七年级数学整式的加减试题,整式的加减中考题及答案详解

合集下载

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析1.因式分解:(1)x3-4x; (2)(3a-b)(x-y)+(a+3b)(y-x).【答案】(1) x(x+2)(x-2);(2) 2(x-y)(a-2b).【解析】(1)先提出公因式x,剩下的因式用平方差公式分解即可;(2)两次提取公因式即可得解.试题解析:(1)原式=x(x2-4)=x(x+2)(x-2);(2)原式=(3a-b)(x-y)-(a+3b)(x-y)=(x-y)(2a-4b)=2(x-y)(a-2b).【考点】1.因式分解——提公因式法;2.因式分解——公式法.2.已知代数式的值为,求代数式的值.【答案】-6【解析】解:.因为3,故上式.3.先化简,后求值:已知,求代数式的值.【答案】【解析】解:由得,,解得,.将代数式化简得.将,代入得原式.4.多项式3a2b2-5ab2+a2-6是___次项式,常数项是 .【答案】四次四项式、-6【解析】本题中未知数的最高次是4次,所以是四次,未知数有a,b两个,故是四次二项式;常数项是-6【考点】多项式点评:本题属于对多项式的基本常识的考查,需要考生在对多项式基本次数的基础上熟练把握5.下列计算正确的是()A.2x+3y=5xy B.-3x-x=-xC.-xy+6x y=5x y D.5ab-b a=ab【答案】D【解析】根据合并同类项的法则依次分析各选项即可作出判断.A、2x与3y不是同类项,无法合并,B、-3x-x=-x,C、-xy与6x y不是同类项,无法合并,故错误;D、5ab-b a=ab,本选项正确.【考点】合并同类项点评:解题的关键是熟练掌握合并同类项的法则:把同类项的系数相加,字母和字母的指数不变.6.若2x y与-3x y是同类项,则-m=【答案】3【解析】先根据同类项的定义求得m、n的值,再根据有理数的乘方法则计算即可.由题意得,解得,则-m【考点】同类项,有理数的乘方点评:解题的关键是熟记同类项的定义:所含字母相同,并且相同字母的指数也分别相同的项是同类项.7.已知:A=x+xy+y,B=-3xy-x求(1)B-A;(2)2A-3B;(3)若A-B-C=0,则C如何用含x,y的代数式表示?【答案】(1)-2x-4xy-y;(2)5x+11xy+2y;(3)2x+4xy+y【解析】先根据题意分别列出代数式,再去括号、合并同类项即可.(1)B-A=(-3xy-x)-(x+xy+y)=-3xy-x-x-xy-y=-2x-4xy-y;(2)2A-3B=2(x+xy+y)-3(-3xy-x)=2x+2xy+2y+9xy+3x=5x+11xy+2y ;(3)∵A-B-C=0∴C= A-B=(x+xy+y)-(-3xy-x)=x+xy+y+3xy+x= 2x+4xy+y.【考点】整式的加减点评:解题的关键是熟练掌握在去括号时,若括号前是“-”号,把括号和括号前的“-”号去掉后,括号里各项的符号均要改变.8.化简或求值:(1)化简:(2)已知,求的值。

《好题》初中七年级数学上册第二章《整式的加减》经典习题(含答案)

《好题》初中七年级数学上册第二章《整式的加减》经典习题(含答案)

