《一次函数的应用》第二课时PPT教学课件
合集下载
【小学课件】《一次函数的应用》优质PPT课件2PPT文档共30页

【小学课件】《一次函数的应用》优质 PPT课件2
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
30
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧和知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
30
《一次函数图像的应用》第二课时教学课件

s /米 你还能用其他方法解决上述问题吗? 120 100 80 60
l2
l1
40
20
-4
-3
-2
-1 O
1
2
3
4
5
6
7
8
9
10 11 12
t /分
课堂小结
你有哪些收获?有什么困惑? 当一个坐标系中出现多个函数 图象时,你怎样处理?
作业布置 习题6.7 1、2
12 14
t /分
(5)当 A 逃到离海岸12海里的公海时,B 将 无法对其进行检查。照此速度, B 能否在 A 逃入公海前将其拦截?
从图中可以看出,l1 与 l2 交点P的纵坐标小于12,
10 8 6 4 2 O 2 4 6 8 10 12 14
s /海里
l2 A
P
l1 B
这说明在 A 逃 入公海前,我 边防快艇 B能 够追上 A。
当销售量为2吨时,销售收入= 2000 元,
y/元
6000
L1 销售收入
5000
4000
3000
2000 1000
x/吨 O
1 2 3 4 5 6
l2 反映了该公司产品的销售成本与销售量的关系, 根据图意填空:
当销售成本=4500元时,销售量= 5 吨;
y/元
6000 5000
l2 销售成本
4000
s /海里
8 6 4 2 O 2 4 6 8 10 12 1415 t
l2 A
l1 B
这表明,15 分钟时 B尚 未追上 A。
/分
(4)如果一直追下去,那么 B 能否追A?
如图延伸l1 、l2 相交于点P。
s /海里
l2
l1
40
20
-4
-3
-2
-1 O
1
2
3
4
5
6
7
8
9
10 11 12
t /分
课堂小结
你有哪些收获?有什么困惑? 当一个坐标系中出现多个函数 图象时,你怎样处理?
作业布置 习题6.7 1、2
12 14
t /分
(5)当 A 逃到离海岸12海里的公海时,B 将 无法对其进行检查。照此速度, B 能否在 A 逃入公海前将其拦截?
从图中可以看出,l1 与 l2 交点P的纵坐标小于12,
10 8 6 4 2 O 2 4 6 8 10 12 14
s /海里
l2 A
P
l1 B
这说明在 A 逃 入公海前,我 边防快艇 B能 够追上 A。
当销售量为2吨时,销售收入= 2000 元,
y/元
6000
L1 销售收入
5000
4000
3000
2000 1000
x/吨 O
1 2 3 4 5 6
l2 反映了该公司产品的销售成本与销售量的关系, 根据图意填空:
当销售成本=4500元时,销售量= 5 吨;
y/元
6000 5000
l2 销售成本
4000
s /海里
8 6 4 2 O 2 4 6 8 10 12 1415 t
l2 A
l1 B
这表明,15 分钟时 B尚 未追上 A。
/分
(4)如果一直追下去,那么 B 能否追A?
如图延伸l1 、l2 相交于点P。
s /海里
八年级数学上册4.4一次函数的应用第二课时教学全国公开课一等奖百校联赛微课赛课特等奖PPT课件

第四章
4.4
一次函数
一次函数应用
第2课时1/6源自• 1.能经过一次函数图象获取有用信息,并处理实际问
• 题;(重点)
• 2.了解一元一次方程与一次函数关系,会利用它们之间
• 关系处理一些实际问题。
2/6
•
观察右边图象,你能从图象
•
中得到哪些信息?你是怎样得到?
•
与同伴交流。
3/6
1.依据小组讨论结果,试着回答“问题导引”中问题。
所以这个函数的表达式为 y=- x+10.
把 y=1 代入 y=-x+10 中,可得 x=450.
5/6
1.一次函数图象直观地反应了两个变量之间关系,利用一次函数
横轴
纵轴
图象处理实际问题时,首先要明确_______、_______表示变量
实际意义。
2.利用一次函数y=kx+b图象,怎样确定kx+b=0解?
