格点三角函数

合集下载

专题01 锐角三角形函数和特殊角的三角函数值压轴题四种模型全攻略(解析版)

专题01 锐角三角形函数和特殊角的三角函数值压轴题四种模型全攻略(解析版)

专题01 锐角三角形函数和特殊角的三角函数值压轴题四种模型全攻略考点一 正弦、余弦、正切的概念辨析 考点二 求角的正弦值、余弦值、正切值考点三 已知正弦值、余弦值、正切值求边长考点四 求特殊角的三角函数值考点一 正弦、余弦、正切的概念辨析A .sin BCA AB=B .A.CDACB.BDCB【答案】C【分析】根据已知可得∠B=∠ACD 【详解】A.∵CD⊥AB,【点睛】本题考查了锐角三角函数,熟练掌握锐角三角函数只与角度大小有关与角度位置无关是解题的关键.考点二求角的正弦值、余弦值、正切值【答案】5 5【分析】连接AC,根据格点特点得出答案.【详解】解:连接AC(1)求证:四边形OCEB 是矩形;(2)连接DE ,当5AB =,【答案】(1)见解析Q 四边形ABCD 是菱形,OA OC \=,OB OD =在Rt AOB △中,5AB =考点三 已知正弦值、余弦值、正切值求边长Q ∠C =90°,AB =sin 8BC BC A AB \===解得:6BC =,故选:A .【答案】5【分析】根据5sin13A=,可设【详解】解:∵5sin A=,sin【点睛】本题考查锐角三角函数和勾股定理,熟练掌握锐角三角函数的定义和勾股定理的计算是解答本题的关键.3.(2022·安徽宿州【答案】46【分析】首先根据考点四求特殊角的三角函数值A.1B.2【点睛】本题主要考查了求正切,勾股定理,三角形面积,正确求出5.(2022·山东·济南高新区东城逸家初级中学九年级阶段练习)在那么下列结论正确的是(A.3sin4A=B.A.1 2【答案】C【分析】先证四边形90 BFE CÐ=Ð=°【答案】34##0.75【分析】作AB x ^轴,在Rt 【详解】解:如图,作AB ^在Rt AOB V 中,3tan 4AB OB a ==故答案为:34【点睛】本题考查了锐角三角函数、点的坐标与坐标轴的关系;根据点的坐标构造直角三角形是解题关键.【答案】12【分析】连接CA并延长与圆相交于点O(0,0)得到CD=6,CO=3,由圆周角定理得到【详解】解:连接CA并延长与圆相交于点∵CD为直径,∴∠COD=∠yOx=90°,即x轴交⊙A于点∵直径为6的⊙A经过点C(0,3)和点∴CD=6,CO=3.∵∠OBC=∠CDO,∴∠OBC的正弦值为∠CDO的正弦值,31=【答案】533【分析】当F 与A 点重合时和∵四边形ABCD 为矩形,∴ABC ADC DAB Ð=Ð=Ð∵5AB =,60ACB Ð=°,∴5tan tan 60AB BC ACB ==Ð【答案】30°或90°故答案为:30°或90°.【答案】AC=4,sinA=【分析】根据勾股定理求出【详解】解:∵∠C=90∴22=-=AC AB BC∴10cos 2b A c Ð==∵8c =,cos A Ð(1)求∠ABD的正弦值;(2)求BG的长.【答案】(1)613 65(2)5【分析】(1)过点(2)过点F作FP⊥BD于点∵∠C=90°,又DG平分∠BDC,∴CF=FP,又∠DPF=90°,DF=DF ∴Rt△CDF≌Rt△PDF(∴CD=DP,【点睛】本题考查角平分线的性质,勾股定理求三角形的边长,相似三角形的判定和性质,全等三角形的判定和性质以及锐角三角函数的求解,熟练掌握以上内容并熟练运用是解决问题的关键.20.(2022·湖南·长沙市开福区青竹湖湘一外国语学校三模)我们不妨定义:一组对边平行且一组对角互余的四边形称为“求真四边形步得出结果;(3)根据题意可得DCA CBE Ð=Ð,则△CDF 与△BCF 相似只有DCF CBF V V ∽或FCD CBF V V ∽2种情况,分类讨论即可求解.(1)解:∵四边形ABCD 是求真四边形,∴∠A +∠C =90°,∴∠C =90°-∠A =90°-α,∵AD ∥BC ,∴∠C +∠D =180°,∴∠D =180°-(90°-α)=90°+α;即90D aÐ=°+(2)证明:如图1,延长DE 至G ,连接AE ,∵AB 是⊙O 的直径,∴∠AEB =90°,∴∠DEF +∠AFG =90°,∵四边形ACDE 内接于⊙O ,∴∠AGE +∠DCF =90°,∵ CECE =,∴∠EAC =∠CBE ,∵∠DCA =∠CBE ,∴∠AEG =∠EAC ,∴DE ∥CF ,∴四边形DEFC 是“求真四边形”;(3)解:Q DCA CBE Ð=Ð,∵ CECE =,∴∠EAC =∠CBE ,。

网格中的三角函数

网格中的三角函数

1网格中的锐角三角函数网格是同学们从小就熟悉的图形,在网格中隐含的条件有:1.直角;2.单位长度。

所以在网格中可以求一个锐角的三角函数,是近几年中考的热点,下面举例说明。

一、在网格中与勾股定理现结合求一个锐角的三角函数。

【例1】 三角形在正方形网格纸中的位如图1,则sin α的值是( ).[解析] 本题在网格中考查锐角的正弦的意义,首先要用勾股定理计算直角三角形斜边的长.一般情况下,为了减小计算量,把小正方形的边长设为1.选C .练习1(广州市2014)如图2,在边长为1的小正方形组成的网格中,的三个顶点均在格点上,则( ).(A ) (B ) (C ) (D )练习2 (2014年福州)如图3,在边长为1个单位长度的小正方形所组成的网格中,△ABC 的顶点均在格点上,344543B .; C .35;D .A. 35图3图22sinB 的值是 .3.(2011四川)如图4,在4×4的正方形网格中, tanα= .A .1B .2C .12D4.(2011甘肃兰州)如图5,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC’B’,则tanB’的值为 .A .12B .13C .14 D3. (2011江苏连云港)如图6,△ABC 的顶点都在方格纸的格点上,则sin A =_______.在网格中求一个锐角的三角函数时,根据图中角的位置。

充分利用网格中的直角和边,然后根据勾股定理求出相应的边长,最后利用三角函数公式进行计算,达到解决问题的目的。

二、在网格中与辅助线相结合求一个锐角的三角函数。

【例2】 (2014•贺州)如图7-1网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,则sinA= .[解析] 虽然网格中隐含直角,但是∠A 是△ABC中图7-1图7-2图4图6图5的一个锐角,而△ABC不是直角三角形,不能直接运用三角函数公式进行计算,必须先做辅助线构造直角三角形,使∠A在一个直角三角形中,然后求出所对应的斜边和对边,而后解决问题。

初中三角函数极佳补课资料

初中三角函数极佳补课资料

初中三角函数补课资料1.锐角A的正弦、余弦、正切、余切都叫做∠A的三角函数。

注意:(1)正弦、余弦、正切、余切都是在直角三角形中给出的,要避免应用时对任意的三角形随便套用定义;(2)sinA不是sin与A的乘积,是三角形函数记号,是一个整体。

“sinA”表示一个比值,其他三个三角函数记号也是一样的;(3)锐角三角函数值与三角形三边长短无关,只与锐角的大小有关。

2、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。

3、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):5、同角的三角函数之间的关系(1)平方关系:22sin cos 1αα+=,α为锐角,即同一锐角的正弦和余弦的平方和等于1;(2)倒数关系:tan cot 1αα=,α为锐角,即同一锐角的正切与余切的积为1,互为倒数; (3)商的关系:tan α=sin cos αα,cot α=cos sin αα, α为锐角,即同一锐角的正弦与余弦的商等于正切,同一锐角的余弦与正弦的商等于余切。

注意:(1)这些关系式都是恒等式,正反均可运用,同时还要注意它们的变形,如:sin A ,cos A =(2)sin2α是(sinα)2的简写,读作“sinα”的平方;不能将sin2α写成sinα2,前者是α的正弦值的平方,后者表示α2的正弦值。

6、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

7、0°、30°、45°、60°、90°特殊角的三角函数值(重要)A90B 90∠-︒=∠︒=∠+∠得由B A 对边邻边 A90B 90∠-︒=∠︒=∠+∠得由B A注意:记忆特殊角的三角函数值,可用下述方法:0°、30°、45°、60°、90°的正弦值分别是22、2、2、2,而余弦值分别是2、2、 2、2、230°、45°、60°正切值分别是,余切值分别是1 8、正弦、余弦的增减性:当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。

方格纸中求三角函数值

方格纸中求三角函数值

tan∠ABC 的值是

4.如图是由边长相同的小正方形组成的网格 ,A、B、 P、Q四点均在正方形网格的格点上 ,线段AB、PQ每个小的四边
形都是相同的正方形,A,B,C,D都在格点
上,AB与CD相交于O,则tan∠BOD的值等


6.如图,把n个边长为1的正方形拼接成一排,求
tan∠BA1C=
,tan∠BA2C=
tan∠BA3C=
,tan∠BA4C=
…按此规律,写出tan∠BAnC=
数式表示).

, .(用含n的代
方格纸中求三角函数值
1.如图,在网格中,小正方形的边长均为1,
点A,B,C都在网格上,则∠ABC的正切值


2.如图,在5×7的网格中,若△ABC的三条
边共经过4个格点,则tan B的值为

3.如图,6 个形状、大小完全相同的菱形组成
网格,菱形的顶点称为格点.已知菱形的一
个角∠O为 60°,A,B,C都在格点上,则

三角函数专题之网格中的三角函数

三角函数专题之网格中的三角函数

三角函数专题训练--网格中的三角函数第一节:网格中的正弦和余弦1.在边长为1的正方形网格中,点A 、B 、C 、D 都在格点上,AB 与CD 相交于点O ,则∠AOD 的正弦值为()A .12B .2C D 2.如图,在2×2正方形网格中,以格点为顶点的△ABC 的面积等于32,则sin ∠CAB =()A .2B .35C .5D .3103.如图,在边长为1的小正方形网格中,点A 、B 、C 、C 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则cos AOD ∠=()A .2B .2C .3D 4.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC 等于()A B C .5D .105.如图,在边长1正网格中,A 、B 、C 都在网格线上,AB 与CD 相交于点D ,则sin ADC ∠是()A B C D 6.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC=()A .6B .26C .13D .137.如图,在45⨯的正方形网格中,每个小正方形的边长都是1,ABC 的顶点都在这些小正方形的顶点上,那么sin ACB ∠的值为().A B C .35D .458.如图,在正方形网格中,△ABC 的位置如图,其中点A 、B 、C 分别在格点上,则sinA 的值是()A B .13C D9.如图,在5×4的正方形网格中,每个小正方形的边长都是l ,△ABC 的顶点都在这些小正方形的顶点上,则cos ∠BAC 的值为()A .43B .34C .35D .4510.在正方形网格中,△ABC 的位置如图所示,则cos ∠B 的值为()A .12B .2C D .311.三角形在方格纸中的位置如图所示,则cos 的值是()A .35B C .45D 12.如图,△ABC 的顶点都是正方形网格中的格点,则cos ∠ABC 等于()AB C D .2313.如图是一个3×2的长方形网格,组成网格的小长方形长为宽的2倍,△ABC 的顶点都是网格中的格点,则cos ∠ABC 的值是()A .23B .25C .35D .4514.如图,△ABC 的顶点都在正方形网格的格点上,则cos ∠BAC 的值为()A .34B .25C .35D .4515.如图,在下列网格中,小正方形的边长均为1,点A 、B 、O 都在格点上,则AOB ∠的正弦值是()A .10B .12C .13D .1016.如图,在正方形网格中,小正方形的边长为1,点A 、B 、C 、D 都在格点上,AB 与CD 相交于点O ,则∠AOC 的正弦值是__.17.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为_______.18.如图所示,AOB ∠是放置在正方形网格中的一个角,则sin AOB ∠的值是________.19.如图所示方格纸中每个小正方形的边长为1,其中有三个格点A 、B 、C ,则sin ∠ABC=_____.20.如图是4×4的正方形网格,点C在∠BAD的一边AD上,且A、B、C为格点,sin∠BAD的值是___________.∠=______.21.如图在边长相同的小正方形组成的网格中,点A、B、O在小正方形的顶点上,则cos OAB22.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC 的余弦值是____.23.如图,在6x6的正方形网格中,△ABC的顶点都在小正方形的顶点上,则cos∠BAC的值是_____.24.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则cos∠AOD=___.25.如图,在4×4的正方形网格图中有△ABC,则∠ABC的余弦值为_____.26.如图,∠AOB是放置在正方形网格中的一个角,则cos∠AOB的值是_____.27.如图,在5×5的正方形网格中,每个小正方形的边长均为1,点A、B、C都在格点上,则cos∠BAC 的值为_____.的顶点都在小正方形的格点上,28.如图,在44⨯的正方形网格(每个小正方形的边长都是1)中,ABC∠=_______.则sin ACB29.如图,每个小正方形的边长都是1,点A,B,C都在小正方形的顶点上,则∠ABC的正弦值为____.第二节:网格中的正切1.如图,在边长相同的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB与CD相交于点P,则tan∠APD的值为()A .2BC .3D2.如图,将△ABC 放在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上,则tan C 的值是()A .2B .43C .1D .343.如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,则tan ∠BAC 的值为()A .12B .1C .3D 4.如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是()A .12B .1CD .25.如图,ABC 的顶点在正方形网格的格点处,则tan C 的值为()A .12B .13C .2D .16.如图,将 ABC 放在每个小正方形的边长为1的网格中,点A ,B ,C 均在格点上,则∠A 的正切值是()A B C .2D .127.如图,在54⨯的正方形网格中,每个小正方形的边长都是1,ABC 的顶点都在这些小正方形的顶点上,则tan BAC ∠的值为()A .43B .34C .35D .458.如图,A ,B ,C ,三点在正方形网格线的交点处,若将ABC 绕着点A 逆时针旋转得到AC B ''△,则tan B '的值为()A .12B .13C .14D .49.如图所示,ABC ∆的顶点在正方形网格的格点上,则tan A 的值为()A .12B .2C .2D .10.在图网格中,小正方形的边长为1,点A 、B 、C 、D 都在格点上,AB 与CD 相交于点O ,则∠AOC 的正切值是()A .23B .32C .35D .5311.如图,在方格纸中,点A ,B ,C 都在格点上,则tan ∠ABC 的值是()A .2B .12C D 12.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan ∠ABC 的值为()A .35B .34C .5D .113.如图,∠AOB 是放置在正方形网格中的一个角,则tan ∠AOB ()A .3B C .1D .2514.∠BAC 放在正方形网格纸的位置如图,则tan ∠BAC 的值为()A .16B .15C .13D .1215.如图,在55 的正方形网格中,每个小正方形的边长均为1,ABC 的顶点均在格点(网格线的交点)上,则tan B 的值为______.16.如图,点A ,B ,C ,D 在正方形网格的格点上,连接AB 、CD 交于点P ,则tan ∠APC =________________.17.如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan ∠ACB 的值为_____.18.如图,在5×4的正方形网格中,每个小正方形的边长都是1,ABC 的顶点都在这些小正方形的顶点上,则tan ABC ∠的值为_______.19.如图,在边长为1的正方形网格中,连接格点A ,B 和C ,D ,AB 与CD 相交于点E ,则tan AEC ∠=___.20.如图,在4×5的正方形网格中点A ,B ,C 都在格点上,则tan ∠ABC =_____.21.如图,把n 个边长为1的正方形拼接成一排,求得tan 1BA C ∠=1,tan 2BA C ∠=13,31tan 7BA C ∠=,计算4tan BA C ∠=_________________.22.如图,将BAC ∠放置在55⨯的正方形网格中,如果顶点A 、B 、C 均在格点上,那么BAC ∠的正切值为______.23.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 都在这些小正方形的顶点上,则tan ∠ABC 的值为_____.24.如图,在Rt △ABC 纸片上可按如图所示方式剪出一正方体表面展开图,直角三角形的两直角边与正方体展开图左下角正方形的边共线,斜边恰好经过两个正方形的顶点,已知BC =24cm ,则这个展开图可折成的正方体的体积为_____cm 3.25.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan C =__.26.如图,在正方形网格中,三角形ABC 的三个顶点都在网格中的格点上,则tan ∠B 的值为_____.27.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,线段AB 、CD ,相交于点P ,则tan APD ∠的值是__________.28.如图,在边长都为1的小正方形组成的网格中,点A ,B ,C ,D 都在这些小正方形的顶点上,AB ,CD 相交于点P ,则tan ∠APD 的值是____________.29.如图,把n 个边长为1的正方形拼接成一排,求得1tan 1BA C ∠=,21tan 3BA C ∠=,31tan 7BA C ∠=,计算4tan BA C ∠=__________,……按此规律,写出tan n BA C ∠=__________(用含n 的代数式表示).。

