机翼与叶栅理论

合集下载

流体动力学及叶栅理论.

流体动力学及叶栅理论.

流体动力学及叶栅理论课程小结《流体动力学及叶栅理论》下篇课程主要包括流体动力学和叶栅理论两部分。

其中流体动力学的主要内容是:流体力学性质及概念、流体运动的基本方程、平面有势流动、势流叠加、旋涡理论等。

叶栅理论主要内容是:机翼及翼型特性、茹科夫斯基翼型、薄翼绕流及有限机翼理论、叶栅及叶栅特性方程、平面叶栅绕流求解方法等。

一、流体动力学流体力学是研究流体平衡和运动的规律以及它与固体间的相互作用的科学。

流体力学性质及概念:包括流体的流动性和粘滞性(相互运动时的内摩擦力产生的)、迹线(流体为团运动的轨迹线)、流线(指某时刻t时,连接流场中各点流体微团运动方向的光滑曲线)、微团分析(流体微团具有平移、旋转及变形的特征)等。

流体运动的基本方程:包括连续性方程、动量方程与动量矩方程、纳维-斯托克斯方程、欧拉方程(粘度为零的方程)、能量方程等。

平面有势流动:包括均匀流(流动过程中运动要素不随坐标位置(流程)而变化)、平面源、汇(与平面源的流向相反)、点涡(环流)、偶极子等基本概念,速度势函数和流函数,简单平面势流、偶极流、有环量绕流和无环量绕流(两者相差一个点窝)等。

势流叠加:包括源流和均匀流叠加、等强度源和汇流与直线流叠加、偶极流、圆柱绕流、汇流和环流的叠加、以及其他由两种或两种或以上的基本势流叠加等。

旋涡理论:包括涡线、涡管、涡束、涡通量(旋涡强度)等基本概念,开尔文-汤姆逊定理、斯托克斯定理(当封闭周线内有涡束时,则沿封闭轴线的速度环量等于该封闭周线内所有涡束的涡通量之和),亥姆兹定理(包括第一定律、第二定律和第三定律),二元旋涡内外压力分布等。

二、叶栅理论1、机翼及翼型机翼的外形以椭圆形状最为有利,但由于制造上的困难难,实际多采用与椭圆相近的形状。

翼型指的是顺着来流方向切下来的剖面。

翼型通常都具有流线型外形,头部圆滑,尾巴尖瘦,背(上弧)稍拱曲,腹(下弧)的形状则有凹的、凸的、半凹半凸的及平的。

机翼几何参数:机翼翼展b、机翼面积A、平均翼弦lm(A/b)、展翼比 (b/lm)、翼弦l、翼型厚度d(最大的叫翼型最大厚度dmax)、翼型弯度f、前、后缘圆角半径。

流体动力学及叶栅理论课程作业—河海大学

流体动力学及叶栅理论课程作业—河海大学

流体动力学及叶栅理论(下篇)一、课程内容小结1.机翼及翼型特性机翼的几何特性:翼型几何参数(翼弦、翼型厚度、翼型弯度、前、后缘圆角半径和后缘角),机翼几何参数(机翼翼展、机翼面积、平均翼弦、展弦比)。

机翼的气动力特性:机翼与绕流流体相互作用的力学特性,叫做机翼的气动力特性。

机翼绕流:正问题和反问题。

机翼分类:无限翼展机翼和有限翼展机翼。

翼型绕流的实验结果:介绍翼型气动方性能,随冲角及翼型几何形状变化的实验结果。

冲角对翼型气动力性能的影响翼型的升力和助力:升、阻力系数曲线,升、阻力极曲线。

压力沿翼型表面的分布:工程上不仅很重视翼型上的总作用力,而且对压力沿翼型表面如何分布也很关心,特别是在水利机械中,压力沿叶片的分布情况,关系到叶轮汽蚀性能的好坏。