一次函数y=kx+b图象与x轴交点横坐标就是方程kx+b=0解。
6/6
能够从对应值、与x轴(或y轴)交点,改变趋势、函数表示式
等方面提取信息。
2.小明解答“例2”中第(4)问时,发觉了一个新方法,他先依据
图象与x轴、y轴交点坐标求出这个函数表示式,再把y=1代入
表示式中求出x值即可。按照他方法试一试,小组讨论你结果。
4/6
设这个函数的表达式为 y=kx+b,
把(0,10),(500,0)代入,可得 b=10,k=-,
4.4
一次函数
一次函数应用
第2课时1/6源自• 1.能经过一次函数图象获取有用信息,并处理实际问
• 题;(重点)
• 2.了解一元一次方程与一次函数关系,会利用它们之间
• 关系处理一些实际问题。
2/6
•
观察右边图象,你能从图象
•
中得到哪些信息?你是怎样得到?
•
与同伴交流。
3/6
1.依据小组讨论结果,试着回答“问题导引”中问题。
所以这个函数的表达式为 y=- x+10.
把 y=1 代入 y=-x+10 中,可得 x=450.
5/6
1.一次函数图象直观地反应了两个变量之间关系,利用一次函数
横轴
纵轴
图象处理实际问题时,首先要明确_______、_______表示变量
实际意义。
2.利用一次函数y=kx+b图象,怎样确定kx+b=0解?
一次函数y=kx+b图象与x轴交点横坐标就是方程kx+b=0解。
6/6
能够从对应值、与x轴(或y轴)交点,改变趋势、函数表示式
等方面提取信息。
2.小明解答“例2”中第(4)问时,发觉了一个新方法,他先依据
图象与x轴、y轴交点坐标求出这个函数表示式,再把y=1代入
表示式中求出x值即可。按照他方法试一试,小组讨论你结果。
4/6
设这个函数的表达式为 y=kx+b,
把(0,10),(500,0)代入,可得 b=10,k=-,
《一次函数的应用(第2课时)》PPT课件 北师大版八年级数学

3
00
x
从“形” 上看
课堂检测
能力提升题
已知直线y=-2x+4与x轴交于点A,与y轴交于点B,
求△AOB的面积.
y
解:由已知可得: 当x=0时,y=4,即B(0,4) 当y=0时,x=2,即A(2,0) 则S △AOB=0.5× OA × OB
=0.5 × 2 × 4
=4
B
A
O
x
课堂小结 一次函数与一元一次方程的关系
探究新知
问题(1)解方程0.5x+1=0,得x=-2. 问题(2)就是要考虑当函数y=0.5x+1的值为( 0 )时
所对应的( 自变量x)为何值?
y
实质上这可以通过解方程0.5x+1=0,得出x=-2.因 此,这两个问题实际上是同一个问题.
从图象上看:作出函数y=0.5x+1的图象.
1
思考 函数图象哪一个点的坐标表示
10
下列
8
6
问题: 4
2
0
100
200
300
400
500 x/千米
探究新知
(4)油箱中的剩余油量小于1升时将自动报警.行驶多 根据 少千米后,摩托车将自动报警?
图像 解:当y=1时,x=450,因此行驶了450千米后,摩托车将自动
回答
报警. y/ 升 10
下列
8
问题:
6
4
2
0
100
200
300
400
变量x等于 2 时的函数值是8.
课堂检测
基础巩固题
3. 直线 y ax b 在坐标系中的位置如图,则
方程 ax b 0 的解是x=_-_2_.
八年级上册4.4一次 函数的应用第2课时 一次函数的应用(2)课件

解:(1)因为当t=1时,y=90,所以k+30=90,所以 k=60,所以y=90t+30. 当t=3时,y=60×3+30=210,210-90=120(km), 即在1h至3h之间,汽车行驶的路程是120km.
(2)能.由(1)知,k=60,这里k的具 体含义是汽车行驶的速度.
