差分与等距节点插值法

合集下载

差分与等距节点newton插值

差分与等距节点newton插值

计算x0点附近的值
f
[x0 , x1 ,, xk ]

k f0 k!hk
14
k 1
k 1
k 1
k (x) (x xj ) (x0 th x0 jh) (t j)h
j 0
j0
j0
则插值公式
n
Nn(x) f0 f [x0 , x1 ,, xk ]k (x) k 1
化为
Nn( x) f ( x0 ) f [x0, x1]( x x0 )
f [x0, x1, xn ]( x x0 )( x x1)( x xn1)

f0

1 h f0(x
x0)
2 f0 2!h2
(x
x0 )( x
x1)

n f0 n!hn
(0.00083) 0.54711
2019/12/14
23
例3 给出 f (x) cos x 在 xk kh, k 0,1,,6, h 0.1 处的函数值,试用4次等距节点插值公式计算 f (0.048) 及 f (0.566) 的近似值并估计误差.
解 根据题意,插值条件为
4!
0.00044
0.00876
0.0502.2949885. 26
由余项公式(4.11)得误差估计
R4 (0.048)

M5 5!
t(t 1)(t 2)(t 3)(t 4) h5
1.5845107 ,
Rn其(x中) Mt(t5(1n)sin1()t!0.6n)h0n.51 f6(5n.1) ( ), (x0, xn ). (4.11)
2 fk fk 1 fk 为f (x)在 xk 处的二阶向前差分

牛顿插值法原理及应用

牛顿插值法原理及应用

牛顿插值法插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。

如果这特定函数是多项式,就称它为插值多项式。

当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。

为了克服这一缺点,提出了牛顿插值。

牛顿插值通过求各阶差商,递推得到的一个公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。

插值函数插值函数的概念及相关性质[1]定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。

若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数.称x1,x2,…xn 为插值节点,称[a,b]为插值区间。

定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序程序框图#include<stdio.h>void main(){float x[11],y[11][11],xx,temp,newton;int i,j,n;printf("Newton插值:\n请输入要运算的值:x=");scanf("%f",&xx);printf("请输入插值的次数(n<11):n=");scanf("%d",&n);printf("请输入%d组值:\n",n+1);for(i=0;i<n+1;i++){ printf("x%d=",i);scanf("%f",&x[i]);printf("y%d=",i);scanf("%f",&y[0][i]);}for(i=1;i<n+1;i++)for(j=i;j<n+1;j++){ if(i>1)y[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-i]);elsey[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-1]);printf("%f\n",y[i][i]);}temp=1;newton=y[0][0];for(i=1;i<n+1;i++){ temp=temp*(xx-x[i-1]);newton=newton+y[i][i]*temp;}printf("求得的结果为:N(%.4f)=%9f\n",xx,newton);牛顿插值法Matlab程序function f = Newton(x,y,x0)syms t;if(length(x) == length(y))n = length(x);c(1:n) = 0.0;elsedisp(&apos;x和y的维数不相等!&apos;);return;endf = y(1);y1 = 0;l = 1;for(i=1:n-1)for(j=i+1:n)y1(j) = (y(j)-y(i))/(x(j)-x(i));endc(i) = y1(i+1);l = l*(t-x(i));f = f + c(i)*l;simplify(f);y = y1;if(i==n-1)if(nargin == 3)f = subs(f,&apos;t&apos;,x0);elsef = collect(f); %将插值多项式展开f = vpa(f, 6);endend牛顿插值法摘要:值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。

计算方法第三章(插值法)解答

计算方法第三章(插值法)解答

Aitken(埃特肯)算法 N 0,1,,k , p ( x) L( x) N 0,1,,k ( x)
N 0,1,,k 1, p ( x) N 0,1,,k ( x) x p xk
Neville(列维尔)算法
( x xk )
Ni ,i 1,,k ( x) L( x) Ni ,i 1,,k 1 ( x) Ni 1,i 2,k ( x) Ni ,i 1,,k 1 ( x) xk xi ( x xi )
( x0 , y0 ), ( x1 , y1 )
容易求出,该函数为:
x x0 x x1 y y0 y1 x0 x1 x1 x0
一般插值问题:求过n+1个点
( x0 , y0 ), ( x1 , y1 ),,( xn , yn )
的不超过n次多项式 Ln ( x )。
Ln ( x) yi li ( x )
例子:求方程 x3-2x-5=0 在(2 , 3)内的根 思路: 设 y = f(x) =x3-2x-5 ,其反函数为 x=f -1(y),则 根为x* =f -1(0) 。先用3= f -1(16), 2= f -1(-1)插值,得 N0,1 (y) ≈f -1(y), 计算N0,1 (0)= 2.058823, f(2.058823) = -0.39 ,以-0.39为新的节点,继续……
第三章 插值法
第一节 插值多项式的基本概念
假设已经获得n+1点上的函数值
f xi yi , i 0,1,, n,
即提供了一张数据表
x
y f x
x0
y0
x1
y1
x2


xn
y2

第三章 2等距节点插值和差分

第三章 2等距节点插值和差分

§2 等距节点插值和差分摘要:在等距节点情况下,通过使用差分可减少Newton 插值公式的计算量。

本节首先介绍等距节点下的差分公式、差分与差商之间关系,根据待估值点x 的位置不同,引入表初公式、表末公式和Bessel 公式,最后说明在使用差分计算插值时需注意的两点:(1)不宜用高阶差分公式;(2)差分公式是一个不稳定的计算公式。

