利用三角形全等证明线段和差倍分问题

合集下载

人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

全等三角形的证明全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理(SSS):三边对应相等的两个三角形全等.(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.专题1、常见辅助线的做法典型例题找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

专题全等三角形常见辅助线做法及典型例题

专题全等三角形常见辅助线做法及典型例题

全等三角形辅助线做法总结 图中有角平分线;可向两边作垂线.. 也可将图对折看;对称以后关系现..角平分线平行线;等腰三角形来添.. 角平分线加垂线;三线合一试试看..线段垂直平分线;常向两端把线连.. 要证线段倍与半;延长缩短可试验..三角形中两中点;连接则成中位线.. 三角形中有中线;延长中线等中线..一、截长补短法和;差;倍;分截长法:在长线段上截取与两条线段中的一条相等的一段;证明剩余的线段与另一段相 等截取----全等----等量代换补短法:延长其中一短线段使之与长线段相等;再证明延长段与另一短线段相等延长 ----全等----等量代换例如:1;已知;如图;在△ABC 中;∠C =2∠B;∠1=∠2..求证:AB=AC+CD..2;已知:如图;AC ∥BD;AE 和BE 分别平分∠CAB 和∠DBA;CD 过点E .求证:1AE ⊥BE ; 2AB=AC+BD .二、图中含有已知线段的两个图形显然不全等或图形不完整时;添加公共边或一其中 一个图形为基础;添加线段构建图形..公共边;公共角;对顶角;延长;平行例如:已知:如图;AC 、BD 相交于O 点;且AB =DC;AC =BD;求证:∠A =∠D..三、延长已知边构造三角形例如:如图6:已知AC =BD;AD ⊥AC 于A ;BC ⊥BD 于B;求证:AD =BC四、遇到角平分线;可自角平分线上的某个点向角的两边作垂线“对折”全等例如:已知;如图;AC 平分∠BAD;CD=CB;AB>AD..求证:∠B+∠ADC=180..五、遇到中线;延长中线;使延长段与原中线等长“旋转”全等 例如:1如图;AD 为 △ABC 的中线;求证:AB +AC >2AD..三角形一边上的中线小于其他两边之和的一半2;已知:AB=4;AC=2;D 是BC 中点;AD 是整数;求AD..3;如图;已知:AD 是△ABC 的中线;且CD=AB;AE 是△ABD 的中线;求证:AC=2AE.六、遇到垂直平分线;常作垂直平分线上一点到线段两端的连线可逆 :遇到两组线段相等;可试着连接垂直平分线上的点 例如:在△ABC 中;∠ACB=90;AC=BC;D 为△ABC 外一点;且AD=BD;DE ⊥AC 交AC 的延长 线于E;求证:DE=AE+BC..七、遇到等腰三角形;可作底边上的高;或延长加倍法“三线合一”“对折”例如: 如图;ΔABC 是等腰直角三角形;∠BAC=90°;BD 平分∠ABC 交AC 于点D;CE 垂 直于BD;交BD 的延长线于点E..求证:BD=2CE..八、遇到中点为端点的线段时;延长加倍次线段例如:如图2:AD 为△ABC 的中线;且∠1=∠2;∠3=∠4;求证:BE +CF >EF九、过图形上某点;作特定的平行线“平移”“翻转折叠” 例如:如图;ΔABC 中;AB=AC;E 是AB 上一点;F 是AC 延长线上一点;连EF 交BC 于D; 若EB=CF..求证:DE=DF.. AD BCD CB A 110 图OC A EB D。

专题6 全等三角形与三条线段的和差问题(原卷版)

专题6 全等三角形与三条线段的和差问题(原卷版)

专题6 全等三角形与三条线段的和差问题(原卷版)类型一a=b+c或a=b-c类型解决策略一等量代换名师点金:通过图中线段来代换另一条线段,将线段的和差问题转化为证两线段相等的问题,通过全等得到线段等,直接代换,将分散的线段转化到同一直线上解决问题.模型一旋转型全等1.(2021秋•临沂期末)△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A,B重合),BE⊥CD交CD所在的直线于点E,交直线AC于F.(1)点D在边AB上时,如图,试探索AB、F A和BD之间的等量关系,并说明理由;(2)点D在AB的延长线或反向延长线上时,请选择一种情况,画出图形,写出AB、F A和BD之间的等量关系,并说明理由.模型二一线三垂直模型2.已知:如图,在△ABC中,∠BAC=90°,AB=AC,l是过点A的一条直线,BD⊥l,CE⊥l,垂足分别为D、E.(1)如图①,求证:DE=BD+CE;(2)若直线l绕A点旋转到图②位置时,其余条件不变,请把图形补充完整,写出BD、CE与DE之间的数量关系,并证明你的结论.模型三一线三等角(不为直角)模型3.(2023春•惠民县期末)如图,CD是经过∠BCA顶点C的一条直线,CA=CB,E,F分别是直线CD上两点,且∠BEC=∠CF A=α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上.①如图1,若∠BCA=90°,α=90°,证明BE=CF.②如图2,若0°<∠BCA<180°,请添加一个关于α与∠BCA关系的条件,使①中的结论仍然成立,并说明理由.(2)如图3,若直线CD经过∠BCA的外部,α=∠BCA,请提出关于EF,BE,AF三条线段数量关系的合理猜想,并简述理由.解决策略二截长补短法名师点金:截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段;或者将短线段直接延长至等于长线段。

全等三角形重要题型(手拉手模型、截长补短、中线倍长)

全等三角形重要题型(手拉手模型、截长补短、中线倍长)

