不等式的解集(概念定义课)
2.3不等式的解集
既然不等式的解集在通常情况下有很多符合条件的解,那么我们可以用一
种直观的方法利用数轴把不等式的解集表示出来。
22:40 18
2.3不等式的解集
二、探究新知
3.在数轴上表示不等式的解集 (1)请写出下列不等式的解集,并说出它的解集所表示的意思。 x-5≤-1 解: x≤4 x2>25 解: x<-5或x>5 正方向
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
在数轴上表示-3和3的点的位置上画空心圆圈,表示-3和3不在这个 解集内。
22:40 22
2.3不等式的解集
二、探究新知
3.在数轴上表示不等式的解集 【归纳总结】 在数轴上表示 不等式的解集 注意 指示线方向:“>”向右,“<”向左 步骤:画数轴→定界点→走方向 界点:有“=”用实心点,没有“=”用空心圈
22:40 26
界点:有“=”用实心点,没有“=”用空心圈
x 10 > 0.02 100 4
(4)根据实际情况,解不等式,写出符合条件的解
22:40 8ຫໍສະໝຸດ .3不等式的解集二、探究新知
1.创设情境 燃放某种烟花时,为了确保安全,燃放者在点燃引火线后要在燃放 前转移到10m以外的安全区域。已知引火线的燃烧速度为0.02m/s, 燃放者离开的速度为4m/s,那么引火线的长度应为多少厘米?
解:设引火线的长度为xcm,根据题意得
x 10 > 0.02 100 4 根据不等式的基本性质,得
x>5 所以,引火线的长度应大于5cm.
22:40 9
2.3不等式的解集
二、探究新知
2.不等式的解、解集以及解不等式的概念 (1)不等式的解 ①x=5,6,8能使不等式x>5成立吗? ②你还能找出几个使不等式x>5成立的x的值吗?
第 九章 不等式9.1.1不等式及其解集
(2) y+4>0.5. 如y=0,1.
(2)y与4的和大于0.5 (3) a<0 . 如a=-3,-4.
(3)a是负数; (4)b是非负数;
(4) b是非负数,就是b不是 负数,它可以是正数或零, 即b>0或b=0.如b=0,2.
(3)x=3;
(4) x2+xy+y2;
(5)x≠5; (6)x+2>y+5.
解 : (1)(2)(5)(6)是不等式; (3)(4)不是不等式.
知识讲解
练一练
C
知识讲解
2 用不等式表示数量关系
例2 用不等式表示下列数量关系:
(1)x的5倍大于-7; (2)a与b的和的一半小于-1;
5x >-7
知识讲解
例4 直接写出x+4<6的解集,并在数轴上表示出来. 解:x<2. 这个解集可以在数轴上表示为:
0 12 变式1 已知x的解集如图所示,你能写出x的解集吗?
(1)
-4
0
解:(1)x<-4;
(2)
0
4
(2)x>4.
知识讲解
变式2 直接写出不等式2x>8的解集,并在数轴上表示 出来.
解:x>4. 这个解集在数轴上表示为:
二、如何在小学数学教学活动中体现数学核心素养 1.数学抽象(符号意识、数感;几何直观、空间想象) 2.逻辑推理(推理能力、运算能力) 3.数学模型(模型思想、数据分析观念)
三、如何在数学教学评价中考查数学核心素养
教育质量监测的四个原则 1.不要求计算速度(速度的训练是课业负担重的主要原因) 2.监测内容蕴含的数学素养(概念、推理、计算、想象) 3.应当有一道开放题(超市的位置,加分原则) 4.说学生能懂的话(对可 直接写出不等式-2x>8的解集.
不等式的取值范围与解集求解
不等式的取值范围与解集求解不等式是数学中常见的一种关系式,它描述了数之间的大小关系。
在解不等式时,我们需要确定不等式的取值范围,并找出满足不等式条件的解集。
本文将介绍不等式的基本概念、解法以及一些常见的不等式类型。
一、不等式的基本概念不等式是由不等号连接的两个数或表达式所构成的关系式。
常见的不等号有大于号(>)、小于号(<)、大于等于号(≥)和小于等于号(≤)。
例如,x > 3表示x大于3,x + 2 ≤ 5表示x + 2小于等于5。
二、不等式的解集与取值范围解不等式的过程就是确定不等式的取值范围,并找出满足不等式条件的数的集合,这个集合被称为解集。
解集可以用不等号表示,也可以用集合符号表示。
1. 不等式的解集表示解集可以用不等号表示,例如x > 3的解集可以表示为{x | x > 3},读作“x的取值范围是大于3的数”。
解集也可以用集合符号表示,例如x > 3的解集可以表示为{x ∈ℝ | x > 3},其中ℝ表示实数集。
2. 不等式的取值范围表示不等式的取值范围表示了满足不等式条件的数的范围。
例如x > 3的取值范围是大于3的数,可以表示为(3, +∞),其中+∞表示正无穷大。
三、不等式的求解方法解不等式的方法与解方程类似,但在某些情况下需要注意一些特殊的性质。
下面介绍一些常见的不等式类型及其求解方法。
1. 一元一次不等式一元一次不等式是形如ax + b > 0的不等式,其中a和b是已知实数,且a≠0。
解一元一次不等式的步骤如下:(1)将不等式转化为等式,得到ax + b = 0;(2)求得等式的解x0;(3)根据a的正负确定不等式的解集。
2. 一元二次不等式一元二次不等式是形如ax^2 + bx + c > 0的不等式,其中a、b和c是已知实数,且a≠0。
解一元二次不等式的步骤如下:(1)将不等式转化为等式,得到ax^2 + bx + c = 0;(2)求得等式的解集{x1, x2};(3)根据a的正负和二次函数的凹凸性确定不等式的解集。
人教版数学下册.1不等式及其解集 (共20张PPT)教育课件
D.18≤t≤27
2.无论x取什么数,下列不等式总成立的是(D )
A.x+5>0
B.x+5<0
C.x2<0 D.x2≥0
随堂检测
3.高钙牛奶的包装盒上注明“每100克内含钙≥150毫克”,它的含义是指( B )
A.每100克内含钙150毫克 B.每100克内含钙不低于150毫克 C.每100克内含钙高于150毫克 D.每100克内含钙不超过150毫克
• • 理财的时候需要做的一方面提高收入, 令一方 面是节 省开支 。这就 是所谓 的开源 节流。 时间管 理也是 如此, 一方面 要提高 效率, 另一方 面是要 节省时 间。主 要做法 有:1、 同时做 两件事 情(备 注:请 认真选 择哪些 事情可 以同时 做), 比如跑 步的时 候边听 有声书 ;2、 压缩休 息时间 提升睡 眠效率 ,比如 晚睡半 小时早 起半小 时(6~7个小 时即可 );3、 充分利 用零碎 时间学 习,比 如做公 交车、 等车、 上厕所 等。
2.若m是非负数,则用不等式表示正确的是( D )
A.m<0 B.m>0 C.m≤0
D.m≥0
预习反馈
3.用不等号“>、<、≥、≤”填空:a2+1 > 0.
4.“a<b”的反面是( C )
A.a≠b B.a>b
C.a≥b
D.a=b
课堂探究
问题
一辆匀速行驶的汽车在11 :20距离A地50千米,要在12 :00之前驶过A地,车 速应满足什么条件?
的解吗?x=75呢?x=72呢?
解:当x=75时,2 x=50 , 3
不等式不成立,
所以 x=75不是不等式 2 x 50 的 3
解
课堂探究
思考: x=78是不等式 2 x 50 的解吗?x=75呢?x=72呢? 3
第二章 2.2.2 不等式的解集
x>2.由题意x>2,的解集为(2,+∞),即(2,+∞)∩(m, x>m
+∞)=(2,+∞),
∴(2,+∞) (m,+∞),∴m≤2.
答案 D
3.三角形三边长为4,1-2a,7,则a的取值范围是________. 解析 由题意得14- +27a>>1- 0,2a,解得-5<a<-1. 4+1-2a>7,
提示 当m≤0时,不正确.
[微训练]
1.平流层是指地球表面以上10 km到50 km的区域,下述不等式中,x能表示平流
层高度的是( )
A.|x+10|<50
B.|x-10|<50
C.|x+30|<20
D.|x-30|<20
解析 由题意知10<x<50,故选D.
答案 D
2.不等式组-22xx--35≥2≥0,0 的解集为________. 解析 由-2x-5≥0 得 x≤-52, 由 2x-3 2≥0 得 x≥3,
(2)由3x-14≥16解得
x≥54,由
2x<b
得
b x<2.
当b2≤54即 b≤52时,xx≥54∩xx<b2= ,原不等式组的解集为 ;
当b2>54即 b>52时,xx≥54∩xx<b2=54,b2,原不等式组的解集为54,b2. 综上,b≤52时,解集为 ; b>52时,解集为54,b2.