等距节点:1,1,2,,i i x x h i n +-==,h 称为步长2.2.1 差分概念一阶差分:()()()1i i i f x f x f x +∆=- 二阶差分:()()()21i i i f x f x f x +∆=∆-∆ … … … …k 阶差分:()()()111k k k i i i f x f x f x --+∆=∆-∆()()()()()()()()()123110231(1)(1)ki i k i k i k i k k k i i kk jk j j k k f x f x kf x f x x kf x f x k f x j ++-+-+--+-+=⎛⎫⎛⎫∆=-+-+⎪ ⎪⎝⎭⎝⎭+-+-⎛⎫=- ⎪⎝⎭∑2.2.2 差分与差商关系定理2.2.1 在等距节点的情况下 ()()1121,,,,!k k k k f x f x x x x h k +∆=.利用归纳法证明这个公式是在Newton 公式中使用差商的基础 2.2.3 差分表()()()()()()()()()()()()()()()11221233212344321234554321x f x x f x f x x f x f x f x x f x f x f x f x x f x f x f x f x f x ∆∆∆∆∆∆∆∆∆∆2.2.4 根据待估值点x 的位置不同选择不同的计算公式 给定等距节点组:{}12,,,n x x x● 表初公式:如果x 在节点中最小的那个节点附近 节点选取:1213111,,2,,.k x x x h x x h x x kh +=+=+=+x 的表示:1x x ph =+牛顿公式:()(1)(1)(1)2111112!!10.p p p p p k k k kjj P x ph f p f f f p f j --⋅⋅-+=+=+∆+∆++∆⎛⎫=∆ ⎪⎝⎭∑例2.2.1 有函数表x 0.5 0.6 0.7 0.8 f(x) 0.4794 0.5646 0.6442 0.7174 求f(0.54).解:差分表(1)(1)(2)23!0.540.5,0.1,0.4(0.54)0.47940.0852(0.0056)(0.0008)0.5142p p p p p x ph h p P p ---==+===+⨯+-+-=● 表末公式:如果x 在最大节点附近 节点选取与编号:010200(max),,2,,.k x x x h x x h x x kh ---=-=-=-x 的表示:0x x ph =-牛顿公式:()()(1)(1)(1)200122!!0()(1)1.p p p p p k kk kk kjjj j P x ph f x p f f f p f j --⋅⋅-+----=-=-∆+∆++-∆⎛⎫=-∆ ⎪⎝⎭∑● 贝塞尔(Bessel)公式:如果x 在中间节点附近 节点选取与编号:121012,,,,,,,,k k k x x x x x x x -+-+-第一种组序:01122(1),,,,,,k k x x x x x x x ----,Newton 公式1:()1121200011212k k j jj j j j p j p j P x ph f f f j j --+--==++-⎛⎫⎛⎫+=+∆+∆ ⎪ ⎪+⎝⎭⎝⎭∑∑ 第二种组序:()10211,,,,,,k k x x x x x x ---Newton 公式2:()112120110111212k k j jj j j j p j p j P x ph f f f j j --+--+==+-+-⎛⎫⎛⎫+=+∆+∆ ⎪ ⎪+⎝⎭⎝⎭∑∑ Bessel 公式:(Newton1+Newton2)/2()12101002211111/222211.22k j j j j jk j j j p j f f p P x ph f j j f f p j j -+-=---+=+-⎛⎫+-+=+∆+ ⎪+⎝⎭∆+∆+-⎛⎫ ⎪⎝⎭∑∑Bessel 公式适合计算01,01x x x p <<<<,特别是12p =.()2244011021102132821282f f f f f f P x h ---+∆+∆∆+∆+=-++ 例 2.2.2 表2.10求()f 0.525Bessel 公式的截断误差:取2n 个节点()()22(2)22(1)11111(1),2!2222n n n nf R x n n h n x x ξξ--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭<< 2.2.5 差分公式的缺点1)高阶差分容易造成有效数字的丢失,见表2.10 原因?2)差分容易扩大传播误差3322321123230012323411012332422110232433201123364x y x y y x y y y x y y y y x y y y y y x y y y y y x y y y y y εεεεεεεεεεεεε------------------∆∆∆+∆+∆+∆+∆-∆-∆-∆-∆∆+∆-∆+∆∆-∆∆-。

第四节差分与等距节点插值公式

第四节差分与等距节点插值公式

第四节差分与等距节点插值公式差分与等距节点插值是数值计算中常用的一种插值方法,它使用离散的节点以及节点处的函数值,通过差分运算得到函数的近似值。

在本节中,将介绍差分和等距节点插值的基本思想和公式,并给出一些具体的例子和应用。

差分与等距节点插值的基本思想是利用函数在节点上的值来近似函数在其他点上的值,而节点之间的间隔是相等的。

具体来说,我们可以通过计算函数在节点上的导数来近似函数在其他点上的导数,进而得到函数在其他点上的近似值。

一维差分插值的基本公式是拉格朗日插值公式。

设函数f(x)在等距节点x0, x1, ..., xn上的值分别为y0, y1, ..., yn,则拉格朗日插值公式可以表示为:f(x) ≈ P(x) = ∑[(x - xi) / (xj - xi)] * yj其中,i ≠ j,∑表示对j的求和,xi表示节点的值,xj表示其他任意点的值,yj表示其他节点处函数的值。

多维差分插值的基本公式也是类似的。

设函数f(x1, x2, ..., xn)在等距节点(xi1, xi2, ..., xin)上的值分别为yij,则多维拉格朗日插值公式可以表示为:f(x1, x2, ..., xn) ≈ P(x1, x2, ..., xn) = ∑[∏(xk - xik) / (xjk - xik)] * yij其中,∏表示对k的连乘,i ≠ j,xi1, xi2, ..., xin表示节点的值,xj1, xj2, ..., xjn表示其他任意点的值,yij表示其他节点处函数的值。