翼型几何形状对动力性能的影响:弯度的影响,厚度的影响,前缘抬高度的影响,表面粗糙度的影响,雷诺数的影响。

常见翼型:NACA四位数字翼型,NACA五位数字翼族,以及其他翼型。

2.茹可夫斯基翼型对于翼型绕流的理论分析,分别介绍翼型绕流的保角变换与点奇点分布两种解法。

茹可夫斯基变换变换图解。

变换图形:圆心在原点的圆,圆心在坐标轴上的圆,圆心在第二象限的圆。

圆柱绕流。

圆柱绕流的来流速度。

圆柱绕流的来流环量。

绕流翼型流动的复势绕翼型流动的速度场。

翼型气动力特性。

翼型上的作用力:在理想流体的条件下,翼型将不受阻力,翼型上只作用者升力。

升力的大小,可以类似于圆柱绕流那样求出,结果也和圆柱绕流时一样。

升力系数。

3.薄翼绕流及有限翼展机翼理论当流体绕流翼型时,由于翼型的存在产生对来流的扰动,改变了来流的性态。

它一方面使流动顺翼型表面偏折,并形成一条流线;另一方面使流速值在翼型两侧产生跃变,出现了速度差和压力差,并进而产生了升力。

由于翼型对来流的扰动的作用,可以用沿翼型适当分布的涡、源(奇点)来代替,把这种计算绕翼型流场的方法,称为奇点分布法。

薄翼绕流。

薄翼绕流的特点:翼型厚度很薄,翼型中弧线微弯,在小冲角之下被绕流。

第三章 泵与风机的叶轮理论

第三章  泵与风机的叶轮理论

g

(u 2 u1 ) 2g
说明
式中 u 1 u 2----叶轮叶片进口、出口处的圆周速度 上式表明:当离心式泵与风机旋转叶轮外缘封闭, 即相当于出口阀门关闭,流体在流道内不流动时,单 位重量流体在叶轮出口与进口处的压力能差与叶轮旋 转角速度的平方成正比,与叶轮内、外直径有关。 即叶轮尺寸一定,旋转角速度增大,或叶轮内径 一定,外径增大,叶轮出口与进口处的流体压力能差 也增大。
返回
第五节 轴流式泵与风机的叶轮理论 特点(与离心式相比较) 翼型及叶栅 翼型及叶栅的空气动力特性 能量方程式
特点(与离心式相比较)
性能:流量大、扬程(全压)低。多用于大 型机组的循环水泵、送风机、引风机等。 调节:采用动叶调节,变工况由叶片对流体 作用的升力对流体做功。 流动方向:流体沿轴向进入并流出叶轮。 结构:结构简单,尺寸小,重量轻。
轴流叶轮中由于流体沿相同半径的流面流动所以流面进出口的圆周速度相同u叶轮进出口过流断面面积相等对不可压缩流体进出口的轴向速度相同能量方程式叶片式式泵与风机的能量方程式也适用于轴流式所不同的是叶轮进出口处圆周速度轴面速度相cotcotcotcotu故流体在轴流叶轮中获得的能量远小于离心式这就是轴流式泵与风机的扬程全压远低于离心式的原因
制作者:赵小燕
第三章 泵与风机的叶轮理论
第一节 第二节 第三节 第四节 第五节 流体在离心式封闭叶轮中获能分析 流体在叶轮中的运动及速度三角形 叶片式泵与风机的基本方程式 离心式叶轮的叶片型式 轴流式泵与风机的叶轮理论
第一节 流体在封闭式叶轮中的获能分析
泵与风机是由原动机拖动叶轮旋转,叶轮上的叶片对流 体做功,从而使流体获得压力能及动能。因此,叶轮是 实现机械能转换为流体能量的主要部件。

机翼理论与叶栅理论(叶栅

机翼理论与叶栅理论(叶栅
翼型以…-1,-2和1, 2……予以标示。
涡层分整布理ppt图
1. 诱导流场的复势 在标号为0的翼型上取一点S0,它的复坐标为 ω0,包含S0的微弧段ds0,其旋涡密度为γ(s), 微弧段ds0在复平面上点ω产生的复势为
s20di 0sln0
其他翼型上与ω0相应的点为
j 0j, tj 0j(t j 1 ,2 ......)
把实际栅距缩成诺模图上之栅距t,把按同样 比例被缩小后的叶片上之 S 点,放在圆之原点 (涡点)上,并使列线与图上横轴平行,则 S 0 处 的值即为所求的a和b的值。
整理ppt
第四步:确定翼型曲线
翼型骨线上任意点的绕流速度w可以表示

wu wu v1u v2u
wz wz v1z v2z
令β表示表示各点流速与叶栅列线的夹角,
2s
s A0
1
l 2s
A1
1
1
2s
2
l
l
第一项代表绕平板的有攻角流动,第二 项则代表绕弧线翼型的无攻角流动。
整理ppt
只要适当取系数A0、A1的值,则既可保证 翼型的一定环量,也可留下为得到性能良 好翼型。在保持Γ一定的前提下,相对地 取大A0则得冲角大、弯度小的曲线栅型绕 流;反之取小A0则可得冲角小而弯度大的 曲线栅型绕流。

tanwz wzv1zv2z
wu wuv1uv2u
通过上式可计算翼型曲线上的任一点的曲线方 向,并由此绘出翼型曲线。
整理ppt
综上所述,可以总结出轴流式水轮机转轮叶 片设计方法:
1. 计算转轮前后流速的平均值,即几何 平均速度w∞及其夹角β∞,以w∞作为平面 平行来流绕流直列叶栅;
2.计算绕翼型的环量;

轴流式风机的性能测试及分析

轴流式风机的性能测试及分析

轴流式风机的性能测试及分析轴流式风机的性能测试及分析摘要轴流式风机在⽕⼒发电⼚及当今社会中得到了⾮常⼴泛的运⽤。

本⽂介绍了轴流式风机的⼯作原理、叶轮理论、结构型式、性能参数、性能曲线的测量、运⾏⼯况的确定及调节⽅⾯的知识,并通过实验结果分析了轴流式风机⼯作的特点及调节⽅法。