这就是数轴上两点之间的距离公式.
a+b
如果线段AB的中点M对应的数为x,即M(x),则 x=_____2_____.
这就是数轴上的中点坐标公式.
教材拓展补遗 [微判断] 1.不等式x>y2的解集为(0,+∞).( × )
八年级数学不等式的解集
解一元一次不等式的注意事项
不等式两边乘以或除以同一个负数时,不等号的方 向要改变。
在解不等式的过程中,要注意每一步的变形是否合 法,特别是去分母和去括号时,要注意符号的变化 。
解不等式时,要注意检验解的合理性,即解是否满 足原不等式。
04
一元一次不等式组的解法
解一元一次不等式组的基本步骤
列出不等式组
不等式的可加性
可加性定义
对于任意实数a、b、c、d,如果a > b且c > d,则a + c > b + d; 如果a < b且c < d,则a + c < b + d。
可加性应用
在处理不等式时,可以通过两边同时加减同一个数或整式来简化 不等式,进而求解。
不等式的可乘性
可乘性定义
对于任意实数a、b、c、d,如果a > b > 0且c > d > 0,则ac > bd;如果 a < b < 0且c < d < 0,则ac > bd。
八年级数学不等式的解集
目
CONTENCT
录
• 引言 • 不等式的基本性质 • 一元一次不等式的解法 • 一元一次不等式组的解法 • 含有参数的一元一次不等式(组)
的解法 • 不等式解集的应用举例
01
引言
目的和背景
阐明不等式的解集概念
通过介绍不等式及其解集的定义,帮助学生理解不 等式解集的含义和性质。
辅助数学教学
为八年级数学教师提供有关不等式解集的教学辅助 材料,以提高教学效果。
培养学生的数学素养
通过学习不等式解集,提高学生的数学素养和解决 问题的能力。
初二数学不等式的解集知识点总结
初二数学不等式的解集知识点总结初二数学不等式的解集知识点总结漫长的学习生涯中,大家最不陌生的就是知识点吧!知识点也可以通俗的理解为重要的内容。
那么,都有哪些知识点呢?以下是店铺精心整理的初二数学不等式的解集知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。
初二数学不等式的解集知识点总结1不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
相信上面的知识同学们已经能很好的掌握了,希望同学们在平时认真学习,很好的把每一个知识点掌握。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。
通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。
水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
(完整版)不等式基本概念讲义
第五章不等式一、不等式的定义:1、一般地,用不等号表示不相等关系的式子叫做不等式,常见的不等号有“〉”“<”“≤”“≥”及“≠”五种.2、不等号所表示的意义特征3、常见的符号表示:(1)a是正数表示为a>0,a是负数表示为a〈0,(2)a是非负数表示为a≥0,a是非正数表示为a≤0,(3)a,b同号表示为ab〉0,a,b是异号表示为ab〈0。
例1、在下列各式中,是不等式的有__________①—3x〉0; ②4x+3y〉0;③x=4;④a+b+c;⑤x+y=7;⑥1〉8;⑦2≠2提示:判断一个式子是不是不等式从形式上看,只要这个式子是用不等号连接的就是不等式(不管对错)例2、数学表达式中:①a2≥0;②5p—6q〈0;③x—6=0;④7x+7y-1>9;⑤x≠3;⑥800,是不等式的有_____________二、不等式的解与解集1、不等式的解:能使不等式成立的未知数的值叫做不等式的解(不等式的解是一个具体的数值)2、不等式的解集:一般地,一个含有未知数的不等式的所有解,组成这个不等式的解集.(不等式的解集是一个集合,一个范围,包含不等式的每一个解)3、解不等式:求不等式解集的过程叫做解不等式。
例1、判断下列说法是否正确,并说明理由(1)x=3是不等式3x≥9的解集()(2)不等式3x≥9的解为3()(3)x=3是不等式3x≥9的一个解( )(4)x≥3是不等式3x≥9的解()(5)不等式3x≥9的解集是x≥3( )三、不等式解集的表示方法(1)一般形式:用x〉a,或x<a或x≥a或x≤a的形式表示出来的形式。
(2)数轴表示法(最容易理解的方法):不等式的解集表示的是未知数的取值范围,所以不等式的解可以表示在数轴上。
注意!!!用数轴表示不等式的解集是首先要“两定”:①定边界点(注意是实心还是空心)有等号需要的是实心圆点,没有等号用空心圆圈;②定方向:大于号开口向右,小于号开口向左。
不等式的解集
第三节不等式的解集—目标导引1.理解不等式的解与解集的意义.2.掌握不等式的解集的数轴表示.不等式的解集—内容全解1、不等式的解能使不等式成立的未知数的值叫做不等式的解.[例1]x=3,6,9中,哪一个是不等式2x-2.5≥15的解?解:把x=3代入不等式2x-2.5≥15中2×3-2.5≥15,6-2.5≥15,3.5≥15显然不成立.∴x=3就不是此不等式的解.把x=6代入得,2×6-2.5≥15,12-2.5≥15,9.5≥15 不成立.∴x=6也不是此不等式的解.把x=9代入得2×9-2.5≥15,18-2.5≥15,15.5≥15∴x=9是不等式2x-2.5≥15的一个解,就此问题继续探索一下,2x-2.5≥15的解是不是就是这一个x=9呢?答案显然不是,由此我们得到:2.不等式的解集定义一个含有未知数的不等式的所有解,组成这个不等式的解集.3.不等式的解与解集的区别解是一个或几个未知数的值,解集是所有的解组成的.第三课时●课题§1.3 不等式的解集●教学目标(一)教学知识点1.能够根据具体问题中的大小关系了解不等式的意义.2.理解不等式的解、不等式的解集、解不等式这些概念的含义.3.会在数轴上表示不等式的解集.(二)能力训练要求1.培养学生从现实生活中发现并提出简单的数学问题的能力.2.经历求不等式的解集的过程,发展学生的创新意识.(三)情感与价值观要求从实际问题抽象为数学模型,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,通过探索求不等式的解集的过程,体验数学活动充满着探索与创造.●教学重点1.理解不等式中的有关概念.2.探索不等式的解集并能在数轴上表示出来.●教学难点探索不等式的解集并能在数轴上表示出来.●教学方法引导学生探索学习法.●教具准备投影片一张记作(§1.3 A)●教学过程Ⅰ.创设问题情境,引入新课[师]上节课,我们对照等式的性质类比地推导出了不等式的基本性质,并且讨论了它们的异同点.下面我找一位同学简单地回顾一下不等式的基本性质.[生]不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变.不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.[师]很好.在学习了等式的基本性质后,我们利用等式的基本性质学习了一元一次方程,知道了方程的解、解方程等概念,大家还记得这些概念吗?[生]记得.能够使方程两边的值相等的未知数的值就是方程的解.求方程的解的过程,叫做解方程.[师]非常好.上节课我们用类推的方法,仿照等式的基本性质推导出了不等式的基本性质,能不能按此方法推导出不等式的解和解不等式呢?本节课我们就来试一试.Ⅱ.新课讲授1.现实生活中的不等式.燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m以外的安全区域.已知导火线的燃烧速度为以0.02 m/s,人离开的速度为4 m/s,那么导火线的长度应为多少厘米?[师]分析:人转移到安全区域需要的时间最少为410秒,导火线燃烧的时间为10002.0⨯x 秒,要使人转移到安全地带,必须有:10002.0⨯x >410.解:设导火线的长度应为x cm ,根据题意,得10002.0⨯x >410∴x >5. 2.想一想(1)x =5,6,8能使不等式x >5成立吗?(2)你还能找出一些使不等式x >5成立的x 的值吗? [生](1)x =5不能使x >5成立,x =6,8能使不等式x >5成立. (2)x =9,10,11…等比5大的数都能使不等式x >5成立.[师]由此看来,6,7,8,9,10…都能使不等式成立,那么大家能否根据方程的解来类推出不等式的解呢?不等式的解唯一吗?[生]可以.能使不等式成立的未知数的值,叫做不等式的解.如6、7、8都是x >5的解.所以不等式的解不唯一,有无数个解.[师]正因为不等式的解不唯一,因此把所有满足不等式的解集合在一起,构成不等式的解集(solution set ).请大家再类推出解不等式的概念.