差分与等距节点插值在实际应用中有广泛的用途。

例如,在数值微分中,我们可以使用差分公式来近似计算函数在特定点上的导数。

其中,常用的差分公式有中心差分公式、向前差分公式和向后差分公式。

中心差分公式通过函数在相邻两个节点上的值来近似计算函数在中间点的导数。

向前差分公式通过函数在当前节点和下一个节点上的值来近似计算函数在当前点的导数。

3.差分与等距节点的插值公式解析

3.差分与等距节点的插值公式解析

f(xn) △f(xn-1)
计算方法四③
4/58
向后差分表
x x0 y f(x0) 一阶差分 二阶差分 ...... n阶差分
x1
x2 x3 ... xn
f(x1) ▽f(x1)
f(x2) ▽ f(x2) f(x3) ▽ f(x3) ... ...... f ( x n) ▽ f ( x n) ▽ 2f(x2) ▽ 2f(x3) ...... ▽ 2f(xn)
▽fi=fi –fi-1
...... ...... ...... ▽ nf ( x n)
计算方法四③
5/58
例3:
已知函数y=sinx的如下函数表, xi sin(xi) 0.4 0.38942 0.5 0.47943 0.6 0.56464
建立差分表 解: x y 0.4 0.38942 0.5 0.47943 0.6 0.56464
f(0.6)
计算方法四③
向前差分表 一阶差分
f(0.4)
向后差分表 二阶差分
▽ 2f(0.6) -0.00480 △2f(0.4)
▽f(0.5) 0.09001 △f(0.4)
0.08521
▽f(0.6)
▽ 2f(0.6)
6/58
例4 证明当节点xi是等距离(xi=x0+ih,yi=f(xi)) 时,差分与差商存在如下关系: n
x
x0 x1 x2 x3
y
f ( x 0)
一阶差分 二阶差分
△fi=fi+1 -fi △2f(x0) △2f(x1)
......
n阶差分
f(x1) △f(x0) f(x2) △f(x1) f(x3) △f(x2) ......

4.2 牛顿插值公式

4.2 牛顿插值公式

§2 差商、牛顿插值多项式在计算过程中,若需要再增加插值节点并求出新的插值函数,则Lagrange 插值公式所有的基函数都要重新计算,造成计算量的很大浪费。

而以下介绍的牛顿插值公式可以克服这一缺陷,可在原有插值多项式的基础上灵活的增加插值节点。

一、 差商及其性质: 1、相关定义设给出函数)(x f 在点0x ,1x ,… ,n x ,…上的函数值 ,则有:称],[10x x f 1010()()f x f x x x -=-为函数)(x f 在0x 、1x 点的一阶差商。

一阶差商的差商],,[210x x x f 121020],[],[x x x x f x x f --= 称为函数)(x f 在0x ,1x 和2x 点的二阶差商。

1-n 阶差商的差商],,,[10n x x x f 112020],,,[],,,[------=n n n n n n x x x x x f x x x f称为函数)(x f 在n x x x ,,,10 点的n 阶差商。

见插商表4-12、性质:性质1 :差商],,,[10n x x x f 可表示为函数值的线性组合,即 ∑==ni i i n x f a x x x f 010)(],,,[ ,其中:∏≠=-=nij j j ii x xa ,0)(/1。

该性质表明:差商与节点的排列次序无关,即:],,,[10n x x x f =],,,[01n x x x f =…=],,,[01x x x f n这就是差商的对称性。

性质 2101010[,,][,,][,,,]n n n n f x x f x x f x x x x x --=-01110[,,,][,,,]n n n f x x x f x x x x -=11100[,,][,,,]n n n f x x f x x x x x --=-10110[,,][,,,]n n n f x x f x x x x x --=-性质 3 设)(x f 在所含节点n x x x ,,,10 的区间],[b a 上有n 阶导数,则在该区间内至少有一点],[b a ∈ξ,使得:!/)(],,,[)(10n f x x x f n n ξ= 由该性质可知,若)(x f 为n 次多项式,则其n 阶差商为一常数。

差分与等距结点插值公式 共16页

差分与等距结点插值公式 共16页
1、定义:设有等距节点xk =x0+kh (k=0,1,…,n),步长h为常数, 记fk = f (xk),称相邻两个节点xk, xk+1处的函数值的增量fk+1 fk(k = 0,1,…,n-1)为函数f (x)在点xk处以h为步长的一阶差分, 记为fk,称为向前差分:
向前差分 fkfk1fk
例 如f: [xk,xk1]
f(xk1)f(xk)fk
xk1xk
h
fk1 h
f[xk,xk1,xk2]
f[xk2,xk1]f[xk1,xk] xk2xk
h 1(fk1fk)
2h
22hf2k
h 1(fk2fk1) 2h
2 2h fk 22
xk fk=f(xk)
x0
f0
x1
f1
x2
f2
x3
f3
x4
f4


向前差分表
fk 2fk 3fk
f0
f1 2f0
f2 2f1 3f0
f3 2f2 3f1



4fk ……
4f0


向后差分表
xk fk=f(xk) ▽fk ▽2fk ▽3fk ▽4fk ……
x0
f0
x1
性质4:差分和导数的关系。 m f k m ! h m f [ x k , x k 1 , , x k m ] h m f ( m ) ( ) x k x k m
3、差分表的构造
f[x k ,x k 1 , ,x k m ] m ! 1 h m m fk m ! 1 h m m fk m(m 1 值的线性组合。
例如:

等距节点插值公式

等距节点插值公式

2012-2013(1)专业课程实践论文等距节点插值公式柳希元,0818180127,R数学08-1班一、算法理论将Newton差商插值多项式中各阶差商用相应差分替代,就可得到各种形式的等距节点插值公式。

