面角A-A1C-B的大小为arccos.5.解法一:Ⅰ作AO⊥BC, 垂足为O, 连结OD, 由题设知, AO⊥底面BCDE, 且O为BC中点. 由==知, Rt△OCD∽Rt△CDE, 从而∠ODC=∠CED, 于是CE⊥OD. 由三垂线定理知, AD⊥CE.Ⅱ作CG⊥AD, 垂足为G, 连结GE. 由Ⅰ知, CE⊥AD. 又CE∩CG=C, 故AD⊥平面CGE, AD⊥GE, 所以∠CGE是二面角C-AD-E的平面角. GE===, CE=,cos∠CGE===-. 所以二面角C-AD-E为arccos.解法二:Ⅰ作AO⊥BC, 垂足为O. 由题设知AO⊥底面BCDE, 且O为BC的中点. 以O为坐标原点, 射线OC为x轴正向, 建立如图所示的直角坐标系O-xyz. 设A0, 0, t. 由已知条件有C1, 0, 0, D1, , 0, E-1, , 0, =-2, , 0, =1, , -t. 所以·=0, 知AD⊥CE.Ⅱ△ABC为等边三角形, 因此A0, 0, .作CG⊥AD, 垂足为G, 连结CE. 在Rt△ACD中,求得|AG|=|AD|. 故G, ==, 又=1, , -, ·=0, ·=0. 所以与的夹角等于二面角C-AD-E的平面角. 由cos<>==-知二面角C-AD-E为arccos.6.解法一:Ⅰ取BC中点O, 连结AO. ∵△ABC为正三角形, ∴AO⊥BC. ∵正三棱柱ABC-A1B1C1中, 平面ABC⊥平面BCC1B1, ∴AO⊥平面BCC1B1.连结B1O, 在正方形BB1C1C中, O、D分别为BC、CC1的中点, ∴B1O⊥BD, ∴AB1⊥BD. 在正方形ABB1A1中, AB1⊥A1B, ∴AB1⊥平面A1BD.Ⅱ设AB1与A1B交于点G, 在平面A1BD中, 作GF⊥A1D于F, 连结AF, 由Ⅰ得AB1⊥平面A1BD, ∴AF⊥A1D. ∴∠AFG为二面角A-A1D-B的平面角. 在△AA1D中, 由等面积法可求得AF=, 又∵AG=AB1=, ∴sin∠AFG===, 所以二面角A-A1D-B的大小为arcsin.解法二:Ⅰ取BC中点O, 连结AO. ∵△ABC为正三角形, ∴AO⊥BC. ∵在正三棱柱ABC-A1B1C1中, 平面ABC⊥平面BCC1B1, ∴AO⊥平面BCC1B1. 取B1C1中点O1, 以O为原点, 的方向为x、y、z 轴的正方向建立空间直角坐标系, 则B1, 0, 0, D-1, 1, 0, A10, 2, , A0, 0, , B11, 2, 0, ∴=1, 2, -, =-2, 1, 0, =-1, 2, . ∵·=-2+2+0=0, ·=-1+4-3=0, ∴⊥⊥, ∴AB1⊥平面A1BD.Ⅱ设平面A1AD的法向量为n=x, y, z. =-1, 1, -, =0, 2, 0.∵n⊥, n⊥, ∴∴∴令z=1得n=-, 0, 1为平面A1AD的一个法向量. 由Ⅰ知AB1⊥平面A1BD, ∴为平面A1BD的法向量. cos<n,>===-. ∴二面角A-A1D-B的大小为arccos.7.解法一:Ⅰ∵AC=BC=a, ∴△ACB是等腰三角形, 又D是AB的中点, ∴CD⊥AB, 又VC⊥底面ABC,∴VC ⊥AB, 于是AB⊥平面VCD, 又AB平面VAB, ∴平面VAB⊥平面VCD.Ⅱ过点C在平面VCD内作CH⊥VD于H, 则由Ⅰ知CH⊥平面VAB. 连结BH, 于是∠CBH就是直线BC与平面VAB所成的角. 依题意∠CBH=, 所以在Rt△CHD中, CH=asin θ;在Rt△BHC中, CH=asin=, ∴sin θ=, ∵0<θ<, ∴θ=. 