全等三角形重要题型(手拉手模型、截长
补短、中线倍长)
全等三角形是高中数学中的重要题型之一。

其中,手拉手模型是一种常用的构造方法。

这种模型由两个等腰三角形或正方形组成,且顶角的顶点为公共顶点。

例如,在直线ABC的
同侧作两个等边三角形ΔABD和ΔBCE,连结AE和CD,可
以证明ΔABE≅ΔDBC,AE=DC,且AE与DC之间的夹角为
60度。

此外,还可以得到ΔAGB≅ΔDFB和ΔEGB≅ΔCFB,
BH平分∠AHC,XXX等结论。

除此之外,截长补短法也是证明线段和差倍分关系时常用的方法。

具体来说,截长法是在较长线段中截取一段等于另外两条线段中的一条,然后证明剩下部分等于另一条;而补短法则是将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段或延长一条较短线段等于较长线段,然后证明延长部分等于另一条较短线段。

举个例子,如果有两个正方形ABCD和DEFG,连结AG
和CE,二者相交于点H,我们可以通过全等三角形来证明
ΔADG≅ΔCDE,AG=CE,以及AG与CE之间的夹角为多少度。

另外,也可以考虑是否有HD平分∠AHE。

在另一个例子中,如果有两个等腰直角三角形ADC和XXX,连结AG和CE,二者相交于点H,同样可以采用全等三角形的方法来证明ΔADG≅ΔCDE,AG=CE,以及AG与CE之间的夹角为多少度,同时还可以考虑是否有HD平分∠AHE。

全等三角形之截长补短法

全等三角形之截长补短法

全等三角形模型之截长补短法若遇到证明线段的和差倍分关系时,通常考虑“截长补短法“”,构造全等三角形.(1)截长法:在较长线段中截取一段等于另两条较短线段中的一条,然后证明剩下部分等于另一条.即证明“短1+短2=长”,“截长法”是在“长”线段上截取一条和“短1”相等长度的线段,再证明剩下的部分和“短2”等长.(2)补短法:将一条较短线段延长,延长部分等于另一条较短线段,然后证明新线段等于较长线段.即证明“短1+短2=长”,“补短法”是将“短1”线段延长,延长的长度等于“短2”的长度,再证明新线段与“长”线段长度相等.【典型例题】1.【模型分析】当题目中出现线段的和差关系时,考虑用截长补短法,该类题目中常出现等腰三角形、角平分线等关键词句,采用截长补短法进行证明.问题:如图,在△ABC中,AD平分∠BAC交BC于点D,且∠B=2∠C,求证:AB+BD=AC.截长法:在AC上截取AE=AB,连接DE,证明CE=BD即可.补短法:延长AB至点F,使AF=AC,连接DF,证明BF=BD即可.请结合【模型分析】证明结论.求证:AB+BD=AC.【截长法】【补短法】2.已知△ABC中,AB=AC,∠A=108°,BD平分∠ABC,求证:BC=AB+CD.3.课堂上,老师提出了这样一个问题:如图1,在△ABC中,AD平分∠BAC交BC于点D,且AB+BD=AC.求证:∠ABC=2∠ACB.小明的方法是:如图2,在AC上截取AE,使AE=AB,连接DE,构造全等三角形来证明结论.(1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段AB构造全等三角形进行证明.辅助线的画法是:延长AB至F,使BF=BD,连接DF.请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;(2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:如图3,点D在△ABC的内部,AD,BD,CD分别平分∠BAC,∠ABC,∠ACB,且AB+BD =AC.求证:∠ABC=2∠ACB.请你解答小芸提出的这个问题;(3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:如果在△ABC中,∠ABC=2∠ACB,点D在边BC上,AB+BD=AC,那么AD平分∠BAC.小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.4.阅读:探究线段的和差倍分关系是几何中常见的问题,解决此类问题通常会用截长法或补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.(1)请完成下题的证明过程:如图1,在△ABC中,∠B=2∠C,AD平分∠BAC.求证:AB+BD=AC.证明:在AC上截取AE=AB,连接DE(2)如图2,AD∥BC,EA,EB分别平分∠DAB,∠CBA,CD过点E,求证:AB=AD+BC.【小试牛刀】1.如图,△ABC中,∠C=2∠A,BD平分∠ABC交AC于D,求证:AB=CD+BC.(用两种方法)2.如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC=9,则BD的长为.3.已知,如图,BD是△ABC的角平分线,AB=AC,(1)若BC=AB+AD,请你猜想∠A的度数,并证明;(2)若BC=BA+CD,求∠A的度数?(3)若∠A=100°,求证:BC=BD+DA.4.已知:如图所示,四边形ABCD中,AD∥BC,O是CD上一点,且AO平分∠BAD,BO 平分∠ABC.(1)求证:AO⊥BO;(2)若AO=3,BO=4,求四边形ABCD的面积.5.如图,已知△ABC中,∠A=60°,D为AB上一点,且AC=2AD+BD,∠B=4∠ACD,则∠DCB的度数是.。

人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

人教版八年级数学上册第十二章全等三角形证明方法归纳及典型例题

全等三角形的证明全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理(SSS):三边对应相等的两个三角形全等.(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.专题1、常见辅助线的做法典型例题找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

初中数学—全等三角形解题方法、思路及技巧汇总

初中数学—全等三角形解题方法、思路及技巧汇总

初中数学—全等三角形解题方法、思路及技巧汇总全等三角形是初中数学中非常重要的内容,今天我们就把初二数学中,与全等三角形相关的方法、思路及技巧都来整理一下。

一、全等三角形的性质与判定。

五种判定方法:SSS,SAS,AAS,ASA,HL,其中HL是边边角(SSA的特例)。

全等三角形的对应边相等,对应角相等,一句话,凡是对应的,都相等。

二、寻找全等三角形常用方法1、直接从结论入手一般会有以下几种要求证的方向:•线段相等•角相等•度数•线段或者线段的和、差、倍、分关系然后根据题目要求证的方向,找到要证明的相关量分别在哪两个三角形中,再围绕这两个三角形进行研究。