归纳小结
图象分析方法: (1)从函数图象的形状判断函数类型; (2)从x轴、y轴的实际意义去理解图象上点的坐标 的实际意义。
第四章 一次函数
4.一次函数的应用 第2课时 一次函数的应用(2)
情景导入
由于持续高温和连日无雨,某水库的蓄水量 随时间的增加而减少。干旱持续时间t(天)与蓄水 量v(万米3)的关系如图所示,回答下列问题: (1)图象是反映的是什么类型的函数? (2)水库原有蓄水量v是多少万米3 ?
图象分析方法: (1)从函数图象的形状判断函数类型;
解:观察图象,得 (1)当x=0时,y=10.因此,油箱最多可储油10L. (2)当y=0时,x=500,因此一箱汽油可供摩托车行驶500Km. (3)x从0增加到100时,y从10减少到8,减少了2,因此摩 托车每行驶100Km消耗2L汽油. (4)当y=1时,x=450.因此,行驶450Km后,摩托车将自动 报警.
探索新知
1、由于持续高温和连日无雨,某水库的蓄水量 随时间的增加而减少。干旱持续时间t(天)与蓄水 量v(万米3)的关系如图所示,回答下列问题: (1)干旱持续10天,蓄水量为多少?连续干旱23天 呢?
2、由于持续高温和连日无雨,某水库的蓄水量 随时间的增加而减少。干旱持续时间t(天)与蓄水 量v(万米3)的关系如图所示,回答下列问题: (2)蓄水量小于400万米3时,将发出严重干旱警报, 干旱多少天后将发出严重干旱警报?
《一次函数的应用》 示范公开课教学PPT课件【北师大版八年级数学上册】第2课时

根据图象回答下列问题: (1)一箱汽油可供摩托车行驶多少千米?
分析:函数图象与x轴交点的横坐标即为摩托车行驶的最长 路程.
解:观察图象,得:当y=0时,x=500,因此一箱汽油可供 摩托车行驶500千米.
典例精讲
(2)摩托车每行驶100千米消耗多少升汽油?
分析:x从0增加到100时,y从10开始减少,减少的数量即为 消耗的数量.
解:x从0增加到100时,y从10减少到8,减少了2,因此摩托 车每行驶100千米消耗2升汽油.
典例精讲
(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行 驶多少千米后,摩托车将自动报警?
分析:当y小于1时,摩托车将自动报警.
解:当y=1时,x=450,因此行驶了450千米后,摩托车将自 动报警.
课堂练习
4.函数y=-3x-6中,当自变量x增加1时,函数值y就( C ). A.增加3 B.增加1 C.减少3 D.减少1
5.某人早上进行登山活动,从山脚到山顶休息一会儿又沿原路返 回,若用横轴表示时间t,纵轴表示与山脚距离h,那么下列四个图中反 映全程h与t的关系图是( D ).
课堂练习
6.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步
课堂练习
(1)如果不采取任何措施,那么到第5年底,该地区沙漠 面积将增加多少万千米2?
解:如果不采取任何措施,那么到第5年底,该地区沙漠面 积将新增加10万千米2.
课堂练习
(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在 开始,第几年底后,该地区将丧失土地资源?
解:从图象可知,每年的土地面积减少2万千米2,现有土 地面积100万千米2,100÷2=50,故从现在开始,第50年底后, 该地区将丧失土地资源.
分析:函数图象与x轴交点的横坐标即为摩托车行驶的最长 路程.
解:观察图象,得:当y=0时,x=500,因此一箱汽油可供 摩托车行驶500千米.
典例精讲
(2)摩托车每行驶100千米消耗多少升汽油?
分析:x从0增加到100时,y从10开始减少,减少的数量即为 消耗的数量.
解:x从0增加到100时,y从10减少到8,减少了2,因此摩托 车每行驶100千米消耗2升汽油.
典例精讲
(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行 驶多少千米后,摩托车将自动报警?
分析:当y小于1时,摩托车将自动报警.
解:当y=1时,x=450,因此行驶了450千米后,摩托车将自 动报警.