关键词:轴流式风机、性能、⼯况调节、测试报告⽬录1绪论1.1风机的概述 (4)1.2风机的分类 (4)1.3轴流式风机的⼯作原理 (4)2轴流式风机的叶轮理论2.1概述 (4)2.2轴流式风机的叶轮理论 (4)2.3 速度三⾓形 (5)2.4能量⽅程式 (6)3轴流式风机的构造3.1轴流式风机的基本形式 (6)3.2轴流式风机的构造 (7)4轴流式风机的性能曲线4.1风机的性能能参数 (8)4.2性能曲线 (10)5轴流式风机的运⾏⼯况及调节5.1轴流式风机的运⾏⼯况及确定 (11)5.2轴流式风机的⾮稳定运⾏⼯况 (11)5.2.1叶栅的旋转脱流 (12)5.2.2风机的喘振 (12)5.2.3风机并联⼯作的“抢风”现象 (13)5.3轴流式风机的运⾏⼯况调节 (14)5.3.1风机⼊⼝节流调节 (14)5.3.2风机出⼝节流调节 (14)5.3.3⼊⼝静叶调节 (14)5.3.4动叶调节 (15)5.3.5变速调节 (15)6轴流风机性能测试实验报告6.1实验⽬的 (15)6.2实验装置与实验原理 (15)6.2.1⽤⽐托静压管测定质量流量6.2.2风机进⼝压⼒6.2.3风机出⼝压⼒6.2.4风机压⼒6.2.5容积流量计算6.2.6风机空⽓功率的计算6.2.7风机效率的计算6.3数据处理 (19)7实验分析 (27)总结 (28)致谢词 (29)参考⽂献 (30)主要符号pa-------------------------------------------------------------------------------当地⼤⽓压()p a pe-------------------------------------------------------------------------------测点平均静压()p a pm----------------------------------------------------------------------------测点平均动压()p aqm -------------------------------------------------------------------------------平均质量流量()skgpsg1-----------------------------------------------------------------------------风机⼊⼝全压()p a psg2----------------------------------------------------------------------------风机出⼝全压()p a pFC----------------------------------------------------------------------------风机全压()p a pSFC---------------------------------------------------------------------------风机静压()p a Q------------------------------------------------------------------------------体积流量()sm3 V-------------------------------------------------------------------------------流体平均流速()s m p e-----------------------------------------------------------------------------风机有效功率()KW P a-----------------------------------------------------------------------------轴功率()KW η-------------------------------------------------------------------------------风机效率()00n-------------------------------------------------------------------------------风机转速()minrL------------------------------------------------------------------------------平衡电机⼒臂长度(m)G------------------------------------------------------------------------------风机运转时的平衡重量(N)0G----------------------------------------------------------------------------风机停机时的平衡重量(N)D------------------------------------------------------------------------------风机直径(m)α------------------------------------------------------------------------------流量系数ε-------------------------------------------------------------------------------膨胀系数1绪论1.1风机的概述风机是将原动机的机械能转换为被输送流体的压能和动能的⼀种动⼒设备其主要作⽤是提⾼⽓体能量并输送⽓体。

轴流式风机的性能测试及分析

轴流式风机的性能测试及分析

轴流式风机的性能测试及分析摘要轴流式风机在火力发电厂及当今社会中得到了非常广泛的运用。

本文介绍了轴流式风机的工作原理、叶轮理论、结构型式、性能参数、性能曲线的测量、运行工况的确定及调节方面的知识,并通过实验结果分析了轴流式风机工作的特点及调节方法。

关键词:轴流式风机、性能、工况调节、测试报告目录1绪论风机的概述 (4)风机的分类 (4)轴流式风机的工作原理 (4)2轴流式风机的叶轮理论概述 (4)轴流式风机的叶轮理论 (4)速度三角形 (5)能量方程式 (6)3轴流式风机的构造轴流式风机的基本形式 (6)轴流式风机的构造 (7)4轴流式风机的性能曲线风机的性能能参数 (8)性能曲线 (10)5轴流式风机的运行工况及调节轴流式风机的运行工况及确定 (11)轴流式风机的非稳定运行工况 (11)5.2.1叶栅的旋转脱流 (12)5.2.2风机的喘振 (12)5.2.3风机并联工作的“抢风”现象 (13)轴流式风机的运行工况调节 (14)5.3.1风机入口节流调节 (14)5.3.2风机出口节流调节 (14)5.3.3入口静叶调节 (14)5.3.4动叶调节 (15)5.3.5变速调节 (15)6轴流风机性能测试实验报告实验目的 (15)实验装置与实验原理 (15)6.2.1用比托静压管测定质量流量6.2.2风机进口压力6.2.3风机出口压力6.2.4风机压力6.2.5容积流量计算6.2.6风机空气功率的计算6.2.7风机效率的计算数据处理 (19)7实验分析 (27)总结 (28)致谢词 (29)参考文献 (30)主要符号p-------------------------------------------------------------------------------当a地大气压()p a p-------------------------------------------------------------------------------测e点平均静压()p a ∆----------------------------------------------------------------------------测点pm平均动压()p a q-------------------------------------------------------------------------------平mkg 均质量流量()s p-----------------------------------------------------------------------------风机sg1入口全压()p a p----------------------------------------------------------------------------风机sg2出口全压()p a p----------------------------------------------------------------------------风机FC全压()p a p---------------------------------------------------------------------------风机静SFC压()p a Q------------------------------------------------------------------------------体m3积流量()s V-------------------------------------------------------------------------------流体m 平均流速()s p e-----------------------------------------------------------------------------风机KW 有效功率() P a-----------------------------------------------------------------------------轴功KW 率()η-------------------------------------------------------------------------------风机效率()00n -------------------------------------------------------------------------------风机转速()m in rL ------------------------------------------------------------------------------平衡电机力臂长度(m)G ------------------------------------------------------------------------------风机运转时的平衡重量(N)0G ----------------------------------------------------------------------------风机停机时的平衡重量(N)D ------------------------------------------------------------------------------风机直径(m)α------------------------------------------------------------------------------流量系数ε-------------------------------------------------------------------------------膨胀系数1绪论风机的概述风机是将原动机的机械能转换为被输送流体的压能和动能的一种动力设备其主要作用是提高气体能量并输送气体。

轴流式风机性能曲线

轴流式风机性能曲线

轴流式风机的性能摘要轴流式风机在火力发电厂及当今社会中得到了非常广泛的运用。

本文介绍了轴流式风机的工作原理、叶轮理论、结构型式、性能参数、性能曲线的测量、运行工况的确定及调节方面的知识,并通过实验结果分析了轴流式风机工作的特点及调节方法。