2、从已知条件入手把所有能标注在图上的已经条件标注出来,注意用不同的标示进行区分,比如第一组相等的线段用一条短竖,第二组相等的线段用两条短竖,再比如第一组相等的角用一个小圆弧,第二组相等的角就用两个小圆弧等。

然后通过已知条件找到相关的两个三角形,再进行分析。

记住一句话:“充分利用已知条件”。

3、把已经条件和结论综合起来考虑找到所有的已知条件和隐藏条件,结合结论,找出可能全等的两个三角形,再进行分析。

4、如果上述方法都确定行不通,就考虑添加辅助线来构造全等三角形。

三、构造全等三角形的一般方法1、题目中出现角平分线(1)通过角平分线上的某个已知点,向两边作垂线,这是利用角平分线的性质定理或者逆定理来构造的全等三角形(2)在角平分线的某个已知点,作角平分线的垂线和两边相交,构造全等三角形。

(3)在该角的两边,距离角的顶点相等长度的位置上截取两点,分别连接这两点与角平分线上的某已知点,构造全等三角形2、题目中出现中点或者中线(中位线)(1)倍长中线法,把中线延长至二倍位置(2)过中点作某一条边的平行线3、题目中出现等腰或者等边三角形(1)找中点,倍长中线(2)过顶点作底边的垂线(3)过某已知点作一条边的平行线(4)三线合一4、题目中出现三条线段之间的关系通常用截长补短法,在某条线段上截取一段线段,使之与特定的线段相等,或者将某条线段延长,使之与特定线段相等。

初中几何全等三角形常见辅助线作法

初中几何全等三角形常见辅助线作法

全等三角形常见辅助线作法【例1】.已知:如图6, 4BCE、△ACO分别是以8E、为斜边的直角三角形,且= ACDE是等边三角形.求证:△ A3c是等边三角形.【例2】、如图,已知BC>AB, AD=DCo BD 平分NABC。

求证:ZA+ZC=180°.线段的数量关系: 通过添加辅助线构造全等三角形转移线段到一个三角形中证明线段相等。

1、倍长中线法【例.3]如图,己知在△ABC中,ZC = 90°, ZB = 30°, A。

平分NB4C,交BC于点D.求证:BD = 2CD证明:延长DC到E,使得CE=CD,联结AEZC=90°A AC ± CDVCD=CEAD=AEVZB=30° ZC=90°ZBAC=60°YAD 平分NBACJ ZBAD=30°A DB=DA ZADE=60°VDB=DA:.BD=DE/. BD=2DC4B D笫3题•/ ZADE=60° AD=AEA △ ADE为等边三角形,AD=DE【例4.】如图,。

是AABC的边上的点,且CD = AB, ZADB = ZBAD, AE是AARD的中线。

求证:AC = 2AEo 证明:延长AE至IJ点F,使得EF=AE联结DF在4ABE和4FDE中BE=DEZAEB=ZFEDAE=FE/.△ABE 也AFDE (SAS) A AB=FD ZABE=ZFDE VAB=DCJ FD = DCZADC=ZABD+ZBAD ZADB = ZBAD,ZADC=ZABD+ZBDA VZABE=ZFDE・・・NADONADB+NFDE即ZADC= ZADF ffiAADF 和AADC 中AD=AD< ZADF= ZADC、DF =DC・•・△ ADF也ADC(SAS) AAF=ACAC=2AE【变式练习】、如图,AABC中,BD二DOAC, E是DC的中点,求证:AD平分NBAE.【小结】熟悉法一、法三“倍长中线”的辅助线包含的基本图形“八字型”和“倍长中线”两种基本操作方法, 倍长中线,或者倍长过中点的一条线段以后的对于解决含有过中点线段有很好的效果。

三角形全等的应用3 证多条线段之间的和差倍分及不等关系(含详细解答)

三角形全等的应用3 证多条线段之间的和差倍分及不等关系(含详细解答)

四、利用全等三角形证线段之间的和差倍分问题证一条线段等于其它两条线段的和或差,常将其转化成证明线段的相等问题,常用的方法如下:(1)利用图形中已有的线段和差关系进行证明。

(2)延长一条线段,作出两条线段的和,然后证明这条线段等于第三条线段。

(3)在第三条线段上截取一段等于第一条线段,然后证余下的线段等于第二条线段。

后两种方法,就是通常所说的截长补短。

例1.已知:如图在△ABC中,∠ABC的平分线与∠ACB相邻外角∠ACG的平分线相交于D,DE∥BC交AB于E,交AC于F,求证:EF=BE-CF分析:要证EF=BE-CF,而图中EF=ED-FD,若证出BE=ED,CF=FD,则此题可证出。

(证明略)例2.已知:如图,四边形ABCD中,AC平分∠BAD,CE⊥AB 于E,且∠B+∠D=180°,求证:AE=AD+BE分析:要证AE=AD+BE,则可转化为证AE-BE=AD,则需找到一条线段使它等于AE-BE,再证其与AD相等,在EA上截取EF=BE,连结CF,问题转化为证AF=AD,即要证出△AFC≌△ADC证明:在EA上截取EF=BE,连结CF∵CE⊥AB于E(已知)∴CF=CB(在线段垂直平分线上的点,到线段两个端点的距离相等)∴∠1=∠B(等边对等角)∵∠1+∠2=180°(平角定义)∠B+∠D=180°(已知)∴∠2=∠D(等角的补角相等)(再往下证明略)3.如图,△ABC是等边三角形,∠BDC=120°,且BD=CD,∠MDN=60°,AB=12cm. (1)证明MN=BM+NC.(2)求△AMN的周长。

(3)若点M、N分别是AB、CA延长线上的点,,请说明BM、MN、NC之间的关系。

分析:(1)证明MN=BM+NC.是典型的三条线段之间的关系的题型,这种题型一般是采用“截长补短法”来证明。

“截长法”是在最长的线段MN上找一点F,将MN截为两部分(如图4),比如截为MN=MF+NF,且使MF=BM(或NF=NC).再求证剩余的线段NF=NC,从而得到MN=BM+NC。