网格中的三角函数

网格中的三角函数

网格中的三角函数【构造直角】例:如图,网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,则sin ∠ABP变式1:网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,求tan 12∠BAP 的值。

变式2:网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,求tan2∠BAP 的值1.网格中的每个小正方形的边长都是1,△ABC 每个顶点都在网格的交点处,则sinA 的=______________.【解析】如图,过点C 作CE ⊥AB ,则=A sin AC CE =52CE ,利用等积法,可知CE AB 21AD BC 21⋅⋅=⋅⋅,∴CE 5221232221⋅⋅=⋅⋅,∴556CE =,∴=A sin 5352556=【等角转换】 2.如图,在边长相同的小正方形组成的网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点P ,则tan ∠APD 的值是 .【解析】思路一:构造直角连接BE ,由四边形EDBC 为正方形可知,CD ⊥BE ,∴tan△APD=tan△BPF=PFBF,设小正方形边长为2(可自己思考一下为什么?),可得BF=1,CD=2,由△APC ∽△BPD ,且相似比为3:1可得3DP PC =,∴43CD PC =,∴PC=432⋅=23,∴PF=PC —CF=21,∴tan△BPF=2211=思路二:角度转换连接BE ,可知BE ∥CD ,∴△APD=△BPF=△ABE ,连接AE ,∵AE 和BE 均为正方形对角线,易得AE ⊥BE ,∴tan△ABE=2BEAE=3.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB ,CD 相交于点P , 则PBAP的值= ,tan ∠APD 的值= .4.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC 的顶点都在格点上,则图中△ABC 的余弦值是_________.5.如图,在网格中,小正方形的边长均为1,点A ,B ,C 都在格点上,则△ABC 的正切值是________.6.如图,在正方形网格中,△ABC 的顶点都在格点上,则tan ∠ACB 的值为 .7.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O )为60°,A ,B ,C 都在格点上,则tan ∠ABC 的值是 .8.如图,网格中的四个格点组成菱形ABCD ,则tan ∠DBC 的值为_________.9.如图1是由边长为1的小正方形组成的网格,点A 、B 、C 、D 都在网格的格点上,AC 、BD 相交于点O .10.(一)探索发现(1)如图1,当AB=2时,连接AD ,则∠ADO=90°,BO=2DO ,AD=2,BO=232,tan ∠AOD=_________.如图2,当AB=3时,画AH ⊥BD 交BD 的延长线于H ,则AH=223, BO=________,tan ∠AOD=________. 如图3,当AB=4时,tan ∠AOD=__________.(2)猜想:当AB=n (n >0)时,tan ∠AOD=______________.(结果用含n 的代数式表示),请证明你的猜想. (二)解决问题(3)如图,两个正方形的一边CD 、CG 在同一直线上,连接CF 、DE 相交于点O ,若tan ∠COE=1317,求正方形ABCD 和正方形CEFG 的边长之比.【解析】(一)探索发现(1)如图1,当AB=2时,∵BO=2DO ,BO=232, ∴OD=32,又∵∠ADO=90°,AD=2,∴tan ∠AOD=322ODAD==3,即tan ∠AOD=3. 如图2,设DCBE 为正方形,连接CE ,交BD 于F . ∵四边形BCDE 是正方形, ∴DF=CF=BF=21BD=21CE ,BD ⊥CE . 根据题意得:AB ∥DC ,∴△AOB ∽△COD ,∴DO :BO=CD :AB .当AB=3时,DO :BO=1:3,∴BO=423. ∵S △ABD =21BD •AH=21AB •ED ,∴BD •AH=AB •ED , ∴AH=22323BD ED AB ==⋅, DO :BO=CD :AB=1:3,∴DO :DF=1:2,∴OF :DF=1:2,即OF :CF=1:2. 在Rt △OCF 中,tan ∠COF=OFCF=2, ∵∠AOD=∠COF ,∴tan ∠AOD=2;如图3,当AB=4时,DO :BO=CD :AB=1:4, ∴DO :DF=1:2.5=2:5,∴OF :DF=3:5,即OF :CF=3:5. 在Rt △OCF 中,tan ∠COF=35OF CF =, ∵∠AOD=∠COF ,∴tan ∠AOD=35;故答案是:3;423;2;35;(2)猜想:当AB=n (n >0)时,tan ∠AOD=1-n 1n +(结果用含n 的代数式表示). 证明:过点A 作AH ⊥BH 于点H ,则AH=BH=22n . ∵AB ∥OD ,∴△AOB ∽△COD ,∴1nCD AB OD OB ==, ∴OB=1n n 2+.∴OH=BH ﹣OB=22n ﹣1n n 2+.∴tan ∠AOD=1-n 1n +; 故答案是:1-n 1n +;(二)解决问题(3)解:如图4,过点D 作DH ⊥CF 于点H ,则tan ∠DOH=HODH. ∵∠DOH=∠COE , ∴tan ∠DOH=1317, 又由(一)结论得:13171-n 1n =+, ∴n=215 ∴正方形ABCD 和正方形CEFG 的边长之比为215. 强化训练11.阅读下面的材料:某数学学习小组遇到这样一个问题: 如果α,β都为锐角,且tan α=,tan β=,求α+β的度数.该数学课外小组最后是这样解决问题的:如图1,把α,β放在正方形网格中,使得∠ABD=α,∠CBE=β,且BA ,BC 在直线BD 的两侧,连接AC . (1)观察图象可知:α+β= °;(2)请参考该数学小组的方法解决问题:如果α,β都为锐角,当tan α=3,tan β=时,在图2的正方形网格中,画出∠MON=α﹣β,并求∠MON 的度数.12.问题呈现如图1,在边长为1的正方形网格中,连接格点D ,N 和E ,C ,DN 和EC 相交于点P ,求tan ∠CPN 的值. 方法归纳求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中∠CPN不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点M,N,可得MN∥EC,则∠DNM=∠CPN,连接DM,那么∠CPN就变换到Rt△DMN中.问题解决(1)直接写出图1中tan∠CPN的值为;(2)如图2,在边长为1的正方形网格中,AN与CM相交于点P,求cos∠CPN 的值;思维拓展(3)如图3,AB⊥BC,AB=4BC,点M在AB上,且AM=BC,延长CB到N,使BN=2BC,连接AN交CM的延长线于点P,用上述方法构造网格求∠CPN 的度数.13.(1)在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.如图1,某同学在解答这道题时,先建立一个每个小正方形的边长都是1的网格,再在网格中画出边长符合要求的格点三角形ABC(即△ABC三个顶点都在小正方形的顶点处),这样不需要求△ABC的高,而借用网格就能就算出它的面积.请你将△ABC的面积直接填写在横线上.思维拓展:(2)已知△ABC三边的长分别为a(a>0),求这个三角形的面积.我们把上述求△ABC面积的方法叫做构图法.如图2,网格中每个小正方形的边长都是a,请在网格中画出相应的△ABC,并求出它的面积.类比创新:(3)若△ABC三边的长分别为(m>0,n >0,且m≠n),求出这个三角形的面积.如图3,网格中每个小长方形长、宽都是m,n,请在网格中画出相应的△ABC,用网格计算这个三角形的面积.14.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(1)AB的长等于;(2)在△ABC的内部有一点P,满足S△PAB :S△PBC:S△PCA=1:2:3,请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明).15.如图,在由完全相同的小正方形组成的网格中,△ABC的三个顶点都在格点上.(1)请在网格中找一个格点P,连接PB、PC,使∠BPC=∠BAC,并简要说明理由;(2)直接写出此时tan∠BPC的值.16.如图,在正方形网格中,每个小正方形的边长都为1,点A点B在网格中的位置如图所示.(1)建立适当的平面直角坐标系,使点A点B的坐标分别为(1,2)(4,3);(2)点C的坐标为(3,6),在平面直角坐标系中找到点C的位置,连接AB、BC、CA,则∠ACB=°;(3)将点A、B、C的横坐标都乘以﹣1,纵坐标不变,分别得到点A1、B1、C1,在图中找到点A1、B1、C1并顺次连接点A1、B1、C1,得到△A1B1C1,则这两个三角形关于对称.17.如图,在正方形网格中建立平面直角坐标系,格点O为原点,格点A的坐标为(﹣1,3).(1)画出点A关于y轴对称的格点B,并写出点B的坐标(,);(2)将线段OA绕着原点O顺时针旋转90°,点A落在格点C处,画出线段OA扫过的平面区域(用阴影表示),则AC的长为;(3)过点C作AC的切线CD,D为格点,设直线CD的解析式为y=kx+b,y 随x的增大而;(填“增大”或“减小”)(4)连接BC,则tan∠BCD的值等于.。

中考数学复习专题之格点问题

中考数学复习专题之格点问题

A.
B.
C.
D.
解析: 该题考查相似三角形的判断定理,利用网格长度和 勾股定理计算出各条边的长度,再利用对应边成比 例达到判断相似的目的。
【例5】三角形在正方形网格纸中的位置如图所示,则 sinα的值是( ).
3 4
A.
4
3
B. D.
3
4 5

C. 5
解析: 该题在网格中考查锐角的 正弦的意义,首先要用勾 股定理计算直角三角形斜 边的长.
解析该题一道人性化的操作型开放题只要理解了轴对称图形的意义选取一条适当的直线作对称轴就可以画出符合题意的图2006年江西中考题请在由边长为正三角形组成的虚线网格中画出一个所有顶点均在格点上且至少有一条边长为无理数的等腰三角形该题画法很多只要利用等腰三角形的轴对称性结合网格特点再考虑到题目中的条件即可
解析: 从题目的语气看,似乎要画直线AB与CD 夹 角的平分线,但是网格中没有画出直线AB与 CD 的夹角,图形的特殊性就在于AC//BD, 又已知AB=CD,因此四边形ABDC是等腰梯 形,线段BD的垂直平分线就是这个等腰梯形 的对称轴.如图,M、N分别为BD、AC的中 点,直线MN上的点到直线AB、CD的距离相 等.恰好点M是格点,以MB为斜边的直角三 角形的直角边长为3和1,这样,斜边在直线 MN上,直角边为3和1的格点直角三角形有3 个,符合题意的点有4个.选C.
C1 C2 C3
B
【例17】已知Rt△OAB在直角坐标系中的位置如图所 示,P(3,4)为OB的中点,点C为折线OAB上的动点, 线段PC把Rt△OAB分割成两部分. 问:点C在什么位置时,分割得到的三角形与Rt△OAB 相似? (注:在图上画出所有符合要求的线段PC,并求出相 y 应的点C的坐标)