如果节点错误!未找到引用源。

要计算错误!未找到引用源。

附近点x 的函数错误!未找到引用源。

值,可令错误!未找到引用源。

于是为Newton前插公式。

其中如果要求表示函数在错误!未找到引用源。

附近的值错误!未找到引用源。

此时应用Newton插值公式,插值点应按错误!未找到引用源。

的次序排列,有做变换错误!未找到引用源。

带入公式得为Newton后插公式。

其中二、算法框图三、算法程序class Interpolation{Interpolation(int num, double x1, double x2, double func[]);double ComputeForwardValue(double x); // compute forward interpolation value ~Interpolation();private:void GetForwardTable(); // get the forward differential tableprivate:int m_num; // the number of interpolation pointsdouble m_x1, m_x2; // the first point m_x1 and last point m_x2double m_step; // the interpolation stepdouble* m_func; // the function value of interpolation pointsdouble* m_ftable; // the forward differential table};#include<iostream>#include<limits>using namespace std;#define NUM 11//上¦?面?输º?入¨?需¨¨要°a多¨¤少¦¨´个?样¨´本À?#define MIN 0//上¦?面?输º?入¨?区?间?的Ì?最Á?小?值¦Ì#define MAX 10//上¦?面?输º?入¨?区?间?的Ì?最Á?大䨮值¦Ìint main(){//下?面?输º?入¨?y的Ì?值¦Ìdouble func[NUM]=0,1,4,9,16,25,36,49,64,81,100};//上¦?面?输º?入¨?y的Ì?值¦Ìdouble x1=MIN, x2=MAX, x;int num=NUM;char flag='Y';Interpolation test(num, x1, x2, func);while(flag=='Y'){cout<<"Input x: ";cin>>x;if (!cin) // checking failure state{cin.clear(); // clear failure tagcin.ignore(numeric_limits<int>::max(), '\n'); // clear input buffercontinue;}if(x<x1 || x>x2){cout<<"---Invalid input: "<<x<<"---"<<endl;cout<<"Only the number between "<<x1<<" and "<<x2<<" is valid..."<<endl; }else{cout<<"Forward interpolation value:"<<puteForwardValue(x+0.001)<<endl;}cout<<endl<<"Do you want to process? please input(Y/N):"<<endl;cin>>flag;}return 0;}Interpolation::Interpolation(int num, double x1, double x2, double func[]) {m_num = num;m_x1 = x1;m_x2 = x2;m_step = (m_x2-m_x1)/(num-1);m_func = new double[m_num];m_ftable = new double[m_num];for (int i=0; i<m_num; ++i){m_func[i] = func[i];m_ftable[i] = func[i];}GetForwardTable();}Interpolation::~Interpolation(){delete m_func;delete m_ftable;}void Interpolation::GetForwardTable(){// get the forward differential tableint i, j;for (i=1; i<m_num; ++i)for (j=m_num-1; j>=i; --j)m_ftable[j] = m_ftable[j]-m_ftable[j-1];}double Interpolation::ComputeForwardValue(double x){// compute forward interpolation valuedouble* coef; //coefficient talbedouble result, t;int i;coef = new double[m_num];t = (x-m_x1)/m_step;for (i=1, coef[0]=1; i<m_num; ++i) //compute the coefficient tablecoef[i] = coef[i-1]*(t-i+1)/i;for (i=0, result=0; i<m_num; ++i)result += m_ftable[i]*coef[i];delete coef;return result;}四、算法实现例 1.当错误!未找到引用源。

matlab实现牛顿差分及等距节点插值公式

matlab实现牛顿差分及等距节点插值公式

题目:探究matlab中牛顿差分及等距节点插值公式的实现在计算数学问题时,插值是一种常见的数值分析方法,它常常用于估计在已知数据点之间的数值。

而牛顿差分及等距节点插值公式,则是其中的一种重要方法。

本文将从简单到复杂,由浅入深地探讨matlab 中牛顿差分及等距节点插值公式的实现方法,以便读者更深入地理解这一主题。

1. 牛顿插值方法牛顿插值是一种使用多项式进行插值的数值方法,利用了拉格朗日插值多项式的一般形式,其在实际应用中具有良好的稳定性和精确度。

在matlab中,我们可以通过编写函数来实现牛顿插值方法,并根据所给定的数据点计算出插值多项式。

2. 差分及等距节点插值公式差分及等距节点插值公式是牛顿插值的一种具体形式,它通过相邻节点的差分来递推计算插值多项式的系数,从而实现对给定数据点的插值。

在matlab中,我们可以编写代码来实现这一方法,通过对数据点的差分计算来得到插值多项式的系数,并最终得到插值结果。

3. matlab中的实现步骤在matlab中,实现牛顿差分及等距节点插值公式主要包括以下几个步骤:3.1 准备数据点:首先需要准备好给定的数据点,这些数据点将作为插值的依据。