倍长中线模型,构造全等证明线段或角之间的关系

倍长中线模型,构造全等证明线段或角之间的关系

倍长中线模型,全等三角形搭桥,难题分析讲解三角形是初中数学里最基本的几何图形,而其边上,又是很常见的条件。

当涉及三角形问题时,常采用延长中线一倍的办法,即倍长中线法,实现角和线段的转化,以此来作辅助线解题。

好处是通过此法构造全等三角形继而得到平行,也可以证明三角形全等,可将分散的条件集中在一个三角形内解题,常常出奇制胜,化腐朽为神奇。

且看模型,和模型产生的基本结论.倍长中线法的过程:延长某某到某点,使某某等于某某,使什么等于什么(延长的那一条),用SAS证全等(其中有对顶角相等)例1:△ABC 中,AB=5,AC=3,求中线AD 的取值范围。

分析:延长AD 至E ,使ED=AD ,连接BE ,见模型1,可证△ABD 与△ECD 全等,把AB 边转移到EC 上了,再看△AEC ,用第三边大于两边之差小于两边之和可解。

【归纳总结】1. 三角形的三边关系是求线段范围的常用方法.2. 出现中线时,常考虑倍长中线构造全等三角形,实现线段的转化.例 2:已知在△ABC 中,AD 是 BC 边上的中线, E 是AD 上的一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF延长ED 至G ,使GD=ED ,利用SAS 可证△BED与△CGD 全等,把BE 转移到GC 上,∠G=∠1,由已知BE=AC ,得到GC=AC ,由等腰三角形性质可知∠G=∠3,通过∠G 传递,得到∠2=∠3,得证AF=EF例3:已知:如图,在△ABC 中,AB ≠AC ,D 、E 在BC 上,且DE=EC ,过D 作DF//BA 交AE 于点F ,DE=AC ,求证:AE 平分∠BAC证明:如图,延长FE 到G ,使EG=EF ,连接CG .在△DEF 和△CEG 中,∵ ,∴△DEF ≌△CEG . ∴DF=GC ,∠DFE=∠G .∵DF ∥AB ,∴∠DFE=∠BAE .∵DF=AC ,∴GC=AC .∴∠G=∠CAE .∴∠BAE=∠CAE .即AE 平分∠BAC⎪⎩⎪⎨⎧==FG FE CEG =∠DEF ∠EC ED例4:如图;在△ABC中,AB=AC,延长AB到D,使得BD=AB,取AB的中点E,连结CD和CE,求证:CD=2CE证明:延长CE至F,使EF=CE,则CF=2CE易证△ACE≌△BFE,∴AC=BF=AB=BD,∠ABF=∠BAC∴∠DBC=∠ACB+∠BAC=∠ABC+∠ABF=∠FBC∴△BCF≌△BCD(SAS)∴CD=CF=2CE【融会贯通】1、在四边形ABCD中,AB∥DC,E为BC边的中点,∠BAE=∠EAF,AF与DC的延长线相交于点F。

三角形全等之辅助线——截长补短经典习题

三角形全等之辅助线——截长补短经典习题

三角形全等之截长补短一、知识点睛截长补短:题目中出现线段间的和差倍分时,考虑截长补短;截长补短的目的是把几条线段间的数量关系转为两条线段的等量关系.二、精讲精练(可以尝试用多种方法)1. 已知:如图,在△ABC 中,∠1=∠2,∠B =2∠C .求证:AC =AB +BD .2. 已知:如图,在正方形ABCD 中,AD =AB ,∠D =∠ABC =∠BAD =90°,E ,F 分别为DC ,BC 边上的点,且∠EAF =45°,连接EF .求证:EF =BF +DE .3. 已知:如图,在△ABC 中,∠ABC =60º,△ABC 的角平分线AD ,CE 交于点O .求证:AC =AE +CD .21D CB A 21D CB A F EA BDCF EAB DC21D CB A AEBD COA EBD CO- 2 -4. 已知:如图,在△ABC 中,∠A =90º,AB =AC ,BD 平分∠ABC ,CE ⊥BD 交BD 的延长线于点E .求证:CE =21BD .5. 如图,在梯形ABCD 中,AD ∥BC ,CE ⊥AB 于E ,△BDC 为等腰直角三角形,∠BDC =90°,BD CD ,CE 与BD 交于F ,连接AF .求证:CF =AB +AF .6.如图,△ABC 中,AM 是BC 边上的中线,求证:ABCDEAB CDEB F CE DA B F C E D A。