关键词:轴流式风机、性能、工况调节、测试报告目录1绪论1.1风机的概述 (4)1.2风机的分类 (4)1.3轴流式风机的工作原理 (4)2轴流式风机的叶轮理论2.1概述 (4)2.2轴流式风机的叶轮理论 (4)2.3 速度三角形 (5)2.4能量方程式 (6)3轴流式风机的构造3.1轴流式风机的基本形式 (6)3.2轴流式风机的构造 (7)4轴流式风机的性能曲线4.1风机的性能能参数 (8)4.2性能曲线 (10)5轴流式风机的运行工况及调节5.1轴流式风机的运行工况及确定 (11)5.2轴流式风机的非稳定运行工况 (11)5.2.1叶栅的旋转脱流 (12)5.2.2风机的喘振 (12)5.2.3风机并联工作的“抢风”现象 (13)5.3轴流式风机的运行工况调节 (14)5.3.1风机入口节流调节 (14)5.3.2风机出口节流调节 (14)5.3.3入口静叶调节 (14)5.3.4动叶调节 (15)5.3.5变速调节 (15)6轴流风机性能测试实验报告6.1实验目的 (15)6.2实验装置与实验原理 (15)6.2.1用比托静压管测定质量流量6.2.2风机进口压力6.2.3风机出口压力6.2.4风机压力6.2.5容积流量计算6.2.6风机空气功率的计算6.2.7风机效率的计算6.3数据处理 (19)7实验分析 (27)总结 (28)致谢词 (29)参考文献 (30)主要符号pa-------------------------------------------------------------------------------当地大气压()p a pe-------------------------------------------------------------------------------测点平均静压()p a pm∆----------------------------------------------------------------------------测点平均动压()p aqm -------------------------------------------------------------------------------平均质量流量()skgpsg1-----------------------------------------------------------------------------风机入口全压()p a psg2----------------------------------------------------------------------------风机出口全压()p a pFC----------------------------------------------------------------------------风机全压()p a pSFC---------------------------------------------------------------------------风机静压()p a Q------------------------------------------------------------------------------体积流量()sm3 V-------------------------------------------------------------------------------流体平均流速()s m p e-----------------------------------------------------------------------------风机有效功率()KW P a-----------------------------------------------------------------------------轴功率()KW η-------------------------------------------------------------------------------风机效率()00n-------------------------------------------------------------------------------风机转速()m inrL------------------------------------------------------------------------------平衡电机力臂长度(m)G------------------------------------------------------------------------------风机运转时的平衡重量(N)0G----------------------------------------------------------------------------风机停机时的平衡重量(N)D------------------------------------------------------------------------------风机直径(m)α------------------------------------------------------------------------------流量系数ε-------------------------------------------------------------------------------膨胀系数1绪论1.1风机的概述风机是将原动机的机械能转换为被输送流体的压能和动能的一种动力设备其主要作用是提高气体能量并输送气体。

流体动力学及叶栅理论

流体动力学及叶栅理论

CR
R 1 2 v l 2
式中 R 为合力,而且此直线与横轴夹角就等于合力与来流的夹角; (3)上述直线斜率为
Cy Cx FY FX

即为在该点冲角下工作时的翼型升阻比;

(4)通过极曲线很容易确定翼型的最佳冲角——与ε最大值对应的冲角。过原点作极曲线的切线,其 切点所对应的冲角,就是最佳冲角。
5
5.2 翼型绕流的实验结果
在这一节里,介绍翼型气动方性能,随冲角及翼型几何形状变化的实验结果。
5.2.1 冲角对翼型气动力性能的影响
5.2.1.1 翼型的升力与阻力 在单翼型绕流情况下,由于沿翼展取为单位长,从而机翼面积:
A l 1 l
升、阻力公式(5-1)对翼型可写成:
2 v
FY C y FX C x
2

第5章
5.1 概 述
机翼及翼型特性
机翼一词,最早出现于航空工程,指的是飞机翅膀。如今它可用以泛指相对于流体运动的各种升 力装置。因此,流体机械中的工作轮叶片也可视为一个机翼。
5.1.1 机翼的几何特性
工程上引用机翼主要是为了获取升力,但由于在流体中运动的物体,不可避免地会遭受到流体阻 力的作用,因此对机翼性能的要求,首先就是尽可能大的升力 Fy 和尽量小的阻力 Fx,也就是希望具有 这就要求机翼采取适当的几何形状, 图 5-1 是一个低速机翼的一般外形图。 最佳的、 阻力比值ε=Fy/Fx。
f max
xf f max , xf l l
像厚度一样,这些相对值习惯上常用百分数表示:
f max xf
f max 100% l xf l 100%
(4)前、后缘圆角半径和后缘角 翼型前,后缘的曲率半径,叫做翼型的圆角半径,分别以 RL、RT 记之。它们的相对值 RL=RL/l、

流体力学与流体机械——第10章(机翼与叶栅理论6-7)