1.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣7A解析:A【分析】由已知可得3b ﹣6a+5=-3(2a ﹣b )+5,把2a ﹣b =3代入即可.【详解】3b ﹣6a+5=-3(2a ﹣b )+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.2.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018B .2018-C .1009-D .1009C 解析:C【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解. 【详解】解: 123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=-678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-,故选择C【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.3.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数D 解析:D【分析】根据单价×数量=总价,等边三角形周长=边长×3,售价=进价+利润,两位数的表示=十位数字×10+个位数字进行分析即可.【详解】A 、根据“单价×数量=总价”可知3a 表示买a kg 葡萄的金额,此选项不符合题意;B 、由等边三角形周长公式可得3a 表示这个等边三角形的周长,此选项不符合题意;C 、由“售价=进价+利润”得售价为1.5a 元,则2×1.5a =3a (元),此选项不符合题意;D 、由题可知,这个两位数用字母表示为10×3+a =30+a ,此选项符合题意.故选:D .【点睛】本题主要考查了列代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.4.一个多项式加上3y 2-2y -5得到多项式5y 3-4y -6,则原来的多项式为( ). A .5y 3+3y 2+2y -1B .5y 3-3y 2-2y -6C .5y 3+3y 2-2y -1D .5y 3-3y 2-2y -1D解析:D【分析】根据已知和与一个加数,则另一个加数=和-一个加数,然后计算即可.【详解】解:∵5y 3-4y -6-(3y 2-2y -5)= 5y 3-4y -6-3y 2+2y+5= 5y 3-3y 2-2y -1.故答案为D .【点睛】本题考查了整式的加减运算,掌握去括号、合并同类项是解答本题的关键.5.下面四个代数式中,不能表示图中阴影部分面积的是( )A .()()322x x x ++-B .25x x +C .()232x x ++D .()36x x ++ B解析:B【分析】依题意可得S S S =-阴影大矩形小矩形、S S S =+阴影正方形小矩形、S S S =+阴影小矩形小矩形,分别可列式,列出可得答案.【详解】解:依图可得,阴影部分的面积可以有三种表示方式:()()322S S x x x -=++-大矩形小矩形;()232S S x x +=++正方形小矩形;()36S S x x +=++小矩形小矩形.故选:B.【点睛】本题考查多项式乘以多项式及整式的加减,关键是熟练掌握图形面积的求法,还有本题中利用割补法来求阴影部分的面积,这是一种在初中阶段求面积常用的方法,需要熟练掌握. 6.已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( )A .﹣1B .﹣2C .﹣3D .﹣4A 解析:A【分析】根据同类项是字母相同且相同字母的指数也相同,可得m ,n 的值,根据代数式求值,可得答案.【详解】由题意,得3m =6,n =2.解得m =2,n =2.9m 2﹣5mn ﹣17=9×4﹣5×2×2﹣17=﹣1,故选:A .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.7.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x + A 解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误;C. 1÷x 是分式,故错误;D.1x x+是分式,故错误. 故选A.【点睛】 本题主要考查了整式,关键是掌握整式的概念.8.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( )A .mB .nC .m n +D .m ,n 中较大者D 解析:D【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项.【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,m n x x 中指数大的,即m ,n 中较大的,故答案选D.【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.9.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( )A .2B .﹣2C .0D .4A 解析:A【分析】根据题意可以写出这组数据的前几个数,从而发现数字的变化规律,再利用规律求解.【详解】解:由题意可得,这列数为:0,2,2,0,﹣2,﹣2,0,2,2,…,∴这20个数每6个为一循环,且前6个数的和是:0+2+2+0+(﹣2)+(﹣2)=0, ∵20÷6=3…2,∴这20个数的和是:0×3+(0+2)=2.故选:A .【点睛】本题考查了数字的变化规律,正确理解题意,发现题目中数字的变化规律:每6个数重复出现是解题的关键.10.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍B解析:B代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断.【详解】 代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B .【点睛】 本题考查了代数式,正确理解代数式表示的意义是关键.11.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于1,则()2a b cd m +-+的值是( ).A .0B .-2C .0或-2D .任意有理数A解析:A【分析】根据相反数的定义得到0a b +=,由倒数的定义得到cd=1,根据绝对值的定义得到|m|=1,将其代入()2a b cd m +-+进行求值. 【详解】∵a ,b 互为相反数,∴0a b +=,∵c ,d 互为倒数,∴cd =1,∵m 的绝对值等于1,∴m =±1,∴原式=0110-+=故选:A.【点睛】本题考查代数式求值,相反数,绝对值,倒数.能根据相反数,绝对值,倒数的定义求出+a b ,cd 和m 的值是解决此题的关键.12.一个多项式与221a a -+的和是32a -,则这个多项式为( )A .253a a -+B .253a a -+-C .2513a a --D .21a a -+- B解析:B【分析】根据加数=和-另一个加数可知这个多项式为:(3a-2)-(a 2-2a+1),根据整式的加减法法则,去括号、合并同类项即可得出答案.【详解】∵一个多项式与221a a -+的和是32a -,∴这个多项式为:(3a-2)-(a 2-2a+1)=3a-2-a 2+2a-1=-a 2+5a-3,故选B.题考查了整式的加减,熟记去括号法则,熟练运用合并同类项的法则是解题关键. 13.多项式33x y xy +-是( )A .三次三项式B .四次二项式C .三次二项式D .四次三项式D 解析:D【分析】根据多项式的项及次数的定义确定题目中的多项式的项和次数就可以了.【详解】解:由题意,得该多项式有3项,最高项的次数为4,该多项式为:四次三项式.故选:D .【点睛】本题考查了多项式,正确把握多项式的次数与系数确定方法是解题的关14.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( )A .2m +2nB .mC .m +nD .m ,n 中的较大数D解析:D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 的次数是m ,n 中的较大数是该多项式的次数.【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数.故选D.【点睛】此题考查多项式,解题关键在于掌握其定义.15.长方形一边长为2a +b ,另一边为a -b ,则长方形周长为( )A .3aB .6a +bC .6aD .10a -b C解析:C【解析】【分析】根据长方形的周长公式列出算式后化简合并即可.【详解】∵长方形一边长为2a +b ,另一边为a -b ,∴长方形周长为:2(2a +b +a -b )=6a.故选C.本题考查了整式的加减的应用,根据长方形的周长公式列出算式是解决问题的关键.1.有一列数:12,1,54,75,…,依照此规律,则第n个数表示为____.【分析】根据分母是从2开始连续的自然数分子是从1开始连续的奇数解答即可【详解】这列数可以写为因此分母为从2开始的连续正整数分子为从1开始的奇数故第n个数为故答案为:【点睛】本题考查了数字的变化规律找解析:211nn-+.【分析】根据分母是从2开始连续的自然数,分子是从1开始连续的奇数解答即可.【详解】这列数可以写为12,33,54,75,因此,分母为从2开始的连续正整数,分子为从1开始的奇数,故第n个数为211nn-+.故答案为:211nn-+.【点睛】本题考查了数字的变化规律,找出分子分母的联系,得出运算规律是解决问题的关键.2.观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n表示其规律代入n=2016即可求解【详解】解:观察发现第n个等式可以表示为:(3n-2)×3n+1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n表示其规律,代入n=2016即可求解.