3.2 计算差商:利用给定的数据点,我们可以计算出插值多项式的系数,即差商。

这一步骤可以通过递推计算来实现。

3.3 构建插值多项式:根据得到的插值多项式的系数,我们可以构建出完整的插值多项式。

3.4 计算插值结果:我们可以利用构建好的插值多项式来计算任意点的插值结果。

4. 个人观点和理解在我看来,牛顿差分及等距节点插值公式是一种非常实用和有效的插值方法,在实际工程和科学计算中都有着广泛的应用。

在matlab中,通过编写相应的代码,我们可以很方便地实现这一方法,并得到高质量的插值结果。

掌握牛顿插值及其在matlab中的实现方法对我们来说是非常重要的。

总结回顾本文从简到繁,由浅入深地探讨了matlab中牛顿差分及等距节点插值公式的实现方法。

第三章_插值法_牛顿_等距

第三章_插值法_牛顿_等距

m
m
牛顿向前插值,向后插值公式
1、公式 设有 y f ( x ) 函数表 ( xk , f ( xk )), xk x0 kh, k 0,1,, n, x [a , b] — 被插值点。 x0 , x1 ,, xn (1)当 x 靠近 x0 (表初或差头)时, 通常取插值节点: 以下推导以x0 , x1 ,, xn 为节点的等距插值公式。 x0 x x1 x0 h, 作变换 x x0 th, t [0,1], 此时, 又由 xk x0 kh, 则 x xk (t k )h, (k 0,1,, n) ( x x0 )( x x1 )( x xk 1 ) f x0 , x1 ,, xk
n 并记 f ( x ) f , ( k 0 , 1 , , n ) 。 或 xk x0 kh, (k 0,1,, n), k k
h h f k f ( xk ) f ( xk h) f k f k 1 , f k f ( xk ) f ( xk ) f 1 f 1 , k k 2 2 2 2 分别称为 f ( x ) 在 x xk 点的步长为h的一阶向前差分 、向后、中心差分.
f ( x) N ( x) R ( x) n n f n 1 t (t 1) 2 2 其中 N ( x ) N ( x th ) f ( x ) t f f ( x ) f f nf n n n n n nn n 2! 2 f n 2 n f0 n n t (t 1) (t n 1) n n k t k k t (1)(k ) f n (1)( )k f n k k f fn n n! k 0 k 0 t t (t 1) (t k 1) k t (t 1) (t k 1) ( ) ( 1 ) (# ) k k ! k ! f ( n 1) ( ) n 1 h t (t 1) (t n), (x0,xn) Rn ( x) (n 1)!

§2.5 差分与等距节点插值公式1

§2.5 差分与等距节点插值公式1
© 2009, Henan Polytechnic University §5 差分与等距节点插值公式
1212
第二章 插值法
xi
1 1.5 2 2.5 3
f (xi)
2.71828 4.48169 7.28906 12.18249 20.08554
一阶差分 二阶差分 三阶差分 四阶差分
1.76341 2.90347 4.79343 7.90305 1.14396 1.88606 3.10962 0.74210 1.22356
第二章 插值法
性质2 函数值可用差分表示. 即
f n k E f k ( I ) f k
n n j 0
n
n j j f k
性质3 均差与差分的关系式为 1 m f [ xi , xi 1 , , xi m ] fi m m!h
求f(1.2)用牛顿前插公式, 且由 1.2=1+0.5t, 得t=0.4 1.14396 f (1.2) N 3 (1.2) 2.71828 1.76341 0.4 0.4 (0.4 1) 2! 0.74210 0.4 (0.4 1)(0.4 2) 3.3338632 3!
© 2009, Henan Polytechnic University §5 差分与等距节点插值公式
f (2.8) N 3 (2.8)
1313
2.71828
一阶差分 二阶差分 三阶差分 四阶差分
1.76341 2.90347 4.79343
1.5
2 2.5
4.48169
7.28906 12.18249
1.14396
1.88606 3.10962

牛顿插值法原理及应用

牛顿插值法原理及应用

牛顿插值法插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。

如果这特定函数是多项式,就称它为插值多项式。

当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。

为了克服这一缺点,提出了牛顿插值。

牛顿插值通过求各阶差商,递推得到的一个公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。

插值函数插值函数的概念及相关性质[1]定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。

若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数.称x1,x2,…xn 为插值节点,称[a,b]为插值区间。

定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序程序框图#include<stdio.h>void main(){float x[11],y[11][11],xx,temp,newton;int i,j,n;printf("Newton插值:\n请输入要运算的值:x=");scanf("%f",&xx);printf("请输入插值的次数(n<11):n=");scanf("%d",&n);printf("请输入%d组值:\n",n+1);for(i=0;i<n+1;i++){ printf("x%d=",i);scanf("%f",&x[i]);printf("y%d=",i);scanf("%f",&y[0][i]);}for(i=1;i<n+1;i++)for(j=i;j<n+1;j++){ if(i>1)y[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-i]);elsey[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-1]);printf("%f\n",y[i][i]);}temp=1;newton=y[0][0];for(i=1;i<n+1;i++){ temp=temp*(xx-x[i-1]);newton=newton+y[i][i]*temp;}printf("求得的结果为:N(%.4f)=%9f\n",xx,newton);牛顿插值法Matlab程序function f = Newton(x,y,x0)syms t;if(length(x) == length(y))n = length(x);c(1:n) = 0.0;elsedisp(&apos;x和y的维数不相等!&apos;);return;endf = y(1);y1 = 0;l = 1;for(i=1:n-1)for(j=i+1:n)y1(j) = (y(j)-y(i))/(x(j)-x(i));endc(i) = y1(i+1);l = l*(t-x(i));f = f + c(i)*l;simplify(f);y = y1;if(i==n-1)if(nargin == 3)f = subs(f,&apos;t&apos;,x0);elsef = collect(f); %将插值多项式展开f = vpa(f, 6);endend牛顿插值法摘要:值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。

Ch4.3 有限差与等距节点插值公式

Ch4.3 有限差与等距节点插值公式

② 若插值点位于节点中部,则可利用中心差分构造
Stirling插值、Bessel插值等; ——用于高精度要求的函数插值,现已少用!
作业
习题4(书P.114)
第9题
i i f n j f ( x j nh) C n i f j C n i f ( x j ) ; i 0 i 0 n n
③ 均差与差分之间的关系:
n f 0 n f n f [ x0 , x1 , , xn ] ; n n n ! h n ! h
k 0 n
xk 0 1 2 3 4 例: 已知: , :(见上例)
取差分表第一行数据, 得Newton前插公式为: 2 f 0 3 f 0 N 4 ( x0 th) f 0 f 0 t t (t 1) t (t 1)(t 2) 2! 3! 4 f 0 t (t 1)(t 2)(t 3) 4! 3 3t t (t 1) ;
注:① 上述推导过程以 x0作为起点,若以 xn作为起点, 同理可得Newton后插公式:
2 fn N n ( x n th) f n f n t t (t 1) 2! n fn t (t 1) (t n 1) ; n!
一般以距离插值点近的那个点作为起点!
二、等距节点插值公式
将Newton插值公式中各阶均差用相应差分代替,可
得各种形式的等距节点插值公式,以下介绍常用Newton 前插与后插公式。
记节点为x j x0 jh,j 0 , 1, 2, , n ;令x x0 th , 则 n 1 ( x) ( x x j ) (t j )h t (t 1) (t n)h n 1;