流体力学与流体机械——第10章(机翼与叶栅理论6-7)
任何叶栅都存在它等价的叶栅,且等价叶 栅的叶型可以任意。特别是任何叶栅都能找 到与它等价的平板叶栅。
满足条件:
(1)平板叶栅与原叶栅的栅距t相等;
(2)安放角等于原叶栅的无环量绕流角β0(即
零升力方向);
升力系数
(3)弦长满足:b (Clz / Cl )bz
五、叶栅绕流问题的解法
叶栅绕流的求解分为正命题和反命题。
基本思想是应用保角变换,把给定的叶栅平面 变换到某一辅助平面,使在辅助平面上的绕流 是已知的或容易求解的。这样,在叶栅平面上 的流动就可以逆变换关系求出。
3. 奇点法 用来解任意叶栅正、反命题的现代方法之一。 其实质是在有势流场中置入的点源系与点涡 系替代叶栅中的翼型,以确定流场受叶栅干 扰后的流动。
第六节 叶栅及叶栅特征方程
叶片式水力机械的转轮、导叶轮都由若干 个相同的叶片或翼型按相互等距离排列组 成,叶片或翼型之间将彼此相互影响。 按 照一定规律排列起来而又相互影响的叶片 或翼型的组合,叫做翼栅或叶栅。
叶栅理论的目的在于寻找叶栅与流体之间 相互作用的运动学和动力学规律,以及影 响这些规律的各种因素,是叶片式水力机 械水动力学计算的理论基础。
v1xv2 y 'v2 xv1 y '
v1xv2 y 'v2 xv1 y '
引入新的系数i0
i0
m 1 K
式(3)可写成
v y '' Kv y '(1 K )i0v x (4)
上式两端同时乘以列线长度2πr, r为展 开成平面叶栅的圆柱流面的半径,有
2rv y '' 2rKv y '2r(1 K )i0v x
4. 安放角 翼型的弦线与列线之间的夹角称为安放角, 用βs表示。中弧线在前缘点处的切线与列 线的夹角叫进口安放角,用βs1表示。同样可 定义出口安放角βs2 。

轴流式风机性能曲线解析

轴流式风机性能曲线解析

轴流式风机的性能摘要轴流式风机在火力发电厂及当今社会中得到了非常广泛的运用。

本文介绍了轴流式风机的工作原理、叶轮理论、结构型式、性能参数、性能曲线的测量、运行工况的确定及调节方面的知识,并通过实验结果分析了轴流式风机工作的特点及调节方法。

关键词:轴流式风机、性能、工况调节、测试报告目录1绪论1.1风机的概述 (4)1.2风机的分类 (4)1.3轴流式风机的工作原理 (4)2轴流式风机的叶轮理论2.1概述 (4)2.2轴流式风机的叶轮理论 (4)2.3 速度三角形 (5)2.4能量方程式 (6)3轴流式风机的构造3.1轴流式风机的基本形式 (6)3.2轴流式风机的构造 (7)4轴流式风机的性能曲线4.1风机的性能能参数 (8)4.2性能曲线 (10)5轴流式风机的运行工况及调节5.1轴流式风机的运行工况及确定 (11)5.2轴流式风机的非稳定运行工况 (11)5.2.1叶栅的旋转脱流 (12)5.2.2风机的喘振 (12)5.2.3风机并联工作的“抢风”现象 (13)5.3轴流式风机的运行工况调节 (14)5.3.1风机入口节流调节 (14)5.3.2风机出口节流调节 (14)5.3.3入口静叶调节 (14)5.3.4动叶调节 (15)5.3.5变速调节 (15)6轴流风机性能测试实验报告6.1实验目的 (15)6.2实验装置与实验原理 (15)6.2.1用比托静压管测定质量流量6.2.2风机进口压力6.2.3风机出口压力6.2.4风机压力6.2.5容积流量计算6.2.6风机空气功率的计算6.2.7风机效率的计算6.3数据处理 (19)7实验分析 (27)总结 (28)致谢词 (29)参考文献 (30)主要符号pa-------------------------------------------------------------------------------当地大气压()p a pe-------------------------------------------------------------------------------测点平均静压()p a pm∆----------------------------------------------------------------------------测点平均动压()p aqm -------------------------------------------------------------------------------平均质量流量()skgpsg1-----------------------------------------------------------------------------风机入口全压()p a psg2----------------------------------------------------------------------------风机出口全压()p a pFC----------------------------------------------------------------------------风机全压()p a pSFC---------------------------------------------------------------------------风机静压()p a Q------------------------------------------------------------------------------体积流量()sm3 V-------------------------------------------------------------------------------流体平均流速()s m p e-----------------------------------------------------------------------------风机有效功率()KW P a-----------------------------------------------------------------------------轴功率()KW η-------------------------------------------------------------------------------风机效率()00n-------------------------------------------------------------------------------风机转速()m inrL------------------------------------------------------------------------------平衡电机力臂长度(m)G------------------------------------------------------------------------------风机运转时的平衡重量(N)0G----------------------------------------------------------------------------风机停机时的平衡重量(N)D------------------------------------------------------------------------------风机直径(m)α------------------------------------------------------------------------------流量系数ε-------------------------------------------------------------------------------膨胀系数1绪论1.1风机的概述风机是将原动机的机械能转换为被输送流体的压能和动能的一种动力设备其主要作用是提高气体能量并输送气体。