【详解】解:观察发现,第n个等式可以表示为:(3n-2)×3n+1=(3n-1)2,当n=2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.3.多项式||1(2)32m x m x --+是关于x 的二次三项式,则m 的值是_________.【分析】直接利用二次三项式的次数与项数的定义得出m 的值【详解】∵多项式是关于x 的二次三项式∴且∴故答案为:【点睛】本题主要考查了多项式正确利用多项式次数与系数的定义得出m 的值是解题关键解析:2-【分析】直接利用二次三项式的次数与项数的定义得出m 的值.【详解】∵多项式||1(2)32m x m x --+是关于x 的二次三项式, ∴||2m =,且()20m --≠, ∴2m =-.故答案为:2-.【点睛】本题主要考查了多项式,正确利用多项式次数与系数的定义得出m 的值是解题关键. 4.将一张长方形的纸对折,如图,可得到一条折痕(图中虚线),连续对折,对折时每次折痕与上次的折痕保持平行,连续对折3次后,可以得7条折痕,连续对折5次后,可以得到________条折痕.31【分析】根据题意找出折叠次的折痕条数的函数解析式再将代入求解即可【详解】折叠次的折痕为;折叠次的折痕为;折叠次的折痕为;……故折叠次的折痕应该为;折叠次将代入折痕为故答案为:31【点睛】本题考查解析:31【分析】根据题意找出折叠n 次的折痕条数的函数解析式,再将5n =代入求解即可.【详解】折叠1次的折痕为1,1121=-;折叠2次的折痕为3,2321=-;折叠3次的折痕为7,3721=-;……故折叠n 次的折痕应该为21n -;折叠5次,将5n =代入,折痕为52131-=故答案为:31.【点睛】本题考查了图形类的规律题,找出折叠n 次的折痕条数的函数解析式是解题的关键. 5.如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 6.王马虎同学在做有理数的加减法时,将一个100以内的含两位小数的数看错了,他将小数点前后的两位数看反了(比如56.78错看成了78.56),然后用看错的数字减3.5,发现差恰好就是原正确数字的2倍,则正确的结果应该是_____.32【分析】根据用看错的数字减35发现差恰好就是原正确数字的2倍利用有理数的加减混合运算即可求解【详解】∵100以内的含两位小数的数看错了根据归纳猜想得:原数为1432看错的两位数为32143214解析:32.【分析】根据用看错的数字减3.5,发现差恰好就是原正确数字的2倍,利用有理数的加减混合运算即可求解.【详解】∵100以内的含两位小数的数看错了,根据归纳猜想得:原数为14.32,看错的两位数为32.14,32.14﹣3.5=28.64,14.32×2=28.64.∴32.14﹣3.5=2×14.32.故答案为14.32.【点睛】本题考查有理数的加减混合运算,解题的关键是利用探究猜想的方法进行计算.7.已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a 由于k≠0先将式子左右同时除以(-4k )再移项系数化1即可表示出a 【详解】∵k≠0∴原式两边同时除以(-4x )得∴∴故答案为【点睛】本题考查的是代数式的表示 解析:2248b k k+ 【分析】将已给的式子作恒等式进行变形表示a ,由于k≠0,先将式子左右同时除以(-4k ),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x )得,224b k a k=-- ∴224b a k k=+, ∴2224828b k b k a k k+=+=, 故答案为2248b k k+. 【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.8.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.9.已知22211m mn n ++=,26mn n +=,则22m n +的值为______.5【分析】观察多项式之间的关系可知将已知两式相减再化简即可得到结果【详解】∵∴∴的值为5【点睛】本题考查整式的加减观察得出整式之间的关系再进行去括号化简是解题的关键解析:5【分析】观察多项式之间的关系可知,将已知两式相减,再化简即可得到结果.【详解】∵22211m mn n ++=,26mn n +=,∴()22222222221165mn m mn n m n n mn nm mn n ---=+++=++=-=+, ∴22m n +的值为5.【点睛】本题考查整式的加减,观察得出整式之间的关系再进行去括号化简是解题的关键. 10.观察单项式:x -,22x ,33x -,44x ,…,1919x -,2020x , …,则第2019个单项式为______.【分析】根据题目内容找到单项是的系数规律和字母的指数规律从而求解【详解】解:由题意可知:第一个单项式为;第二个单项式为;第三个单项式为…∴第n 个单项式为即第2019个单项式为故答案为:【点睛】本题考 解析:20192019x -【分析】根据题目内容找到单项是的系数规律和字母的指数规律,从而求解.【详解】解:由题意可知:第一个单项式为11(1)1x -⨯⨯;第二个单项式为22(1)2x -⨯⨯;第三个单项式为33(1)3x -⨯⨯… ∴第n 个单项式为(1)n n n x -⨯⨯即第2019个单项式为201920192019(1)20192019x x -⨯⨯=-故答案为:20192019x -【点睛】本题考查数的规律探索,找到单项式的系数规律和字母指数规律是本题的解题关键.11.多项式3x |m |y 2+(m +2)x 2y -1是四次三项式,则m 的值为______.2【分析】根据四次三项式的定义可知该多项式的最高次数为4项数是3所以可确定m 的值【详解】解:∵多项式3x |m |y2+(m+2)x2y-1是四次三项式∴+2=4∴m=2故答案为2【点睛】本题考查了与多解析:2【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m 的值.【详解】解:∵多项式3x |m |y 2+(m +2)x 2y -1是四次三项式, ∴m +2=4,20m +≠∴m=2.故答案为2.【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.1.已知多项式22622452x mxyy xy x 中不含xy 项,求代数式32322125m m m m m m 的值.解析:-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值,再把所求式子合并同类项后代入m 的值计算即可.【详解】解:2222622452=6+42252x mxy y xy x x m xy y x , 由题意,得4-2m =0,所以m =2; 所以32322125m m m m m m =3226m m .当m =2时,原式= 322226 =14-. 【点睛】本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.2.(规律探究题)用计算器计算下列各式,将结果填写在横线上.99999×11=__________;99999×12=__________;99999×13=__________;99999×14=__________.(1)你发现了什么?(2)不用计算器,你能直接写出99999×19的结果吗?解析:1099989;1199988;1299987;1399986;(1)如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998;(2)99999×19=1899981【分析】用计算器分别进行计算,再根据结果找出规律,最后根据规律即可直接写出99999×19的结果.【详解】解:99999×11=1099989;99999×12=1199988;99999×13=1299987;99999×14=1399986.故答案为:1099989;1199988;1299987;1399986.(1)通过计算观察可发现以下规律:如果n 是11,12,13,…,20中的任何一个数,则:99999×n =(n -1)9998(20-n ),其中(n -1)9998(20-n )是1个7位数,前2位是n -1,个位是20-n ,中间4个数字总是9998.(2)根据以上规律可直接写出:99999×19=1899981.【点睛】此题考查了计算器−有理数,解题的关键是通过用计算器计算,找出规律,通过规律进行解答.3.有这样一道题,计算()()4322433222422x x y x y x x y y x y -----+的值,其中0.25x =,1y =-;甲同学把“0.25x =”,错抄成“0.25x =-”,但他的计算结果也是正确的,你说这是为什么?解析:化简后为32y ,与x 无关. 【分析】原式去括号合并得到最简结果中不含x ,可得出x 的取值对结果没有影响.【详解】解:()()4322433222422x x y x y x x y y x y -----+=43224332224242x x y x y x x y y x y ---+++=32y ,原式化简后为32y ,跟x 的取值没有关系.因此不会影响计算结果.【点睛】本题考查了整式的加减——化简求值,正确的将原式去括号合并同类项是解决此题的关键.4.计算:(1)()223537a ab a ab -+-++;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭. 解析:(1)62ab --;(2)2321a a --+【分析】先去括号,然后合并同类项即可.【详解】解:(1)()223537a ab a ab -+-++ 223537a ab a ab =-+--- 2ab =-6-;(2)()222312424a a a a ⎛⎫+--- ⎪⎝⎭ 2222261a a a a =+--+ 2321a a =--+.【点睛】本题考查了整式的加减运算,熟记去括号法则和合并同类项的法则是解决此题的关键.。