课堂练习
4.函数y=-3x-6中,当自变量x增加1时,函数值y就( C ). A.增加3 B.增加1 C.减少3 D.减少1
5.某人早上进行登山活动,从山脚到山顶休息一会儿又沿原路返 回,若用横轴表示时间t,纵轴表示与山脚距离h,那么下列四个图中反 映全程h与t的关系图是( D ).
课堂练习
6.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步
课堂练习
(1)如果不采取任何措施,那么到第5年底,该地区沙漠 面积将增加多少万千米2?
解:如果不采取任何措施,那么到第5年底,该地区沙漠面 积将新增加10万千米2.
课堂练习
(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在 开始,第几年底后,该地区将丧失土地资源?
解:从图象可知,每年的土地面积减少2万千米2,现有土 地面积100万千米2,100÷2=50,故从现在开始,第50年底后, 该地区将丧失土地资源.
《一次函数的应用》一次函数PPT课件(第2课时)

(2)只用语言叙述或用表格、图象提供一次函数的情境 时,应先求出关系式,进而利用函数性质解决问题.
2.要点精析:“建模”可以把实际问题转化为关于一次 函数的数学问题,它的关键是确定函数与自变量之间 的关系式,并确定实际问题中自变量的取值范围.
知1-讲
例1 某种摩托车的油箱加满油后,油箱中的剩余油量y(L)与摩托车 行驶路程x ( km )之间的关系如图所示.根据图象回答下列问题: (1)油箱最多可储油多少升? (2)一箱汽油可供摩托车行驶多少 千米? (3)摩托车每行驶100 km消耗多少 升汽油? (4)油箱中的剩余油量小于1 L时, 摩托车将自动报警.行驶多少千
知1-练
1 (中考·北京)一家游泳馆的游泳收费标准为30元/次,若购买会员年
卡,可享受如下优惠:
会员年卡类型
办卡费用/元
每次游泳收费/元
A类
50
25
B类
200
20
C类
400
15
例如,购买A类会C员年卡,一年内游泳20次,消费50+25×20=
550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最
知2-讲
1.一知次识函点数和一元一次方程的联系:任何一个以x为未知数的一元
一次方程都可以变形为ax+b=0(a≠0,a,b为常数)的形式, 所以解一元一次方程可以转化为:求一次函数y=ax+b(a≠0, a,b为常数)的函数值为0时,自变量x的取值;反映在图象上, 就是直线y=ax+b与x轴交点的横坐标. 2.利用一次函数图象解一元一次方程的步骤: (1)转化:将一元一次方程转化为一次函数; (2)画图象:画出一次函数的图象; (3)找交点:找出一次函数图象与x轴的交点,得到其横坐标,即为
第四章 一次函数
2.要点精析:“建模”可以把实际问题转化为关于一次 函数的数学问题,它的关键是确定函数与自变量之间 的关系式,并确定实际问题中自变量的取值范围.
知1-讲
例1 某种摩托车的油箱加满油后,油箱中的剩余油量y(L)与摩托车 行驶路程x ( km )之间的关系如图所示.根据图象回答下列问题: (1)油箱最多可储油多少升? (2)一箱汽油可供摩托车行驶多少 千米? (3)摩托车每行驶100 km消耗多少 升汽油? (4)油箱中的剩余油量小于1 L时, 摩托车将自动报警.行驶多少千
知1-练
1 (中考·北京)一家游泳馆的游泳收费标准为30元/次,若购买会员年
卡,可享受如下优惠:
会员年卡类型
办卡费用/元
每次游泳收费/元
A类
50
25
B类
200
20
C类
400
15
例如,购买A类会C员年卡,一年内游泳20次,消费50+25×20=
550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最
知2-讲
1.一知次识函点数和一元一次方程的联系:任何一个以x为未知数的一元
一次方程都可以变形为ax+b=0(a≠0,a,b为常数)的形式, 所以解一元一次方程可以转化为:求一次函数y=ax+b(a≠0, a,b为常数)的函数值为0时,自变量x的取值;反映在图象上, 就是直线y=ax+b与x轴交点的横坐标. 2.利用一次函数图象解一元一次方程的步骤: (1)转化:将一元一次方程转化为一次函数; (2)画图象:画出一次函数的图象; (3)找交点:找出一次函数图象与x轴的交点,得到其横坐标,即为
第四章 一次函数
《一次函数》PPT课件(第2课时)

k = -1,
{2k + b = 0,
由题意得
k = -1,
{b = 2.