初中网格中的数学问题赏析

初中网格中的数学问题赏析

初中网格中的数学问题赏析在正方形的网格中,每个小正方形的边长都是相等的,每个小正方形的顶点叫做格点,我们把以格点的连线为边的图形叫格点图形.近年来,各地的中考试卷中频频出现这类与格点有关的数学问题,由于这类与网格有关的中考题大部分具有开放性,设计又新颖,能很好地考查学生的思维水平和思维能力,故很受命题者的青睐.但课本、作业本中这类问题的例题和习题却并不多见,在此,特作梳理,与大家一起赏析.一、网格中的三角形1. (2010·湖南)如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是().A. 6 B. 7 C. 8 D. 9分析根据题意,结合图形,分两种情况讨论(如下图):① AB为等腰△ABC 底边,符合条件的C点有4个;② AB为等腰△ABC其中的一条腰,符合条件的C点有4个.故选C.本题考查了等腰三角形的判定,解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.本题是利用网格提供的相等线段来构图.2. 在如图的方格纸中,每个小方格都是边长为1的正方形,点A、B是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C使△ABC 的面积为2个平方单位,则满足条件的格点C的个数是().A. 5B. 4C. 3D. 2分析 A、B两点的垂直距离为2,那么,只要保证水平距离为2即可使△ABC的面积为2个平方单位;A、B两点的水平距离为1,那么,只要保证垂直距离为4,即可使△ABC的面积为2个平方单位.符合条件的点坐标分别为:C(3,1),C(0,3),C(4,3),C(1,5).本题考查三角形面积的求法,注意分水平距离和垂直距离两种情况,数学分类思想是一种重要的数学思想.二、网格与三角函数1. (2010·贵州)在正方形网格中,△ABC的位置如图所示,则cos∠B的值为 .分析过点C向上作垂线与AB相交于点D,则∠B是Rt△BCD的一个内角,邻边和斜边均由图可知,所以很容易求出cos∠B的值.或是过点A作垂线交BC的延长线于D,也可求出.本题主要考查了余弦函数的定义,正确理解定义是解题的关键.本题是利用网格提供的垂线,构建直角三角形.2. (2010·四川)如图,∠D的正切值等于 .分析根据同弧所对的圆周角相等,可以把求三角函数的问题,转化为直角三角形边的比的问题.先利用同弧所对圆周角相等,得出∠D=∠A,然后利用正切等于对边比上邻边即可求出.本题考查圆周角的性质及锐角三角函数的概念:在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.从网格中很容易找到相关的直角三角形.三、网格与面积1. (2006·苏州)如图,直角坐标系中,△ABC的顶点都在网格点上,其中A点坐标为(2,-1),则△ABC的面积为平方单位.分析根据图形,可以直接写出点A的坐标是(2,-1).分别过A、B、C三点作垂线,形成一个大矩形,求出大矩形的面积,用大矩形的面积减去三个直角三角形的面积,剩余的面积即为△ABC的面积.此类题要求学生要能够把不规则图形的面积转化为规则图形的面积.有关面积的割补法是解决不规则图形面积的常用方法.本题充分利用网格的特点,构建规则图形.2. (2009·吉林)如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高是 .分析先用大正方形的面积减去三个直角三角形的面积得到△ABC的面积,△ABC的面积又等于AC乘以AC边上的高的一半,按这一等量关系列出方程,解出方程即可得出AC边上的高.四、网格与相似如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在方格纸的格点上.(1)?摇判断△ABC和△DEF是否相似,并说明理由;(2)?摇P,P,P,P,P,D,F是△DEF边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC相似(要求写出2个符合条件的三角形,并在图中连结相应线段,不必说明理由).分析答案为:△DPP、△DPP、△DPP.本题主要考查学生识图、构图能力和对三角形相似判定知识的理解,对学生的观察力有一定的挑战性.网格中的相等线段以及相等的角对构图起到关键性的作用.五、网格与圆1. (2010· 河北)如图,在5×5正方形网格中,一条圆弧经过A、B、C三点,那么这条圆弧所在圆的圆心是 .分析连接BC,弦AB、BC垂直平分线的交点即为圆心.本题主要考察学生对垂径定理的理解,和残圆确定圆心的方法.本题是由网格特点直接看出线段的垂直平分线.2. (2010·江苏).如图,在4×4的方格纸中(共有16个小方格),每个小方格都是边长为1的正方形.O、A、B分别是小正方形的顶点,则扇形OAB的弧长等于(结果保留根号及π).分析连接AB、AC,分别作它们的垂直平分线,两线交点即为圆心.利用勾股定理求出圆的半径,由图可知扇形OAB圆心角为90°,利用弧长公式即可求出弧长.本题考查了勾股定理及弧长公式的应用.解题的关键是正确地求出扇形的圆心角及半径.3. 如图所示,△ABC的三个顶点的坐标分别为A(-1,3)、B(-2,-2)、C(4,-2),则△ABC外接圆半径的长度为 .分析先求出线段AB、 AC、 BC的长度,再利用余弦定理求角A的余弦值,从而得到角A的正弦值.再利用正弦定理,即可求得直径.半径为2.连接OC因为C(4,-2),利用勾股定理得半径的长等于根号下,等于,化简为2.六、网格中的运动(2010·江苏)如图在网格图中,⊙A的半径为2个单位长度,⊙B的半径为1个单位长度,要使运动的⊙B与静止的⊙A相内切,应将⊙B由图示位置向左平移个单位长度.分析⊙B与⊙A可以在右边相内切,也可以在左边相内切.当⊙B与⊙A在右边相内切,移动距离为4个单位长度,当⊙B与⊙A在左边相内切,移动距离为6个单位长度.故答案为:4或6.本题主要通过圆的移动来考查圆与圆的位置关系;题目中小圆向左移动,通过观察,可知两圆内切的两种情况,分别求出移动的距离.七、网格与图形的变换1. (2010·辽宁)如图,在边长为1的小正方形组成的网格中,△ABC的顶点均在格点上,请按要求完成下列各题:(1)以直线BC为对称轴作△ABC的轴对称图形,得到△ABC,再将△ABC绕着点B逆时针旋转90°得到△ABC,请依此画出△ABC、△ABC;(2)求线段BC旋转到BC过程中所扫过的面积(计算结果用π表示);(3)求点C旋转过程所经过的路径长.分析(1)根据对称的性质,画出图形;(2)BC旋转到BC的过程中,旋转角为90°,半径为4,由弧长公式计算即可.所以B点所经过的路线长度是2π.本题考查了学生画一个图形的对称图形以及弧长公式的应用的能力.2. (2010·湖北)如图,在方格纸上△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为().A. (5,2)B. (2,5)C. (2,1)D. (1,2)分析连接AD、CF,再做这两线段的垂直平分线,交点就是点P.根据点A、点B 的坐标建立平面直角坐标系,然后写出点P的坐标.此题属于中等难度题,主要考查的知识点是旋转及其相关的性质,旋转的中心在连接对应点的垂直平分线上,做出两条垂直平分线,它们的交点就是旋转的中心点.3. (2010· 甘肃)如图均为7×6的正方形网格,点A、B、C在格点(小正方形的顶点)上.(1)在图中确定格点D,并画出一个以A、B、C、D为顶点的四边形,使其为轴对称图形;(2)在图中确定格点E,并画出一个以A、B、C、E为顶点的四边形,使其为中心对称图形.分析第(1)题可以将点A向下平移四格得到点D,或是将点A向右平移两格得到点D.第(2)题可以将点A向右平移一格得到点E,两题方法均不唯一,此题比较灵活地考查了等腰梯形、平行四边形、矩形的对称性,是道好题.八、网格与概率一只蚂蚁在如图所示的图案内任意爬动一段时间后停下,蚂蚁停在阴影内的概率为 .分析先确定黑色区域的面积与总面积的比值,此比值即为所求的概率.本题主要考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.网格对化不规则图形为规则图形提供了帮助,方便学生求出阴影部分的面积.九、网格与规律(2006·温州)在边长为l的正方形网格中,按下列方式得到“L”形图形,第1个“L”形图形的周长是8,第2个“L”形图形的周长是,第三个“L”形图形的周长是,则第n个“L”形图形的周长是 .分析第1个“L”形图形的周长是8=4+4,第2个“L”形图形的周长是12=4+2×4,第3个“L”形图形的周长是16=4+3×4,……,第n个“L”形图形的周长是4+n×4,即4n+4.本题也可以这样来分析:平移“L”形的上面和右下的两边,第1个“L”形图形周长变成一个正方形周长加上4,即4+4,第2个“L”形图形周长为4+2×4,第3个“L”形图形周长为4+3×4,第n个“L”形图形的周长是4+n×4.用整式描述几何图形的规律在近几年的中考题中经常出现,这类题目把几何和整式结合起来考查,使试题难度增大.它既考查学生的识图能力,又考查学生的判断推理能力.通过以上分析,我们不难发现:网格中的数学问题,往往是把网格的特点与数学问题有机结合起来.网格可以提供相等的线段、相等的角、垂线、平行线、化不规则图形为规则图形等.还能够很方便地进行图形的翻折、平移、旋转等.同学们在解决这类问题时,既要有札实的数学基础,灵活运用相关数学知识,还要注意结合网格的特点来分析和解决问题.。