(必考题)初中七年级数学上册第二章《整式的加减》经典测试(含答案解析)

(必考题)初中七年级数学上册第二章《整式的加减》经典测试(含答案解析)

1.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A .5次B .6次C .7次D .8次C解析:C【分析】 首先观察图形,得出一个完整的动作过后电子跳骚升高2个格,根据起始点为-5,终点为9,即可得出它需要跳的次数.【详解】解:由图形可得,一个完整的动作过后电子跳骚升高2个格,如果电子跳骚落到9的位置,则需要跳9(5)72--=次. 故选C .此题考查数字的规律变化,关键是仔细观察图形,得出一个完整的动作过后电子跳骚升高2个格,难度一般.2.点 1A 、 2A 、 3A 、…… 、 n A (n 为正整数)都在数轴上.点 1A 在原点 O 的左边,且 1A O 1=;点 2A 在点 1A 的右边,且 21A A 2=;点 3A 在点 2A 的左边,且 32A A 3=;点 4A 在点 3A 的右边,且 43A A 4=;……,依照上述规律,点 2008A 、 2009A 所表示的数分别为( )A .2008 、 2009-B .2008- 、 2009C .1004 、 1005-D .1004 、 1004- C解析:C【分析】先找到特殊点,根据特殊点的下标与数值的关系找到规律,数较大时,利用规律解答.【详解】解:根据题意分析可得:点A₁, A₂,A₃, .. A n 表示的数为-1,1,-2,2,-3,3,...依照上述规律,可得出结论:点的下标为奇数时,点在原点的左侧,且为下标加1除以2的相反数;点的下标为偶数时,点在原点的右侧且表示的数为点的下标数除以2;即:当n 为奇数时,n 1A 2n +=-, 当n 为偶数时,2n n A = 所以点A 2008表示的数为: 2008÷2= 1004A 2009表示的数为:- (2009+1) ÷2=-1005故选: C .【点睛】本题考查探索与表达规律.这类题型在中考中经常出现,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,然后找到规律.3.下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差C解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a ﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.4.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 5.化简2a -[3b -5a -(2a -7b )]的值为( )A .9a -10bB .5a +4bC .-a -4bD .-7a +10b A解析:A【解析】 2a -[3b -5a -(2a -7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b ,故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.6.下列各代数式中,不是单项式的是( )A .2m -B .23xy -C .0D .2tD 解析:D【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【详解】 A 选项,2m -是单项式,不合题意;B 选项,23xy -是单项式,不合题意;C 选项,0是单项式,不合题意;D 选项,2t不是单项式,符合题意. 故选D .【点睛】 本题考查单项式的定义,较为简单,要准确掌握定义.7.如图,a ,b 在数轴上的位置如图所示:,那么||||a b a b -++的结果是( )A .2b -B .2bC .2a -D .2a A解析:A【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:根据题意得:b <a <0,且|a |<|b |,∴a -b >0,a +b <0,∴原式=a -b -a -b =-2b .故选:A .【点睛】此题主要考查了数轴以及绝对值,熟练掌握绝对值的性质是解本题的关键.8.如图,填在下面各正方形中的4个数之间都有相同的规律,根据此规律,m 的值是( )A .38B .52C .74D .66 C 解析:C【分析】 分析前三个正方形可知,规律为右上和左下两个数的积减左上的数等于右下的数,且左上,左下,右上三个数是相邻的偶数.因此,图中阴影部分的两个数分别是左下是8,右上是10.【详解】解:8×10−6=74,故选:C .【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于找出阴影部分的数.9.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .32A 解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值.【详解】 ∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a ==-故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.10.下面去括号正确的是( )A .2()2y x y y x y +--=+-B .2(35)610a a a a --=-+C .()y x y y x y ---=+-D .222()2x x y x x y +-+=-+ B解析:B【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. 2()2y x y y x y +--=--,故错误;B. 2(35)610a a a a --=-+,故正确;C. ()y x y y x y ---=++,故错误;D. 222()22x x y x x y +-+=-+,故错误;故选:B【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘;括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“一”,去括号后,括号里的各项都改变符号.11.下列判断中错误的个数有( ) (1)23a bc 与2bca -不是同类项; (2)25m n 不是整式; (3)单项式32x y -的系数是-1; (4)2235x y xy -+是二次三项式.A .4个B .3个C .2个D .1个B解析:B【分析】 根据同类项概念和单项式的系数以及多项式的次数的概念分析判断.【详解】解:(1)23a bc 与2bca -是同类项,故错误;(2)25m n 是整式,故错; (3)单项式-x 3y 2的系数是-1,正确;(4)3x 2-y+5xy 2是3次3项式,故错误.故选:B .【点睛】本题主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.12.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方B .a 与b 的差的平方的倒数C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差D解析:D【分析】 说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【详解】 解:代数式21a b-的正确解释是a 的平方与b 的倒数的差. 故选:D.【点睛】用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.13.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A 解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.14.如图是按照一定规律画出的“树形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”……照此规律,图A 6比图A 2多出“树枝”( )A .32个B .56个C .60个D .64个C解析:C【分析】根据所给图形得到后面图形比前面图形多的“树枝”的个数用底数为2的幂表示的形式,代入求值即可.【详解】∵图A 2比图A 1多出2个“树枝”,图A 3比图A 2多出4个“树枝”,图A 4比图A 3多出8个“树枝”,…,∴图形从第2个开始后一个与前一个的差依次是:2, 22,…, 12n -.∴第5个树枝为15+42=31,第6个树枝为:31+52=63,∴第(6)个图比第(2)个图多63−3=60个故答案为C【点睛】此题考查图形的变化类,解题关键在于找出其规律型.15.已知3a b -=-,2c d +=,则()()a d b c --+的值为( )A .﹣5B .1C .5D .﹣1A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案. 1.填在各正方形中的四个数字之间具有相同的规律,根据这种规律,m 的值应是_______. 184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积且左上左下右上三个数是相邻的奇数据此解答【详解】由前面数字关系:135;357;579可得最后一个三个数分别为:11解析:184【分析】根据题意知:前三个图形的左上角与右下角数的和等于右上角与左下角数的积,且左上,左下,右上三个数是相邻的奇数.据此解答.【详解】由前面数字关系:1,3,5;3,5,7;5,7,9,可得最后一个三个数分别为:11,13,15,3×5-1=14;5×7-3=32;7×9-5=58;由于左上的数是11,则左下角的是13,右上角的是15,∴m=13×15-11=184.故答案为:184.【点睛】本题考查了数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出m 的值.2.