故当θ=时, 直线BC与平面VAB所成的角为.解法二:Ⅰ以CA、CB、CV所在的直线分别为x轴、y轴、z轴, 建立如图所示的空间直角坐标系, 则C0, 0, 0, Aa, 0, 0, B0, a, 0, D, V. 于是,===-a, a, 0. 从而·=-a, a, 0·=-a2+a2+0=0, 即AB ⊥CD. 同理·=-a, a, 0·=-a2+a2+0=0, 即AB⊥VD.又CD∩VD=D, ∴ AB⊥平面VCD, 又AB平面VAB, ∴平面VAB⊥平面VCD.Ⅱ设平面VAB的一个法向量为n=x, y, z,则由得可取n=1, 1, cot θ, 又=0, -a, 0, 于是sin===sin θ, 即sin θ=, ∵ 0<θ<, ∴θ=. 故当θ=时, 直线BC与平面VAB所成的角为.解法三:Ⅰ以点D为原点, 以DC、DB所在的直线分别为x轴、y轴, 建立如图所示的空间直角坐标系, 则D0, 0, 0,A,B,C,V, 于是===0,a,0,从而·=0 a,0·=0, 即AB⊥DC. 同理·=0, a, 0·=0, 即AB⊥DV. 又DC∩DV=D, ∴ AB⊥平面VCD.又AB平面VAB, ∴平面VAB⊥平面VCD.Ⅱ设平面VAB的一个法向量为n=x, y, z, 则由得取n=tan θ, 0, 1, 又=, 于是sin===sin θ,即sin θ=. ∵ 0<θ<, ∴θ=. 故当θ=时, 直线BC与平面VAB所成的角为.8. 解法一:Ⅰ取CD中点O, 连OB, OM, 则OB⊥CD, OM⊥CD.又平面MCD⊥平面BCD, 则MO⊥平面BCD, 所以MO∥AB, A、B、O、M共面.延长AM、BO相交于E, 则∠AEB就是AM与平面BCD所成的角. OB=MO=, MO∥AB, 则==, EO=OB=, 所以EB=2=AB, 故∠AEB=45°.∴直线AM与平面BCD所成角的大小为45°.ⅡCE是平面ACM与平面BCD的交线. 由Ⅰ知, O是BE的中点, 则BCED是菱形. 作BF⊥EC于F, 连AF, 则AF⊥EC, ∠AFB就是二面角A-EC-B的平面角, 设为θ. 因为∠BCE=120°, 所以∠BCF=60°.BF=BC·sin 60°=, tan θ==2, sin θ=. 所以, 所求二面角的正弦值是.解法二:取CD中点O, 连OB, OM, 则OB⊥CD, OM⊥CD, 又平面MCD⊥平面BCD, 则MO⊥平面BCD.以O为原点, 直线OC、BO、OM为x轴、y轴、z轴, 建立空间直角坐标系如图. OB=OM=, 则各点坐标分别为O0, 0, 0, C1, 0, 0, M0, 0, , B0, -, 0, A0, -, 2, Ⅰ设直线AM与平面BCD所成的角为α. 因=0, , -, 平面BCD的法向量为n=0, 0, 1. 则有sin α=cos<, n>===, 所以α=45°.∴直线AM与平面BCD所成角的大小为45°.Ⅱ=-1, 0, , =-1, -, 2.设平面ACM的法向量为n1=x, y, z, 由得解得x=z, y=z, 取n1=, 1, 1. 平面BCD的法向量为n=0, 0, 1. 则cos<n1, n>==. 设所求二面角为θ, 则sin θ==. 所以, 所求二面角的正弦值是.9.解法一:Ⅰ因为PD⊥平面ABCD, BC平面ABCD,所以PD⊥BC. 由∠BCD=90°, 得BC⊥DC. 又PD∩DC=D, PD平面PCD, DC平面PCD, 所以BC⊥平面PCD. 