专题训练(六) 锐角三角函数求值的六种方法讲解

专题训练(六) 锐角三角函数求值的六种方法讲解

专题训练(六) 锐角三角函数求值的六种方法讲解►方法一运用定义求锐角三角函数值1.在下列网格中,每个小正方形的边长均为1,点A,B,O都在格点上,则∠O的正弦值是________.图ZT-6-12.如图ZT-6-2所示,在Rt△ABC中,∠C=90°,AC=12,BC=5.(1)求AB的长;(2)求两个锐角的三角函数值.图ZT-6-2►方法二巧设参数求锐角三角函数值3.在Rt△ABC中,∠C=90°,若sin A=513,则cos A的值是()A.512B.813C.23D.12134.2017·铜仁如图ZT -6-3,在Rt △ABC 中,∠C =90°,D 是AB 的中点,ED ⊥AB 交AC 于点E.设∠A =α,且tan α=13,则tan 2α=________.图ZT -6-35.已知:如图ZT -6-4,在Rt △ABC 中,∠C =90°,tan A =12,求∠B 的正弦值、余弦值.图ZT -6-46.如图ZT -6-5,∠C =90°,∠DBC =30°,AB =BD ,根据此图求tan 15°的值.图ZT -6-5► 方法三 利用边角关系求锐角三角函数值7.如图ZT -6-6所示,在四边形ABCD 中,E ,F 分别是AB ,AD 的中点,若EF =2,BC =5,CD =3,则tan C 的值是( )图ZT -6-6A.34B.43C.35D.458.如图ZT -6-7所示,在△ABC 中,点D 在AC 上,DE ⊥BC ,垂足为E ,若AD =2DC ,AB =4DE ,则sin B 的值是( )图ZT -6-7A.12B.73C.3 77D.349.已知锐角三角形ABC 中,点D 在BC 的延长线上,连结AD ,若∠DAB =90°,∠ACB =2∠D ,AD =2,AC =32,根据题意画出示意图,并求出tan D 的值.►方法四利用等角求锐角三角函数值10.如图ZT-6-8所示,∠ACB=90°,DE⊥AB,垂足为E,AB=10,BC=6,求∠BDE的正弦值、余弦值、正切值.图ZT-6-811.如图ZT-6-9所示,在矩形ABCD中,AB=10,BC=8,E为AD边上一点,沿CE将△CDE折叠后,点D正好落在AB边上的点F处,求tan∠AFE的值.图ZT -6-9► 方法五 利用同角三角函数的关系求锐角三角函数值同角三角函数之间有如下关系:对于锐角α,有sin 2α+cos 2α=1,tan α=sin αcos α. 12.已知在Rt △ABC 中,∠C =90°,cos B =23,则sin B 的值为( )A.2 53B.53C.2 55D.5513.已知α为锐角,且cos α=13,求tan α+cos α1+sin α的值.► 方法六 利用互余两角三角函数的关系求锐角三角函数值 若∠A +∠B =90°,则sin A =cos B ,cos A =sin B.对于锐角α,sin α随α的增大而增大,cos α随α的增大而减小,tan α随α的增大而增大.14.已知0°<∠A <90°,那么cos (90°-∠A)等于( ) A .cos A B .sin (90°+∠A) C .sin A D .sin (90°-∠A)15.在△ABC 中,∠C =90°,tan A =3,求cos B 的值.16.在△ABC 中,(1)若∠C =90°,cos A =1213,求sin B 的值;(2)若∠A=35°,∠B=65°,试比较cos A与sin B的大小,并说明理由.教师详解详析1.[答案]10 10[解析] 如图,过点C作CD⊥OB于点D,根据正方形的性质可知点D为小正方形对角线的中点,∴CD=22,由勾股定理得OC=22+12=5,∴在Rt△OCD中,sin O=CDOC=225=1010.2.解:(1)AB=AC2+BC2=13.(2)sin A=BCAB=513,cos A=ACAB=1213,tan A=BCAC=512;sin B=ACAB=1213,cos B=BCAB=513,tan B=ACBC=125.3.D4.[答案]34[解析] 连结BE.∵D是AB的中点,ED⊥AB,∴ED是AB的垂直平分线,∴EB=EA,∴∠EBA =∠A =α,∴∠BEC =2α.∵tan α=13,设DE =a ,则AD =3a ,∴AE =10a ,AB =6a ,∴BC =3 10a 5,AC =9 10a 5,∴CE =9 10a 5-10a =4 10a 5,∴tan2α=BCCE =3 10a 54 10a5=34. 5.解:∵∠C =90°,tan A =BC AC =12, ∴设BC =x ,AC =2x , ∴AB =5x ,∴sin B =AC AB =2x 5x =2 55,cos B =BC AB =x 5x =55.6.解:设AB =BD =2x . ∵AB =BD ,∠DBC =30°, ∴∠A =12∠DBC =15°.∵∠DBC =30°,∠C =90°, ∴CD =x ,由勾股定理可求出BC =3x , ∴AC =AB +BC =2x +3x , ∴tan15°=CDAC =2- 3.7.[解析] B 连结BD .∵E ,F 分别是AB ,AD 的中点, ∴BD =2EF =4.∵BC =5,CD =3,BD =4, ∴BD 2+CD 2=BC 2,∴△BCD 是直角三角形,且∠BDC =90°, ∴tan C =BD CD =43.8.[解析] D 如图,过点A 作AF ⊥BC 于点F ,则有DE ∥AF . ∵AD =2DC ,∴DC ∶AC =1∶3=DE ∶AF , ∴AF =3DE . ∵AB =4DE , ∴sin B =AF AB =3DE 4DE =34.9.解:示意图如图所示.∵∠ACB =∠D +∠CAD ,∠ACB =2∠D , ∴∠CAD =∠D , ∴AC =DC .∵∠BAD =90°,∴∠B +∠D =90°.∵∠BAC +∠CAD =90°,∴∠B =∠BAC ,∴BC =AC ,∴BD =2AC .∵AC =32, ∴BD =3.在Rt △BAD 中,∵AD =2,BD =3,∴AB =5,∴tan D =AB AD =52. 10.解:∵在Rt △ABC 中,AB =10,BC =6, ∴AC =AB 2-BC 2=8.∵∠C =∠DEB =90°,∠B =∠B ,∴△ACB ∽△DEB ,∴∠A =∠BDE ,∴sin ∠BDE =sin A =35, cos ∠BDE =cos A =45, tan ∠BDE =tan A =34.11.解:根据图形得∠AFE +∠EFC +∠BFC =180°. 根据折叠的性质,得∠EFC =∠EDC =90°,∴∠AFE +∠BFC =90°.在Rt △BCF 中,∠BCF +∠BFC =90°,∴∠AFE =∠BCF .又根据折叠的性质,得CF =CD =10.在Rt △BCF 中,BC =8,CF =10,由勾股定理,得BF =CF 2-BC 2=6,∴tan ∠BCF =34, ∴tan ∠AFE =tan ∠BCF =34. 12.[解析] B ∵在Rt △ABC 中,∠C =90°,cos B =23, ∴sin B =1-(23)2=53. 故选B.13.解:∵cos α=13, ∴sin α=1-(13)2=2 23, tan α=sin αcos α=2 2313=2 2, ∴tan α+cos α1+sin α=2 2+131+2 23=2 2+3-2 2=3.14.C15.解:∵tan A =3,∴∠A =60°,sin A =32. 又∵∠A +∠B =90°,∴cos B =sin A =32. 16.解:(1)在Rt △ABC 中,∵∠A +∠B =90°,∴sin B =cos A =1213. (2)cos A <sin B .理由:∵cos A =cos35°=sin55°<sin65°, ∴cos A <sin B .。

考点20 锐角三角函数及其应用-备战2023届中考数学一轮复习考点梳理(解析版)

考点20 锐角三角函数及其应用-备战2023届中考数学一轮复习考点梳理(解析版)

考点20 锐角三角函数及其应用锐角三角函数及其应用是数学中考中比较重要的考点,其考察内容主要包括①正弦、余弦、正切三函数、②特殊角的三角函数值、③解直角三角形与其应用等。