轴流风机理论基础

轴流风机理论基础
第2章 轴流通风机的理论基础
2.1 通风机的性能参数
通风机的流量、压力、功率、效率和转速是用以表示通风机性能的 主要参数,称之为通 风机的性能参数。下面分别介绍通风机这些主要的性能参数。
1. 通风机进口标准状态 通风机进口标准状态是指通风机进口处的压力为一个标准大气压(101325 Pa 或 760 mmHg),温度为 20℃,相对湿度为 50%的空气状态。通风机进口标准状态下的空气密度为
将会看到,随着冲角的增加,升力系数也将增加,但增加到某一个极限后,再增加冲角,升
力系数反而减小。这个极限称为最大升力系数 C y max ,它所对应的冲角称为临界冲角 cr 。 此时气流将从翼型表面上分离,此后阻力系数将急剧增加。
2.4 孤立翼型及其性能曲线
为了获得孤立翼型的升力系数 C y 和阻力系数 C x ,通常是将各种翼型的叶片置于风洞
率,以符号 Pe 表示,单位为 kW。
pq Pe tF v
1000
(2-5)
对应于通风机静压的有效功率为
PesF p sF q v 1000
(2-6)
(2). 通风机的轴功率 单位时间内原动机传递给通风机轴上的能量,叫做通风机的轴功率,也称为通风机的输
入功率,用符号 Psh 表示。 (3). 通风机的内部功率
图 2-3 孤立翼型上的作用力
a)气流流过翼型的流线 b)翼型表面上气流作用力的分布 c)气流作用在翼型上的作用力 R 、
阻力 R x 和升力 R y
12
如按图 2-3 所示,翼型前未受翼型干扰处的气流对于翼型的相对速度为 w ,压力为 p ,
气流冲角为 ,根据空气动力学的理论和实验研究,单位长度孤立翼型的升力 R y 和阻力 R x

第四章叶栅理论

第四章叶栅理论

第四章 叶栅理论 §4—1 概 论把按照一定规律排列起来的相同机翼之系列,叫做翼栅。

翼栅问题是单个机翼问题的推广。

翼栅理论在工程上得到广泛应用,特别是在叶片式流体机械方面。

因此,翼栅常被称为叶栅,组成它的机翼也就叫做叶片了。

一、叶栅几何参数表征一个叶栅的几何特征的参数,叫做叶栅的几何参数。

叶栅的几何参数主要有下列几个:(一)列线栅中诸叶片上各相应点的联结线,称为叶栅的列线。

通常都以叶片前后缘点的联线表示之。

实际上所遇到的列线,其形状有两种:一为无限长直线;另(见图4一1)。

(二)栅轴垂直于列线的直线叫栅轴。

但对圆周列线的叶栅,把旋转轴定义为其栅轴。

有些文献中,把上述列线叫做栅轴,而不再引用列线这一名词。

(三)叶型叶片与过列线的流面交截出来的剖面形,叫叶栅的叶型。

其一几何参数见翼型。

图4—1直列叶栅与环列叶栅(四)栅距列线上二相邻的相应点间的线段长度,叫叶栅的栅距或栅隔,用字母t 记之。

对圆列线叶栅,不引用此参数,而用角距nπ2(n ——叶片数)代替它。

(五)安放角叶型的弦与列线间之夹角e β,称为叶型在叶栅中之安放角。

叶型中线在前、后缘之切线与列线之夹角'e β、''e β分别叫作叶型的进、出口安放角。

对圆列线叶栅,只引用后二个参数。

(六)疏密度栅中叶型弦长l 与栅距t 之比值t l /,叫做叶栅的疏密度。

而把其倒数l t /,称为相对栅距。

圆列线叶栅不引用此参数。

二、叶栅分类在工程实际当中所遇到叶栅多种多样,为便于分析和讨论问题,可以给这些叶型加以分 类。

但从不同角度又可得出不同的分类,这里仅就水力机械中常用到的分类法,介绍两种。

(一)根据绕流流面分类叶栅1.平面叶栅如能将绕叶栅液流分成若干等厚度流层,这些流层本身为平面或这些流层虽为曲而,但若沿流线切开后,能铺展成一平面者,称这类叶栅为平面叶栅。

绕这类叶栅的流动为平面流动。

例如水轮机的导叶叶栅,低比速水轮机和水泵的转轮叶栅等,绕流这些叶栅的流面本身就是平面;而轴流式水轮机、水泵和风机等转轮叶栅之流面,虽为圆柱面,但顺流线切开后可展成平面。

江苏大学流体力学2020年考研专业课初试大纲

江苏大学流体力学2020年考研专业课初试大纲
全国硕士研究生入学统一考试 流体力学考试大纲
I 考查目标
流体力学是工科类众多专业的重要的专业基础课程。目的是科学、公平、有效地测试 考生是否具备攻读相关专业硕士所必须的基本素质、一般能力和培养潜能,以利用选拔具 有发展潜力的优秀人才入学,为国家的经济建设培养具有较强分析与解决实际问题能力的 高层次、应用型、复合型的动力工程及工程热物理等各专业的高技术水平人才。考试测试 考生掌握流体力学的基本概念、基本理论的扎实程度,考查考生能熟练运用这些概念与理 论分析解决现实生产中流体力学相关问题的能力。
2.三角形量水堰的流量 Q 与堰上水头 H 及重力加速度 g 有关,试用量纲分析法确定
Q f (H , g) 的关系式。
3.用直径 d 6cm 的虹吸管从水箱中引水,虹吸管最高点距水面 h 1m ,试求不产
生空化的最大流量为多少?(水的饱和蒸汽压取为 2340Pa)。
4. 流动参数中流速的测量方法、原理、计算公式并图示(不少于 5 种)。 5.绘出一个雷诺实验装置示意图,简述实验方法、实验的观察结果。以及实验所得到
两者的主要区别是:粘性切应力的存在和物体表面的粘附条件(无滑移条件)。
2.有旋流动、无旋流动 流体微团存在角速度,即
0
,称为有旋流动,若 Leabharlann 0则称为无旋流动。
流体微团的转动角速度
1
v
,若流场中某处
0
,就表明位于该点处的流体
2
微团会绕着通过该点的瞬时轴作旋转运动,称为有旋运动。若
0
,则位于该点处的流
IV. 题型示例及参考答案
一、 名称解释(要求用文字、数学、图示三种形式同时描述,5×7=35 分) 理想流体与实际流体、有旋流动与无旋流动、层流与湍流、文丘里管与拉瓦尔管、 流线与涡线、 流量与涡通量、边界层与层流底层。