在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n时,最多可有的交点数m 与直线条数n之间的关系式为:m=_____.(用含n的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n条直线相交最多有1+2+3+…+(n-1)=个解析:()12 n n-【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.3.观察下列图形它们是按一定规律排列的,依照此规律,第20个图形共有________________ 个★.【分析】由排列组成的图形都是三角形找出规律即可求出答案【详解】解:根据规律可知:第一个图形中有1×3=3个★第二个图形中有2×3=6个★第三个图形中有3×3=9个★…第n个图形有3n个★∴第20个图解析:60【分析】由排列组成的图形都是三角形,找出规律,即可求出答案.【详解】解:根据规律可知:第一个图形中有1×3=3个★,第二个图形中有2×3=6个★,第三个图形中有3×3=9个★,…第n 个图形有3n 个★,∴第20个图形共有20×3=60个★.故答案为:60.【点睛】解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.本题的关键规律为第n 个图形有3n 个★.4.用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b +%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -. 【点睛】本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.5.观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.6.如图:矩形花园ABCD 中,,AB a AD b ==,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK .若LM RS c ==,则花园中可绿化部分的面积为______.【分析】由长方形的面积减去PQLM 与RKTS 的面积再加上重叠部分面积即可得到结果【详解】S 矩形ABCD=AB•AD=abS 道路面积=ca+cb-c2所以可绿化面积=S 矩形ABCD-S 道路面积=ab-解析:2ab bc ac c --+【分析】由长方形的面积减去PQLM 与RKTS 的面积,再加上重叠部分面积即可得到结果.【详解】S 矩形ABCD =AB•AD=ab ,S 道路面积=ca+cb-c 2,所以可绿化面积=S 矩形ABCD -S 道路面积=ab-(ca+cb-c 2),=ab-ca-cb+c 2.故答案为:ab-bc-ac+c 2.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.7.已知5a b -=,3c d +=,则()()b c a d +--的值等于______.-2【分析】把原式去括号转化为含有(a-b)和(c+d)的式子然后代入求值即可【详解】故答案为:-2【点睛】本题考查了整式的化简求值把原式转化为含有(a-b)和(c+d)的式子是解决此题的关键解析:-2【分析】把原式去括号转化为含有(a -b )和(c +d )的式子,然后代入求值即可.【详解】()()()()532b c a d b c a d b a c d +--=+-+=-++=-+=-.故答案为:-2.【点睛】本题考查了整式的化简求值,把原式转化为含有(a -b )和(c +d )的式子是解决此题的关键. 8.在x y +,0,21>,2a b -,210x +=中,代数式有______个.3【分析】代数式是指把数或表示数的字母用+-×÷连接起来的式子而对于带有=><等数量关系的式子则不是代数式【详解】解:是不等式不是代数式;是方程不是代数式;0是代数式共3个故答案是:3【点睛】本题考解析:3【分析】代数式是指把数或表示数的字母用+、-、×、÷连接起来的式子,而对于带有=、>、<等数量关系的式子则不是代数式.【详解】解:21>是不等式,不是代数式;210x +=是方程,不是代数式;x y +,0,,2a b -,是代数式,共3个.故答案是:3.【点睛】本题考查了代数式的定义,理解定义是关键.9.用棋子按下列方式摆图形,依照此规律,第n 个图形比第()1n -个图形多______枚棋子. …第1个 第2个 第3个【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数相减即可得到结果【详解】解:第1个图形棋子的个数:1;第2个图形1+4;第3个图形1+4+7;第4个图形1+4+7+10;…第n 个图形1+ 解析:32n -【分析】归纳总结找出第n 个图形与第(n-1)个图形中的棋子数,相减即可得到结果.【详解】解:第1个图形棋子的个数:1;第2个图形,1+4;第3个图形,1+4+7;第4个图形,1+4+7+10;…第n 个图形,1+4+7+…+(3n -2);则第n 个图形比第(n-1)个图形多(3n-2)枚棋子.故答案为:3n-2【点睛】此题主要考查了图形的变化类问题,同时还考查了学生通过特例分析从而归纳总结出一般结论的能力.10.观察下列各式,你会发现什么规律:3515⨯=,而21541=-;5735⨯=,而23561=-;1113143⨯=,而2143121=-……请将你猜想到的规律用只含一个字母的式子表示出来:______.【分析】观察各式的特点找出关于n 的式子用2n+1和2n-1表示奇数用2n 表示偶数即可得出答案【详解】根据题意可得:当n≥1时可归纳出故答案为:【点睛】本题考查的是找规律这类题型在中考中经常出现对于找 解析:()()()2212121n n n -+=-【分析】观察各式的特点,找出关于n 的式子,用2n+1和2n-1表示奇数,用2n 表示偶数,即可得出答案.【详解】根据题意可得:当n≥1时,可归纳出()()()2212121n n n -+=-故答案为:()()()2212121n n n -+=-.【点睛】本题考查的是找规律,这类题型在中考中经常出现,对于找规律的题目首先应该找出哪些部分发生了变化,是按照什么规律变化的.11.如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m +n+p =_________; 4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法. 1.计算:7ab-3a 2b 2+7+8ab 2+3a 2b 2-3-7ab .解析:8ab 2+4.【分析】原式合并同类项即可得到结果.【详解】原式=(7﹣7)ab +(﹣3+3)a 2b 2+8ab 2+(7﹣3)=8ab 2+4.【点睛】本题考查了合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.2.已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4【分析】 根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.3.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)解析:乙旅行社收费比甲旅行社贵0.2a 元.【分析】根据题意分别表示出甲乙两旅行社的费用,相减即可得到结果.【详解】根据题意得:(a+a+a )×90%-(a+a+12a ) =2.7a-2.5a=0.2a (元),则乙旅行社收费比甲旅行社贵0.2a 元.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.4.观察下列等式.第1个等式:a 1=113⨯=12×113⎛⎫- ⎪⎝⎭; 第2个等式:a 2=135⨯=12×1135⎛⎫- ⎪⎝⎭;第3个等式:a 3=157⨯=12×1157⎛⎫- ⎪⎝⎭; 第4个等式:a 4=179⨯=12×1179⎛⎫- ⎪⎝⎭; … 请解答下列问题.(1)按以上规律列出第5个等式:a 5=____=____;(2)求a 1+a 2+a 3+a 4+…+a 100的值.解析:(1)1911⨯;12×11911⎛⎫- ⎪⎝⎭;(2)100201. 【分析】(1)根据连续奇数乘积的倒数等于这两个奇数的倒数差的一半列式可得;(2)根据以上所得规律列式111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,再进一步计算可得. 【详解】(1)由观察知, 左边:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为序号的2倍减1和序号的2倍加1,右边:这两个奇数的倒数差的一半,∴第5个式子是:()()111115215219112911⎛⎫==⨯- ⎪⨯-⨯-⨯⎝⎭; 故答案为:1911⨯;12×11911⎛⎫- ⎪⎝⎭; (2)a 1+a 2+a 3+a 4+…+a 100 111111111111232352572199201⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⨯-++⨯- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 111111111233557199201⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⨯-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 111111111233557199201⎛⎫=⨯-+-+-++- ⎪⎝⎭1112201⎛⎫=⨯- ⎪⎝⎭ 12002201=⨯ 100201=. 【点睛】本题主要考查了数字的变化规律,解题的关键是根据已知等式得出规律:连续奇数乘积的倒数等于这两个奇数的倒数差的一半.。