初中阶段求证线段相等的几种证法

初中阶段求证线段相等的几种证法

线段相等的几种证法在数学教学过程中,证明线段相等是经常遇到的问题,选用恰当的方法,可取得事半功倍的效果.现依据教学经验,总结出几种证明线段相等的基本方法,以供参考.一、利用全等三角形的性质证明线段相等当所要证明的线段分属两个三角形时,应首先分析这两个三角形是否有等量关系,要证其全等尚缺少什么条件.然后通过证明其他三角形全等或运用其他方法,补足所缺条件.若无现成的三角形,需添加辅助线构成全等三角形.例1、已知:平行四边形ABCD的对角线AC、BD相交于O,过O作直线交AB于E,交CD于F.求证:AE=CF.分析:要证AE=CF,需证在这两个三角形中有一对对顶角,又根据平行四边形的性质知道,对边平行,对角线互相平分.此题得证.例2、正方形ABCD,G为AB上任一点,EF⊥DG,交DA、CB分别于E、F.求证:EF=DG.分析:(如图1)此题EF不在三角形中,可过E作EH⊥BC于H,构成Rt△EHF再利用全等三角形的性质证明线段相等.二、用中介线段证明线段相等当所要证明的两条线段中有一条或两条都不属于三角形的边,且不在一条直线上时,一般要寻求与两线段相等的第三条线段作媒介.例3、已知:△ABC中,∠B的平分线交AC于D,过D作DE∥BC,交AB于E,过E 作EF∥AC,交BC于F.求证:BE=CF.分析:所要证的BE与CF两条线段不是同一三角形的边.由题设可知四边形EFCD为平行四边形,得CF=DE,所以需证BE=DE,由角平分线及等腰三角形的判定可证.本题中是以DE作为媒介.三、利用等腰三角形的判定或平行四边形的性质证明线段相等如果两条所证线段在同一三角形中,证全等一时难以证明,可以考虑用此法.例4、已知在△ABC中,AD是BC边上的中线,E是AD上的一点,且BE=AC,延长BE交AC于F.求证:AF=EF.分析:延长AD到G,使DG=AD,连结BG.得到△ADC≌△GDB,可知AC=GB,∠FAE =∠BGE.再由BE=AC推出BE=BG.利用对顶角相等和等角对等边可得出结论.四、利用三角形(或梯形)的中位线证明线段相等若两条线段在同一直线上,且图中有关线段中点,常证明两线段是过三角形一边的中点且平行于另一边的直线所分第三边的两部分;或利用平行四边形的性质来证对角线相互平分.应用这种方法证题,若图形不完整,可适当添加辅助线将图形补充完整.例5、四边形ABCD中,对角线BD与AC相等且相交于E,M、N分别为AD、BC的中点,线段MN与AC、BD分别相交于F、G.求证:EF=EG分析:要证EF=EG,需证∠EFG=∠EGF.此题中出现了两个中点,但这两点的连线不是中位线,所以应增加AB的中点P,连结MP、NP,利用三角形中位线性质,可证MP=NP、NP∥AC和MP∥BD.再利用平行线性质和等腰三角形的判定可证结论.五、利用线段中垂线和角平分线的性质证明线段相等当题目中出现线段垂直平分线或角平分线时,常利用线段中垂线的性质和角平分线的性质证明线段相等.例6、已知:ABC中,AB=AC,AD是BC边上的中线,AB的垂直平分线交AD于O,∠B的平分线交AD于I.求证:(1)OA=OB=OC;(2)I到BC、CA、AB的距离相等.分析:由于ABC是等腰三角形,AD为底边上的中线,同时也是底边上的高,所以O点既在BC边的垂直平分线上,又在AB的垂直平分线上.利用线段垂直平分线的性质易证得⑴,利用角平分线的性质易证得⑵.六、利用相似三角形或比例线段证明线段相等若题目中出现比例线段,四条比例线段所在的两个三角形不相似或不能构成两个三角形.此时需要添加辅助线,作平行线转移比例,构造出相似三角形,然后利用相似三角形的性质来证.例7、直线EFD与△ABC的边AB、AC分别交于F、D,交CB边的延长线于E,且=求证:BE=AD分析:(如图2)由四条线段成比例,但这四条线段又不能构成两个三角形,可利用作平行线构造相似三角形.过D作DG∥BC,交AB于G,可得出△GDF∽△BEF、△ADG∽△ACB,由相似三角形的性质得出==通过转移比例得出:=,证得两线段相等.上述几种证明线段相等的方法,有一定的规律可循.但在遇到此类问题是仍要具体问题具体分析,灵活运用解题方法.在教学中,通过归类总结,使学生掌握解答问题的技巧,可以提高解题效率,锻炼学生的思维能力,从而提高学生素质.如果在教学中能够引导学生灵活地使用这些方法,则可使学生在解题中拓展思路,培养其分析问题解决问题的能力,提高其数学思维品质。

2023中考数学常见几何模型《全等模型-倍长中线与截长补短》含答案解析

2023中考数学常见几何模型《全等模型-倍长中线与截长补短》含答案解析

专题01 全等模型--倍长中线与截长补短全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。

模型1.倍长中线模型【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。

【常见模型及证法】1、基本型:如图1,在三角形ABC 中,AD 为BC 边上的中线.证明思路:延长AD 至点E ,使得AD =DE . 若连结BE ,则BDE CDA ∆≅∆;若连结EC ,则ABD ECD ∆≅∆;2、中点型:如图2,C 为AB 的中点.证明思路:若延长EC 至点F ,使得CF EC =,连结AF ,则BCE ACF ∆≅∆;若延长DC 至点G ,使得CG DC =,连结BG ,则ACD BCG ∆≅∆.3、中点+平行线型:如图3, //AB CD ,点E 为线段AD 的中点.证明思路:延长CE 交AB 于点F (或交BA 延长线于点F ),则EDC EAF ∆≅∆.1.(2022·山东烟台·一模)(1)方法呈现:如图①:在ABC 中,若6AB =,4AC =,点D 为BC 边的中点,求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E 使DE AD =,再连接BE ,可证ACD EBD △≌△,从而把AB 、AC ,2AD 集中在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在ABC 中,点D 是BC 的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,判断BE CF +与EF 的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD 中,//AB CD ,AF 与DC 的延长线交于点F 、点E 是BC 的中点,若AE 是BAF ∠的角平分线.试探究线段AB ,AF ,CF 之间的数量关系,并加以证明.2.(2022·河南南阳·中考模拟)【教材呈现】如图是华师版八年级上册数学教材第69页的部分内容:如图,在ABC 中,D 是边BC 的中点,过点C 画直线CE ,使//CE AB ,交AD 的延长线于点E ,求证:AD ED=证明∵//CE AB (已知)∴ABD ECD ∠=∠,BAD CED ∠=∠(两直线平行,内错角相等).在ABD △与ECD 中,∵ABD ECD ∠=∠,BAD CED ∠=∠(已证),BD CD =(已知),∴()A.A.S ABD ECD △△≌,∴AD ED =(全等三角形的对应边相等).(1)【方法应用】如图①,在ABC 中,6AB =,4AC =,则BC 边上的中线AD 长度的取值范围是______.(2)【猜想证明】如图②,在四边形ABCD 中,//AB CD ,点E 是BC 的中点,若AE 是BAD ∠的平分线,试猜想线段AB 、AD 、DC 之间的数量关系,并证明你的猜想;(3)【拓展延伸】如图③,已知//AB CF ,点E 是BC 的中点,点D 在线段AE 上,EDF BAE ∠=∠,若5AB =,2CF =,求出线段DF 的长.3.(2022·河北·中考模拟)倍长中线的思想在丁倍长某条线段(被延长的线段a 要满足两个条件:①线段a 一个端点是图中一条线段b 的中点;②线段a 与这条线段b 不共线),然后进行连接,构造三角形全等,再进一步将某些线段进行等量代换,再证明全等或其他的结论,从而解决问题.【应用举例】如图(1),已知:AD 为ABC ∆的中线,求证:2AB AC AD +>.简证:如图(2),延长AD 到E ,使得DE AD =,连接CE ,易证ABD ECD ∆≅∆,得AB = ,在ACE ∆中,AC CE +> ,2AB AC AD +>.【问题解决】(1)如图(3),在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于F ,求证:AF EF =.(2)如图(4),在ABC ∆中,90,A D ∠=︒是BC 边的中点,E F 、分别在边AB AC 、上,DE DF ⊥,若3,4BE CF ==,求EF 的长.(3)如图(5),AD 是ABC ∆的中线,,AB AE AC AF ==,且90BAE FAC ∠=∠=︒,请直接写出AD 与EF 的数量关系_ 及位置关系_ .模型2.截长补短模型【模型解读】截长补短的方法适用于求证线段的和差倍分关系。