[生]求不等式解集的过程叫解不等式. 3.议一议.请你用自己的方式将不等式x >5的解集和不等式x -5≤-1的解集分别表示在数轴上,并与同伴交流.[生]不等式x >5的解集可以用数轴上表示5的点的右边部分来表示(图1-3),在数轴上表示5的点的位置上画空心圆圈,表示5不在这个解集内.图1-3不等式x -5≤-1的解集x ≤4可以用数轴上表示4的点及其左边部分来表示(图1-4),在数轴上表示4的点的位置上画实心圆点,表示4在这个解集内.图1-4[师]请大家讨论一下,如何把不等式的解集在数轴上表示出来呢?请举例说明. [生]如x >3, 即为数轴上表示3的点的右边部分,在数轴上表示3的点的位置上画空心圆圈,表示不包括这一点.x <3,可以用数轴上表示3的点的左边部分来表示,在这一点上画空心圆圈.x ≥3,可以用数轴上表示3的点和它的右边部分来表示,在表示3的点的位置上画实心圆点,表示包括这一点.x ≤3,可以用数轴上表示3的点和它的左边部分来表示,在表示3的点的位置上画实心圆点.4.例题讲解投影片(§1.3 A )根据不等式的基本性质求不等式的解集,并把解集在数轴上表示出来. (1)x -2≥-4;(2)2x ≤8 (3)-2x -2>-10 解:(1)根据不等式的基本性质1,两边都加上2,得x ≥-2 在数轴上表示为:图1-5(2)根据不等式的基本性质2,两边都除以2,得x ≤4 在数轴上表示为:图1-6(3)根据不等式的基本性质1,两边都加上2,得-2x >-8 根据不等式的基本性质3,两边都除以-2,得x <4 在数轴上表示为:图1-7Ⅲ.课堂练习 1.判断正误:(1)不等式x -1>0有无数个解; (2)不等式2x -3≤0的解集为x ≥32. 2.将下列不等式的解集分别表示在数轴上: (1)x >4;(2)x ≤-1; (3)x ≥-2;(4)x ≤6. 1.解:(1)∵x -1>0,∴x >1 ∴x -1>0有无数个解.∴正确. (2)∵2x -3≤0,∴2x ≤3, ∴x ≤23,∴结论错误. 2.解:图1-8Ⅳ.课时小结本节课学习了以下内容1.理解不等式的解,不等式的解集,解不等式的概念.2.会根据不等式的基本性质解不等式,并把解集在数轴上表示出来.Ⅴ.课后作业习题1.3Ⅵ.活动与探究小于2的每一个数都是不等式x+3<6的解,所以这个不等式的解集是x<2.这种解答正确吗?解:不正确.从解不等式的过程来看,根据不等式的基本性质1,两边都减去3,得x<3.所以不等式x+3<6的解集为x<3,而不是x<2.当然小于2的值都在x<3这个范围内,它只是解集中的一部分,不是全部,所以不能以部分来代替全部.因此说x<2是不等式x+3<6的解是错误的.●板书设计§1.3 不等式的解集一、1.现实生活中的不等式(水费问题);2.想一想(类推不等式中的有关概念);3.议一议(如何把不等式的解集在数轴上表示出来);4.例题讲解.二、课堂练习三、课时小结四、课后作业●备课资料参考练习1.用不等式表示:(1)x的3倍大于或等于1;(2)x与5的和不小于0;(3)y与1的差不大于6;(4)x 的41小于或等于2. 2.不等式的解集x <3与x ≤3有什么不同?在数轴上表示它们时怎样区别?分别在数轴上把这两个解集表示出来.3.不等式x +3≥6的解集是什么? 参考答案1.(1)3x ≥1;(2)x +5≥0;(3)y -1≤6;(4)41x ≤2. 2.x <3指小于3的所有数,x ≤3指小于3的所有数和3;在数轴上表示它们时,x <3不包括3,只是3左边的部分,x ≤3不仅包括3左边的部分,而且还包括3.在数轴上表示略. 3.x ≥3.●迁移发散 迁移1.根据下列数量关系列出不等式:(1)x 的3倍大于1;(2)x 与5的和是负数; (3)y 与1的差是正数;(4)x 的一半不大于8.解:(1)3x >1;(2)x +5<0;(3)y -1>0;(4)21x ≤8. 2.在-4,-2,-1,0,1,2,3中找出使不等式成立的x 的值. (1)2x +5>3;(2)5-x ≥3;(3)6≤3x +3. 解:(1)0,1,2,3;(2)-4,-2,-1,0,1; (3)1,2,3.3.在数轴上表示下列不等式的解集: (1)x >3;(2)x ≥0;(3)x <-4. 解:(1)图1-9(2)图1-10(3)图1-114.不等式x ≤5有多少个解?有多少个正整数解. 答:有无数个解.正整数解只有1、2、3、4、5.5.某种商品的进价为150元,出售时标价为225元,由于销售情况不好,商店准备降价出售,但要保证利润不低于10%.那么商店要降多少元出售此商品?请列出不等式.点拨:利润率=进价进价售价-.解:设要降价x 元. 由题意列出不等式得:150150225--x ≥10%.发散本节我们用到了以前学过的数轴.你还记得这些吗?1.数轴定义:规定了正方向、原点、单位长度的直线叫做数轴.2.数轴上的点与实数的关系:一一对应.3.数轴上数的特点:右边的总比左边的大. ●方法点拨[例2]写出不等式x -5<-1的3个解,并写出这个不等式的解集. 解:3个解x =0,x =-1,x =1. 解集是x <4.4.求不等式解集的过程叫做解不等式.5.不等式的解集在数轴上的表示.①当不等式的解集是x >a 时.(如图1-1)图1-1在数轴上把表示a 的这个点用空心圆圈(表示不等于a )向右画一折线.表示数轴上a 右边的数字,都比a 大.②不等式的解集是x ≥a 时.(如图1-2)图1-2在数轴上把表示a 的这个点用实心圆点向右画一折线. ③当不等式的解集是x <a 时.(如图1-3)图1-3在数轴上把表示a的这个点用空心圆圈向左画一条折线.④当不等式的解集是x≤a时.(如图1-4)图1-4在数轴上把表示a的点用实心圆点向左画一折线.[例3]用数轴表示下列不等式的解集.(1)x≥-3 (2)x<-3.5解:(1)如图1-5图1-5(2)如图1-6图1-6[例4]根据数轴判断不等式的解集.(1)图1-7(2)图1-8解:(1)不等式的解集为x>-1.(2)不等式的解集为x≤2.3.不等式的解集作业导航理解不等式的解和不等式的解集的含义,会在数轴上表示不等式的解集.一、选择题1.下列说法中,正确的是( ) A.x =2是不等式3x >5的一个解 B.x =2是不等式3x >5的唯一解 C.x =2是不等式3x >5的解集 D.x =2不是不等式3x >5的解2.不等式-4≤x <2的所有整数解的和是( ) A.-4 B.-6 C.-8 D.-93.用不等式表示图中的解集,其中正确的是( )图1A.x >-3B.x <-3C.x ≥-3D.x ≤-34.若不等式(a +1)x <a +1的解集为x <1,那么a 必须满足( ) A.a <0 B.a ≤-1 C.a >-1 D.a <-15.已知ax <2a (a ≠0)是关于x 的不等式,那么它的解集是( ) A.x <2 B.x >-2C.当a >0时,x <2D.当a >0时,x <2;当a <0时,x >2 二、填空题6.当a ________时,x >ab表示ax >b 的解集. 7.不等式2x -1≥5的最小整数解为________. 8.如图2,表示的不等式的解集是________.图29.大于________的每一个数都是不等式5x >15的解. 10.如果不等式(a -3)x <b 的解集是x <3a b,那么a 的取值范围是________. 三、解答题11.在数轴上表示下列不等式的解集: (1)x >3 (2)x ≥-2 (3)x ≤4(4)x <-21 12.利用不等式的性质求出下列不等式的解集,并把它们的解集在数轴上表示出来: (1)-2x ≥3 (2)-4x +12<013.不等式的解集中是否一定有无限多个数?不等式|x |≤0、x 2<0的解集是什么?不等式x 2>0和x 2+4>0的解集分别又是什么? 14.已知-4是不等式ax >9的解集中的一个值,试求a 的取值范围. 15.已知不等式2x-1>x 与ax -6>5x 同解,试求a 的值.参考答案一、1.A 2.D 3.C 4.C 5.D二、6.>0 7.3 8.x <2 9.3 10.a >3 三、11.略 12.(1)x ≤-23(2)x >3 13.不等式的解集中不一定有无数多个数. |x |≤0的解集是x =0,x 2<0无解.x 2>0的解集为x >0或x <0,x 2+4>0的解集为一切实数. 14.a <-4915.2●作业指导 随堂练习1.解:(1)√ (2)×2.解:(1)x >4图1-12(2)x ≤-1图1-13(3)x ≥-2图1-14(4)x≤6图1-15习题1.31.解:有无数个解.如x=15,14,13,…,0,-1.都是它的解2.解:(1)x≤0图1-16(2)x>-2.5图1-172(3)x<3图1-18(4)x≥4图1-19§1.3 不等式的解集●温故知新想一想,做一做填空1.