人教版 初中数学中考一轮复习---整式和整式的加减运算(含解析)

人教版 初中数学中考一轮复习---整式和整式的加减运算(含解析)

整式与整式的加减运算例1: 因式分解:22mx my -. 例2: 已知:,2-=b ,.求代数式:24a b c +-的值. 例3: 先化简,再求值:(1+a )(1﹣a )+(a ﹣2)2,其中a=﹣3.例4: 先化简,再求值:,其中x =A 组1、指出下列各单项式的系数和次数:23223,5,,37a x y ab a bc π- 2. 判断下列各式哪些是单项式: ①2ab x ②a ③25ab -④x y +⑤0.85-⑥12x +⑦2x⑧0 3. 对于多项式2221x yz xy xz -+-- (1)最高次数项的系数是 ; (2)是 次 项式; (3)常数项是 。

3=a 21=c 2(2)(21)(21)4(1)x x x x x +++--+4.已知多项式221345xy x y --,试按下列要求将其重新排列。

(1)按字母x 作降幂排列;(2)按字母y 作升幂排列。

点拨:在按照定义的要求情况下,注意各项前的符号。

5. 把下列各式填在相应的大括号里7x -,13x ,4ab ,23a ,35x -,y ,st,13x +,77x y +,212x x ++,11m m -+,38a x ,1-。

单项式集合{ } 多项式集合{ } 整式集合 { }6、三个连续的奇数中,最小的一个是23n -,那么最大的一个是 。

7、当2x =-时,代数式-221x x +-= ,221x x -+= 。

8、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。

9、如果3y -+2(24)x -=0,那么2x y -=___。

10、多项式221x x -+的各项分别是( ) A 、22,,1x x B 、22,,1x x - C 、22,,1x x -- D 、22,,1x x --- 11、计算:35_____x x -=; 12、()22______326271x x x x +--=--+13、买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元。

人教版初中七年级数学上册第二章《整式的加减》经典练习题(含答案解析)

人教版初中七年级数学上册第二章《整式的加减》经典练习题(含答案解析)

一、选择题1.(0分)下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a ﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.(0分)下列对代数式1a b -的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.(0分)如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1B解析:B【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.4.(0分)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B 解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.5.(0分)已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 6.(0分)一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( )A .1B .-1C .2020D .2020- A解析:A【分析】 首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 7.(0分)已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣1D 解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.8.(0分)下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.9.(0分)若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( )A .17B .67C .-67D .0B解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.(0分)一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 二、填空题11.(0分)在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.12.(0分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 13.(0分)用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -.本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.14.(0分)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.15.(0分)观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n 个式子为2n-1a n ,∴第8个式子为:27a 8=128a 8,故答案为:128a 8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.16.(0分)如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 17.(0分)如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序). 2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.18.(0分)已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a由于k≠0先将式子左右同时除以(-4k)再移项系数化1即可表示出a【详解】∵k≠0∴原式两边同时除以(-4x)得∴∴故答案为【点睛】本题考查的是代数式的表示解析:2248b kk+【分析】将已给的式子作恒等式进行变形表示a,由于k≠0,先将式子左右同时除以(-4k),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x)得,22 4bk a k=--∴224ba kk=+,∴2224828b k b kak k+=+=,故答案为2248b kk+.【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.19.(0分)随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n元,那么该电脑的原售价为______.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式解析:43n m+【分析】根据题意列出代数式解答即可.【详解】解:该电脑的原售价4125%3nm n m+=+-,故填:43n m+.【点睛】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.20.(0分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m+n+p=_________;4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.三、解答题21.(0分)已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.22.(0分)观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.23.(0分)已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m +1=6,2n +2=6解得:m =3, n =2,所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.24.(0分)已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.25.(0分)已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.26.(0分)已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.27.(0分)化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 28.(0分)如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析1.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多a cm,则正方形的面积与长方形的面积的差为A.a2B.a2C.a2D.a2【答案】D.【解析】设长方形的宽为xcm,则长为(x+a)cm,则正方形的边长为(x+x+a)=(2x+a);正方形的面积为[(2x+a)]2,长方形的面积为x(x+a),二者面积之差为[(2x+a)]2﹣x(x+a)=a2.故选D.【考点】整式的混合运算2.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文3a+b,2b+c,2c+d,2d.例如,明文1,2,3,4对应密文5,7,10,8.当接收方收到密文14,9,24,28时,则解密得到的明文四个数字之和为.【答案】25.【解析】根据题意列出4个等式,把它们相加即可求出结论.试题解析:设这四个数字分别为a、b、c、d,则有:3a+b="14" ①2b+c=9 ②2c+d="24" ③2d=28 ④①+②+③+④得:3(a+b+c+d)=75∴a+b+c+d=25【考点】整式运算.3.先化简,再求值:,其中,.【答案】66【解析】解:.将,代入得原式.4.化简关于的代数式.当为何值时,代数式的值是常数?【答案】【解析】解:将去括号,得,合并同类项,得.若代数式的值是常数,则,解得.故当时,代数式的值是常数.5.先化简,再求值:,其中,.【答案】-2【解析】先去括号,再合并同类项,最后代入求值即可.原式==当,时,原式=.【考点】整式的化简求值点评:解答本题的关键是熟练掌握在去括号时,若括号前是“-”号,把括号和括号前的“-”号去掉后,括号里各项的符号均要改变.6.已知一个多项式与的和等于,则这个多项式是A.B.C.1D.【答案】A【解析】先根据题意列出代数式,再去括号,合并同类项.由题意得这个多项式是故选A.【考点】整式的加减点评:解答本题的关键是熟练掌握在去括号时,若括号前是“-”号,把括号和括号前的“-”号去掉后,括号里各项的符号均要改变.7.若2x y与-3x y是同类项,则-m=【答案】3【解析】先根据同类项的定义求得m、n的值,再根据有理数的乘方法则计算即可.由题意得,解得,则-m【考点】同类项,有理数的乘方点评:解题的关键是熟记同类项的定义:所含字母相同,并且相同字母的指数也分别相同的项是同类项.8.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A.7B.4C.1D.9【答案】A【解析】代数式的代入计算。

2022年数学七年级上册人教版第2章《整式的加减》测试卷(1)(附答案)

2022年数学七年级上册人教版第2章《整式的加减》测试卷(1)(附答案)