专题研究:全等三角形证明方法归纳及典型例题

专题研究:全等三角形证明方法归纳及典型例题

全等三角形的证明全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.专题1、常见辅助线的做法典型例题找全等三角形的方法:(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。

三角形中常见辅助线的作法:①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。

线段之间关系

线段之间关系

利用全等三角形证线段之间的和差倍分问题证一条线段等于其它两条线段的和或差,常将其转化成证明线段的相等问题,常用的方法如下:(1)利用图形中已有的线段和差关系进行证明。

(2)延长一条线段,作出两条线段的和,然后证明这条线段等于第三条线段。

(3)在第三条线段上截取一段等于第一条线段,然后证余下的线段等于第二条线段。

后两种方法,就是通常所说的截长补短。

例1、已知:如图在△ABC中,∠ABC的平分线与∠ACB相邻外角∠ACG的平分线相交于D,DE∥BC交AB 于E,交AC于F,求证:EF=BE-CF例2、已知:如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且∠B+∠D=180°,求证:AE=AD+BE例3、如图,△ABC是等边三角形,∠BDC=120°,且BD=CD,∠MDN=60°,AB=12cm.证明:(1)MN=BM+NC.(2)求△AMN的周长证明三条线段之间的不等关系判断几条(三条或四条)线段之间的大小关系,通常是将这几条线段通过等量关系放在同一个三角形中,运用三角形三边关系判断它们之间的大小关系。

这种等量关系通常是通过证明三角形全等来实现的。

这个过程了是转化思想的运用。

例1、如图,已知△ABC是等腰三角形,且AB=AC,若点M、N分别是AB、CA延长线上的点,,请说明BM、MN、NC之间的关系。

例2、如图3,点P是△ABC的外角∠DAC平分线上一点,你能比较PB+PC与AB+AC的大小关系吗?说明你的理由。

例3、如图3-1,在△ABC中,AB>AC,∠1=∠2,P为AD上任意一点,求证:AB-AC>PB-PC.例4、如图3-2,AD是△ABC的外角∠FAC的平分线,D是这平分线上的一个动点,你能想出AB+AC与BD+DC的大小关系吗?并证明你的猜想。