不等式的两边都加上(或减去)同一个整式,不等号的__________.2.不等式的两边都乘以(或除以)同一个正数,不等号的方向__________.3.不等式的两边都乘以(或除以)同一个负数,不等号的方向__________.4.规定了__________、__________、__________的直线叫做数轴.5.数轴上的点与实数之间是__________的关系.你做对了吗?我们一起来对对答案:1.方向不变2.不变3.变向4.正方向原点单位长度5.一一对应看看书,动动脑1.x=3能满足2x-1.5≥15吗?2.填空①__________叫做不等式的解.②__________组成不等式的解集.③__________叫做解不等式.§1.3 不等式的解集班级:_______ 姓名:_______一、认真选一选1.下列说法错误的是()A.-3x>9的解集为x<-3B.不等式2x>-1的整数解有无数多个C.-2是不等式3x<-4的解D.不等式x>-5的负整数解有无数多个2.如图1—3—1表示的是以下哪个不等式的解集()图1—3—1A.x>-1B.x<-1C.x≥-1D.x≤-13.把不等式x>2的解集表示在数轴上,以下表示正确的是()4.不等式-3≤x<2的整数解的个数是()A.4个B.5个C.6个D.无数个二、请你填一填1.如果3+2x 是正数,则x 的取值范围是________,如果3+2x 是非负数,则x 的取值范围是________.2.不等式|x |<37的整数解是________. 3.x 的3倍不大于-8,用不等式表示为________,其解集是________. 4.使不等式x >-47且x <2同时成立的整数x 的值是________ .三、请在数轴上表示下列不等式的解集(1)x ≥0 (2)x <-2.5 (3)-2<x ≤3四、请写出满足下列条件的一个不等式(1)0是这个不等式的一个解.(2)-2,-1,0,1都是不等式的解.(3)0不是这个不等式的解.(4)与x ≤-1的解集相同的不等式. (5)不等式的整数解只有-1,0,1,2.参 考 答 案一、1.D 2.D 3.C 4.B 二、1.x >-23 x ≥-23 2.-2,-1,0,1,2 3.3x ≤-8 x ≤-384.-1,0,1 三、(1)(2)(3)四、(1)x >-1(或x ≥0,x >-2等都可以)(2)x <2(或x ≤1,x ≥-2,x >-5等均可) (3)x >1(或x <-1等均可)(4)2x ≤-2(或x +1≤0,2x +2≤0等均可) (5)-1≤x ≤2(或-1.5<x <2.1等)。
不等式的解集(八年级数学)
B. x> 2 是不等式-2x>-3的解集 C.不等式x>-5的负整数解有无数多个
D.不等式x<7的非正整数解有无数多个
课堂检测
基础巩固题
3.如果式子 2x 6 有意义,那么x的取值范围在数轴上 表示出来正确的是 ( C )
课堂检测
基础巩固题
4. a≥1的最小正整数解是m,b≤8的最大正整数解是n,求关于x 的不等式(m+n)x>18的解集.
把表示2 的点A画成 空心圆圈,表示解 集不包括2.
探究新知
思考:如何在数轴上表示x ≤ 5的解集呢?
-1 0 1 2 3 4 5 6 解集x≤5中包含5,所以在数轴上将表示5的点画成实心圆点.
符号“≤”表示“小 于等于”,“≥”表 示“大于等于”.
探究新知 将不等式的解集表示在数轴上时,要注意:
探究新知
知识点 1 不等式的解集的概念
问题:燃放某种烟花时,为了确保安全,燃放者在点燃引火 线后要在燃放前转移到10m以外的安全区域.已知引火线的燃 烧速度为0.02m/s,燃放者离开的速度为4m/s,那么引火线的长 度应满足什么条件?
解:设引火线的长度为x cm,根据题意,得
x >10 . 0.02 100 4
A. x≤-4
B. x≥-5
C. x≤-6
D. x≥-7
巩固练习
变式训练
下列4种说法:
①x=
5 4
是不等式4x-5>0的解;②x= 52
是不等式4x-5>0的一个解;
③x> 5 是不等式4x-5>0的解集;
4
④x>2中任何一个数都可以使不等式4x-5>0成立,所以x>2也
是它的解集.
不等式的解集
x x 0或x 6
例2:若不等式x 2 x 1 a的解集是R, 求a的取值范围。
答案:a 3
变式:若不等式x 4 3 x a的解集是, 求a的取值范围。
例3:求不等式x 2 x 3 6的解集。
ax b c c ax b c再由不等式的 性质求出解集。
(3)形如 ax b m x n, ax b m x n(其中m, n为常数 且m 0)型不等式的问题。
此类型题目化归为第一 种不等式求解。
eg : x 1 2 x
1 x x 2
(4)含参数的绝对值不等式 。
eg : 解不等式ax 3 2(a 0)
5 1 1 当a 0时,不等式的解集 x x a a
0
1 5 20 当a 0时,不等式的解集 x x a a
(5)含多个绝对值不等式的 问题。
几何法: x a x b 的几何意义是: 数轴上的动点 P( x)到定点A(a)和B(b)的距离之和。
5 7 答案: x x 2 2
(6)形如m ax b n(0 m n)型问题的不等式。
ax b m m ax b n ax b n
(一)绝对值不等式。 (1) x a, x a(a 0)的求解。
x a(a 0)的解集是 x x a或x a x a(a 0)的解集是x a x a
(2)形如ax b c, ax b c(c 0)的解集。
ax b c ax b c或ax b c, 在由不等式的 性质求出原不等式的解 集。
不等式的解集与区间的概念
因式分解得
(x + 1)(x - 1)(x + 2)(x - 2) < 0
解集表示为
{ x | -2 < x < -1 或 1 < x < 2 }
利用数轴穿根法,解得解集为
-2 < x < -1 或 1 < x < 2
拓展应用:不等式组与区间综合问题
单击此处添加文本具体内容
PART.01
不等式组定义及性质
(a, b) - (c, d) = (a-d, b-c)
区间表示方法及运算规则
区间表示方法
减法运算
乘法运算
除法运算
加法运算
区间运算规则
除了使用圆括号和方括号表示开区间和闭区间外,还可以使用无穷大符号表示包含正无穷大或负无穷大的区间,如(a, +∞)、(-∞, b)等。
对于任意两个实数a、b(a < b)以及实数c、d(c < d),有以下运算规则
根据判别式确定解的情况,将解集在数轴上表示为开区间、闭区间或半开半闭区间。
解集与区间对应关系分析
解集与区间的区别
03
解集是具体的数值集合,而区间是数轴上的连续区域,两者在表现形式和性质上有所不同。
不等式的解集可以表示为区间,而区间也可以用来描述不等式的解集。
解集与区间的定义
01
解集是满足不等式的所有解的集合,而区间是数轴上的一段连续区域。
一元二次不等式案例解析
案例一
解析不等式 x^2 - 4x + 3 < 0
因式分解得
(x - 1)(x - 3) < 0
根据一元二次不等式的解法,解集为
1 < x < 3
不等式的解集
(1)含绝对值不等式|x|<a 与|x|>a 的解法 ①|x|<a⇔-∅(a<a≤x<0)a(. a>0), ②|x|>a⇔xx∈ ∈RR( 且ax< ≠00) (, a=0),
x>a或x<-a(a>0). (2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法 ①|ax+b|≤c⇔-c≤ax+b≤c. ②|ax+b|≥c⇔ax+b≥c 或 ax+b≤-c.
解:解不等式①,得 x≤3. 解不等式②,得 x>a.因为该不等式组无解, 所以不等式①和②的解集在数轴上的表示如图所示.
所以 a>3. 当 a=3 时,代入不等式组,得 x≤3,且 x>3, 此时,不等式组也无解,满足题意, 所以 a 的取值范围为 a≥3.
含有一个绝对值号不等式的解法
解下列不等式: (1)|2x+5|<7; (2)|2x+5|>7+x; (3)2≤|x-2|≤4.
不等式组的解法
解下列不等式组: x-5>1+2x,① (1)3x+2≤4x;② 23x+5>1-x,① (2)x-1≤34x-18.②
【解】 (1)解不等式①,得 x<-6,解不等式②,得 x≥2.把不等 式①和②的解集在数轴上表示出来:
由图可知,解集没有公共部分,不等式组无解,即不等式组的解集 为∅.
②分类讨论法: |f(x)|<g(x)⇔ff( (xx) )≥ <0g(x)或f-(fx()x< )0<g(x), |f(x)|>g(x)⇔ff( (xx) )≥ >0g(x)或f-(fx()x< )0>g(x).
解不等式:1<|x-2|≤3. 解:原不等式等价于不等式组 ||xx- -22||> ≤13,即-x<1≤1或x≤x>5,3, 解得-1≤x<1 或 3<x≤5, 所以原不等式的解集为[-1,1)∪(3,5].