因为PC平面PCD, 所以PC⊥BC.Ⅱ连结AC. 设点A到平面PBC的距离为h. 因为AB∥DC, ∠BCD=90°, 所以∠ABC=90°. 从而由AB=2, BC=1, 得△ABC的面积S△ABC=1. 由PD⊥平面ABCD及PD=1, 得三棱锥P-ABC的体积V=S△ABC·PD=. 因为PD⊥平面ABCD, DC平面ABCD, 所以PD⊥DC. 又PD=DC=1, 所以PC==. 由PC⊥BC, BC=1, 得△PBC的面积S△PBC=. 由V=S△PBC h=··h=, 得h=. 因此, 点A到平面PBC的距离为.解法二:建立如图所示空间直角坐标系D-xyz, 则P0, 0, 1, C0, 1, 0, B1, 1, 0.Ⅰ=0, 1, -1, =-1, 0, 0. ∵·=0×-1+1×0+-1×0=0, ∴PC⊥BC.Ⅱ设平面PBC的法向量n=x, y, z, 则有即令y=1得n=0, 1, 1. 又因为A1, -1, 0, =0, 2, 0, 所以点A到平面PBC的距离d===.解法三:Ⅱ取AB中点E, 连DE, 则DE∥BC, DE∥面PBC, 则A点到面PBC的距离等于E点到面PBC距离的2倍, 即等于点到面PBC距离的2倍. 过D作DH⊥PC, 则DH⊥面PBC. 在Rt△PCD中, DH=, ∴A到面PBC的距离为.10.解法一:Ⅰ连结A1B, 记A1B与AB1的交点为F.因为面AA1B1B为正方形, 故A1B⊥AB1, 且AF=FB1. 又AE=3EB1, 所以FE=EB1. 又D为BB1的中点, 故DE ∥BF, DE⊥AB1. 作CG⊥AB, G为垂足, 由AC=BC知, G为AB中点.又由底面ABC⊥面AA1B1B, 得CG⊥面AA1B1B. 连结DG, 则DG∥AB1, 故DE⊥DG, 由三垂线定理, 得DE ⊥CD. 所以DE为异面直线AB1与CD的公垂线.Ⅱ因为DG∥AB1, 故∠CDG为异面直线AB1与CD的夹角, ∠CDG=45°. 设AB=2, 则AB1=2, DG=, CG=, AC=. 作B1H⊥A1C1, H为垂足. 因为底面A1B1C1⊥面AA1C1C, 故B1H⊥面AA1C1C, 又作HK⊥AC1, K为垂足, 连结B1K, 由三垂线定理, 得B1K⊥AC1, 因此∠B1KH为二面角A1-AC1-B1的平面角.B1H==, HC1==, AC1==, HK==,tan∠B1KH==, 所以二面角A1-AC1-B1的大小为arctan.解法二:Ⅰ以B为坐标原点, 射线BA为x轴正半轴, 建立如图所示的空间直角坐标系B-xyz.设AB=2, 则A2, 0, 0, B10, 2, 0, D0, 1, 0, E,又设C1, 0, c, 则==2, -2, 0, =1, -1, c. 于是·=0, ·=0,故DE⊥B1A, DE⊥DC, 所以DE为异面直线AB1与CD的公垂线.Ⅱ因为<>等于异面直线AB1与CD的夹角,故·=||·||cos 45°, 即2××=4, 解得c=, 故=-1, 0, . 又==0, 2, 0, 所以=+=-1, 2, . 设平面AA1C1的法向量为m=x, y, z, 则m·=0, m·=0, 即-x+2y+z=0且2y=0. 令x=, 则z=1, y=0, 故m=, 0, 1. 设平面AB1C1的法向量为n=p, q, r, 则n·=0, n·=0, 即-p+2q+r=0, 2p-2q=0. 令p=, 则q=, r=-1, 故n=, -1.所以cos<m, n>==. 