第2章整式的加减测试卷〔1〕一、选择题〔每题3分,共24分〕1.〔3分〕以下等式中正确的选项是〔〕A.2x﹣5=﹣〔5﹣2x〕B.7a+3=7〔a+3〕C.﹣a﹣b=﹣〔a﹣b〕D.2x﹣5=﹣〔2x﹣5〕2.〔3分〕以下说法正确的选项是〔〕A.0不是单项式B.x没有系数C.+x是多项式D.﹣xy是单项式3.〔3分〕以下各式中,去括号或添括号正确的选项是〔〕A.a2﹣〔2a﹣b+c〕=a2﹣2a﹣b+c B.a﹣3x+2y﹣1=a+〔﹣3x+2y﹣1〕C.3x﹣[5x﹣〔2x﹣1〕]=3x﹣5x﹣2x+1 D.﹣2x﹣y﹣a+1=﹣〔2x﹣y〕+〔a﹣1〕4.〔3分〕原产n吨,增产30%之后的产量应为〔〕A.n70% 吨B.n130% 吨C.n+30% 吨D.n30% 吨5.〔3分〕代数式a=,4xy,,a,2021,a2b,﹣中,单项式的个数有〔〕A.3个 B.4个 C.5个 D.6个6.〔3分〕以下计算中正确的选项是〔〕A.6a﹣5a=1 B.5x﹣6x=11x C.m2﹣m=m D.﹣x3﹣6x3=﹣7x37.〔3分〕两个3次多项式相加,结果一定是〔〕A.6次多项式B.3次多项式C.次数不高于3的多项式D.次数不高于3次的整式8.〔3分〕计算:〔m+3m+5m+…+2021m〕﹣〔2m+4m+6m+…+2021m〕=〔〕A.﹣1007m B.﹣1006m C.﹣1005m D.﹣1004m二、填空题〔每题3分,共30分〕9.〔3分〕计算:3a2b﹣2a2b=.10.〔3分〕“x的平方与2x﹣1的和〞用代数式表示为.11.〔3分〕写出一个关于x的二次三项式,使得它的二次项系数为﹣5,那么这个二次三项式为.12.〔3分〕三个连续数中,2n+1是中间的一个,这三个数的和为.13.〔3分〕张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,那么张大伯卖报收入元.14.〔3分〕单项式3a m b与﹣a4b n﹣1是同类项,那么4m﹣n=.15.〔3分〕化简〔x+y〕+2〔x+y〕﹣4〔x+y〕=.16.〔3分〕假设多项式2x2+3x+7的值为10,那么多项式6x2+9x﹣7的值为.17.〔3分〕假设〔m+2〕2x3y n﹣2是关于x,y的六次单项式,那么m≠,n=.18.〔3分〕观察以下板式:22﹣12=2+1=3;32﹣22=3+2=5;42﹣32=4+3=7;52﹣42=5+4=9;62﹣52=6+5=11;…假设字母n表示自然数,请把你观察到的规律用含n的式子表示出来:.三、解答题〔共46分〕19.〔21分〕计算:〔1〕2a﹣〔3b﹣a〕+b〔2〕5a﹣6〔a﹣〕〔3〕3〔x2﹣y2〕+〔y2﹣z2〕﹣2〔z2﹣y2〕20.〔9分〕2x2﹣[x2﹣2〔x2﹣3x﹣1〕﹣3〔x2﹣1﹣2x〕]其中:.21.〔8分〕如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,假设圆形的半径为r米,广场长为a米,宽为b米.〔1〕请列式表示广场空地的面积;〔2〕假设休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积〔计算结果保存π〕.22.〔8分〕试说明:不管x取何值代数式〔x3+5x2+4x﹣3〕﹣〔﹣x2+2x3﹣3x﹣1〕+〔4﹣7x﹣6x2+x3〕的值是不会改变的.参考答案与试题解析一、选择题〔每题3分,共24分〕1.〔3分〕以下等式中正确的选项是〔〕A.2x﹣5=﹣〔5﹣2x〕B.7a+3=7〔a+3〕C.﹣a﹣b=﹣〔a﹣b〕D.2x﹣5=﹣〔2x﹣5〕【考点】整式的加减.【分析】此题只需根据整式加减的去括号法那么,对各选项的等式进行判断.【解答】解:A、2x﹣5=﹣〔5﹣2x〕,正确;B、7a+3=7〔a+3〕,错误;C、﹣a﹣b=﹣〔a﹣b〕,错误,﹣a﹣b=﹣〔a+b〕;D、2x﹣5=﹣〔2x﹣5〕,错误,2x﹣5=﹣〔﹣2x+5〕;应选A.【点评】此题考查了整式的加减,比较简单,容易掌握.注意去括号时,括号前是负号,去括号时各项都要变号.2.〔3分〕以下说法正确的选项是〔〕A.0不是单项式B.x没有系数C.+x是多项式D.﹣xy是单项式【考点】单项式.【分析】根据单项式和多项式的定义解答.【解答】解:A、单独的一个数是单项式,故本选项错误;B、x的系数是1,故本选项错误;C、分母中有字母,不是整式,故本选项错误;D、﹣xy符合单项式定义,故本选项正确.应选D.【点评】此题考查了单项式和多项式,要知道数字或字母的积叫单项式,几个单项式的和叫多项式.3.〔3分〕以下各式中,去括号或添括号正确的选项是〔〕A.a2﹣〔2a﹣b+c〕=a2﹣2a﹣b+c B.a﹣3x+2y﹣1=a+〔﹣3x+2y﹣1〕C.3x﹣[5x﹣〔2x﹣1〕]=3x﹣5x﹣2x+1 D.﹣2x﹣y﹣a+1=﹣〔2x﹣y〕+〔a﹣1〕【考点】去括号与添括号.【分析】根据去括号和添括号法那么对四个选项逐一进行分析,要注意括号前面的符号,以选用适宜的法那么.【解答】解:A、a2﹣〔2a﹣b+c〕=a2﹣2a+b﹣c,故错误;B、a﹣3x+2y﹣1=a+〔﹣3x+2y﹣1〕,故正确;C、3x﹣[5x﹣〔2x﹣1〕]=3x﹣5x+2x﹣1,故错误;D、﹣2x﹣y﹣a+1=﹣〔2x+y〕+〔﹣a+1〕,故错误;只有B符合运算方法,正确.应选B.【点评】此题考查去括号和添括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+〞,去括号后,括号里的各项都不改变符号;括号前是“﹣〞,去括号后,括号里的各项都改变符号.添括号时,假设括号前是“+〞,添括号后,括号里的各项都不改变符号;假设括号前是“﹣〞,添括号后,括号里的各项都改变符号.4.〔3分〕原产n吨,增产30%之后的产量应为〔〕A.n70% 吨B.n130% 吨C.n+30% 吨D.n30% 吨【考点】列代数式.