计算方法第5章 插值法

计算方法第5章 插值法

N
7
5.2 拉格朗日插值
n次拉格郎日插值对应的程序(1/2)
#include <stdio.h> #include <math.h> #define MAXSIZE 50 void input(double x[MAXSIZE],double y[MAXSIZE],long n); void main(void) { double x[MAXSIZE],y[MAXSIZE],_x,_y,t; long n,i,j; printf("\n请输入插值节点的个数:"); scanf("%ld",&n); input(x,y,n); printf("\n请输入插值点:"); scanf("%lf",&_x); _y=0; for(i=0;i<=n-1;i++) { t=1; for(j=0;j<=n-1;j++) if(j!=i) t*=(_x-x[j])/(x[i]-x[j]); _y+=t*y[i];} printf("\n插值点(x,y)=(%lf,%lf)。",_x,_y);}
f ( n 1) ( ) 因此Rn(x)=f[x,x0,x1,…,xn]Wn(x)= Wn(x),与差商的性质3吻合。 (n 1)!
13
5.3 差商与牛顿插值
五、n次牛顿插值的算法
输入插值节点的个数n。 输入插值节点(x[n],f[n][0]),插值点_x。 for(j=1;j<=n-1;j++) ① 构造差商表 for(i=j;i<=n-1;i++) f[i][j]=(f[i][j-1]-f[i-1][j-1])/(x[i]-x[i-j]); _y=f[n-1][n-1]; ② 牛顿插值 for(i=n-2;i>=0;i--) _y=f[i][i]+(_x-x[i])*_y; 输出插值点(_x,_y)。

插值的概念和各种基本方法

插值的概念和各种基本方法

k o o b n c . w ww( xi ) = yi ( i = 0, 1, 2, L , n ) 。 证明:
要证明 P( x) 存在惟一,就是要证明存在惟一的一个 P( x) = a0 + a1 x + L an x n 满足:
n ⎧a0 + a1 x0 + L an x0 = y0 ⎪ n ⎪a0 + a1 x1 + L an x1 = y1 ⎨ ⎪L ⎪a + a x + L a x n = y n n n ⎩ 0 1 n


l0 ( x) l1 ( x)
k o o b n c . w ww
x0 x1
1 0 0 0 0 1
t e .n
x2
0 1
t e n . k o o b n c .
l2 ( x )
由上表知 l0 ( x) 有 x1 和 x2 两个零点,故 l0 ( x) 有因子 ( x − x1 ) ⋅ ( x − x2 ) ,又因为它的次数不超过 3 ,故
t e n . t k e o n o . b k n o c o . b w n w c w . w ww t k e o n o . b k n o c o . b w n w c w . w ww t e n . k o c o . b w n w c w . w w w t e n . k o o
函 数 值
k o o b n c . w ww
x0 x1
0 1
l0 ( x)
1
l1 ( x)
0
由表 2 和图 3 可以看出两个基函数的性质。插值函数 P 1 ( x ) 实质上是插值基函数 l0 ( x ) 和 l1 ( x ) 的线

牛顿插值法原理及应用汇总

牛顿插值法原理及应用汇总

牛顿插值法插值法是利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。

如果这特定函数是多项式,就称它为插值多项式。

当插值节点增减时全部插值基函数均要随之变化,这在实际计算中很不方便。

为了克服这一缺点,提出了牛顿插值。

牛顿插值通过求各阶差商,递推得到的一个公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0 )...(x-xn-1)+Rn(x)。

插值函数插值函数的概念及相关性质[1]定义:设连续函数y-f(x) 在区间[a,b]上有定义,已知在n+1个互异的点x0,x1,…xn上取值分别为y0,y1,…yn (设a≤ x1≤x2……≤xn≤b)。

若在函数类中存在以简单函数P(x) ,使得P(xi)=yi,则称P(x) 为f(x)的插值函数.称x1,x2,…xn 为插值节点,称[a,b]为插值区间。

定理:n次代数插值问题的解存在且唯一。

牛顿插值法C程序程序框图#include<stdio.h>void main(){float x[11],y[11][11],xx,temp,newton;int i,j,n;printf("Newton插值:\n请输入要运算的值:x=");scanf("%f",&xx);printf("请输入插值的次数(n<11):n=");scanf("%d",&n);printf("请输入%d组值:\n",n+1);for(i=0;i<n+1;i++){ printf("x%d=",i);scanf("%f",&x[i]);printf("y%d=",i);scanf("%f",&y[0][i]);}for(i=1;i<n+1;i++)for(j=i;j<n+1;j++){ if(i>1)y[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-i]);elsey[i][j]=(y[i-1][j]-y[i-1][j-1])/(x[j]-x[j-1]);printf("%f\n",y[i][i]);}temp=1;newton=y[0][0];for(i=1;i<n+1;i++){ temp=temp*(xx-x[i-1]);newton=newton+y[i][i]*temp;}printf("求得的结果为:N(%.4f)=%9f\n",xx,newton);牛顿插值法Matlab程序function f = Newton(x,y,x0)syms t;if(length(x) == length(y))n = length(x);c(1:n) = 0.0;elsedisp(&apos;x和y的维数不相等!&apos;);return;endf = y(1);y1 = 0;l = 1;for(i=1:n-1)for(j=i+1:n)y1(j) = (y(j)-y(i))/(x(j)-x(i));endc(i) = y1(i+1);l = l*(t-x(i));f = f + c(i)*l;simplify(f);y = y1;if(i==n-1)if(nargin == 3)f = subs(f,&apos;t&apos;,x0);elsef = collect(f); %将插值多项式展开f = vpa(f, 6);endend牛顿插值法摘要:值法利用函数f (x)在某区间中若干点的函数值,作出适当的特定函数,在这些点上取已知值,在区间的其他点上用这特定函数的值作为函数f (x)的近似值。