由于<m, n>等于二面角A1-AC1-B1的平面角, 所以二面角A1-AC1-B1的大小为arccos.11. 2009全国Ⅰ, 19, 12分如图, 四棱锥S-ABCD中, 底面ABCD为矩形, SD⊥底面ABCD, AD=, DC=SD=2. 点M在侧棱SC上, ∠ABM=60°.11.解法一:Ⅰ作ME∥CD交SD于点E, 则ME∥AB, ME⊥平面SAD.连结AE, 则四边形ABME为直角梯形.作MF⊥AB, 垂足为F, 则AFME为矩形. 设ME=x, 则SE=x,AE==, MF=AE=, FB=2-x. 由MF=FB·tan 60°, 得=2-x,解得x=1. 即ME=1, 从而ME= DC, 所以M为侧棱SC的中点.ⅡMB==2, 又∠ABM=60°, AB=2, 所以△ABM为等边三角形.又由Ⅰ知M为SC中点, SM=, SA=, AM=2, 故SA2=SM2+AM2, ∠SMA=90°. 取AM中点G, 连结BG, 取SA中点H, 连结GH, 则BG⊥AM, GH⊥AM, 由此知∠BGH为二面角S-AM-B的平面角. 连结BH. 在△BGH中, BG=AM=, GH=SM=, BH==, 所以cos∠BGH==-.二面角S-AM-B的大小为arccos.解法二:以D为坐标原点, 射线DA为x轴正半轴, 建立如图所示的直角坐标系D-xyz.设A, 0, 0, 则B, 2, 0, C0, 2, 0, S0, 0, 2.Ⅰ设=λλ>0, 则M, =. 又=0, 2, 0, <>=60°, 故·=||·||cos 60°, 即=, 解得λ=1, 即=. 所以M为侧棱SC的中点.Ⅱ由M0, 1, 1, A, 0, 0, 得AM的中点G. 又==0, -1, 1, =-, 1, 1.·=0, ·=0, 所以⊥⊥. 所以<>等于二面角S-AM-B的平面角. 因为cos<>==-. 所以二面角S-AM-B的大小为arccos.12.解法一:Ⅰ取BC中点F, 连结EF, 则EF B1B, 从而EFDA.连结AF, 则ADEF为平行四边形, 从而AF∥DE. 2分又DE⊥平面BCC1, 故AF⊥平面BCC1,从而AF⊥BC, 即AF为BC的垂直平分线, 所以AB=AC. 5分Ⅱ作AG⊥BD, 垂足为G, 连结CG. 由三垂线定理知CG⊥BD, 故∠AGC为二面角A-BD-C的平面角. 由题设知, ∠AGC=60°. 设AC=2, 则AG=. 又AB=2, BC=2, 故AF=. 由AB·AD=AG·BD得2AD=·, 解得AD=, 故AD=AF. 又AD⊥AF, 所以四边形ADEF为正方形. 8分因为BC⊥AF, BC⊥AD, AF∩AD=A, 故BC⊥平面DEF, 因此平面BCD⊥平面DEF. 连结AE、DF, 设AE∩DF=H, 则EH⊥DF, EH⊥平面BCD. 连结CH, 则∠ECH为B1C与平面BCD所成的角. 因ADEF为正方形, AD=, 故EH=1, 又EC=B1C=2, 所以sin∠ECH==, 所以∠ECH=30°, 即B1C与平面BCD所成的角为30°. 12分解法二:Ⅰ以A为坐标原点, 射线AB为x轴的正半轴, 建立如图所示的直角坐标系A-xyz. 设B1, 0, 0,C0, b, 0, D0, 0, c, 则B11, 0, 2c, E. 2分于是==-1, b, 0. 由DE⊥平面BCC1知DE⊥BC, ·=0, 求得b=1, 所以AB=AC. 5分Ⅱ设平面BCD的法向量=x, y, z, 则·=0, ·=0. 