而且,因为锐角三角函数的性质的特点,出题时除了会单独出题以外,还常和四边形、圆、网格图形等结合考察。

特别是三角函数的应用,是近几年中考填空压轴题常考题型。

学生在复习这块考点时,需要付出更多的努力,已达到熟练掌握这块考点的要求。

一、锐角三角函数的定义及其性质二、特殊角的三角函数值三、解直角三角形四、解直角三角形的应用考向一:锐角三角函数的定义及其性质一.锐角三角函数的定义:在Rt △AABC 中,∠C=90°,AB=c ,BC=a ,AC=b则:∠A 正弦:;ACBabc∠A余弦:;∠A正切:;二.锐角三角函数的函数关系当∠A+∠B=90°时,有以下两种关系:(1).同角三角函数的关系:;(2)互余两角的三角函数的关系:;1.如图,在Rt△ABC中,∠C=90°,AB=5,AC=3,则cos B的值为( )A.B.C.D.【分析】先根据勾股定理计算出BC,再根据三角函数的定义,即可得解.【解答】解:根据勾股定理可得,则cos B==.故选:B.2.Rt△ABC中,∠C=90°,AC=1,BC=2,tan A的值为( )A.B.C.D.2【分析】根据勾股定理求出AB的值,代入正切公式即可得到答案;【解答】解:∵∠C=90°,AC=1,BC=2,∴.故选:D.3.在Rt△ABC中,∠C=90°,sin A=,BC=6,则AC=( )A.10B.8C.5D.4【分析】在Rt△ABC中,利用锐角三角函数的定义求出AB,再根据勾股定理进行计算即可解答.【解答】解:在Rt△ABC中,∠C=90°,sin A=,BC=6,∴sin A===,∴AB=10,∴AC===8.故选:B.4.已知0°<θ<45°,则下列各式中正确的是( )A.cosθ<B.tanθ>1C.sinθ>cosθD.sinθ<tanθ【分析】根据逐项进行判断即可.【解答】解:A.由于一个锐角的余弦值随着锐角的增大而减小,而0°<θ<45°,所以cosθ>cos60°,即cosθ>,因此选项A不符合题意;B.由于一个锐角的正切值随着锐角的增大而增大,而所以tanθ<tan45°,即tanθ<1,因此选项B不符合题意;C.由于cosθ=sin(90°﹣θ),而0°<θ<45°,即45°<90°﹣θ<90°,所以sinθ<sin(90°﹣θ),即sinθ<cosθ,因此选项C不符合题意;D.由于sinθ=,tanθ=,而锐角的邻边小于斜边,所以sinθ<tanθ,因此选项D符合题意.故选:D.5.如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,则下列结论中不正确的是( )A.a2+b2=c2B.sin B=cos A C.tan A=D.sin B=【分析】根据直角三角形的边角关系逐项进行判断即可.【解答】解:在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,由勾股定理可得a2+b2=c2,因此选项A不符合题意;由锐角三角函数的定义可得sin B==cos A,因此选项B不符合题意;由锐角三角函数的定义可知,tan A=,因此选项C符合题意;由于sin2A+cos2A=()2+()2===1,因此选项D不符合题意;故选:C.考向二:特殊角的三角函数值特殊角的三角函数值表αsinαcosαtanα30°45°60°1.下列三角函数中,值为的是( )A.cos45°B.tan30°C.sin5°D.cos60°【分析】根据特殊锐角三角函数值逐项进行判断即可.【解答】解:A.由于cos45°=,因此选项A不符合题意;B.由于tan30°=,因此选项B不符合题意;C.sin5°<sin30°,即sin5°<,因此选项C不符合题意;D.由于cos60°=sin30°=,因此选项D符合题意;故选:D.2.计算tan45°+tan30°cos30°的值为( )A.B.1C.D.2【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=1+×=1+=,故选:C.3.4sin260°的值为( )A.3B.1C.D.【分析】根据特殊角的三角函数值计算即可得出答案.【解答】解:.故选:A.4.若sin(x+15°)=,则锐角x= 45 °.【分析】根据特殊角的三角函数值,即可解答.【解答】解:∵sin(x+15°)=,∴x+15°=60°,解得:x=45°,故答案为:45.5.计算:tan60°﹣sin245°+tan45°﹣2cos30°= .【分析】直接利用特殊角的三角函数值代入,进而得出答案.【解答】解:原式=﹣()2+1﹣2×=﹣+1﹣=.故答案为:.6.在△ABC中,,则△ABC的形状是 等边三角形 .【分析】非负数的和为0,则每个加数都等于0,求得相应的三角函数,进而求得∠A,∠B的度数.根据三角形的内角和定理求得∠C的度数.【解答】解:由题意得:2cos A﹣1=0,﹣tan B=0,解得cos A=,tan B=,∴∠A=60°,∠B=60°.∴∠C=180°﹣60°﹣60°=60°,∴△ABC是等边三角形.故答案为:等边三角形.7.计算:.【分析】根据特殊角三角函数值的混合计算法则求解即可.【解答】解:=====.考向三:解直角三角形解直角三角形相关:三边关系:在Rt△ABC中,∠C=90°两锐角关系:AB=c,BC=a,AC=b边与角关系:,,,锐角α是a、b的夹角面积:1.如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P.则tan∠APD的值是( )A.2B.1C.0.5D.2.5【分析】连接格点AE,BE.根据题图和勾股定理先判断△ABE的形状,再求出∠APD的正切,利用平行线的性质可得结论.【解答】解:如图,连接格点AE,BE.由网格和勾股定理可求得;,,,∴BE2+AE2=AB2,∴△ABE是直角三角形.在Rt△ABE中,.∵BE∥CD,∴∠APD=∠ABE,∴tan∠APD=2,故选:A.2.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若tan∠BDC =,则BC的长是( )A.6cm B.5cm C.4cm D.2cm【分析】设CD为xcm,则有AD为(8﹣x)cm,根据垂直平分线得到AD=BD,根据得到BC,最后根据勾股定理即可得到答案.【解答】解:设CD为xcm,则有AD为(8﹣x)cm,∵AB的垂直平分线MN交AC于D,∴AD=BD=8﹣x,∵,∴,∴,∵∠C=90°,∴,解得:x1=3,x2=﹣12(不符合题意舍去),∴,故答案为:C.3.如图,在Rt△ABC中,∠CAB=90°,sin C=,AC=8,BD平分∠CBA交AC边于点D.求:(1)线段AB的长;(2)tan∠DBA的值.【分析】(1)先解Rt△ABC,得出sin C==,设出AB=3k,则BC=5k,由BC2﹣AB2=AC2,得出方程(5k)2﹣(3k)2=82,解方程求出k的值,进而得到AB;(2)过D点作DE⊥BC于E,设AD=x,则CD=8﹣x.根据角平分线的性质得出DE=AD=x,利用HL 证明Rt△BDE≌Rt△BDA,得到BE=BA=6,那么CE=BC﹣BE=4.然后在Rt△CDE中利用勾股定理得出DE2+CE2=CD2,即x2+42=(8﹣x)2,解方程求出x的值,即为AD的长,再根据正切函数的定义即可求解.【解答】解:(1)∵在Rt△ABC中,∠CAB=90°,∴sin C==,BC2﹣AB2=AC2,∴可设AB=3k,则BC=5k,∵AC=8,∴(5k)2﹣(3k)2=82,∴k=2(负值舍去),∴AB=3×2=6;(2)过D点作DE⊥BC于E,设AD=x,则CD=8﹣x.∵BD平分∠CBA交AC边于点D,∠CAB=90°,∴DE=AD=x.在Rt△BDE与Rt△BDA中,,∴Rt△BDE≌Rt△BDA(HL),∴BE=BA=6,∴CE=BC﹣BE=5×2﹣6=4.在Rt△CDE中,∵∠CED=90°,∴DE2+CE2=CD2,∴x2+42=(8﹣x)2,解得x=3,∴AD=3,∴tan∠DBA===.4.如图,⊙O是△ABC的外接圆,点D在BC延长线上,且满足∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若AC是∠BAD的平分线,sin B=,BC=4,求⊙O的半径.【分析】(1)连接OA,OC与AB相交于点E,如图,由OA=OC,可得∠OAC=∠OCA,根据圆周角定理可得,由已知∠CAD=∠B,可得∠AOC=2∠CAD,根据三角形内角和定理可得∠OCA+∠CAO+∠AOC=180°,等量代换可得∠CAO+∠CAD=90°,即可得出答案;(2)根据角平分线的定义可得∠BAC=∠DAC,由已知可得∠BAC=∠B,根据垂径定理可得,OC⊥AB,BE=AE,在Rt△BEC中,根据正弦定理可得sin B===,即可算出CE的长度,根据勾股定理可算出BE=的长度,设⊙O的半径为r,则CE=OC﹣CE=r﹣,在Rt△AOE中,OA2=OE2+AE2,代入计算即可得出答案.【解答】证明:(1)连接OA,OC与AB相交于点E,如图,∵OA=OC,∴∠OAC=∠OCA,∵,∴,∵∠CAD=∠B,∴∠AOC=2∠CAD,∵∠OCA+∠CAO+∠AOC=180°,∴2∠CAO+2∠CAD=180°,∴∠CAO+∠CAD=90°,∴∠OAD=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;解:(2)∵AC是∠BAD的平分线,∴∠BAC=∠DAC,∵∠CAD=∠B,∴∠BAC=∠B,∴OC⊥AB,BE=AE,在Rt△BEC中,∵BC=4,∴sin B===,∴CE=,∴BE===,设⊙O的半径为r,则CE=OC﹣CE=r﹣,在Rt△AOE中,OA2=OE2+AE2,r2=(r﹣)2+,解得:r=.5.如图,△ABC中,AB=AC=6cm,BC=8cm,点P从点B出发,沿线段BC以2cm/s的速度向终点C运动,点Q从点C出发,沿着C→A→B的方向以3cm/s的速度向终点B运动,P,Q同时出发,设点P运动的时间为t(s),△CPQ的面积为S(cm2).(1)sin B= ;(2)求S关于t的函数关系式,并直接写出自变量t的取值范围.【分析】(1)过点A作AD⊥BC,垂足为D,利用等腰三角形的三线合一性质求出BD的长,再利用勾股定理求出AD的长即可解答;(2)分两种情况,当0<t≤1时,当1<t<2时.【解答】解:(1)过点A作AD⊥BC,垂足为D,∵AB=AC=6cm,AD⊥BC,∴BD=BC=4cm,在Rt△ABD中,AB=6cm,BD=4cm,∴AD==2,∴sin B==;故答案为:.(2)过点Q作QE⊥BC,垂足为E,∵AB=AC,∴∠B=∠C,∴sin B=sin C=,分两种情况:当0<t≤1时,由题意得:CQ=3t,BP=2t,∴CP=BC﹣BP=8﹣2t,在Rt△CQE中,QE=CQ sin C=3t•=t,∴S=CP•QE=•(8﹣2t)•t=4t﹣t2=﹣t2+4t,当1<t<2时,由题意得:CA+AQ=3t,BP=2t,∴CP=BC﹣BP=8﹣2t,BQ=AB+AC﹣(CA+AQ)=12﹣3t,在Rt△BQE中,QE=BQ sin B=(12﹣3t)•=4﹣t,∴S=CP•QE=•(8﹣2t)•(4﹣t)=,∴S=.考向四:解直角三角形的应用解直角三角形的应用:仰角和俯角仰角:在视线与水平线所成的角中,视线在水平线上方的叫仰角.俯角:视线在水平线下方的叫俯角坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作坡度和坡角坡度越大,坡角越大,坡面越陡1. 在实际测量高度、宽度、距离等问题中,常结合平面几何知识构造直角三角形,利用三角函数或相似三角形来解决问题,常见的构造的基本图形有如下几种:(1)不同地点看同一点,如图①(2)同一地点看不同点,如图②(3)利用反射构造相似,如图③2. 常用结论:1.在山坡上植树,要求两棵树间的坡面距离是3,测得斜坡的倾斜角为27°,则斜坡上相邻两棵树的水平距离是( )A.3sin27°B.3cos27°C.D.3tan27°【分析】根据坡角的定义、余弦的概念列式计算即可.【解答】解:如图,过点A作AB⊥BC于B,∴∠ABC=90°,cos∠BAC=,∵AC=3,∠BAC=27°,∴AB=AC cos∠BAC=3cos27°;故选:B.2.如图,在天定山滑雪场滑雪,需从山脚下A处乘缆车上山顶B处,缆车索道与水平线所成的∠BAC=α,若山的高度BC=800米,则缆车索道AB的长为( )A.800sinα米B.800cosα米C.米D.米【分析】利用直角三角形的边角关系定理列出关系式即可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,sin BAC=,∴AB=.∵∠BAC=α,BC=800米,∴AB=(米).故选:C.3.如图,为了估算某河流的宽度,在该河流的对岸选取一点A,在近岸取点D,C,使得A、D、C在一条直线上,且与河流的边沿垂直,测得CD=15m,然后又在垂直AC的直线上取点B,并量得BC=30m,若cos B=,则该河流的宽AD为 25 m.【分析】根据三角形函数的定义可得AB的长,利用勾股定理可得AC的长,由线段的和差关系可得答案.【解答】解:∵∠C=90°,BC=30m,cos B==,∴AB=50m,∴AC==40(m),∵CD=15m,∴AD=AC﹣CD=25(m),故答案为:25.4.某古村落为方便游客泊车,准备利用长方形晒谷场长60m一侧,规划一个停车场,已知每个停车位需确保有如长5.5m,宽2.5m的长方形AEDF供停车,如图平行四边形ABCD是其中一个停车位,所有停车位都平行排列,∠ABD为60°,则每个体车位的面积大约为 17 m2(结果保留整数),这个晒谷场按规划最多可容纳 20 个停车位.()【分析】由题意,在Rt△ABF中,由直角三角形的边角关系得出AB,BF的长,讲而可以解决问题.【解答】解:由题意,在Rt△ABF中,∠AFB=90°,∠ABF=60°,AF=2.5m,∴AB===≈2.94(m),∴BF=AB≈1.47(m),∴BD=DF+BF≈5.5+1.47=6.97(m),∵CD=AB≈2.94m,∴S平行四边形ABDC=BD•AF≈6.97×2.5≈17 (m2),∴每个停车位的面积大约为17m2;∵60÷2.94≈20.4,∴这个晒谷场按规划最多可容纳20个停车位.故答案为:17;20.5.夏秋季节,许多露营爱好者晚间会在湖边露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E处(EF⊥BF),使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,幕布宽AC=AD=2m,CD⊥AB 于点O,支杆AB与树干EF的横向距离BF=2.2m.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)(1)天晴时打开“天幕”,若∠CAE=140°,求遮阳宽度CD.(2)下雨时收拢“天幕”,∠CAE由140°减小到90°,求点E下降的高度.【分析】(1)根据在Rt△AOD中,,先算出OD的长,再根据AD=2OD即可得到答案;(2)过点E作EH⊥AB于H,在Rt△AHE中,,得,当∠CAE=140°时和当∠CAE=90°时,分别求出AH的值,作差即可得到答案.【解答】解:(1)∵∠CAE=140°,AC=AD,AO⊥CD,∴,CD=2DO,在Rt△AOD中,,即,解得:OD≈1.88m,∴CD=2OD≈3.76m,答:遮阳宽度CD约为3.76m;(2)如图,过点E作EH⊥AB于H,∴∠BHE=90°,∵AB⊥BF,EF⊥BF,∴∠ABF=∠EFB=90°,∴∠ABF=∠EFB=∠BHE=90°,∴EH=BF=2.2m,在Rt△AHE中,,∴,当∠CAE=140°时,∠EAO=70°,m,当∠CAE=90°时,∠EAO=45°,AH=2.2m,2.2﹣0.8=1.4m,答:点E下降的高度为1.4m.6.近几年中学生近视的现象越来越严重,为响应国家的号召,某公司推出了如图1所示的护眼灯,其侧面示意图(台灯底座高度忽略不计)如图2所示,其中灯柱BC=18cm,灯臂CD=31cm,灯罩DE=24cm,BC⊥AB,CD、DE分别可以绕点C、D上下调节一定的角度.经使用发现:当∠DCB=140°,且ED∥AB时,台灯光线最佳.求此时点D到桌面AB的距离.(精确到0.1cm,参考数值:cos50°≈0.77,cos50°≈0.64,tan50°≈1.19)【分析】根据题意,作出合适的辅助线,然后根据锐角三角函数,即可得到DF的长,再根据FG=CB,即可求得DG的长,从而可以解答本题.【解答】解:过点D作DG⊥AB,垂足为G,过点C作CF⊥DG,垂足为F,如右图所示,∵CB⊥AB,FG⊥AB,CF⊥FG,∴∠B=∠BGF=∠GFC=90°,∴四边形BCFG为矩形,∴∠BCF=90°,FG=BC=18cm,又∵∠DCB=140°,∴∠DCF=50°,∵CD=31cm,∠DFC=90°,∴DF=CD•sin50°≈31×0.77=23.87(cm),∴DG≈23.87+18≈41.9(cm),答:点D到桌面AB的距离约为41.9cm.1.(2022•扬州)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若b2=ac,则sin A的值为 . .【分析】根据勾股定理和锐角三角函数的定义解答即可.【解答】解:在△ABC中,∠C=90°,∴c2=a2+b2,∵b2=ac,∴c2=a2+ac,等式两边同时除以ac得:=+1,令=x,则有=x+1,∴x2+x﹣1=0,解得:x1=,x2=(舍去),当x=时,x≠0,∴x=是原分式方程的解,∴sin A==.故答案为:.2.(2022•荆州)如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在OB上,OC:BC=1:2,连接AC,过点O作OP∥AB交AC的延长线于P.若P(1,1),则tan∠OAP的值是( )A.B.C.D.3【分析】根据OP∥AB,证明出△OCP∽△BCA,得到CP:AC=OC:BC=1:2,过点P作PQ⊥x轴于点Q,根据∠AOC=∠AQP=90°,得到CO∥PQ,根据平行线分线段成比例定理得到OQ:AO=CP:AC=1:2,根据P(1,1),得到PQ=OQ=1,得到AO=2,根据正切的定义即可得到tan∠OAP的值.【解答】解:如图,过点P作PQ⊥x轴于点Q,∵OP∥AB,∴△OCP∽△BCA,∴CP:AC=OC:BC=1:2,∵∠AOC=∠AQP=90°,∴CO∥PQ,∴OQ:AO=CP:AC=1:2,∵P(1,1),∴PQ=OQ=1,∴AO=2,∴tan∠OAP===.故选:C.3.(2022•天津)tan45°的值等于( )A.2B.1C.D.【分析】根据特殊角的三角函数值,进行计算即可解答.【解答】解:tan45°的值等于1,故选:B.4.(2022•荆门)计算:+cos60°﹣(﹣2022)0= ﹣1 .【分析】先化简各式,然后再进行计算即可解答.【解答】解:+cos60°﹣(﹣2022)0=﹣+﹣1=0﹣1=﹣1,故答案为:﹣1.5.(2022•金华)计算:(﹣2022)0﹣2tan45°+|﹣2|+.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质、算术平方根分别化简,进而计算得出答案.【解答】解:原式=1﹣2×1+2+3=1﹣2+2+3=4.6.(2022•贵港)如图,在4×4网格正方形中,每个小正方形的边长为1,顶点为格点,若△ABC的顶点均是格点,则cos∠BAC的值是( )A.B.C.D.【分析】延长AC到D,连接BD,由网格可得AD2+BD2=AB2,即得∠ADB=90°,可求出答案.【解答】解:延长AC到D,连接BD,如图:∵AD2=20,BD2=5,AB2=25,∴AD2+BD2=AB2,∴∠ADB=90°,∴cos∠BAC===,故选:C.7.(2022•广西)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC 是( )A.12sinα米B.12cosα米C.米D.米【分析】直接根据∠A的正弦可得结论.【解答】解:Rt△ABC中,sinα=,∵AB=12米,∴BC=12sinα(米).