2.2.2不等式的解集(新教材教师用书)
2.2.2不等式的解集(教师独具内容)课程标准:1.了解不等式的解集和不等式组的解集的概念,会求一元一次不等式组的解集.2.理解绝对值的几何意义,掌握去掉绝对值的方法.3.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c;|x-a|+|x-b|≤c.教学重点:1.求一元一次不等式组的解集.2.绝对值不等式的解法.教学难点:绝对值不等式的几何解法.【知识导学】知识点一不等式的解、不等式的解集及不等式组的解集的概念(1)□01未知数的值称为不等式的解.(2)□02所有解组成的集合称为不等式的解集.(3)对于由若干个不等式联立得到的不等式组来说,这些不等式的□03解集的交集称为不等式组的解集.知识点二绝对值不等式一般地,含有□01绝对值的不等式称为绝对值不等式.知识点三数轴上两点之间的距离公式及中点坐标公式一般地,如果实数a,b在数轴上对应的点分别为A,B,即A(a),B(b),则线段AB的长为□01|a-b|,记作□02AB=|a-b|,这就是数轴上两点之间的距离公式.如果线段AB的中点M对应的数为x,则x=□03a+b2,这就是数轴上的中点坐标公式.【新知拓展】1.解绝对值不等式的主要依据解绝对值不等式的主要依据是绝对值的定义、绝对值的几何意义及不等式的性质.2.绝对值不等式|x|≤a和|x|≥a的解法1.判一判(正确的打“√”,错误的打“×”)(1)不等式2x-3≤1的解集为{x|x≤2}.()(2)若|x|≥a的解集为R,则a<0.()(3)|x-1|>1的解集为{x|x>2或x<-2}.()(4)|x-a|<|x-b|⇔(x-a)2<(x-b)2.()答案(1)√(2)×(3)×(4)√2.做一做(1)不等式|x|>x的解集是()A.{x|x≤0} B.{x|x<0或x>0} C.{x|x<0} D.{x|x>0} (2)不等式|3x-2|<1的解集为()A .(-∞,1) B.⎝ ⎛⎭⎪⎫13,1 C.⎝ ⎛⎭⎪⎫23,1 D.⎝ ⎛⎭⎪⎫-13,13 (3)不等式|x +2|≥|x |的解集是________.(4)已知数轴上,A (-2),B (x ),C (5),若A 与C 关于点B 对称,则x =________;若线段AB 的中点到C 的距离小于3,则x 的取值范围是________.答案 (1)C (2)B (3)[-1,+∞) (4)32 (6,18)题型一 一元一次不等式组的解法 例1 解下列不等式组: (1)⎩⎨⎧2x -1>x +1, ①x +8<4x -1; ② (2)⎩⎪⎨⎪⎧2x +3≥x +11, ①2x +53-1<2-x . ②[解] (1)将①式移项、合并同类项,得x >2.将②式移项、合并同类项,得3x >9.系数化为1,得x >3. 所以不等式组的解集为(3,+∞). (2)将①式移项、合并同类项,得x ≥8. 将②式去分母,得2x +5-3<6-3x .移项、合并同类项,得5x <4.系数化为1,得x <45. 所以不等式组的解集为∅. 金版点睛解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,最后写出不等式组的解集.[跟踪训练1] x 取哪些整数值时,不等式5x +2>3(x -1)与12x -1≤7-32x 都成立?解 解不等式组⎩⎪⎨⎪⎧5x +2>3(x -1),①12x -1≤7-32x .②将①式去括号,得5x +2>3x -3.移项、合并同类项,得2x >-5.系数化为1,得x >-52. 将②式移项,合并同类项,得2x ≤8.系数化为1,得x ≤4. 所以不等式组的解集为⎝ ⎛⎦⎥⎤-52,4,所以x 可取的整数值是-2,-1,0,1,2,3,4.题型二 |ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法 例2 解下列不等式: (1)|5x -2|≥8;(2)2≤|x -2|≤4.[解] (1)|5x -2|≥8可化为5x -2≥8或5x -2≤-8,解得x ≥2或x ≤-65, 故原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-65∪[2,+∞).(2)原不等式等价于不等式组⎩⎨⎧|x -2|≥2,|x -2|≤4.由|x -2|≥2,得x -2≤-2或x -2≥2, 所以x ≤0或x ≥4.由|x -2|≤4,得-4≤x -2≤4,所以一2≤x ≤6.故原不等式的解集为{x |-2≤x ≤0或4≤x ≤6},即[-2,0]∪[4,6]. 金版点睛形如|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型的不等式,均可采用等价转化法进行求解,即|ax +b |≤c ⇔-c ≤ax +b ≤c ,|ax +b |≥c ⇔ax +b ≤-c 或ax +b ≥c .[跟踪训练2] 解下列不等式: (1)|2x -3|≤1;(2)|4-3x |>5.解 (1)由|2x -3|≤1可得-1≤2x -3≤1, 所以1≤x ≤2.故原不等式的解集为[1,2].(2)由|4-3x |>5可得4-3x >5或4-3x <-5,所以x <-13或x >3,即原不等式的解集为⎝ ⎛⎭⎪⎫-∞,-13∪(3,+∞). 题型三 |x -a |±|x -b |≤c 和|x -a |±|x -b |≥c 型不等式的解法 例3 解下列不等式:(1)|x +1|+|x -1|≥3;(2)|x -3|-|x +1|<1.[解] (1)解法一:如图,设数轴上与-1,1对应的点分别为A ,B ,那么点A ,B 之间的点到A ,B 两点的距离和为2,因此区间[-1,1]上的数都不是不等式的解.设在点A 左侧有一点A 1到A ,B 两点的距离之和为3,A 1对应数轴上的x .由-1-x +1-x =3,得x =-32.同理设点B 右侧有一点B 1到A ,B 两点的距离之和为3,B 1对应数轴上的x , 由x -1+x -(-1)=3,得x =32,从数轴上可看到,点A 1,B 1之间的点到A ,B 的距离之和都小于3;点A 1的左侧或点B 1的右侧的任何点到A ,B 的距离之和都大于3.所以原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞. 解法二:当x ≤-1时,原不等式可以化为-(x +1)-(x -1)≥3, 解得x ≤-32.当-1<x <1时,原不等式可以化为x +1-(x -1)≥3,即2≥3.不成立,无解. 当x ≥1时,原不等式可以化为x +1+x -1≥3, 解得x ≥32.综上所述,原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞.解法三:将原不等式转化为|x +1|+|x -1|-3≥0. 构造函数y =|x +1|+|x -1|-3,即y =⎩⎨⎧-2x -3,x ≤-1,-1,-1<x <1,2x -3,x ≥1.作出函数的图像,如图.函数图像与x 轴交点的横坐标是-32和32.从图像可知,当x ≤-32或x ≥32时,y ≥0,即|x +1|+|x -1|-3≥0. 所以原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞.(2)解法一:如图所示,在数轴上-1,3,x 对应的点分别为A ,C ,P ,而点B 对应的实数为12,点B 到点C 的距离与到点A 的距离之差为1.由绝对值的几何意义知,当点P 在射线Bx 上(不含点B )时,不等式成立,故不等式的解集为⎝ ⎛⎭⎪⎫12,+∞.解法二:原不等式⇔①⎩⎨⎧x ≤-1,-(x -3)+(x +1)<1或②⎩⎨⎧-1<x <3,-(x -3)-(x +1)<1或③⎩⎨⎧x ≥3,(x -3)-(x +1)<1,解得①的解集为∅,②的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <3,③的解集为{x |x ≥3}. 综上可知,原不等式的解集为⎝ ⎛⎭⎪⎫12,+∞.解法三:将原不等式转化为|x -3|-|x +1|-1<0,构造函数y =|x -3|-|x +1|-1,则y =⎩⎨⎧3,x ≤-1,-2x +1,-1<x <3,-5,x ≥3.作出函数的图像,如图.函数图像与x 轴的交点是⎝ ⎛⎭⎪⎫12,0.由图像可知,当x >12时,有y <0, 即|x -3|-|x +1|-1<0,所以原不等式的解集为⎝ ⎛⎭⎪⎫12,+∞.金版点睛形如|x -a |±|x -b |≤c 和|x -a |±|x -b |≥c型不等式的解法这种类型的不等式在求解时有三种方法:(1)利用绝对值的几何意义求解,这种方法体现了数形结合的思想,是解绝对值不等式最简单的方法,给绝对值不等式以准确的几何解释是解题的关键.