解得
∴y=-x+2.
利用一次函数解决实际问题
例3“黄金1号”玉米种子的价格为5 元/kg,如果一次
购买2 kg 以上的种子,超过2 kg 部分的种子的价格打
8 折.
(1)填写下表:
购买量/kg 0.5 1 1.5 2 2.5 3 3.5 4 …
子按 4元/kg计价. 因此,写函数解析式与画函数图象时,
应对0 ≤ ≤ 2和x>2分段讨论.
解: (2)设购买量为x千克,付款金额为y元.
当0 ≤ ≤ 2时,y=5x;
当x>2时,y=4(x-2)+10=4x+2.
5 x(0≤x≤2),
y
4 x 2( x 2).
分段函数
注意:1.它是一个函数;
y
注意:此题有两种情况.
2
解:设一次函数的解析式为y=kx+b(k≠0).
∵一次函数y=kx+b的图象过点(0,2),
O
∴b=2.
则
2
∵一次函数的图象与x轴的交点是( ,0),
k
1
2
2
2
k
2, 解得k=1或-1.
∴此一次函数的解析式为y=x+2或y=-x+2.
x
y=kx+b(k≠0).
把x=3,y=5;x=-4,y=9 分别代入上式,得
3k+b=5,
-4k+b=-9,
k=2,
解方程组得
b=-1.
这个一次函数的解析式为 y=2x-1.
一次函数的应用(2)精品PPT教学课件

(2) yΒιβλιοθήκη 1 2x1
2020/12/6
10
1,一次招聘会上,A,B两公司都在招聘销 售人员。A公司给出的工资待遇是:每月1000 元基本工资,另加销售额的2﹪作为奖金;B 公司给出的工资待遇是:每月600元基本工资, 另加销售额的4%作为奖金。如果你去应聘, 那么你将怎样选择?
2020/12/6
11
2020/12/6
1
2020/12/6
2
用一次函数解决实际问题的基本步骤是:
(1)先判断问题中的两个变量之间是不 是一次函数关系。
(2)求得函数解析式。
(3)利用函数解析式或其图象解决实际 问题。
2020/12/6
3
确定两个变量是否构成一次函数的关系 的方法有:
1.图象法: ●通过实验、测量获得数量足够多的两 个变量的对应值;
(2)当小聪到达“飞瀑“时,小慧离“飞瀑”还有多少km?
解:设经过t小时,小聪与小慧离“古刹”的路程分别为s1,s2,由题意得 S1=36t,s2=26t+10.
在直角坐标系中画出直线
55
50
S1=36t和直线s2=26t+10.
45
观察图象,得
42.5 40
36
(1)两条直线S1=36t,
35 30
2,某商场要印制商品宣传材料,甲印刷厂的 收费标准是:每份材料收1元印刷费,另收 1500元制版费;乙印刷厂的收费标准是:每份 材料收2.5元印制费,不收制版费。 (1)分别写出两厂的收费y(元)与印制数量x (份)之间的关系式;
(2)在同一直角坐标系中画出它们的图象。 (3)根据图象回答下列问题: 印制800份宣传材料时,选择哪一家印刷厂比较 合算?商场计划花费3000元用于印刷宣传材料, 找哪一家印刷厂能印刷宣传材料多一些?
一次函数的应用课件(共31张PPT)

(0,b)
直线
未知数
方程或方程组
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一条 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 时,y随x的 而 ;当 时,y随x的 而 .
(1)完成下面的表格
(2)你能探索L与n之间的函数解析式吗?这个函数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
14
17
20
北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。假定每台计算机的运费如下表,求
华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上.