故选:A.8.(2022•宜宾)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE 交AB于点F,则cos∠ADF的值为( )A.B.C.D.【分析】利用矩形和折叠的性质可得BF=DF,设BF=x,则DF=x,AF=5﹣x,在Rt△ADF中利用勾股定理列方程,即可求出x的值,进而可得cos∠ADF.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AB∥CD,AD=BC=3,AB=CD=5,∴∠BDC=∠DBF,由折叠的性质可得∠BDC=∠BDF,∴∠BDF=∠DBF,∴BF=DF,设BF=x,则DF=x,AF=5﹣x,在Rt△ADF中,32+(5﹣x)2=x2,∴x=,∴cos∠ADF=,故选:C.9.(2022•广元)如图,在正方形方格纸中,每个小正方形的边长都相等,A、B、C、D都在格点处,AB 与CD相交于点P,则cos∠APC的值为( )A.B.C.D.【分析】把AB向上平移一个单位到DE,连接CE,则DE∥AB,由勾股定理逆定理可以证明△DCE为直角三角形,所以sin∠APC=sin∠EDC即可得答案.【解答】解:把AB向上平移一个单位到DE,连接CE,如图.则DE∥AB,∴∠APC=∠EDC.在△DCE中,有EC==,DC==2,DE==5,∵EC2+DC2=DE2,故△DCE为直角三角形,∠DCE=90°.∴cos∠APC=cos∠EDC==.故选:B.10.(2022•陕西)如图,AD是△ABC的高.若BD=2CD=6,tan C=2,则边AB的长为( )A.3B.3C.3D.6【分析】利用三角函数求出AD=6,在Rt△ABD中,利用勾股定理可得AB的长.【解答】解:∵2CD=6,∴CD=3,∵tan C=2,∴=2,∴AD=6,在Rt△ABD中,由勾股定理得,AB=,故选:D.11.(2022•常州)如图,在四边形ABCD中,∠A=∠ABC=90°,DB平分∠ADC.若AD=1,CD=3,则sin∠ABD= .【分析】过点D作DE⊥BC,垂足为E,如图,由已知∠A=∠ABC=90°,可得AD∥BC,由平行线的性质可得∠ADB=∠CBD,根据角平分线的定义可得∠ADB=∠CDB,则可得CD=CB=3,根据矩形的性质可得AD=BE,即可得CE=BC﹣BE,在Rt△CDE中,根据勾股定理DE=,在Rt△ADB中,根据勾股定理可得,根据正弦三角函数的定义进行求解即可得出答案.【解答】解:过点D作DE⊥BC,垂足为E,如图,∵∠A=∠ABC=90°,∴AD∥BC,∴∠ADB=∠CBD,∵DB平分∠ADC,∴∠ADB=∠CDB,∴CD=CB=3,∵AD=BE=1,∴CE=BC﹣BE=3﹣1=2,在Rt△CDE中,DE===,∵DE=AB,在Rt△ADB中,==,∴sin∠ABD==.故答案为:.12.(2022•齐齐哈尔)在△ABC中,AB=3,AC=6,∠B=45°,则BC= 3+3或3﹣3 .【分析】利用分类讨论的思想方法,画出图形,过点A作AD⊥BC于点D,利用勾股定理解答即可.【解答】解:①当△ABC为锐角三角形时,过点A作AD⊥BC于点D,如图,∵AB=3,∠B=45°,∴AD=BD=AB•sin45°=3,∴CD==3,∴BC=BD+CD=3+3;②当△ABC为钝角三角形时,过点A作AD⊥BC交BC延长线于点D,如图,∵AB=3,∠B=45°,∴AD=BD=AB•sin45°=3,∴CD==3,∴BC=BD﹣CD=3﹣3;综上,BC的长为3+3或3﹣3.13.(2022•连云港)如图,在6×6正方形网格中,△ABC的顶点A、B、C都在网格线上,且都是小正方形边的中点,则sin A= .【分析】先构造直角三角形,然后即可求出sin A的值.【解答】解:设每个小正方形的边长为a,作CD⊥AB于点D,由图可得:CD=4a,AD=3a,∴AC===5a,∴sin∠CAB===,故答案为:.14.(2022•长春)如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A,变幅索的底端记为点B,AD垂直地面,垂足为点D,BC⊥AD,垂足为点C.设∠ABC =α,下列关系式正确的是( )A.sinα=B.sinα=C.sinα=D.sinα=【分析】根据直角三角形的边角关系进行判断即可.【解答】解:在Rt△ABC中,∠ACB=90°,∠ABC=α,由锐角三角函数的定义可知,sinα=sin∠ABC=,故选:D.15.(2022•沈阳)如图,一条河的两岸互相平行,为了测量河的宽度PT(PT与河岸PQ垂直),测量得P,Q两点间距离为m米,∠PQT=α,则河宽PT的长为( )A.m sinαB.m cosαC.m tanαD.【分析】根据垂直定义可得PT⊥PQ,然后在Rt△PQT中,利用锐角三角函数的定义进行计算即可解答.【解答】解:由题意得:PT⊥PQ,∴∠APQ=90°,在Rt△APQ中,PQ=m米,∠PQT=α,∴PT=PQ•tanα=m tanα(米),∴河宽PT的长度是m tanα米,故选:C.16.(2022•福建)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44cm,则高AD约为( )(参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.9.90cm B.11.22cm C.19.58cm D.22.44cm【分析】根据等腰三角形性质求出BD,根据角度的正切值可求出AD.【解答】解:∵AB=AC,BC=44cm,∴BD=CD=22cm,AD⊥BC,∵∠ABC=27°,∴tan∠ABC=≈0.51,∴AD≈0.51×22=11.22cm,故选:B.17.(2022•六盘水)“五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E 处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1m);(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1m).(参考数据:sin65°≈0.90,cos65°≈0.42,tan65°≈2.14,≈1.41)【分析】(1)根据对称性得出AD=2m,再根据锐角三角函数求出OD,即可求出答案;(2)过点E作EH⊥AB于H,得出EH=BF=3m,再分别求出∠α=65°和45°时,AH的值,即可求出答案.【解答】解:(1)由对称知,CD=2OD,AD=AC=2m,∠AOD=90°,在Rt△AOD中,∠OAD=α=65°,∴sinα=,∴OD=AD•sinα=2×sin65°≈2×0.90=1.80m,∴CD=2OD=3.6m,答:遮阳宽度CD约为3.6米;(2)如图,过点E作EH⊥AB于H,∴∠BHE=90°,∵AB⊥BF,EF⊥BF,∴∠ABF=∠EFB=90°,∴∠ABF=∠EFB=∠BHE=90°,∴EH=BF=3m,在Rt△AHE中,tan a=,∴AH=,当∠α=65°时,AH=≈≈1.40m,当∠α=45°时,AH==3,∴当∠α从65°减少到45°时,点E下降的高度约为3﹣1.40=1.6m.18.(2022•盐城)2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为机械臂,OA=1m,AB=5m,BC=2m,∠ABC =143°.机械臂端点C到工作台的距离CD=6m.(1)求A、C两点之间的距离;(2)求OD长.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈2.24)【分析】(1)过点A作AE⊥CB,垂足为E,在Rt△ABE中,由AB=5m,∠ABE=37°,可求AE和BE,即可得出AC的长;(2)过点A作AF⊥CD,垂足为F,在Rt△ACF中,由勾股定理可求出AF,即OD的长.【解答】解:(1)如图,过点A作AE⊥CB,垂足为E,在Rt△ABE中,AB=5m,∠ABE=37°,∵sin∠ABE=,cos∠ABE=,∴=0.60,=0.80,∴AE=3m,BE=4m,∴CE=6m,在Rt△ACE中,由勾股定理AC==3≈6.7m.(2)过点A作AF⊥CD,垂足为F,∴FD=AO=1m,∴CF=5m,在Rt△ACF中,由勾股定理AF==2m.∴OD=2≈4.5m.1.(2022•滨州)在Rt△ABC中,若∠C=90°,AC=5,BC=12,则sin A的值为 .【分析】根据题意画出图形,进而利用勾股定理得出AB的长,再利用锐角三角函数关系,即可得出答案.【解答】解:如图所示:∵∠C=90°,AC=5,BC=12,∴AB==13,∴sin A=.故答案为:.2.(2022•湖州)如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.【分析】根据勾股定理求AC的长,根据正弦的定义求sin A的值.【解答】解:∵∠C=90°,AB=5,BC=3,∴AC===4,sin A==.答:AC的长为4,sin A的值为.3.(2022•广东)sin30°= .【分析】熟记特殊角的三角函数值进行求解即可得出答案.【解答】解:sin30°=.故答案为:.4.(2022•绥化)定义一种运算:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβ.例如:当α=45°,β=30°时,sin(45°+30°)=×+×=,则sin15°的值为 .【分析】把15°看成是45°与30°的差,再代入公式计算得结论.【解答】解:sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=×﹣×=﹣=.故答案为:.5.(2022•张家界)计算:2cos45°+(π﹣3.14)0+|1﹣|+()﹣1.【分析】根据特殊锐角三角函数值,零指数幂,绝对值以及负整数指数幂的性质进行计算即可.【解答】解:原式==.6.(2022•岳阳)计算:|﹣3|﹣2tan45°+(﹣1)2022﹣(﹣π)0.【分析】先化简各式,然后再进行计算即可解答.【解答】解:|﹣3|﹣2tan45°+(﹣1)2022﹣(﹣π)0=3﹣2×1+1﹣1=3﹣2+1﹣1=1.7.(2022•通辽)如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则cos∠ADC的值为( )A.B.C.D.【分析】由格点构造直角三角形,由直角三角形的边角关系以及圆周角定理可得答案.【解答】解:∵AB为直径,∴∠ACB=90°,又∵点A,B,C都在格点上,∴∠ADC=∠ABC,在Rt△ABC中,cos∠ABC====cos∠ADC,故选:B.8.(2022•乐山)如图,在Rt△ABC中,∠C=90°,BC=,点D是AC上一点,连结BD.若tan∠A=,tan∠ABD=,则CD的长为( )A.2B.3C.D.2【分析】过D点作DE⊥AB于E,由锐角三角函数的定义可得5DE=AB,再解直角三角形可求得AC的长,利用勾股定理可求解AB的长,进而求解AD的长.【解答】解:过D点作DE⊥AB于E,∵tan∠A==,tan∠ABD==,∴AE=2DE,BE=3DE,∴2DE+3DE=5DE=AB,在Rt△ABC中,tan∠A=,BC=,∴,解得AC=,∴AB=,∴DE=1,∴AE=2,∴AD=,∴CD=AC﹣AD=,故选:C.9.(2022•泸州)如图,在平面直角坐标系xOy中,矩形OABC的顶点B的坐标为(10,4),四边形ABEF是菱形,且tan∠ABE=.若直线l把矩形OABC和菱形ABEF组成的图形的面积分成相等的两部分,则直线l的解析式为( )A.y=3x B.y=﹣x+C.y=﹣2x+11D.y=﹣2x+12【分析】分别求出矩形OABC和菱形ABEF的中心的坐标,利用待定系数法求经过两中心的直线即可得出结论.【解答】解:连接OB,AC,它们交于点M,连接AE,BF,它们交于点N,则直线MN为符合条件的直线l,如图,∵四边形OABC是矩形,∴OM=BM.∵B的坐标为(10,4),∴M(5,2),AB=10,BC=4.∵四边形ABEF为菱形,BE=AB=10.过点E作EG⊥AB于点G,在Rt△BEG中,∵tan∠ABE=,∴,设EG=4k,则BG=3k,∴BE==5k,∴5k=10,∴k=2,∴EG=8,BG=6,∴AG=4.∴E(4,12).∵B的坐标为(10,4),AB∥x轴,∴A(0,4).∵点N为AE的中点,∴N(2,8).设直线l的解析式为y=ax+b,∴,解得:,∴直线l的解析式为y=﹣2x+12,故选:D.10.(2022•益阳)如图,在Rt△ABC中,∠C=90°,若sin A=,则cos B= .【分析】根据三角函数的定义即可得到cos B=sin A=.【解答】解:在Rt△ABC中,∠C=90°,∵sin A==,∴cos B==.故答案为:.11.(2022•西宁)在Rt△ABC中,∠C=90°,AC=1,BC=,则cos A= .【分析】根据勾股定理求出AB,再根据锐角三角函数的定义求出cos A即可.【解答】解:由勾股定理得:AB===,所以cos A===,故答案为:.12.(2022•通辽)如图,在矩形ABCD中,E为AD上的点,AE=AB,BE=DE,则tan∠BDE= ﹣1 .【分析】用含有AB的代数式表示AD,再根据锐角三角函数的定义进行计算即可.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∵AB=AE,设AB=a,则AE=a,BE==a=ED,∴AD=AE+DE=(+1)a,在Rt△ABD中,tan∠BDE===﹣1,故答案为:﹣1.13.(2022•张家界)我国魏晋时期的数学家赵爽在为天文学著作《周髀算经》作注解时,用4个全等的直角三角形和中间的小正方形拼成一个大正方形,这个图被称为“弦图”,它体现了中国古代数学的成就.如图,已知大正方形ABCD的面积是100,小正方形EFGH的面积是4,那么tan∠ADF= .【分析】根据两个正方形的面积可得AD=10,DF﹣AF=2,设AF=x,则DF=x+2,由勾股定理得,x2+(x+2)2=102,解方程可得x的值,从而解决问题.【解答】解:∵大正方形ABCD的面积是100,∴AD=10,∵小正方形EFGH的面积是4,∴小正方形EFGH的边长为2,∴DF﹣AF=2,设AF=x,则DF=x+2,由勾股定理得,x2+(x+2)2=102,解得x=6或﹣8(负值舍去),∴AF=6,DF=8,∴tan∠ADF=,故答案为:.14.(2022•金华)一配电房示意图如图所示,它是一个轴对称图形.已知BC=6m,∠ABC=α,则房顶A 离地面EF的高度为( )A.(4+3sinα)m B.(4+3tanα)m C.(4+)m D.(4+)m【分析】过点A作AD⊥BC于点D,利用直角三角形的边角关系定理求得AD,.用AD+BE即可表示出房顶A离地面EF的高度.【解答】解:过点A作AD⊥BC于点D,如图,∵它是一个轴对称图形,∴AB=AC,∵AD⊥BC,∴BD=BC=3m,在Rt△ADB中,∵tan∠ABC=,∴AD=BD•tanα=3tanαm.∴房顶A离地面EF的高度=AD+BE=(4+3tanα)m,故选:B.15.(2022•枣庄)北京冬奥会开幕式的巨型雪花状主火炬塔的设计,体现了环保低碳理念.如图所示,它的主体形状呈正六边形.若点A,F,B,D,C,E是正六边形的六个顶点,则tan∠ABE= .【分析】由正六边形的性质得AB=BC=AC,BE垂直平分AC,再由等边三角形的性质得∠ABC=60°,则∠ABE=∠ABC=30°,即可得出结论.【解答】解:如图,连接AB、BC、AC、BE,∵点A,F,B,D,C,E是正六边形的六个顶点,∴AB=BC=AC,BE垂直平分AC,∴△ABC是等边三角形,∴∠ABC=60°,∵BE⊥AC,∴∠ABE=∠ABC=30°,∴tan∠ABE=tan30°=,故答案为:.16.(2022•绵阳)如图,测量船以20海里每小时的速度沿正东方向航行并对某海岛进行测量,测量船在A 处测得海岛上观测点D位于北偏东15°方向上,观测点C位于北偏东45°方向上.航行半个小时到达B 点,这时测得海岛上观测点C位于北偏西45°方向上,若CD与AB平行,则CD= (5﹣5) 海里(计算结果不取近似值).【分析】过点D作DE⊥AB,垂足为E,根据题意可得:AB=10海里,∠FAD=15°,∠FAC=45°,∠FAB=90°,∠CBA=45°,从而可得∠DAC=30°,∠CAB=45°,进而利用三角形内角和定理求出∠ACB=90°,然后在Rt△ACB中,利用锐角三角函数的定义求出AC的长,设DE=x海里,再在Rt△ADE 中,利用锐角三角函数的定义求出AE的长,在Rt△DEC中,利用锐角三角函数的定义求出EC,DC的长,最后根据AC=5海里,列出关于x的方程,进行计算即可解答.【解答】解:如图:过点D作DE⊥AB,垂足为E,由题意得:AB=20×=10(海里),∠FAD=15°,∠FAC=45°,∠FAB=90°,∠CBA=90°﹣45°=45°,∴∠DAC=∠FAC﹣∠FAD=30°,∠CAB=∠FAB﹣∠FAC=45°,∴∠ACB=180°﹣∠CAB﹣∠CBA=90°,在Rt△ACB中,AC=AB•sin45°=10×=5(海里),设DE=x海里,在Rt△ADE中,AE===x(海里),∵DC∥AB,∴∠DCA=∠CAB=45°,在Rt△DEC中,CE==x(海里),DC===x(海里),∵AE+EC=AC,∴x+x=5,∴x=,∴DC=x=(5﹣5)海里,故答案为:(5﹣5).17.(2022•荆门)如图,一艘海轮位于灯塔P的北偏东45°方向,距离灯塔100海里的A处,它沿正南方向以50海里/小时的速度航行t小时后,到达位于灯塔P的南偏东30°方向上的点B处,则t= (1+) 小时.【分析】根据题意可得:∠PAC=45°,∠PBA=30°,AP=100海里,然后在Rt△APC中,利用锐角三角函数的定义求出AC,PC的长,再在Rt△BCP中,利用锐角三角函数的定义求出BC的长,从而求出AB的长,最后根据时间=路程÷速度,进行计算即可解答.【解答】解:如图:由题意得:∠PAC=45°,∠PBA=30°,AP=100海里,在Rt△APC中,AC=AP•cos45°=100×=50(海里),PC=AP•sin45°=100×=50(海里),在Rt△BCP中,BC===50(海里),∴AB=AC+BC=(50+50)海里,∴t==(1+)小时,故答案为:(1+).18.(2022•桂林)如图,某雕塑MN位于河段OA上,游客P在步道上由点O出发沿OB方向行走.已知∠AOB=30°,MN=2OM=40m,当观景视角∠MPN最大时,游客P行走的距离OP是 20 米.【分析】先证OB是⊙F的切线,切点为E,当点P与点E重合时,观景视角∠MPN最大,由直角三角形的性质可求解.【解答】解:如图,取MN的中点F,过点F作FE⊥OB于E,以直径MN作⊙F,∵MN=2OM=40m,点F是MN的中点,∴MF=FN=20m,OF=40m,∵∠AOB=30°,EF⊥OB,∴EF=20m,OE=EF=20m,∴EF=MF,又∵EF⊥OB,∴OB是⊙F的切线,切点为E,∴当点P与点E重合时,观景视角∠MPN最大,此时OP=20m,故答案为:20.19.(2022•内江)如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)【分析】(1)过点A作AE⊥l,垂足为E,设CE=x米,则DE=(x+60)米,先利用平角定义求出∠ACE =45°,然后在Rt△AEC中,利用锐角三角函数的定义求出AE的长,再在Rt△ADE中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答;(2)过点B作BF⊥l,垂足为F,CE=AE=BF=(30+30)米,AB=EF,先利用平角定义求出∠BCF =60°,然后在Rt△BCF中,利用锐角三角函数的定义求出CF的长,进行计算即可解答.【解答】解:(1)过点A作AE⊥l,垂足为E,设CE=x米,∵CD=60米,∴DE=CE+CD=(x+60)米,∵∠ACB=15°,∠BCD=120°,∴∠ACE=180°﹣∠ACB﹣∠BCD=45°,在Rt△AEC中,AE=CE•tan45°=x(米),在Rt△ADE中,∠ADE=30°,。