第1章 插值法教案

第1章 插值法教案

第二章 插值法教学目的 1. 掌握拉格朗日插值多项式的构造方法、唯一性、余项及唯一性和余项表达式的证明;2. 理解差商的概念,掌握牛顿插值多项式、余项及余项表达式的证明;3. 了解差分概念及等距节点插值多项式的有关知识;4. 掌握埃尔米特插值多项式的构造方法、余项及余项表达式的证明;5. 了解插值多项式之间的改进关系从而掌握该思想方法。

教学重点及难点 重点是 1. 拉格朗日插值多项式的构造方法及余项表达式的证明; 2. 牛顿插值多项式、余项及余项表达式的证明;3. 埃尔米特插值多项式的构造、余项及余项表达式的证明;难点是 1. 拉格朗日插值多项式的构造方法及余项表达式的证明; 2. 埃尔米特插值多项式的构造及余项表达式的证明。

教学时数 14学时 教学过程§1 引言数学问题 已知)(x f y =的一张函数表)()()()(1100n x n x f x f x f f x x x xs(1.1)其中,j i x x ≠,当j t ≠,且),,1.0(,)(n t y x f i t ==值比较准确,[]b a ,为包),,1,0(n t xi =的区间或有表达式的函数(但比较复杂)。

寻求一个次数n ≤的多项式n n H x P ≤)(使满足:)2.1(),,1,0(),()(n t xi P x f n i ==解决思路 寻求一个简单且便于计算的函数)(x P 来近似)(x f ,即),()(x P x f ≈当[]),,1,0(,,n i x x b a x i =≠∉,一般)(x P 可选为多项式,三角多项式,有理函数或样条函数等。

次数小于、等于n 的多项式集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==∑=n j j jj n n a x a x n P x P H 0,)()(实数1. 定义1 (1)如果满足插值条件(1.2)的多项式)(x P n 存在,称)(x P n 为)(x f 的插值多项式,),,1,0(n i x i =称为插值节点,)(x f 称为被插函数(如图2-1)(2)求插值多项的方法称为插值法。

差分与等距节点插值法

差分与等距节点插值法
(k ) 2
15
∇2 fk (7) N 2( k ) ( xk + th) = f k + ∇f k ⋅ t + ⋅ t ( t + 1) 2 f ( 3 ) (ξ ) 3 h t (t + 1)(t + 2 ) R2( k ) ( x0 + th) = 3! ∇3 fk 分段二次Newton t (t + 1)(t + 2 ) ≈ 3! 向后(差分)插值
∇f4
5
在等距节点的前提下,差商与差分有如下关系
fi + 1 − fi ∆f i ∇fi +1 = f [ xi , xi + 1 ] = = h xi + 1 − xi h f [ xi , xi + 1 ] − f [ xi + 1 , xi + 2 ] ∆f i − ∆f i +1 ∆2 f i f [ xi , xi + 1 , xi + 2 ] = = = 2 xi − xi + 2 − 2h 2h 2
∆k f 0 [ k!
∏ (t − j )]
j =0
k −1
其余项 化为
f ( n +1) (ξ ) ω n +1 ( x) Rn (x ) = (n + 1)! f ( n + 1 ) (ξ ) n + 1 h ∏ (t − j ) Rn ( x0 + th ) = ( n + 1)! j =0
n
xn −1 ≤ x ≤ xn
对分段二次及分段三次插值都没有相应的插值公式 若 xn − 2 ≤ x ≤ xn − 1 对分段三次插值也没有相应的插值公式 此时应改用Newton基本后插公式,此处只列出公式 (4) Newton − k阶基本后插公式,起点为xn − m
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