(2)你能利用(1)中的图象,写出y与x的函数表达式吗?
(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?
10.6 一次函数的应用
1.一次函数图象的画法.
通常过 , 两点画一条 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法.
先设出表达式中的 ,再根据所给条件,利用 确定这些未知数.这种方法叫待定法.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.
梯形个数n
1
2
3
4
5
6
…
所拼得四边形的周长L
直线
未知数
方程或方程组
3.一次函数的图象与性质.
图象:一次函数y=kx+b(k≠0)的图象是一条 ,通常叫做直线y=kx+b.
性质:对于一次函数y=kx+b,当 时,y随x的 而 ;当 时,y随x的 而 .
(1)完成下面的表格
(2)你能探索L与n之间的函数解析式吗?这个函数是一次函数吗?试写出L与n的函数解析式。
(3)求n=20时L的值。
14
17
20
北京某厂和上海某厂同时制成电子计算机若干台,北京厂可支援外地10台,上海厂可支援外地4台,现在决定给重庆8台,汉口6台。假定每台计算机的运费如下表,求
华氏温度y看作x的函数,建立直角坐标系,把表中每一对(x,y)的值作为点的坐标,在直角坐标系中描出表中相应的点,观察这些点是否同在一条直线上.
(2)你能利用(1)中的图象,写出y与x的函数表达式吗?
(3)除了小亮所说的方法外,你能通过分析上表中两个变量间的数量关系,判断它们之间是一次函数关系吗?
(4)你能求出华氏温度为0度(即0˚F )时,摄氏温度是多少度?
10.6 一次函数的应用
1.一次函数图象的画法.
通常过 , 两点画一条 ,就是函数y=kx+b(k≠0)的图象.
2.待定系数法.
先设出表达式中的 ,再根据所给条件,利用 确定这些未知数.这种方法叫待定法.
在例1 的解决过程中,是从现实生活中抽象出数学问题,用数学符号建立函数表达式,表示数学问题中变量之间的数量关系和变化规律.因此函数也是一种重要的数学模型.
梯形个数n
1
2
3
4
5
6
…
所拼得四边形的周长L
北师大版八年级数学上册《一次函数的应用》一次函数PPT课件(第2课时)

际意义;
2.通过已知条件,在图象上找到对应的点,由点的横坐标或者纵坐标的
值读出要求的值.
典例精析
例2.某种摩托车的油箱加满油后,油箱中的剩余油量y(L)与摩托车行驶路程x
( km )之间的关系如图所示.根据图象回答下列问题:
(1)油箱最多可储油多少升?
(2)一箱汽油可供摩托车行驶多少千米?
(3)摩托车每行驶100 km消耗多少升汽油?
y=0.5x+1有什么联系吗?
新知讲解
1.从“数”的方面看,当一次函数y=0.5x+1的因变量的值为0时,相应的自变
量的值即为方程0.5x+1=0的解.
2.从“形”的方面看,函数y=0.5x+1与x轴交点的横坐标,即为方程
0.5x+1=0的解.
归纳总结
一次函数与一元一次方程的关系
从数的角度看
求ax+b=0(a, b是
(2)干旱持续10天,蓄水量为多少?连续干旱23天呢?
解:求干旱持续10天时的蓄水量,也就是求t等于10时所对应的V的值.
当t=10时,V约为1000万米3.
同理可知当t为23天时,V约为750万米3.
新知讲解
(3)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后
将发出严重干旱警报?
解:当蓄水量小于400万米3时,将发出严重干旱警报,也就是当V 等
的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还
有20千米时,汽车一共行驶的时间是( C )
A.2小时
B.2.2小时
C.2.25小时
D.2.4小时
课堂练习
3.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速
2.通过已知条件,在图象上找到对应的点,由点的横坐标或者纵坐标的
值读出要求的值.
典例精析
例2.某种摩托车的油箱加满油后,油箱中的剩余油量y(L)与摩托车行驶路程x
( km )之间的关系如图所示.根据图象回答下列问题:
(1)油箱最多可储油多少升?