(2)令每个绝对值符号里的一次式为0,求出相应的根,把这些根由小到大排序,它们把数轴分为若干个区间,然后利用区间分段讨论法去绝对值符号求解,这种方法体现了分类讨论的思想,是解绝对值不等式最常用的方法.(3)构造函数,利用函数图像求解,这种方法体现了函数与方程的思想,准确画出函数图像并求解函数图像与x 轴的交点坐标是解题的关键.[跟踪训练3] 解下列不等式:(1)|x -1|-|5-x |>2;(2)|2x -1|+|3x +2|≥8.解 (1)原不等式即为|x -1|-|x -5|>2, 其等价于①⎩⎨⎧ x <1,1-x -(5-x )>2或②⎩⎨⎧1≤x ≤5,x -1-(5-x )>2或 ③⎩⎨⎧x >5,x -1-(x -5)>2, 解得①无解,②的解集为{x |4<x ≤5},③的解集为{x |x >5},故原不等式的解集为(4,+∞). (2)①当x ≤-23时,|2x -1|+|3x +2|≥8⇔1-2x -(3x +2)≥8⇔-5x ≥9⇔x ≤-95,所以x ≤-95;②当-23<x <12时,|2x -1|+|3x +2|≥8⇔1-2x +3x +2≥8⇔x +3≥8⇔x ≥5,所以x ∈∅; ③当x ≥12时,|2x -1|+|3x +2|≥8⇔5x +1≥8⇔5x ≥7⇔x ≥75,所以x ≥75. 故原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-95∪⎣⎢⎡⎭⎪⎫75,+∞.1.不等式组⎩⎨⎧x +3>0,3(x -1)≤2x -1的解集为( )A .(-3,0]B .(-3,2]C .∅D.⎝ ⎛⎦⎥⎤-3,-45答案 B解析 解不等式组⎩⎨⎧x +3>0, ①3(x -1)≤2x -1, ②将①式移项,得x >-3.将②式去括号,得3x -3≤2x -1.移项、合并同类项,得x ≤2.所以不等式组的解集为(-3,2],故选B.2.不等式|4-x |≥1的解集为( ) A .[3,5] B .(-∞,3]∪[5,+∞) C .[-4,4] D .R答案 B解析 |4-x |≥1⇒x -4≥1或x -4≤-1,即x ≥5或x ≤3.所以所求不等式的解集为(-∞,3]∪[5,+∞).故选B.3.不等式1<|x +1|<3的解集为( ) A .(0,2) B .(-2,0)∪(2,4) C .(-4,0) D .(-4,-2)∪(0,2) 答案 D解析 由1<|x +1|<3,得1<x +1<3或-3<x +1<-1,所以0<x <2或-4<x <-2.所以所求不等式的解集为(-4,-2)∪(0,2).4.不等式|x +1|-|x -3|≥0的解集是________. 答案 [1,+∞)解析 解法一:不等式等价转化为|x +1|≥|x -3|,两边平方,得(x +1)2≥(x -3)2,解得x ≥1, 故所求不等式的解集为[1,+∞).解法二:不等式等价转化为|x +1|≥|x -3|,根据绝对值的几何意义可得数轴上点x 到点-1的距离大于等于到点3的距离,到两点距离相等时x =1,故所求不等式的解集为[1,+∞).5.解不等式|x +2|+|x -1|<4.解 |x +2|=0和|x -1|=0的根-2,1把数轴分为三个区间:(-∞,-2],(-2,1),[1,+∞).在这三个区间上|x +2|+|x -1|有不同的表达式,它们构成了三个不等式组. (1)当x ≤-2时,|x +2|+|x -1|<4⇔-2-x +1-x <4⇔-2x <5⇔x >-52, 所以不等式组⎩⎨⎧x ≤-2,|x +2|+|x -1|<4的解集为⎝ ⎛⎦⎥⎤-52,-2.(2)当-2<x <1时,|x +2|+|x -1|<4⇔x +2+1-x <4⇔3<4,所以不等式组⎩⎨⎧-2<x <1,|x +2|+|x -1|<4的解集为(-2,1). (3)当x ≥1时,|x +2|+|x -1|<4⇔x +2+x -1<4⇔2x <3⇔x <32, 所以不等式组⎩⎨⎧x ≥1,|x +2|+|x -1|<4的解集为⎣⎢⎡⎭⎪⎫1,32.因此原不等式的解集为⎝ ⎛⎦⎥⎤-52,-2∪(-2,1)∪⎣⎢⎡⎭⎪⎫1,32=⎝ ⎛⎭⎪⎫-52,32.A 级:“四基”巩固训练一、选择题1.不等式组⎩⎪⎨⎪⎧23x +5>1-x ,x -1≤34x -18的解集为( )A .(-∞,-12) B.⎝ ⎛⎦⎥⎤-125,72 C.⎝ ⎛⎦⎥⎤-125,12 D.⎝ ⎛⎦⎥⎤-12,12 答案 B解析不等式组⎩⎪⎨⎪⎧23x +5>1-x ,x -1≤34x -18可化为⎩⎨⎧2x +15>3-3x , ①8x -8≤6x -1. ② 解不等式①,得x >-125.解不等式②,得x ≤72.所以原不等式组的解集为⎝ ⎛⎦⎥⎤-125,72.故选B.2.“|x -1|<2成立”是“x (x -3)<0成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 ∵|x -1|<2成立⇔-1<x <3成立,x (x -3)<0成立⇔0<x <3成立,又-1<x <3⇒/0<x <3,0<x <3⇒-1<x <3,∴“|x -1|<2成立”是“x (x -3)<0成立”的必要不充分条件.故选B.3.不等式3≤|5-2x |<9的解集为( ) A .(-∞,-2)∪(7,+∞) B .[1,4] C .[-2,1]∪[4,7] D .(-2,1]∪[4,7) 答案 D解析 不等式等价于⎩⎨⎧-9<2x -5<9,2x -5≥3或2x -5≤-3,解得-2<x ≤1或4≤x <7.所以原不等式的解集为(-2,1]∪[4,7).故选D. 4.不等式|x -1|+|x -2|≥5的解集为( ) A .(-∞,-1]∪[4,+∞) B .(-∞,1]∪[2,+∞) C .(-∞,1] D .[2,+∞) 答案 A解析 画数轴可得:当x =-1或x =4时,有|x -1|+|x -2|=5.由绝对值的几何意义可得,当x ≤-1或x ≥4时,|x -1|+|x -2|≥5,故选A.5.设集合A ={x ||x -a |<1,x ∈R },B ={x ||x -b |>2,x ∈R }.若A ⊆B ,则实数a ,b 必满足( )A .|a +b |≤3B .|a +b |≥3C .|a -b |≤3D .|a -b |≥3答案 D解析 由|x -a |<1,得a -1<x <a +1.由|x -b |>2,得x <b -2或x >b +2.∵A ⊆B ,∴a -1≥b +2或a +1≤b -2,即a -b ≥3或a -b ≤-3,∴|a -b |≥3.二、填空题6.不等式||x -2|-1|≤1的解集为________. 答案 [0,4]解析 原不等式可转化为-1≤|x -2|-1≤1,故0≤|x -2|≤2,解得0≤x ≤4,故所求不等式的解集为[0,4].7.|2x -1|-2|x +3|>0的解集为________.答案 (-∞,-3)∪⎝ ⎛⎭⎪⎫-3,-12∪⎝ ⎛⎭⎪⎫32,+∞ 解析 ∵分母|x +3|>0且x ≠-3,∴原不等式等价于|2x -1|-2>0,即|2x -1|>2, ∴2x -1>2或2x -1<-2,解得x >32或x <-12.∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ x >32或x <-12且x ≠-3,即(-∞,-3)∪⎝ ⎛⎭⎪⎫-3,-12∪⎝ ⎛⎭⎪⎫32,+∞. 8.已知不等式|ax +b |<2(a ≠0)的解集为{x |1<x <5},则实数a ,b 的值为________. 答案 1,-3或-1,3解析 原不等式等价于-2<ax +b <2.①当a >0时,解得-2+b a <x <2-ba ,与1<x <5比较,得⎩⎪⎨⎪⎧-2+ba =1,2-ba =5,解得⎩⎨⎧a =1,b =-3.②当a <0时,解得2-b a <x <-2+ba ,与1<x <5比较,得⎩⎪⎨⎪⎧2-b a =1,-2+ba =5,解得⎩⎨⎧a =-1,b =3. 综上所述,a =1,b =-3或a =-1,b =3. 三、解答题 9.解下列不等式:(1)|4x +5|≥25;(2)|3-2x |<9; (3)1<|x -1|<5;(4)|x -1|>|x -2|.解 (1)因为|4x +5|≥25⇔4x +5≥25或4x +5≤-25⇔4x ≥20或4x ≤-30⇔x ≥5或x ≤-152,所以原不等式的解集为⎝ ⎛⎦⎥⎤-∞,-152∪[5,+∞).(2)因为|3-2x |<9⇔|2x -3|<9⇔-9<2x -3<9⇔-6<2x <12⇔-3<x <6, 所以原不等式的解集为(-3,6).