∆k f 0 [ k!
∏ (t − j )]
j =0
k −1
其余项 化为
f ( n +1) (ξ ) ω n +1 ( x) Rn (x ) = (n + 1)! f ( n + 1 ) (ξ ) n + 1 h ∏ (t − j ) Rn ( x0 + th ) = ( n + 1)! j =0
n
∇k fk = k!⋅hk
7
Newton向前(差分)插值公式
如果节点 x0 , x1 ,⋯ , xn是等距节点,即 b−a xk = x0 + kh , k = 0 ,1,⋯ , n , h = n
Newton插值公式为
N n (x ) = f 0 + ∑ f [ x0 , x1 ,⋯ , xk ]ω k ( x )
(k ) 1
xk ≤ x ≤ xk + 1
k = 0 ,1,⋯ , n − 1
f ′′(ξ ) ω 2 ( x ) ≈ f [ xk , xk + 1 , xk + 2 ]ω 2 ( x ) R ( x) = 2!
( (2) N 2k ) ( x) = f k + f [ xk , xk + 1 ]( x − xk ) + f [ xk , xk + 1 , xk + 2 ]( x − xk )( x − xk + 1 )
k −1
插值余项为
f (ξ ) n + 1 h ∏ (t + j ) Rn ( xn + th ) = ( n + 1)! j =0
( n + 1)
11
五、Newton插值公式的使用 由于高次插值多项式的Runge现象,Newton插值公式 一般也采用分段低次插值 (1) N1( k ) ( x) = f k + f [ xk , xk + 1 ]( x − xk ) 分段线性Newton插值
(k ) 2
15
∇2 fk (7) N 2( k ) ( xk + th) = f k + ∇f k ⋅ t + ⋅ t ( t + 1) 2 f ( 3 ) (ξ ) 3 h t (t + 1)(t + 2 ) R2( k ) ( x0 + th) = 3! ∇3 fk 分段二次Newton t (t + 1)(t + 2 ) ≈ 3! 向后(差分)插值
k =1 n
如果假设
x = x0 + th
∆k f 0 f [ x0 , x1 ,⋯ , xk ] = k !⋅h k
8
由差商与向前差分的关系
ω k (x ) = ∏ ( x − x j ) = ∏ ( x0 + th − x0 − jh ) = ∏ (t − j )h
j =0
j =0 j =0
k −1
−1<t <0
k = n, n − 1
依此类推,请同学们写出分段三次 向前和向后Newton公式及余项 在实际应用中,究竟使用几次插值多项式呢? 如果m + 1阶差
商(差分)很接近(在误差范围内), 则使用m次插值多项式
16
Newton插值法的优点是计算较简单,尤其是增加节点时, 计算只要增加一项,这是Lagrange插值无法比的.
∇f4
5
在等距节点的前提下,差商与差分有如下关系
fi + 1 − fi ∆f i ∇fi +1 = f [ xi , xi + 1 ] = = h xi + 1 − xi h f [ xi , xi + 1 ] − f [ xi + 1 , xi + 2 ] ∆f i − ∆f i +1 ∆2 f i f [ xi , xi + 1 , xi + 2 ] = = = 2 xi − xi + 2 − 2h 2h 2
第二章 插值法
§ 2.4 差分与等距节点插值法
1
差分
2
定义
设f ( x )在等距节点 xk = x0 + kh 处的函数值为f k , k = 0 ,1 , ⋯ , n , 称
∆f k = f k + 1 − f k ∇f k = f k − f k − 1
k = 0 ,1,⋯ , n − 1
k = 1 ,2 ,⋯ , n
10
2.Newton向后(差分)插值公式 如果假设
x = xn + th
(t < 0 )
根据向前差分和向后差分的关系
∆m f k = ∇ m f k + m
可得Newton向后插值公式
N n ( xn + th ) = f n + ∑
k =1 n
∇k fn [ k!
∏ (t + j )]
j =0 n
k −1
k −1
则插值公式 化为
N n (x ) = f 0 + ∑ f [ x0 , x1 ,⋯ , xk ]ω k ( x )
k =1
n
n
∆k f 0 N n ( x0 + th ) = f 0 + ∑ [ k !⋅h k k =1
= f0 + ∑
k =1 n
∏ (t − j )h]
j =0
k −1
∆2 f k (6) N ( xk + th) = f k + ∆f k ⋅ t + ⋅ t ( t − 1) 2 f ( 3 ) (ξ ) 3 (k ) R2 ( x0 + th) = h t (t − 1)(t − 2 ) 3! 分段二次Newton ∆3 f k t (t − 1)(t − 2 ) ≈ 向前(差分)插值 3! 0<t<1 k = 0 ,1 , ⋯ , n − 2
xk ≤ x ≤ xk + 1
k = 0 ,1 , ⋯ , n − 2
Newton分段二次插值
12
余项为
f ′′′(ξ ) R ( x) = ω 3 ( x ) ≈ f [ xk , xk + 1 , xk + 2 , xk + 3 ]ω 3 ( x ) 3!
(k ) 2
(3)
( N 3 k ) ( x) = f k + ∑ f [ xk , xk +1 , ⋯ , xk +i ]∏ ( x − xk − j )
为f ( x )在 xk 处的m阶向前差分
∇ m f k = ∇ m − 1 f k − ∇ m − 1 f k − 1 为f ( x )在 xk 处的m阶向后差分
可以证明 如
∆m f k = ∇ m f k + m
∆f k = ∇ f k + 1 ∆2 f k = ∇ 2 f k + 2 ∆3 f k = ∇ 3 f k + 3
∆3 f i = 3!⋅h 3
6
∇3 fi +3 ∇2 fi +2 − ∇2 fxi +3 = = 3 3!⋅h3 − 3 ⋅ 2h
依此类推
∆m f i ∇m fi +m f [ xi , xi + 1 ,⋯ , xi + m ] = m = m!⋅h m!⋅hm ∆k f 0 f [ x0 , x1 ,⋯ , xk ] = k !⋅h k
但是Newton插值仍然没有改变Lagrange插值的插值曲线 在节点处有尖点,不光滑,插值多项式在节点处不可导 等缺点
17
4
差分表
xk f k 一阶差分 x0 f 0 x1 f 1 二阶差分 三阶差分 四阶差分
∆f 0
∆f 1
∇f1
∇f2
∇f3
∆2 f 0
∇ f2
2
∆ f0
3
x2 f 2
∆f 2
x3 f 3 x4 f 4
∆ f1
2
∇3 f3
∇ f3
2
∆ f1
3
∆ f0
4
∆f 3
∆ f2
2
∇3 f4 ∇2 f4
∇4 f4
9

N n ( x0 + th ) = f 0 + ∑
k =1

n
∆k f 0 [ k!
∏ (t − j )]
j =0
k −1
为Newton向前插值公式 插值余项为
f ( n + 1 ) (ξ ) n + 1 h ∏ (t − j ) Rn ( x0 + th ) = ( n + 1)! j =0
n
i =1 j =0 k i −1
余项为
f ( k + 1 ) (ξ ) ω k + 1 ( x) Rk (x) = ( k + 1)!
k = 1 ,2 ,⋯ , n m = 0 ,1,2 ,⋯ ≈ f [ xn − m , xn − m − 1 ,⋯ , xn − m − k − 1 ]ω k + 1 ( x ) 14
xn −1 ≤ x ≤ xn
对分段二次及分段三次插值都没有相应的插值公式 若 xn − 2 ≤ x ≤ xn − 1 对分段三次插值也没有相应的插值公式 此时应改用Newton基本后插公式,此处只列出公式 (4) Newton − k阶基本后插公式,起点为xn − m
N k (x) = f n − m + ∑ f [ xn − m , xn − m −1 , ⋯ , xn − m −i ]∏ ( x − xn − m − j )
∇fi+1 − ∇fi+2 ∇2 fi+2 = = 2 2h2 − 2h f [ xi , xi + 1 , xi + 2 ] − f [ xi + 1 , xi + 2 , xi + 3 ] f [ xi , xi + 1 , xi + 2 , xi + 3 ] = xi − xi + 3
相关文档
最新文档