机翼理论

机翼理论

2 2
2 2
0
2 2
2 2
0
( , ) 、 ( , ) 组成的复势为: W ( ) ( , ) i ( , )
设解析函数 z f ( ) 可使 平面的C 变换成z 平面的Cz ,则W ( ) 通过z f ( )
可变成z 平面的复势: W (z) (x, y) i (x, y)
Cl
1 2
L
v2 b
Cd
1 2
D
v2 b
Cm
1 2
M
v2 b
4.空气动力学特性曲线 1)升力系数Cl 与攻角 关系曲线Cl ~
Cl ~ 曲线在实用范围内,近似成一直线,在较大攻角时,略向下弯 曲,当达到最大值后,则突然下降。飞机如在飞行时遇到这种情况,则有 坠毁的危险,这一现象称为“失速”。
翼型的升力是由其表面上、下压力差提供的,翼型上表面的低压对压 差(升力)的贡献远超过下表面的高压。 三、翼型几何形状对气动性能的影响
1.弯度的影响
对同一冲角,随着弯度的增加,升、阻力将显著增加,其中阻力增加 较升力增加快。
升力增大:是由于弯度增加后导致上、下弧的流速差加大,从而压差 也增大。
阻力增大:弯度增大后,上弧流速增大,从而摩擦阻力上升,并且由 于翼型迎流面积增大压差阻力也将增大。
R1ei1 R2ei2
(
1ei1 2ei2
)2
R1 ei12 ( ) e 1 2 i212
R2
2
R1 ( 1 )2 R2 2
1 2 2(1 2 )
(3)
3)过 c 的二曲线1c, 2c 与 轴的夹角分别为1 、1 1 ,点1, 2
与2
c 的连线与实轴夹角为2,2 ,近似2 0 ,2 对于z 平面,设z1, z2 为1, 2 的对应点,z12 c,