(2)一箱汽油可供摩托车行驶多少千米?
(3)摩托车每行驶100 km消耗多少升汽油?
y=0.5x+1有什么联系吗?
新知讲解
1.从“数”的方面看,当一次函数y=0.5x+1的因变量的值为0时,相应的自变
量的值即为方程0.5x+1=0的解.
2.从“形”的方面看,函数y=0.5x+1与x轴交点的横坐标,即为方程
0.5x+1=0的解.
归纳总结
一次函数与一元一次方程的关系
从数的角度看
求ax+b=0(a, b是
(2)干旱持续10天,蓄水量为多少?连续干旱23天呢?
解:求干旱持续10天时的蓄水量,也就是求t等于10时所对应的V的值.
当t=10时,V约为1000万米3.
同理可知当t为23天时,V约为750万米3.
新知讲解
(3)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后
将发出严重干旱警报?
解:当蓄水量小于400万米3时,将发出严重干旱警报,也就是当V 等
的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还
有20千米时,汽车一共行驶的时间是( C )
A.2小时
B.2.2小时
C.2.25小时
D.2.4小时
课堂练习
3.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速
北师大版八年级数学上册第四章一次函数第2课时一次函数的应用课件

5. 某拖拉机的油箱可储油40 L,加满油并开始工作后,油箱中的余油量y (L)与工作时间x(h)之间的关系如图所示.
(1)求y与x之间的函数关系式; (2)一箱油可供拖拉机工作几小时?
(1)y=-5x+40(0≤x≤8);(2)8 h.
B D
3. 汽车工作时油箱中的汽油量y(L)与汽车工作时间t(h)之间的函数关系
3. 一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程 kx+b=0 的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程 kx+b=0 的解.
1. 一次函数y=-2x+4的图象与y轴的交点坐标是( B )
A. (4,0)
B. (0,4)
C. (2,0)
D. (0,2)
2. 直线y=kx+b与x轴的交点坐标是(-3,0),则方程kx+b=0的解是 ( D )
A. x=2
B. x=-2
C. x=3
D. x=-3
3. 如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(a,2),则关于x的方 程 x+1=mx+n的解为 x=1.
4. 已知一次函数y=ax+b的图象如图所示: (1)关于x的方程ax+b=0的解是_x_=_-_4________; (2)关于x的方程ax+b=2的解是_x_=_0_________; (3)关于x的方程ax+b+1=0的解是__x_=_-_6_______.
7. 某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过 规定,则需要购买行李票.行李票费用y(元)是行李质量x(kg)的一次函数,其图 象如图所示,求这个一次函数的关系式.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在多少千米处?
加油多少升?
( ,6)
400千米 6-2=4升
图1
( ,2)
图1为加油后的图象
应用与延伸(1)
(2)若乙地与加油站之间还有250千米, 要到达乙地所加的油是否够用?
答:够
理由:观察图象
知400千米处设加
油站,到700米处
图1
油用完,说明所
ቤተ መጻሕፍቲ ባይዱ
加油最多可供行
驶300千米。
练一练
某植物t天后的高度为ycm,图中的l 反映了y 与t之间的关系,根据图象回答下列问题:
t/天
7
(3)按照这个规律,预计持续干旱多
少天水库将干涸?
V/万米3
60天后水库将干涸
2020/10/16
60 t/天
8
合作探究:还能用其它方法解本题吗?
(1)设v=kt+1200 (2)将t=10, V=1000代入 V=kt+1200中求得 k= -20.所以 V= -20 t+1200 (3)再代入各组
(1)旅客最多可免费 携带多少千克行李?
30千克
⑵超过30千克后,每 千克需付多少元?
0.2元
30
深入探究
1.如图,
(1)当y=0时,x=__-_2__ ;
(2)直线对应的函数表达式是
y_=__0_._5_x_+_1__.