例5、已知,如图,在△ABC,延长AC边上的中线BE至M,使EM=BE,延长AB边上的中线CD至N,使DN=CD,求证:(1)N,A,M三点在同一直线上。

初中奥数讲义_全等三角形附答案

初中奥数讲义_全等三角形附答案

全等三角形全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形等图形性质的有力工具,是解决与线段、角相关问题的一个出发点,运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.利用全等三角形证明问题,关键在于从复杂的图形中找到一对基础的三角形,这对基础的三角形从实质上来说,是由三角形全等判定定理中的一对三角形变位而来,也可能是由几对三角形组成,其间的关系互相传递,应熟悉涉及有公共边、公共角的以下两类基本图形:例题求解【例1】如图,∠E=∠F=90°,∠B=∠C,AC=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN,其中正确的结论是 (把你认为所有正确结论的序号填上). (广州市中考题) 思路点拨对一个复杂的图形,先找出比较明显的一对全等三角形,并发现有用的条件,进而判断推出其他三角形全等.注两个三角形的全等是指两个图形之间的一种‘对应”关系,“对应’两字,有“相当”、“相应”的含意,对应关系是按一定标准的一对一的关系,“互相重合”是判断其对应部分的标准.实际遇到的图形,两个全等三角形并不重合在一起,但其中一个三角形是由另一个三角形按平行移动、翻拆、旋转等方法得到,这种改变位置,不改变形状大小的图形变动叫三角形的全等变换.【例2】在△ABC中,AC=5,中线AD=4,则边AB的取值范围是( )A.1<AB<9 B.3<AB<13 C.5<AB<13 D.9<AB<13(连云港市中考题)思路点拨线段AC、AD、AB不是同一个三角形的三条边,通过中线倍长将分散的条件加以集中.【例3】如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=A C,点Q在CE上,CQ=AB求证:(1)AP=AQ;(2)AP⊥AQ.(江苏省竞赛题)思路点拨 (1)证明对应的两个三角形全等;(2)在(1)的基础上,证明∠PAQ=90°【例4】若两个三角形的两边和其中一边上的高分别对应相等,试判断这两个三角形的第三边所对的角之间的关系,并说明理由.( “五羊杯”竞赛题改编题)思路点拨运用全等三角形的判定和性质,探讨两角之间的关系,解题的关键是由高的特殊性,分三角形的形状讨论.注有时图中并没有直接的全等三角形,,需要通过作辅助线构造全等三角形,完成恰当添辅助线的任务,我们的思堆要经历一个观察、联想、构造的过程.边、角、中线、角平分线、高是三角形的基本元素,从以上诸元素中选取三个条件使之组合可得到关于三角形全等判定的若干命题,其中有真有假,课本中全等三角形的判定方法只涉及边、角两类元素.【例5】如图,已知四边形纸片ABCD中,AD∥ BC,将∠ABC、∠DAB分别对折,如果两条折痕恰好相交于DC上一点E,你能获得哪些结论?思路点拨折痕前后重合的部分是全等的,从线段关系、角的关系、面积关系等不同方面进行探索,以获得更多的结论.注例5融操作、观察、猜想、推理于一体,需要一定的综合能力.推理论证既是说明道理,也是探索、发现的逄径.善于在复杂的图形中发现、分解、构造基本的全等三角形是解题的关键,需要注的是,通常面临以下情况时,我们才考虑构造全等三角形:(1)给出的图形中没有全等三角形,而证明结论需要全等三角形;(2)从题设条件无法证明图形中的三角形全等,证明需要另行构造全等三角形.学力训练1.如图,AD、A′D′分别是锐角△ABC和△A′B′C′中BC、B′C边上的高,且AB= A′B′,AD=A′D,若使△ABC≌△A′B′C′,请你补充条件(只需要填写一个你认为适当的条件) . (黑龙江省中考题)2.如图,在△ABD和△ACE中,有下列4个论断:①AB=AC;②AD=AC;③∠B=∠C;④BD=CE,请以其中三个论断作为条件,余下一个论断作为结论,写出一个真命题(用序号○○○→○的形式写出) . (海南省中考题)3.如图,把大小为4×4的正方形方格图形分割成两个全等图形,例如图1.请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形.4.如图,DA⊥AB,EA⊥AC,AB=AD,AC=AE,BE和CD相交于O,则∠DOE的度数是.5.如图,已知OA=OB,OC=OD,下列结论中:①∠A=∠B;(②DE=CE;③连OE,则OE平分∠O,正确的是( )A.①② B.②③ C.①③ D.①②③6.如图,A在DE上,F在AB上,且AC=CE,∠1=∠2=∠3,则DE的长等于( )A.DC B. BC C.AB D.AE+AC (2003年武汉市选拔赛试题)7.如图,AE∥CD,AC∥DB,AD与BC交于O,AE⊥BC于E,DF⊥BC于F,那么图中全等的三角形有( )对A.5 B.6 C. 7 D.88.如图,把△A BC绕点C顺时针旋转35°,得到△A′B′C′,A′B′交AC于点D,已知∠A′DC=90°,求∠A的度数. (贵州省中考题)9.如图,在△ABE和△ACD中,给出以下4个论断:①AB=AC;②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.以其中3个论断为题设,填人下面的“已知”栏中,一个论断为结论,填人下面的“求证”栏中,使之组成一个真命题,并写出证明过程.已知:求证:(荆州市中考题)10.如图,已知∠1=∠2,EF⊥AD于P,交B C延长线于M,求证:∠M=21(∠ACB -∠B ). (天津市竞赛题)11.在△ABC 中,高AD 和BE 交于H 点,且BH =AC ,则∠ABC = .12.如图,已知AE 平分∠BAC ,BE ⊥AE 于E ,ED ∥AC ,∠BAE =36°,那么∠BED . (河南省竞赛题)13.如图,D 是△ABC 的边AB 上一点,DF 交A C 于点F ,给出3个论断:①DE=FE ;②AE =CE ;③FC ∥AB ,以其中一个论断为结论,其余两个论断为条件,可作出3个命题,其中正确命题的个数是 . (武汉市选拔赛试题)14.如图,AD ∥BC ,∠1=∠2,∠3=∠4,AD=4,BC=2,那么AB= .15.如图,在△ABC 中,AD 是∠A 的外角平分线,P 是AD 上异于A 的任意一点,设PB =m ,PC =n ,AB=c ,AC=b ,则(m+n )与(b+c)大小关系是( )A .m+n> b+cB . m+n<b+cC .m+n= b+cD .不能确定16.如图,在四边形ABCD 中,对角线AC 平分∠BAD ,AB>AD ,下列结论中正确的是( ) A .A B -AD>CB -CD B .AB -AD =CB —CDC .AB —AD<CB —CD D .AB -AD 与CB —CD 的大小关系不确定. (江苏省竞赛题) 17.考查下列命题( )(1) 全等三角形的对应边上的中线、高、角平分线对应相等;(2) 两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等; (3) 两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等; (4)两边和其中一边上的高(或第三边上的高)对应相等的两个三角形全等. 其中正确命题的个数有( )A .4个B .3个C . 2个D .1个18.如图,在四边形ABCD 中,AC 平分∠BAD ,过C 作CE ⊥AB 于E ,并且AE=21(AB+AD),求∠ABC+∠ADC 的度数. (上海市竞赛题)19.如图,△ABC 中,D 是BC 的中点,DE ⊥DF ,试判断BE+CF 与EF 的大小关系,并证明你的结论. 20.如图,已知AB=CD=AE =BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDC 的面积. (江苏省竞赛题)21.如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AF+CD . (武汉市选拔赛试题)22.(1)已知△ABC 和△A ′B ′C ′中,AB= A ′B ′,BC= B ′C ′,∠BAC =∠B ′A ′C ′=100°,求证:△ABC ≌△A ′B ′C ′;(2)上问中,若将条件改为AB=A′B′,BC= B′C′,∠BAC=∠∠B′A′C′=70°,结论是否成立?为什么?。