(3)因为1<|x -1|<5⇔1<x -1<5或-5<x -1<-1⇔2<x <6或-4<x <0, 所以原不等式的解集为(-4,0)∪(2,6).(4)|x -1|>|x -2|⇔(x -1)2>(x -2)2⇔x 2-2x +1>x 2-4x +4⇔2x >3⇔x >32, 所以原不等式的解集为⎝ ⎛⎭⎪⎫32,+∞.10.解不等式|3x -2|+|x -1|>3.解 ①当x ≤23时,|3x -2|+|x -1|=2-3x +1-x =3-4x ,由3-4x >3,得x <0. ②当23<x <1时,|3x -2|+|x -1|=3x -2+1-x =2x -1,由2x -1>3,得x >2,∴x ∈∅. ③当x ≥1时,|3x -2|+|x -1|=3x -2+x -1=4x -3,由4x -3>3,得x >32,∴x >32. 故原不等式的解集为(-∞,0)∪⎝ ⎛⎭⎪⎫32,+∞.B 级:“四能”提升训练1.若|x +1|+2|x -a |的最小值为5,求实数a 的值. 解 当a ≤-1时,|x +1|+2|x -a |=⎩⎨⎧-3x +2a -1(x ≤a ),x -2a -1(a <x ≤-1),3x -2a +1(x >-1),所以(|x +1|+2|x -a |)min =-a -1, 所以-a -1=5,所以a =-6. 当a >-1时,|x +1|+2|x -a |=⎩⎨⎧-3x +2a -1(x ≤-1),-x +2a +1(-1<x ≤a ),3x -2a +1(x >a ),所以(|x +1|+2|x -a |)min =a +1, 所以a +1=5,所以a =4. 综上可知,a =-6或a =4.2.已知P =|2x -1|+|2x +a |,Q =x +3.(1)当a =-2时,求不等式|2x -1|+|2x +a |<x +3的解集;(2)设a >-1,且当x ∈⎣⎢⎡⎦⎥⎤-a 2,12时,|2x -1|+|2x +a |≤x +3,求a 的取值范围.解 (1)解法一:当a =-2时,不等式为|2x -1|+|2x -2|<x +3. 当x ≥1时,4x -3<x +3⇒x <2; 当x ≤12时,-4x +3<x +3⇒x >0; 当12<x <1时,1<x +3⇒x >-2.综上可知,当a =-2时,不等式|2x -1|+|2x +a |<x +3的解集为(0,2).解法二:当a =-2时,不等式|2x -1|+|2x +a |<x +3化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1,其图像如图所示,由图像可知,当且仅当x ∈(0,2)时,y <0,所以原不等式的解集为(0,2).(2)当x ∈⎣⎢⎡⎦⎥⎤-a 2,12时,P =|2x -1|+|2x +a |=1+a ,不等式|2x -1|+|2x +a |≤x +3化为1+a ≤x +3, 所以x ≥a -2对x ∈⎣⎢⎡⎦⎥⎤-a 2,12都成立,故-a 2≥a -2,即a ≤43. 从而a 的取值范围是⎝ ⎛⎦⎥⎤-1,43.。
求解不等式的解集
求解不等式的解集不等式在数学中是一个非常重要的概念,它描述了数值之间的大小关系。
解不等式的过程就是找出使不等式成立的数值范围,也就是解集。
在初中数学中,我们经常会遇到各种形式的不等式,如一元一次不等式、一元二次不等式等。
本文将针对不同类型的不等式进行举例、分析和说明,帮助中学生和他们的父母更好地理解和解决不等式问题。
一、一元一次不等式一元一次不等式是最简单的不等式形式,它的解集通常是一个数轴上的一段区间。
例如,我们来解一元一次不等式2x+3>5。
首先,我们可以将不等式转化为等价的形式2x+3-5>0,即2x-2>0。
接下来,我们可以通过变换不等式的形式来求解。
首先,我们将2x-2=0,得到x=1。
然后,我们在数轴上标出x=1的位置,并选择一个测试点,如x=0。
将x=0代入2x-2>0,得到2(0)-2=-2<0,不满足不等式。
因此,解集为x>1。
二、一元二次不等式一元二次不等式是稍微复杂一些的不等式形式,它的解集通常是一个数轴上的两个区间。
例如,我们来解一元二次不等式x^2-4x+3>0。
首先,我们可以通过因式分解或配方法将不等式转化为等价的形式(x-1)(x-3)>0。
然后,我们可以通过绘制函数图像或使用符号法来求解。
我们可以将函数y=(x-1)(x-3)的图像绘制在坐标系中,找出使函数大于零的区间。
根据图像,我们可以得到解集为x<1或x>3。
三、绝对值不等式绝对值不等式是一种特殊的不等式形式,它的解集通常是一个数轴上的多个区间。
例如,我们来解绝对值不等式|2x-1|<3。
首先,我们可以将不等式拆分为两个不等式,即2x-1<3和2x-1>-3。
然后,我们分别求解这两个不等式。
对于2x-1<3,我们得到解集为x<2;对于2x-1>-3,我们得到解集为x>-1。
最后,我们将两个解集合并,得到解集为-1<x<2。
北师大版数学八年级下册2.3《不等式的解集》教案
北师大版数学八年级下册2.3《不等式的解集》教案一. 教材分析《不等式的解集》是北师大版数学八年级下册第2.3节的内容,本节主要让学生了解不等式的解集及其表示方法,学会通过图像和表格来表示不等式的解集,并能够求解一些简单的不等式组。
教材内容安排合理,由浅入深,通过具体的例子引导学生理解和掌握不等式的解集。
二. 学情分析学生在学习本节内容前,已经学习了不等式的基本性质和一元一次不等式,对不等式的概念和运算法则有一定的了解。
但学生对不等式的解集概念可能较难理解,需要通过具体的例子和实践活动来帮助学生掌握。
三. 教学目标1.让学生了解不等式的解集及其表示方法。
2.培养学生通过图像和表格来表示不等式的解集的能力。
3.使学生能够求解一些简单的不等式组。
四. 教学重难点1.教学重点:不等式的解集及其表示方法。
2.教学难点:不等式的解集的求解和表示。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生通过观察、思考、讨论和操作来掌握不等式的解集。
六. 教学准备1.准备相关的教学PPT和教学案例。
2.准备黑板和粉笔,用于板书。
3.准备练习题,用于巩固所学内容。
七. 教学过程导入(5分钟)通过一个实际问题引入本节内容:某班有男生和女生共50人,其中男生人数是女生人数的3倍,求男生和女生各有多少人?呈现(10分钟)1.引导学生列出相应的不等式:x + y = 50,x = 3y。
2.通过解这个不等式组,引导学生思考解集的概念。
操练(10分钟)让学生分组讨论,每组找出一个不等式,求解其解集,并用图像或表格表示出来。
巩固(10分钟)1.让学生独立完成教材上的练习题。
2.引导学生总结解集的表示方法。
拓展(10分钟)1.引导学生思考:不等式的解集与方程的解集有什么关系?2.让学生举例说明,并进行讨论。
小结(5分钟)对本节内容进行总结,强调不等式的解集的表示方法和求解方法。
家庭作业(5分钟)布置一些有关不等式的解集的练习题,让学生巩固所学内容。
不等式的解集(概念定义课)
课题:8.2 不等式的解集课型:概念定义课主编:王琳审核:编号:课前反馈:学习目标:1.理解不等式的解集,能正确表示不等式的解集2.培养学生的数感,渗透数形结合的思想.学习过程:一.情景构建、认知概念:下列各数中,哪些是不等式x+2>5的解?哪些不是?-3, -2, -1, 0, 1.5, 2.5, 3, 3.5, 5, 7我们发现-3,-2,-1,0,1.5,2.5,3都是不等式x+2>5的解,由此看出,不等式x+2>5有许多个解进而看出,大于3的每一个数都是不等式x+2>5的解,而不大于3的每一个数都不是不等式x+2>5的解,不等式x+2>5的解有无数个,它们组成一个集合,称为不等式x+2>5的解集。