2020/10/16
21
一元一次方程0.5x+1=0与一次 y
3
函数y=0.5x+1有什么联系? 2
演讲人: XXX
PPT文档·教学课件
谢谢大家!本文档为精心编制而成,您可以在下载后自由修改和打印,希望下载对您有帮助!
1
1.从“数”的方面看, -3 -2 -1 0 1 -1
2
3x
当一次函数 y=0.5x+1的函数值y=0时,相
应的自变量的值即为方程0.5x+1=0解。
2.从“形”的方面看,函数y=0.5x+1
与x轴交点的横坐标,即为方程
0.5x+1=0的解。
2020/10/16
22
THANKS
FOR WATCHING
11
(1)油箱最多储油多少升?
解:观察图像得,当x=0时,y=10.因此 油箱最多可储油10升。
2020/10/16
12
(2)一箱汽油可供摩托车行驶多少千米?
当 y=0时, x=500,因此一箱汽油可供摩托车 行驶500千米.
2020/10/16
13
(3)摩托车每行驶100千米消耗多少升?
x从100增加到200时,y从8减少到6,减少了2,因此摩
V/万米3
t(或 V)的值,
t/天
对应的求V(或t)的值。
例1 某种摩托车的油箱加满油后,油箱 中的剩余油量y(升)与摩托车行驶路程 x(千米)之间的关系如图所示:
2020/10/16
10
例1 某种摩托车的油箱加满油后,油箱 中的剩余油量y(升)与摩托车行驶路程 x(千米)之间的关系如图所示:
2020/10/16
Y/cm
24
l
(12,21)
21
18
15
12 9
(3,12)
6
3
2 4 6 8 1012 14
(1)植物刚栽的时候多高?
9cm
2)3天后该植物多高?
12cm
3)几天后该植物高度可达
21cm?
t/天
12天
试一试
某地长途汽车客运公司规定旅客可随身携带一 定质量的行李,如果超过规定,则需要购买行 李票,行李票费用y元与行李质量的关系如图:
2.分析已知(看已知的是自变量还是因 变量),通过做x轴或y轴的垂线,在图 象上找到对应的点,由点的横坐标或者 纵坐标的值读出要求的值.
3.利用数形结合的思想:
将数转化为形 由形定数
上题中摩托车行至加油站加完油后,摩托车油 箱的剩余油量y(L)和摩托车行驶路程x(km) 之间的关系变为图1:
试问:⑴加油站
由于持续高温和连日无雨,某水库的蓄水量 随着时间的增加而减少.干旱持续时间 t(天) 与蓄水量V(万米 )的关系如图所示,
V/万米3
t/天
想一想 (1)干旱持续10天,蓄水量为多少?连续 干旱23天呢?
分析:干旱10天求蓄水量就是已知自变 量t=10求对应的因变量的值----数
体现在图象上就是找一个点,使点的 横坐标是10,对应在图象上找到此点 纵坐标的值V,点(10,V)------形
一次函数图像的应用(一)
知识回顾:
一次函数图象可获得哪些信息?
1、由一次函数的图象可确定k 和 b 的符号;
2、由一次函数的图象可估计函数的变化趋势;
3、可直接观察出x与y 的对应值;
4、由一次函数的图象与y 轴的交点的坐标可 确定b值,从而由待定系数法确定一次函数的 图象的解析式。
干旱造成的灾情
托车每行驶100km消耗2L汽油.
(100,8) (200,6)
2020/10/16
14
(4) 油箱中的剩余油量小于1升时将自动报警.
行驶多少千米后,摩托车将自动报警? 当y=1时,x=450,因此行驶450千米后, 摩托车将自动报警.
2020/10/16
(450,1)
15
如何解答实际情景函数图象的信息? 1.理解横纵坐标分别表示的实际意义
答:持续干旱10天,储水量是1000万立方 米;持续干旱23天,储水量是750万立方 米。
V/万米3
(10,1000) (23,750)
t/天
(2)蓄水量小于400 万立方米时,将发生
严重的干旱警报.干旱多少天后将发出
干旱警报?干旱40天后将发出干旱警报
V/万米3
2020/10/16
(40,400)