又=-1, 1, 0, =-1, 0, c, 故8分令x=1, 则y=1, z==. 又平面ABD的法向量=0, 1, 0. 由二面角A-BD-C 为60°知, <>=60°, 故·=||·||·cos 60°, 求得c=. 于是=1, 1, , =1, -1, , cos<>==, <>=60°. 所以B1C与平面BCD所成的角为30°. 12分13.解法一:Ⅰ∵四边形ABCD是正方形, ∴AC⊥BD. ∵PD⊥底面ABCD, ∴PD⊥AC.∴AC⊥平面PDB. ∴平面AEC⊥平面PDB.Ⅱ设AC∩BD=O, 连结OE. 由Ⅰ知AC⊥平面PDB于O. ∴∠AEO为AE与平面PDB所成的角. ∵O, E分别为DB, PB的中点, ∴OE∥PD, OE=PD. 又∵PD⊥底面ABCD, ∴OE⊥底面ABCD, OE⊥AO. 在Rt△AOE中, OE=PD=AB=AO, ∴∠AEO=45°, 即AE与平面PDB所成的角为45°.解法二:如图, 以D为原点建立空间直角坐标系D-xyz.设AB=a, PD=h, 则Aa, 0, 0, Ba, a, 0, C0, a, 0, D0, 0, 0, P0, 0, h.Ⅰ∵=-a, a, 0, =0, 0, h, =a, a, 0, ∴·=0, ·=0. ∴AC⊥DP, AC⊥BD. ∴AC ⊥平面PDB. ∴平面AEC⊥平面PDB. Ⅱ当PD=AB且E为PB的中点时, P0, 0, a, E. 设AC∩BD=O, 则O, 连结OE. 由Ⅰ知AC⊥平面PDB于O. ∴∠AEO为AE与平面PDB所成的角. ∵==, ∴cos∠AEO==. ∴∠AEO=45°, 即AE与平面PDB所成的角为45°.14.解法一:Ⅰ证明:依题设, M在以BD为直径的球面上, 则BM⊥PD. 因为PA⊥平面ABCD, 则PA⊥AB. 又AB⊥AD, 所以AB⊥平面PAD, 则AB⊥PD, 因此有PD⊥平面ABM, 所以平面ABM⊥平面PCD. Ⅱ设平面ABM与PC交于点N, 因为AB∥CD, 所以AB∥平面PCD, 则AB∥MN∥CD, 由Ⅰ知, PD⊥平面ABM, 则MN是PN在平面ABM上的射影, 所以∠PNM就是PC与平面ABM所成的角, 且∠PNM∠PCD, tan∠PNM=tan∠PCD==2, 所求角为arctan 2.Ⅲ因为O是BD的中点, 则O点到平面ABM的距离等于D点到平面ABM距离的一半, 由Ⅰ知, PD⊥平面ABM于M, 则|DM|就是D点到平面ABM的距离. 因为在Rt△PAD中, PA=AD=4, PD⊥AM, 所以M为PD中点, DM=2, 则O点到平面ABM的距离等于.解法二:Ⅰ同解法一;Ⅱ如图所示,建立空间直角坐标系,则A0,0,0,P0,0,4,B2,0,0,C2,4,0,D0,4,0, M0,2,2,设平面ABM的一个法向量n=x, y, z, 由n⊥, n⊥可得令z=-1, 则y=1, 即n=0, 1, -1. 设所求角为α, 则sin α==, 所求角的大小为arcsin.Ⅲ设所求距离为h, 由O1, 2, 0, =1, 2, 0, 得h==.15.1如图,连接BE、BD,由底面ABCD是正方形可得AC⊥BD;SD⊥平面ABCD,16.∴BD是BE在平面ABCD上的射影,∴AC⊥BE;17.2如图,由SD⊥平面ABCD知,∠DBE=,18.∵SD⊥平面ABCD,CD平面ABCD,∴SD⊥CD;19.又底面ABCD是正方形,∴CD⊥AD,而SD∩AD=D,CD⊥平面SAD20.