在数轴上表示为二.提供素材、观察实验:探究一:若方程(m+2)x=2的解为x=2,想一想,不等式(m-2)x>-3的解集是多少?试探究-2,-1,0,1,2这五个数中哪些数是该不等式的解探究二:在数轴上表示下列不等式的解集:(1) x≥-3;(2) x<0;(3) x>2.探究三:求出适合下列不等式的x的整数解,并在数轴上表示出来.(1)2<x<7; (2)-4<x≤-2; (3)1≤|x|≤3.三.归纳抽象、得出概念:1.一个 组成这个不等式的解集.2.含有 ,未知数的 是 的不等式,叫做一元一次不等式.3 在数轴上,解集x ≤a ,表示成解集x <a , 表示成四.基础演练、理解概念:1、写出不等式x -5<0的一个整数解:__________.2、如图所示,图中阴影部分表示x 的取值范围,则下列表示中正确的是( )A. x >-3<2B.-3<x ≤2C.-3≤x ≤2D.-3<x <23. 左图表示该不等式的解集____________ .4.不等式2X<6的非负整数解为( )A.0,1,2B.1,2C.0,-1,-2D.无数个5.下列说法中,错误的是( )A.不等式X<5的整数解有无数多个B.不等式X>-5的负数解集有有限个C.不等式-2X<8的解集是X<-4D.-40是不等式2X<-8的一个解6、直接想出下列不等式的解集,并在数轴上表示出来(1) x -3>6的解集是______ ; (2)2x <12的解集是________;(3)x-5>0的解集是_________; (4)21x >5的解集是_________.5.知识梳理、巩固概念:不等式的解集:在数轴上表示不等式的解集,如解集x ≥a ,是表示数a 的点左边的部分,包括表示数a 的点在内,这一点画成实心圆点,而解集x >a ,则表示数a 的点左边的部分,但不包括表示数a 的点,这一点画诚空心圆圈。
不等式的解概念是什么
不等式的解概念是什么 ⽤不等号表⽰不等关系的式⼦,叫做不等式。
求不等式的解集的过程,叫做解不等式。
下⾯是百分⽹店铺给⼤家整理的不等式的解概念简介,希望能帮到⼤家! 不等式的解概念 不等式的解是指在含有未知数的不等式中,能够使不等式成⽴的未知数的值。
不等式的解(solution of an inequality)不等式的基本概念之⼀指在含有未知数的不等式中,能够使不等式成⽴的未知数的值.不等式的`解的全体称为不等式的解集.有时也简称解.例如,对于不等式2x+1>0,x=1是它的⼀个解,{川⼆>⼀1/2}~(⼀1/2,+})是它的解集.对于数值不等式,若⽆特别声明,通常是在实数范围内求不等式的解. 不等式的解集 对于⼀个含有未知数的不等式,任何⼀个适合这个不等式的未知数的值,都叫做这个不等式的解。
对于⼀个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。
求不等式的解集的过程,叫做解不等式。
不等式的判定 ①常见的不等号有“>”“<”“≤” “≥”及“≠”。
分别读作“⼤于,⼩于,⼩于等于,⼤于等于,不等于”,其中“≤”⼜叫作不⼤于,“≥”叫作不⼩于; ②在不等式“a>b”或“a ③不等号的开⼝所对的数较⼤,不等号的尖头所对的数较⼩; ④在列不等式时,⼀定要注意不等式关系的关键字,如:正数、⾮负数、不⼤于、⼩于等等。
不等式分类 不等式分为严格不等式与⾮严格不等式。
⼀般地,⽤纯粹的⼤于号、⼩于号“>”“<”连接的不等式称为严格不等式,⽤不⼩于号(⼤于或等于号)、不⼤于号(⼩于或等于号)“≥”(⼤于等于符号)“≤”(⼩于等于符号)连接的不等式称为⾮严格不等式,或称⼴义不等式。
【不等式的解概念是什么】。
9-1-1不等式的定义及解集课件2022-2023学年人教版七年级下册数学
80
一辆匀速行驶的汽车在11:20时距离A地50千 米,要在12:00之前驶过A地,车速应满足什么条 件?若设车速为每小时x千米,能用一个式子表示吗?
思考方法
从时间上看:设车速是X千米/时
2
50
•
用的时间不到 3 小时, 所 用时间 x 小时
50 2 ① x3
从路程上看:汽车要在12:00之前驶过
(3)那么当人数少于30人时至少要多少人进公 园,买30张票才合算?
设有x人进公园,如果x<30,那么按实际人数要买 x张, 付款5x(元),买30张票要付款4ⅹ 30=120元,如果 买30张票合算,那么应有120<5x。
人数
(x)
21 22 23 24 25 26
27
28 29
按实际人数购票 的付款(元)
• • 3在数轴上表示出下列不等式的解集。 • X为非正数 • x≥-0.5 • x ≤2且x ≥2
4说出下列数轴所表示的不等式
1
-5 -4 -3 -2 -1 0
○
1 2 34
5
2
● -5 -4 -3 -2 -1 0 1 2 3 4 5
3
○
-5 -4 -3 -2 -1 0 1
2
34
5
4
○
2
3
5
●
-5 -4 -3 -2 -1 0 1 2 3 4 5
• 回归生活
一家三口人(两大人,一小孩)准备在 “五·一”外出旅行,甲旅行社的收费是:大 人全价,小孩半价。乙旅行社的收费标准是: 大人小孩一律八折。若这两家旅行社的基本价 一样,你认为这家人选哪家旅行社合算。
解: 设每人的基本价为x元。
甲旅行社的总费用是:2x+0.5x=2.5x元。 乙旅行社的总费用是:3x·80% =2.4x元。 因为x>0,所以 2.5x > 2.4x 因此这家人应该选择乙旅行社比较合算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:8.2 不等式的解集
课型:概念定义课主编:王琳审核:编号:
课前反馈:
学习目标:1.理解不等式的解集,能正确表示不等式的解集
2.培养学生的数感,渗透数形结合的思想.
学习过程:
一.情景构建、认知概念:
下列各数中,哪些是不等式x+2>5的解?哪些不是?
-3, -2, -1, 0, 1.5, 2.5, 3, 3.5, 5, 7
我们发现-3,-2,-1,0,1.5,2.5,3都是不等式x+2>5的解,由此看出,不等式x+2>5有许多个解
进而看出,大于3的每一个数都是不等式x+2>5的解,而不大于3的每一个数都不是不等式x+2>5的解,不等式x+2>5的解有无数个,它们组成一个集合,称为不等式x+2>5的解集。
在数轴上表示为
二.提供素材、观察实验:
探究一:若方程(m+2)x=2的解为x=2,想一想,不等式(m-2)x>-3的解集是多少?试探究-2,-1,0,1,2这五个数中哪些数是该不等式的解
探究二:在数轴上表示下列不等式的解集:
(1) x≥-3;(2) x<0;(3) x>2.
探究三:求出适合下列不等式的x的整数解,并在数轴上表示出来.
(1)2<x<7; (2)-4<x≤-2; (3)1≤|x|≤3.
三.归纳抽象、得出概念:
1.一个组成这个不等式的解集.
2.含有,未知数的是的不等式,叫做一元一次不等式.
3 在数轴上,解集x ≤a ,表示成
解集x <a , 表示成
四.基础演练、理解概念:
1、写出不等式x -5<0的一个整数解:__________.
2、如图所示,图中阴影部分表示x 的取值范围,则下列表示中正确的是( )
A.x >-3<2
B.-3<x ≤2
C.-3≤x ≤2
D.-3<x <2
3. 左图表示该不等式的解集____________ .
4.不等式2X<6的非负整数解为( )
A.0,1,2
B.1,2
C.0,-1,-2
D.无数个
5.下列说法中,错误的是( )
A.不等式X<5的整数解有无数多个
B.不等式X>-5的负数解集有有限个
C.不等式-2X<8的解集是X<-4
D.-40是不等式2X<-8的一个解
6、直接想出下列不等式的解集,并在数轴上表示出来
(1)x -3>6的解集是______ ; (2)2x <12的解集是________;
(3)x-5>0的解集是_________; (4)2
1x >5的解集是_________.
5.知识梳理、巩固概念:
不等式的解集:
在数轴上表示不等式的解集,如解集x ≥a ,是表示数a 的点左边的部分,包括表示数a 的点在内,这一点画成实心圆点,而解集x >a ,则表示数a 的点左边的部分,但不包括表示数a 的点,这一点画诚空心圆圈。
当堂检测:
1.写出不等式x-5<0的一个整数解:__________.
2、23是方程32x =的唯一解,2
1x =是不等式2x<3的 ( ) A. 唯一解 B. 一个解 C. 不是解 D. 解集
3、不等式2x 4<≤-的所有整数解的和为( )
A.-4 B .-6 C.-8 D. -9
4.下图表示了某个不等式的解集,该解集中所含的自然数解的个数是( )
A.4
B.5
C.6
D.7
5.不等式的解集在数轴上表示如图所示,则该不等式可能是__________.
6.在下列各数-2,-2.5,0,1,34,35中,是不等式3
2x >1的解有__________,是3
2-x >1的解有_____________. 7.一个不等式的解集如图所示,则这个不等式的正整数解是__________.
8.当X _______时,代数式2X -5的值为0,当X _______时,代数式2X -5的值不大于0.
9. 在数轴上表示下列不等式的解集:
(1)x >-2.5 (2)x ≤3.5 (3)-3.5≤x <4(4)1≤x ≤4;
10 .等式X ≤2012有多少解?有多少个正整数解
11.试求不等式X+3≤6的正整数解.
12.用计算器探索:按一定规律排列的一组数:201,191,,121,111,101 ,如果从中选出4若干个数,使它们的和大于0.5,那么至少要选__________个数.。