叶栅理论

叶栅理论
Γ2 = K Γ1 + (1 K ) i0 q + (1 K ) 2π r 2ω
Rx , Ry 用 wmx , wmy 表示为: Rx = ρwmy ( w2 y w1 y ) t Ry = ρ wmx ( w2 y w1 y ) t
(7)
下面求绕翼型的环量(设法将式(7)表示成 R = ρ wmΓ 的形式)
Γ = ∫ABCDA wS ds = ∫AB wS ds + ∫BC wS ds + ∫CD wS ds + ∫DA wS ds
1 2 p1 p2 = ρ ( w2 y w12y ) 2
(5)
Rx , Ry 可表示为:
1 2 Rx = ρ ( w2 y w12y ) t 2 Ry = ρ wx ( w2 y w1 y ) t
(6)
现定义一个平均流速
1 wm = ( w1 + w2 ) 2
分量形式为:
1 wmx = ( w1x + w2 x ) = wx 2 1 wmy = ( wy1 + w2 y ) 2
t 叶栅中两相邻翼型上相应点的的距离叫栅距,常用 表示。对环列叶栅不引用 2π 这一参数,而用角距 ( n 表示叶片数)替代。
n
5.安放角 。 叶型的弦和列线的夹角 β S ,称为安放角(叶型的安放角) 叶型的中线在前后缘的切线与列线的夹角 β S 1 、 β S 2 称为进出口安放角。 对环列叶栅,只定义进出口安放角。 6.稠密度 弦长 b 与栅距 t 之比 叫做叶栅的稠密度,把它的倒数称为相对叶栅,对环列 叶栅不引用这一参数。 二、叶栅分类 根据水力机械常用分类方法,介绍如下: 1.平面叶栅 流经叶栅流道的流动是平面流动,如:水轮机导叶叶栅、低比转数水泵、 水轮机转轮叶栅。 对轴流式水泵、水轮机、风机等转轮叶栅可展成平面,即将圆柱面展成平 面,则也可称为平面叶栅。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
翼型的流体动力特性主要包括翼型压力分布 特性、升力特性、阻力特性、俯仰力矩特性 等。这些特性与机翼冲角(攻角)有关。
(冲角)攻角 ——翼弦与无穷远来流方向 的夹角,用α表示。
对于任意一个翼型,会在某一冲角时,其升 力等于零,此时的来流方向称为零升力方向。 零升力方向与翼弦的夹角称为零冲角,用α0 表示。 来流速度v∞与零升力方向的夹角αa称为气动 冲角(流体动力冲角),
y0,1( x) y f ( x) yt ( x)
中弧线的y坐标
局部厚度的一半
NACA翼型
NACA翼型是美国国家航空资讯委员会(National Advisory Committee for Aeronautics)所发表的 翼型系列,有以下常用的系列翼型:
(1)NACA四位数字翼型
厚度方程为: 最大厚度
2x
f
)
2x
f
x
x2
](xxf )来自例如: NACA2412
最大弯度为弦 长的百分之几
即 f 2%
最大弯度位置 离前缘为弦长 的十分之几,
即 x f 40%
最大厚度是弦 长的百分之几
即 t 12%
(2)NACA五位数字翼型
例如
NACA2 3 0 1 2
最大弯度为弦 长的百分之几
即 f 2%
4. 翼型的(最大)厚度:翼型的各垂线被 翼型上下表面型线所截的最大者,用t表示。 最大相对厚度 t t / b 最大厚度的相对位置 xt xt / b
5. 前后缘半径:翼型的前后缘圆角半径, 用rl和rt表示。
工程实际中应用的一些翼型的基本形状:
翼型上下表面坐标y0,1(x)与弯度坐标yf(x)和厚 度坐标yt(x)的关系式为:
设计升力系数 的十分之一
层流 最低压力点位置离 相对厚度 t 8%
前缘位置在0.4的弦
长处
19
NACA层流翼型的基本形状及最小压力点位置
此外还有前苏联,德国、英国的翼型,我国 也曾设计自己翼型,但应用最多的是NACA系 列翼型。
20
机翼的平面图形 机翼的常 见平面图 形
展长
第三节 翼型的流体动力特性
a 0
一般为负值
零升力方向
流体对翼型的总作用力R可以分解为两个相互 垂直的分力,分别是平行于来流方向的阻力D 和垂直于来流方向的升力L。压力中心点S, 距前缘位置为xs。
1. 压力分布特性
压力系数
Cp
p p
1 2
v2
吸力
压力系数分布曲线
压力
2. 升力系数
L
CL
1 2
v
2
b
攻角α 升力系数
yt ( x) t(1.4845 x 0.6300x 1.7580x2 1.4215x3 0.5075x4 ) 前缘半径 rl ( x) 1.109t 2
中弧线取为两段抛物线,这两段抛物线在中弧线 的最高点相切
yf
f
x
2 f
(2x f x x2)
(x xf )
yf
(1
f x
f
)2
[(1
最大弯度的相对 相对厚度 t 12%
位置的百分数的
两倍 2x f 30%
五位数字翼型的厚度分布同四位数字翼型。
18
(3)NACA层流翼型
翼面上最低压力点位置尽可能后移,以延长
顺压梯度段长度,努力使其边界层为层流状态, 降低翼型的摩阻。
NACA层流翼型应用较多的是6系列
例如
NACA6 4 - 2 0 8
CL与 f 的关系:
f 升力曲线 平行上移,而αcr保 持不变。
CL与 t 的关系:
t 12% ~ 15% CLmax 达到最大。
CL与Re的关系: Re CLmax , 增大Re,可推迟边界 层分离。
小结: 通常, t 12% ~ 15% ,CLmax值最大,随 f 或 Re的增大而增加。接近前缘的表面粗糙度对 CLmax的影响很敏感,随粗糙度增加将减小。因 此,为获得较大的升力系数,翼型头部应采用 光滑曲面。
(3)叶栅特征方程; (4)叶栅流动的保角变换解法和奇点分布解法。
第一节 机翼升力原理
机翼是指产生的升力比其阻力大得多的物体。 该特性取决于其剖面形状(翼型)。
理论依据: (1)流体有环量绕流会产生升力; (2)绕流阻力由粘性摩擦阻力和压差阻力两部 分组成。
FL
流线较密,速度大
流线较疏,速度小
小攻角翼型绕流
机翼一部分是由流过上表面的空气把它吸 起来的,且上表面产生的负压对全部升力的 贡献大于下表面的贡献。
吸力
压力系数分布曲线
压力
较大攻角翼型绕流
翼型表面压强的分布
大攻角翼型绕流
流体绕过翼型时要产生升力,是由于翼型 上下表面速度不同造成压强分布的不同。 将上下翼面速度分布的差异视为均匀的无 穷远来流与由翼型形成的有一定环量的环 流两者叠加而成。 升力的大小与流体绕流翼型的环量Γ成正比, 即
第十章 机翼与叶栅理论
机翼和叶栅是飞行器与叶轮机械的最主要元件,叶 栅是剖面为翼型的一系列叶片的组合。本章用流体 力学的原理和方法建立流体作用于机翼和叶栅上的 力的计算方法,为其设计奠定理论基础。
本章主要内容:
(1)翼型的几何要素和流体动力特性; (2)翼型动力特性的流体力学原理,包括保角变换 法和奇点分布法;
3. 阻力系数 表面摩擦阻力
翼型阻力 压差阻力
翼型阻力大小与翼型参数、冲角大小、 Re有密切关系。
D
翼型阻力系数:
CD
1 2
v2 b
CL CD
Re CD
CL=0时CD取极小值
FL v
环量的大小与翼型的形态有关。
第二节 翼型的几何参数
飞机的机翼和水轮机等流体机械的叶片的剖面形状 称为翼型,翼型的周线称为形线。翼型的形状一般 是圆头尖尾的流线形。
上弧线
(骨线) 前 缘
下弧线
后缘
1. 翼弦:连接翼型前后缘直线,弦长用b表示。
2. 翼型中弧线:轮廓线的内切圆之圆心连线, 也称为翼型的骨线或中线。 3. 翼型的(最大)弯度:中弧线的最大纵坐标, 用f表示,弯度也称为拱度。 最大相对弯度 f f / b 最大弯度的相对位置 x f x f / b
CL线性 到临界攻角αcr,升力系 数达最大值CLmax
若再α CL突 伴随CD 突 称为“失速”
机翼失速是由于边界层分离造成的,失速 时的冲角称为失速角,一般由实验确定, 通常在10°~20°之间。
多数翼型: 0 f %
最大升力系数CLmax主要与翼弦雷诺数Re、翼型 最大相对厚度 t 、最大相对弯度 f及表面粗糙度 有关,下面逐一进行讨论。
相关文档
最新文档