三角函数之转换

三角函数之转换

三角函数之间的转换 大家应该知道这三个公式吧:
上面的公式是基本的三角函数公式,大家看看这个图形。

图(1)
上面的图形可以是公式的集合体,虽然上面的那三个公式可以推出很多公式, 但是上面的图(1)形可以代表所有三角函数的所有对应关系,这个对应关系是:
格点之积,商数关系。

对角之积,乘数关系。

影音之积,平方关系。

比如:
a a a sec sin tan =;a a
a tan cos sin =;大家按图1发现规律就OK a a a cot tan sin =;a a
a cos tan sin =;(同上) 上面是我从第一句话得出的,还用很多对应关系,大家自己找出。

还有中间的1是说的二三句的。

按照文字的提示大家可以一一找出对应关系。

基本就这样了。

格点图中的锐角三角函数

格点图中的锐角三角函数

格点图中的锐角三角函数正在正方形网格中,我们把水平线与竖直线相交的点称为格点。

如果在网格中,一个三角形的三个顶点在格点上,那么我们称这个三角形为格点三角形。

格点三角形有锐角三角形、直角三角形和钝角三角形三类。

在初中阶段,锐角三角函数值的求解经常作为一个考点来考查学生的观察、分析和计算能力。

由于此类题灵活多变,内容丰富,经常将其在中考试卷中作为考点进行考查,其考查学生能力的作用不言而喻。

下面择其中的中考题作个例析。

例1.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,E为BC中点,则sin∠AEB的值是()A.B.C.D.例1例2例2.(2017•无锡)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.练习:1.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为120°,A,B,C都在格点上,则tan∠ABC的值是.第1题第2题2.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个角(如∠O)为60°,A,B,C,D都在格点上,且线段AB、CD相交于点P,则tan∠APC 的值是.3.仿照例题完成任务:例:如图1,在网格中,小正方形的边长均为1,点A,B,C,D都在格点上,AB与CD相交于点O,求tan∠BOD的值.解析:连接AE,EF,导出∠BOD=∠FAE,再根据勾股定理求得三角形各边长,然后利用三角函数解决问题.具体解法如下:连接AE,EF,则AE∥CD,∴∠FAE=∠BOD,根据勾股定理可得:AE=,AF=2,EF=3,∵,∴△FAE是直角三角形,∠FEA=90°,∴tan∠FAE==3,即tan∠BOD=3.任务:(1)如图2,M,N,G,H四点均在边长为1的正方形网格的格点上,线段MN,GH相交于点P,求图中∠HPN的正切值;(2)如图3,A,B,C均在边长为1的正方形网格的格点上,请你直接写出tan∠BAC的值.4.如图,在边长都为1的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,(1)sin∠BAC=,PC=.(2)求tan∠DPA的值.参考答案:例1.【考点】直角三角形斜边上的中线;勾股定理;勾股定理的逆定理;锐角三角函数的定义。

无刻度直尺网格作图的基本模型及应用

无刻度直尺网格作图的基本模型及应用

无刻度直尺网格作图的基本模型及应用《义务教育数学课程标准(2022年版)》对尺规作图的内容及要求有所加强,其地位又得到了一定提升。

尺规作图蕴含丰富的推理,是发展学生推理能力的良好载体,而“无刻度直尺网格作图”是尺规作图的基础。

本文将在9×9的网格下讨论三种基本模型和四种复合模型。

在网格作图中,我们把两条相交直线叫做格点的“母线”。

若两条母线都是网格线,则交点叫格点;若两条母线中只有一条网格线,则交点叫次格点;若两条母线都不是网格线,则交点叫一般点。

我们要过一个点作一条线的平行线或垂线,当点是格点时,我们很轻松的通过平移完成,当点不是格点时,我们通常通过平移“生成”点的母线来完成。

一、基本作图1、过点作平行线①如图1,过C点作CD平行且等于AB解答:C是格点,只需要找到C的对应点D,因A到B的平移方式是横左2纵下3,则A到B的平移方式也是横左2纵下3。

总结:若点是格点,直接通过平移到对应点,并且平移横纵不变(下文中平移方式不变就不再强调)。

②如图2,过E点作EF平行且等于AB解答:E是次格点,先找到母线AC的对应母线BD,再找到E的对应点F。

总结:若点是次格点,先通过平移非网格线的那条母线到对应母线,再找到对应点。

③如图3,过E点作EF平行且等于AB解答:E是一般点,先找到两条母线的对应母线,再找到E的对应点F。

总结:若点是一般点,先通过平移两条母线到对应母线,再找到对应点。

变式:如图4,过E点作AB的平行线交BC于点F解答:我们除了用平移的方法作平行线,还可以利用X、A型相似作平行。

因为E是AC的一个三等分点,可以先连接BC,再利用相似找BC对应的三等分点F。

2、过点作垂线①如图5,过C点作CD垂直且等于AB解答:C是格点,只需要找到C的对应点D,因A到B的平移方式是横左2纵下3,则C到D的平移方式是横左3纵上2。

总结:若点是格点,直接通过旋转得到对应点,并且旋转横纵交换。

②如图6,过E点作EF垂直且等于AB解答:E是次格点,先过A点作AB的垂线AC(横纵交换),再过次格点E点作AC的平行线EF。

格点图中的锐角三角函数

格点图中的锐角三角函数

格点图中的锐角三角函数正在正方形网格中,我们把水平线与竖直线相交的点称为格点。

如果在网格中,一个三角形的三个顶点在格点上,那么我们称这个三角形为格点三角形。

格点三角形有锐角三角形、直角三角形和钝角三角形三类。

在初中阶段,锐角三角函数值的求解经常作为一个考点来考查学生的观察、分析和计算能力。

由于此类题灵活多变,内容丰富,经常将其在中考试卷中作为考点进行考查,其考查学生能力的作用不言而喻。

下面择其中的中考题作个例析。

例1.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,E为BC 中点,则sin∠AEB的值是()A.B.C.D.例1例2例2. (2017•无锡)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.练习:1. 如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为120°,A,B,C都在格点上,则tan∠ABC的值是.第1题第2题2.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,已知菱形的一个角(如∠O)为60°,A,B,C,D都在格点上,且线段AB、CD相交于点P,则tan∠APC 的值是.3. 仿照例题完成任务:例:如图1,在网格中,小正方形的边长均为1,点A,B,C,D都在格点上,AB与CD相交于点O,求tan∠BOD的值.解析:连接AE,EF,导出∠BOD=∠F AE,再根据勾股定理求得三角形各边长,然后利用三角函数解决问题.具体解法如下:连接AE,EF,则AE∥CD,∴∠F AE=∠BOD,根据勾股定理可得:AE=,AF=2,EF=3,∵,∴△F AE是直角三角形,∠FEA=90°,∴tan∠F AE==3,即tan∠BOD=3.任务:(1)如图2,M,N,G,H四点均在边长为1的正方形网格的格点上,线段MN,GH相交于点P,求图中∠HPN的正切值;(2)如图3,A,B,C均在边长为1的正方形网格的格点上,请你直接写出tan∠BAC的值.4. 如图,在边长都为1的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P,(1)sin∠BAC=,PC=.(2)求tan∠DP A的值.参考答案:例1. 【考点】直角三角形斜边上的中线;勾股定理;勾股定理的逆定理;锐角三角函数的定义。

数学中考一轮复习:三角函数-锐角三角函数要点集锦

数学中考一轮复习:三角函数-锐角三角函数要点集锦

初中数学锐角三角函数要点集锦考点考纲要求分值考向预测锐角三角函数要点1. 理解正弦、余弦、正切的定义及计算公式;2. 能够推导并掌握特殊角的三角函数值;3. 能够理解与锐角三角函数有关的公式。

3~5分主要考查为利用三角函数的定义求值,利用特殊角的三角函数值进行计算,难度不大,分值也不高,理解定义是解决问题的关健。

一、锐角三角函数基本定义:在Rt△ABC中,∠C=90°,我们把∠A的对边与斜边的比叫做∠A的正弦,记作sin A;把∠A的邻边与斜边的比叫做∠A的余弦,记作cos A;把∠A的对边与邻边的比叫做∠A 的正切,记作tan A。

即:sinA=;cosA=;tanA=。

锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数。

ABCabc对边邻边斜边【随堂练习】(贵阳)在Rt△ABC中,∠C=90°,AC=12,BC=5,则sinA的值为()A. B. C. D.思路分析:首先画出图形,进而求出AB的长,再利用锐角三角函数求出即可。

答案:解:如图所示:∵∠C=90°,AC=12,BC=5,∴AB===13,则sinA==,故选:D。

三角函数角度αsinαcosαtanα30°45° 160°【重要提示】1. 各三角函数值可通过直角三角形性质及勾股定理求出边长从而求出比值;2. 锐角三角函数值的取值范围及增减情况:①∠A的正弦函数、余弦函数的取值范围是:0<sinA<1,0<cosA<1,即任意锐角的正弦、余弦值都大于0而小于1;而正切是两直角边的比,所以∠A的正切函数取值范围是:tanA>0,即任意锐角的正切值都大于0。

②当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大);正切值随着角度的增大(或减小)而增大(或减小)。

三、同角、互余两角的锐角三角函数值的关系:1. 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值;即:。