连接AE、CE,过点D在平面SAD内作DE⊥AE于F,连接CF,则CF⊥AE,故∠CDF是二面角C-AE-D的平面角,即∠CDF=θ;在Rt△BDE中,∵BD=2a,DE=21.∴在Rt△ADE中,∵∴从而,在中,,由,得,由,解得,即为所求;16.解法一:Ⅰ因为AB∥DC, DC平面EFCD, 所以直线AB到平面EFCD的距离等于点A到平面EFCD的距离. 如图1, 过点A作AG⊥FD于G. 因∠BAD=, AB∥DC, 故CD⊥AD;又FA⊥平面ABCD, 由三垂线定理知CD⊥FD, 故CD⊥平面FAD, 知CD⊥AG.图1故AG为所求的直线AB到平面EFCD的距离. 在Rt△FDC中, FD===. 由FA⊥平面ABCD, 得FA⊥AD, 从而在Rt△FAD中, FA===1, 所以, AG===.Ⅱ由已知FA⊥平面ABCD, 得FA⊥AD, 又由∠BAD=, 知AD⊥AB, 故AD⊥平面ABFE, 从而AD⊥FE. 所以, ∠FAE为二面角F-AD-E的平面角, 记为θ. 在Rt△EAD中, AE===. 由四边形ABFE为平行四边形, 得FE∥BA, 从而∠EFA=, 在Rt△EFA中, EF===. 故tan θ==.解法二:图2Ⅰ如图2, 以A点为坐标原点, 的方向为x, y, z的正方向建立空间直角坐标系, 则A0, 0, 0, C2, 2, 0, D0, 2, 0. 设F0, 0, z0z0>0, 可得=2, 2, -z0, 由||=3, 即=3, 解得z0=1, 即F0, 0, 1. 因为AB∥DC, DC平面EFCD, 所以直线AB到平面EFCD的距离等于点A到平面EFCD 的距离. 设A点在平面EFCD上的射影点为Gx1, y1, z1, 则=x1, y1, z1, 因·=0且·=0,而=0, -2, 1, =-2, 0, 0, 此即①解得G点的横坐标x1=0, 知G点在yOz面上, 故G点在FD上. 又∥=-x1, -y1, -z1+1, 故有=-z1+1, ②联立①、②, 解得G, 因||为AB到平面EFCD的距离, 而=, 所以||=.Ⅱ因四边形ABFE为平行四边形, 则可设Ex0, 0, 1x0<0, =-x0, 2, -1, 由||=, 即=, 解得x0=-, 即E-, 0, 1, 故=-, 0, 1. 由=0, 2, 0, =0, 0, 1, 因·=0, ·=0, 故∠FAE为二面角F-AD-E的平面角. 又=, 0, 0, ||=, ||=1, 所以tan∠FAE==.17.由题设可知, 以、、为单位正交基底, 建立如图所示的空间直角坐标系D-xyz, 则有A1, 0, 0, B1, 1, 0, C0, 1, 0, D10, 0, 1. 由=1, 1, -1得=λ=λ, λ,-λ, 所以=+=-λ, -λ, λ+1, 0, -1=1-λ, -λ, λ-1, =+=-λ, -λ, λ+0, 1, -1=-λ, 1-λ, λ-1. 显然∠APC不是平角, 所以∠APC为钝角等价于cos∠APC=cos<>=<0, 这等价于·<0, 即1-λ-λ+-λ1-λ+λ-12=λ-13λ-1<0, 得<λ<1. 因此, λ的取值范围为.18.解法一:Ⅰ因为AC=BC, M是AB的中点, 所以CM⊥AB. 又因为EA⊥平面ABC, 所以CM⊥EM.Ⅱ连结MD, 设AE=a, 则BD=BC=AC=2a. 在直角梯形EABD中. AB=2a, M是AB的中点,所以DE=3a, EM=a, MD=a, 因此DM⊥EM, 因为CM⊥平面EMD, 所以CM⊥DM, 因此DM⊥平面EMC, 故∠DEM是直线DE和平面EMC所成的角. 