截长补短模型证三角形全等

截长补短模型证三角形全等

截长补短模型证三角形全等一、截长补短法:包含截长法和补短法,即a=b+c 和a=b-c截长补短法适用于求证线段的和差倍分关系。

截长,指在长线段中截取一段等于已知线段;补短,指将短线段延长,延长部分等于已知线段。

当出现等腰三角形、角平分线等关键词句时,常采用截长补短法构造全等三角形来完成证明过程。

如图①,若证明线段AB 、CD 、EF 之间存在EF =AB +CD ,可以考虑截长补短法。

截长法:如图②,在EF 上截取EG =AB ,再证明GF =CD 即可。

补短法:如图③,延长AB 至H 点,使BH =CD ,再证明AH =EF 即可。

二、模型实例例1:在△ABC 中,∠C=2∠B ,∠1=∠2,试说明AB=AC+CD .例2:如图1,△ABC 是正三角形,△BDC 是等腰三角形,BD=CD ,∠BDC=120°,以D 为顶点作一个60°角,角的两边分别交AB 、AC 边于M 、N 两点,连接MN . (1)探究BM 、MN 、NC 之间的关系,并说明理由; (2)若△ABC 的边长为2,求△AMN 的周长;(3)若点M 、N 分别是线段AB 、CA 延长线上的点,其他条件不变,此时(1)中的结论是否还成立,在图2中画出图形,并说明理由.例3:已知:如图,ABCD 是正方形,∠FAD=∠FAE .求证:BE+DF=AE .32HA B FE1G E F D C B A截长补短模型演练题1、如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于D,CE⊥BD的延长线于点E.求证: CE=BD.2、已知,如图AB//CD,BE、CE分别是∠ABC、∠BCD的平分线,点E在AD上,求证:BC=AB+CD。

3、如图,五边形ABCDE中,AB=AE,BC+DE=CD,∠BAE=∠BCD=120°,∠ABC+∠AED=180°,连接AD.求证:AD平分∠CDE.。

全等三角形中的辅助线的作法

全等三角形中的辅助线的作法

全等三角形中的辅助线的作法在《全等三角形》的解题中,在解决一些复杂的全等三角形问题中往往需要构造辅助线,本文将对添加辅助线的一些常用方法进行介绍,通常有连线构全等、截长补短法、倍长中线法、角平分线构全等等四种常见辅助线。

一、连线构全等例1:已知,如图,AD =BC ,AC =BD ,求证:D C ∠=∠分析:此题是一道易错的全等三角形证明题,很多学生会错误地认为需要证明的是ADO ∆和BCO ∆,但条件明显是不能证明的,所以本题的正确解法是连结AB (或者CD )构造ADB ∆和BCA ∆全等,再得到D C ∠=∠证明:连结AB在ADB ∆和BCA ∆中⎪⎩⎪⎨⎧===BA AB BD AC BC ADADB ∆∴≌BCA ∆ (SSS )D C ∠=∠∴练习1:如图,CD AB =,DC BC =,求证:D B ∠=∠.练习2:如图,CD AB //,CD AB =,求证:BC AD =练习3:如图,AB=AC ,BD=CD ,M 、N 分别是BD 、CD 的中点,求证:ANC AMB ∠=∠二、截长补短法截长补短法:在某条线段上截取一条线段与特定线段相等,或者将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。

这种作法,适合于证明线段的和、差、倍、分等类的题目。

例2:已知在ABC ∆,B C ∠=∠2,21∠=∠,求证:CD AC AB +=分析:本题证明的是线段的和差问题,可考虑利用截长或补短法。

方法一(截长法):如图1,在AB 上截取AE=AC ,连结BE ,易证ADE ∆≌ADC ∆,从而得DC DE =,AED C ∠=∠,AC AE =又因为B C ∠=∠2所以得B AED ∠=∠2,又因为BDE B AED ∠+∠=∠所以得BDE B ∠=∠可得DE BE =从而得CD AC AB +=方法二(补短法):如图2,延长AC 到点E ,使得AE=AB ,易证ADE ∆≌ADB ∆,从而得AE AB =,E B ∠=∠又因为B ACB ∠=∠2所以得E ACB ∠=∠2,又因为E CDE ACB ∠+∠=∠所以得E CDE ∠=∠可得CE CD =从而得CD AC AB +=练习1:如图所示,已知BC AD //,AE 平分DAB ∠,BE 平分ABC ∠,线段CD 经过点E 交AD 于点D ,交BC 于点C ,求证:AB BC AD =+图1图2练习2:如图,在四边形ABDE 中,C 是BD 边的中点,若AC 平分BAE ∠,︒=∠90ACE ,猜想线段AE 、AB 、DE 的长度满足的数量关系,并证明。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用三角形全等证明线段和差倍分问题
1. 已知:D 是AB 中点,∠ ACB=90°,求证:12
CD AB
2. 已知:AD 平分∠BAC ,∠B=2∠C ,求证: AC=AB+BD
3. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE
C
D
B
4·如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD 上。

求证:BC=AB+DC。

5·已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE
6.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于
D .求证:AD +BC =AB .
7.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于
过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .
8·在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,
MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;
(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.
P
E
D
C
B A F E D
C
B
A
9·如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD 相等吗?请说明理由
10·如图,已知在△ABC中,∠BAC为直角,AB=AC,D为AC上一点,CE⊥BD于E.
(1)若BD平分∠ABC,求证CE=1
2 BD;
(2)若D为AC上一动点,∠AED如何变化,若变化,求它的变化范围;
若不变,求出它的度数,并说明理由。

E
D
C
B。

相关文档
最新文档