在方格中如何求相似的格点三角形

在方格中如何求相似的格点三角形
D F E C B
图3Leabharlann 探究4: 除了上面找的 2个外, 还有没有和△A BC 相似的格点三角形呢? 要是按照取面积最小的找法,肯定很麻烦且不 可取。 我们假设最长边4 √ 5 的对应边为 √ a , 根据 6 4 5 2 5 相 似 比 √ = √ = ,得 另 两 边 为 √ a 和 x y 2 √a √ a 和 3 √5a 三边 构 成 格 点 三角 形, 则 a必 √a、 2 10 3 √ 5a 。由 于 √ a = 10 2
A
设A B= √a2+x2 , 当 a+ BC= √b 2+y2 , A C= √c 2+z 2 , (a, 三边恰好能构成格点三角形 b=c 且x+y=z 时, b, c, 且没有顺序要求) x, y, z 均为非负整数, A D=a+b , BE=b , CE=y, BC= √b 2+y2 , 根据图 形 得 : 由于a+b=c , 则A C= √c 2+z 2 正 好构 成 CD=x+y, x+y=z , 。 △A BC
教师结合学生的接受能力把问题设计得层层递进力求让数学概念自然生成在思考这些问题的过程中学生体会到了数学知识间的紧密联系经历了数学概念的生成过程自然能够很好地理解这一数学概念后面的知识应用环节也进行得非常顺利
36
备考方略
在方格中如何求相似的格点三角形
■ 耿冀平
原 题 : 已 知 △A BC 中, A C=2 √ 5 A B=4 √ 5 , BC=6 (1) 如图 1, 点 M 为 A C 的中 点 , 在线 段 A B 上 取点 使△A MN与△A BC相似, 求线段MN的长 N, 作出和△A BC相似且面 (2) 在给定的方格纸中, 并求出 积最大的格点三角形, 请你画出其中的一个, 它的面积 (注: 格点三角形是指以小正方形的顶点为 顶点的三角形) (1) 也 就 是我 们 分析: 注意找到 两 种 对 应 相似 , “正A ” 通常所说的 和 “反A ” 型的相似。 在中考中时常会 (2) 这问是个操作且设计性题, 这个三角形怎么去确 出现。 很多学生一时无从下手, 定呢, 既要相似, 又要面积最大。方格中画格点三角 形要通过计算和设计得出的,这就考查了学生的综 合能力。 探究1: 给定三条线段都能构成格点三角形吗? 2.情境2: 教师提问:我们知道二元一次不等式组确定一 个平面区域, 运用这一知识点能否解决这一思考题? 怎么确定4x+2y的取值范围呢? 教师追问: 促进 设计意图: 引出线性目标函数的几何意义, 学生 加 深 理 解 二 元 一 次 不 等 式 组对 两 个 变 量 的 制 约, 进而理解线性规划问题的概念。 (二)案例分析 本案例通过设置疑惑陷阱的情境,引起学生的 思想冲突, 引发学生思维的碰撞, 促使学生进行辨析 反思,进而理解数学概念是怎样生成的。在此基础 在实 际 问题 上, 教师联系上节内容, 引出本节知识, 情境中应用本节知识, 学生体会到数学是很有用的, 事半功倍。 加大了学习的兴趣和积极性, (三)启发和反思 教师要合理创设情境, 在情境中生成数学概念: 把数学概念的生成过程分解在一个个情境中,通过 调动学生学习的兴趣; 通 情境烘托良好的课堂氛围, 通过情境, 过情境, 设置疑问, 激发学生学习的动机; 引起思维冲突, 促进学生主动思考问题, 主动寻求解 学习 决问题的方法。 学生学习的积极性调动起来了, 效果自然就好了。 , 揭 示 数 学概 念 总说 “授之以鱼不如 授 之以 渔” 的生成过程就是 “渔” , 要揭示数学 概 念 的生成过程 多一点精心预 设 , 就能 够 有很多方法, 教师要相信, 多一份惊喜发现。 参考文献: 1.中华人民共和国教育部制定.普通高中数学课 程标准 [S] 人民教育出版社, .北京: 2003. 2.济南市教研室.高中新课程教学启示录数学案 例分析 [M] 山东教育出版社, .济南: 2005. 作者 单位:河南省洛阳市第十二中学) (

初中三角函数知识点+题型总结+课后练习

初中三角函数知识点+题型总结+课后练习

锐角三角函数知识点1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

222c b a =+2、如以下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):定义表达式取值围关系正弦 斜边的对边A A ∠=sin caA =sin1sin 0<<A(∠A 为锐角)B A cos sin = B A sin cos =1cos sin 22=+A A余弦 斜边的邻边A A ∠=cos c bA =cos 1cos 0<<A(∠A 为锐角)正切 的邻边的对边A tan ∠∠=A A b aA =tan 0tan >A(∠A 为锐角)B A cot tan = B A tan cot =AA cot 1tan =(倒数) 1cot tan =⋅A A余切的对边的邻边A A A ∠∠=cot abA =cot0cot >A(∠A 为锐角)3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)三角函数 0° 30°45°60°90° αsin 0 21 22 23 1 αcos1 23 2221 0 αtan 0 33 1 3 不存在 αcot不存在3133 0对边邻边 斜边 B锐角三角函数题型训练类型一:直角三角形求值1.Rt △ABC 中,,12,43tan ,90==︒=∠BC A C 求AC 、AB 和cos B .2.:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,⋅=∠43sin AOC 求:AB 及OC 的长.3.:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,⋅=∠53sin AOC(1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4.A ∠是锐角,178sin =A ,求A cos ,A tan 的值 类型二. 利用角度转化求值:1.:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.DE ∶AE =1∶2.求:sin B 、cos B 、tan B .2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.8AB =,10BC =,则tan EFC ∠的值为 ( ) A.34 B.43C.35D.453. 如图6,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,假设1tan 5DBA ∠=,则AD 的长为( )A .2 B .2 C .1 D .224. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD =3316求∠B 的度数及边BC 、AB 的长. 类型三. 化斜三角形为直角三角形例1〔2021•〕如图,在△ABC 中,∠A=30°,∠B=45°,AC=23,求AB 的长.例2.:如图,△ABC 中,AC =12cm ,AB =16cm ,⋅=31sin A(1)求AB 边上的高CD ; (2)求△ABC 的面积S ; (3)求tan B .例3.:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5.求:sin ∠ABC 的值.对应训练 1.〔2021•〕如图,在Rt△ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.假设AB=2,求△ABC 的周长.〔结果保存根号〕2.:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B . 类型四:利用网格构造直角三角形例1 〔2021•江〕如下图,△ABC 的顶点是正方形网格的格点,则sinA 的值为〔 〕 A .12 B .55 C .1010 D .255DABC对应练习:1.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.特殊角的三角函数值例1.求以下各式的值︒-︒+︒30cos 245sin 60tan 2=. 计算:3-1+(2π-1)0-33tan30°-tan45°= 030tan 2345sin 60cos 221⎪⎪⎭⎫ ⎝⎛︒-︒+︒+= ︒-︒+︒60tan 45sin 230cos 2tan 45sin 301cos 60︒+︒-︒=在ABC ∆中,假设0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠的度数 例2.求适合以下条件的锐角.(1)21cos =α (2)33tan =α (3)222sin =α(4)33)16cos(6=- α〔5〕为锐角,且3)30tan(0=+α,求αtan 的值〔〕在ABC ∆中,假设0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠的度数 例3. 三角函数的增减性 1.∠A 为锐角,且sin A <21,则∠A 的取值围是 A. 0°< A < 30° B. 30°< A <60° C. 60°< A < 90° D. 30°< A < 90° 2. A 为锐角,且030sin cos <A ,则 〔 〕A. 0°< A < 60°B. 30°< A < 60°C. 60°< A < 90°D. 30°< A < 90° 例4. 三角函数在几何中的应用1.:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A 求此菱形的周长.2.:如图,Rt △ABC 中,∠C =90°,3==BC AC ,作∠DAC =30°,AD 交CB 于D 点,求:(1)∠BAD ;(2)sin ∠BAD 、cos ∠BAD 和tan ∠BAD .3. :如图△ABC 中,D 为BC 中点,且∠BAD =90°,31tan =∠B ,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD . 解直角三角形:1.在解直角三角形的过程中,一般要用的主要关系如下(如下图): 在Rt △ABC 中,∠C =90°,AC =b ,BC =a ,AB =c , ①三边之间的等量关系:________________________________.②两锐角之间的关系:__________________________________. ③边与角之间的关系:==B A cos sin ______;==B A sin cos _______;==BA tan 1tan _____;==B A tan tan 1______.④直角三角形中成比例的线段(如下图).在Rt △ABC 中,∠C =90°,CD ⊥AB 于D .CD 2=_________;AC 2=_________; BC 2=_________;AC ·BC =_________.类型一例1.在Rt △ABC 中,∠C =90°.(1):a =35,235=c ,求∠A 、∠B ,b ;(2):32=a ,2=b ,求∠A 、∠B ,c ; (3):32sin =A ,6=c ,求a 、b ;(4):,9,23tan ==b B 求a 、c ; (5):∠A =60°,△ABC 的面积,312=S 求a 、b 、c 及∠B .例2.:如图,△ABC 中,∠A =30°,∠B =60°,AC =10cm .求AB 及BC 的长.例3.:如图,Rt △ABC 中,∠D =90°,∠B =45°,∠ACD =60°.BC =10cm .求AD 的长. 例4.:如图,△ABC 中,∠A =30°,∠B =135°,AC =10cm .求AB 及BC 的长. 类型二:解直角三角形的实际应用 仰角与俯角:例1.〔2021•〕如图,从热气球C 处测得地面A 、B 两点的俯角分别是30°、45°,如果此时热气球C 处的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是〔 〕 A . 200米 B . 200米 C . 220米 D . 100〔〕米例2.:如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.∠BAC =60°,∠DAE =45°.点D 到地面的垂直距离m 23=DE ,求点B 到地面的垂直距离BC .例3〔昌平〕19.如图,一风力发电装置竖立在小山顶上,小山的高BD =30m . 从水平面上一点C 测得风力发电装置的顶端A 的仰角∠DCA =60°, 测得山顶B 的仰角∠DCB =30°,求风力发电装置的高AB 的长.例4.如图,小聪用一块有一个锐角为30︒的直角三角板测量树高,小聪和树都与地面垂直,且相距33米,小聪身高AB 为1.7米,求这棵树的高度.例5.:如图,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50m .现需从山顶A 到河对岸点C 拉一条笔直的缆绳AC ,求山的高度及缆绳AC 的长(答案可带根号). 例5.〔2021•〕如图,为测量*物体AB 的高度,在D 点测得A 点的仰角为30°,朝物体AB 方向前进20米,到达点C ,再次测得点A 的仰角为60°,则物体AB 的高度为〔 〕 A . 10米 B . 10米 C . 20米 D .米 例6.〔2021•〕超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离大道的距离〔AC 〕为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC=75°. 〔1〕求B 、C 两点的距离;〔2〕请判断此车是否超过了大道60千米/小时的限制速度.〔计算时距离准确到1米,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千米/小时≈16.7米/秒〕 类型四. 坡度与坡角A B CD EA例.〔2021•〕如图,*水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是〔 〕A .100mB .1003mC .150mD .503m类型五. 方位角1.:如图,一艘货轮向正北方向航行,在点A 处测得灯塔M 在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B 处,测得灯塔M 在北偏西45°,问该货轮继续向北航行时,与灯塔M 之间的最短距离是多少"(准确到0.1海里,732.13≈) 综合题:三角函数与四边形:〔西城二模〕1.如图,四边形ABCD 中,∠BAD=135°,∠BCD=90°,AB=BC=2, tan∠BDC=63. (1)求BD 的长; (2)求AD 的长.〔2021东一〕2.如图,在平行四边形ABCD 中,过点A 分别作AE BC E AF ⊥CD 于点F . 〔1〕求证:∠BAE =∠DAF ; 〔2〕假设AE =4,AF =245,3sin 5BAE ∠=,求CF 的长.三角函数与圆:1. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与*轴的正半轴交于点D ,B 是y 轴右侧圆弧上一点,则cos∠OBC 的值为〔 〕 A .12 B .32C .35D .45〔延庆〕19.:在⊙O 中,AB 是直径,CB 是⊙O 的切线,连接AC 与⊙O 交于点D,(1) 求证:∠AOD=2∠C(2) 假设AD=8,tanC=34,求⊙O 的半径。

角格点问题解题思路

角格点问题解题思路

角格点问题解题思路
角格点问题是一种经典的几何问题,主要涉及到三角形和多边形的内角和外角。

这类问题的解决通常需要综合运用几何、代数和三角函数的知识。

下面我将详细介绍解决这类问题的一般思路。

1. 理解问题的本质:首先,要明确问题的具体要求,理解什么是角格点。

角格点通常指的是一个几何图形中角的顶点,例如在三角形中,三个内角的顶点就是角格点。

理解了这一点,才能更好地进行后续的解题步骤。

2. 分析已知条件:仔细阅读题目,理解已知条件。

这些条件可能包括图形的形状、大小、角度等。

理解这些条件对于找到解决问题的线索至关重要。

3. 应用几何知识:在解决角格点问题时,需要用到许多基本的几何知识,如三角形的内角和、多边形的内角和、外角定理等。

这些都是解决这类问题的关键工具。

4. 代数运算:在解题过程中,往往需要进行一些代数运算,如加减乘除、方程求解等。

这些运算有助于将几何问题转化为更易于处理的代数问题。

5. 使用三角函数:在一些复杂的角格点问题中,可能需要用到三角函数的知识,如正弦、余弦、正切等。

这些函数可以帮助我们更精确地描述和处理角度和边长
之间的关系。

6. 检验答案:得出答案后,需要回过头来检验整个解题过程,确保没有遗漏任何步骤或错误。

同时,也需要通过实际的计算或绘图来验证答案的正确性。

解决角格点问题需要一种系统的方法,要综合考虑几何、代数和三角函数的知识。

通过不断练习和总结,我们可以提高解决这类问题的能力,进一步增强我们的数学素养。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档