在Rt△EMD中. MD=a, EM=a, tan∠DEM==.解法二:如图, 以点C为坐标原点, 以CA, CB分别为x轴和y轴, 过点C作与平面ABC垂直的直线为z轴, 建立直角坐标系C-xyz, 设EA=a, 则A2a, 0, 0, B0, 2a, 0, E2a, 0, a,D0, 2a, 2a, Ma, a, 0.Ⅰ因为=-a, a, -a, =a, a, 0, 所以·=0, 故EM⊥CM.Ⅱ设向量n=1, y0, z0与平面EMC垂直, 则n⊥, n⊥. 即n·=0, n·=0. 因为=-a, a, -a, =a, a, 0, 所以y0=-1, z0=-2. 即n=1, -1, -2. 因为=2a, -2a, -a, cos<n, >==, DE与平面EMC所成的角θ是n与夹角的余角, 所以tan θ=.19.1 以A为坐标原点, 建立如图所示的空间直角坐标系A-xyz, 则A0,0, 0, B2,0, 0, C0,2, 0, D1,1, 0, A10,0, 4, C10,2, 4, 所以=2,0, -4, =1, -1, -4.因为cos< , > ===,所以异面直线A1B与C1D所成角的余弦值为(2)设平面ADC1的法向量为n1=x, y, z, 因为=1,1,0, =0,2,4,所以n1·=0, n1·=0, 即x+y=0且y+2z=0,取z=1,得x=2, y=-2, 所以n1=2, -2,1 是平面ADC1的一个法向量. 取平面AA1B的一个法向量为n2=0,1,0,设平面ADC1与平面ABA1所成二面角的大小为θ.由|cos θ|===, 得sin θ=.因此,平面ADC1与平面ABA1所成二面角的正弦值为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P
(3)求二面角C-PB-D的大小。
F
E
D
C
A B
解:如图所示建立空间直角坐标系,点D为坐标原点, 设DC=1
(1)证明:连结AC,AC交BD于点G,连结EG
依题意得A(1,0,0), P(0,0,1),
Z
11
E(0, , ) 22
P
因为底面ABCD是正方形, 所以点G是此正方形的中心,
解:如图,以A为 点原点,平A面BC为xAy坐标
平面A,B方向为y轴正方向A, B为y轴的单位长
建立空间直角坐标 Ax系 y,z则正三角形的顶点
坐标分别A为(0,0,0),B(0,1,0),C( 3, 1,0). 22
z
F
F
1
3
C
F
2
O
A
B
y
x
500kg
例2 如图,在四棱锥P-ABCD中,底面ABCD是正方形, 侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作 EF⊥PB交PB于点F.
A
D
O
B
E
C
如图,一块均匀的正三角形面的钢板的质量
为 500kg ,在它的顶点处分别受力 F1, F2, F3 , 每个力与同它相邻的三角形的两边之间的
角都是 60 ,且 F1 F2 F3 200kg .这块钢
板在这些力的作用下将会怎样运动?这三
个力最小为多少时,才能提起这块钢板?
F3
F1
C
F2
O
A
500kg B
F
E
故点G的坐标为(1 , 1,0) 22
A X
D
G
B
C Y
如图,在四面体 A BCD 中, O, E 分别是 BD, BC 的中点, CA CB CD BD 2, AB AD 2 求证: (1) AO 平面BCD (2)求异面直线 AB与CD 所成角的余弦值 (3)求点 E 到平面 ACD 的距离。