【分析】原产量n吨,增产30%之后的产量为n×〔1+30%〕,再进行化简即可.【解答】解:由题意得,增产30%之后的产量为n×〔1+30%〕=n130%吨.应选:B.【点评】此题考查了根据实际问题列代数式,列代数式要分清语言表达中关键词语的意义,理清它们之间的数量关系.5.〔3分〕代数式a=,4xy,,a,2021,a2b,﹣中,单项式的个数有〔〕A.3个 B.4个 C.5个 D.6个【考点】整式.【分析】直接利用单项式的定义得出即可.【解答】解:代数式a=,4xy,,a,2021,a2b,﹣中,单项式的个数有:4xy,a,2021,a2b,﹣一共有5个.应选:C.【点评】此题主要考查了单项式的定义,正确把握单项式的定义是解题关键.6.〔3分〕以下计算中正确的选项是〔〕A.6a﹣5a=1 B.5x﹣6x=11x C.m2﹣m=m D.﹣x3﹣6x3=﹣7x3【考点】合并同类项.【分析】根据合并同类项的法那么结合选项求解.【解答】解:A、6a﹣5a=a,原式计算错误,故本选项错误;B、5x﹣6x=x,原式计算错误,故本选项错误;C、m2和m不是同类项,不能合并,故本选项错误;D、﹣x3﹣6x3=﹣7x3,计算正确,故本选项正确.应选D.【点评】此题考查了合并同类项的知识,解答此题的关键是掌握合并同类项的法那么.7.〔3分〕两个3次多项式相加,结果一定是〔〕A.6次多项式B.3次多项式C.次数不高于3的多项式D.次数不高于3次的整式【考点】整式的加减.【专题】计算题.【分析】两个3次多项式相加,结果一定为次数不高于3次的整式.【解答】解:两个3次多项式相加,结果一定是次数不高于3的整式.应选D【点评】此题考查了整式的加减运算,是一道基此题型.8.〔3分〕计算:〔m+3m+5m+…+2021m〕﹣〔2m+4m+6m+…+2021m〕=〔〕A.﹣1007m B.﹣1006m C.﹣1005m D.﹣1004m【考点】整式的加减.【分析】先去括号,然后合并同类项求解.【解答】解:原式=m+3m+5m+...+2021m﹣2m﹣4m﹣6m﹣ (2021)=〔m﹣2m〕+〔3m﹣4m〕+〔5m﹣6m+〕…+〔2021m﹣2021m〕=﹣1007m.应选A.【点评】此题考查了整式的加减,解答此题的关键是掌握去括号法那么和合并同类项法那么.二、填空题〔每题3分,共30分〕9.〔3分〕计算:3a2b﹣2a2b=a2b.【考点】合并同类项.【分析】根据合并同类项的法那么求解.【解答】解:3a2b﹣2a2b=a2b.故答案为:a2b.【点评】此题考查了合并同类项的知识,解答此题的关键是掌握合并同类项的法那么.10.〔3分〕“x的平方与2x﹣1的和〞用代数式表示为x2+2x﹣1.【考点】列代数式.【分析】首先求x的平方,再加上2x﹣1求和即可.【解答】解:x平方为x2,与2x﹣1的和为x2+2x﹣1.故答案为:x2+2x﹣1.【点评】列代数式的关键是正确理解文字语言中的关键词,比方该题中的“平方〞、“倍〞、“差〞等,从而明确其中的运算关系,正确地列出代数式11.〔3分〕写出一个关于x的二次三项式,使得它的二次项系数为﹣5,那么这个二次三项式为﹣5x2+x+1〔答案不唯一〕.【考点】多项式.【专题】开放型.【分析】根据二次三项式的概念,所写多项式的次数是二次,项数是三项,此题答案不唯一.【解答】解:此题答案不唯一,符合﹣5x2+ax+b〔a≠0,b≠0〕形式的二次三项式都符合题意.例:﹣5x2+x+1.【点评】此题考查二次三项式的概念,解题的关键了解二次三项式的定义,并注意答案不唯一.12.〔3分〕三个连续数中,2n+1是中间的一个,这三个数的和为6n+3.【考点】整式的加减.【分析】先表示出其它两个数,然后相加即可.【解答】解:另外两个数为:2n,2n+2,那么三个数之和为:2n+2n+1+2n+2=6n+3.故答案为:6n+3.【点评】此题考查了整式的加减,解答此题的关键是掌握去括号法那么和合并同类项法那么.13.〔3分〕张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,那么张大伯卖报收入〔0.3b﹣0.2a〕元.【考点】列代数式.【专题】压轴题.【分析】注意利用:卖报收入=总收入﹣总本钱.【解答】+0.2〔a﹣b〕﹣0.4a=0.3b﹣0.2a.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.14.〔3分〕单项式3a m b与﹣a4b n﹣1是同类项,那么4m﹣n=14.【考点】同类项.【分析】根据同类项的概念求解.【解答】解:∵单项式3a m b与﹣a4b n﹣1是同类项,∴m=4,n﹣1=1,∴m=4,n=2,那么4m﹣n=4×4﹣2=14.故答案为:14.【点评】此题考查了同类项的知识,解答此题的关键是掌握同类项定义中的两个“相同〞:相同字母的指数相同.15.〔3分〕化简〔x+y〕+2〔x+y〕﹣4〔x+y〕=﹣x﹣y.【考点】合并同类项.【分析】把x+y当作一个整体,利用合并同类项的法那么:系数相加作为系数,字母和字母的指数不变,即可求解.【解答】解:原式=〔1+2﹣4〕〔x+y〕=﹣〔x+y〕=﹣x﹣y.故答案是:﹣x﹣y.【点评】此题主要考查合并同类项得法那么.即系数相加作为系数,字母和字母的指数不变.16.〔3分〕假设多项式2x2+3x+7的值为10,那么多项式6x2+9x﹣7的值为2.【考点】整式的加减—化简求值.【分析】由题意得2x2+3x=3,将6x2+9x﹣7变形为3〔2x2+3x〕﹣7可得出其值.【解答】解:由题意得:2x2+3x=36x2+9x﹣7=3〔2x2+3x〕﹣7=2.【点评】此题考查整式的加减,整体思想的运用是解决此题的关键.17.〔3分〕假设〔m+2〕2x3y n﹣2是关于x,y的六次单项式,那么m≠﹣2,n=5.【考点】单项式.【分析】根据题意可知m+2≠0,3+n﹣2=6,由此可得出结论.【解答】解:∵〔m+2〕2x3y n﹣2是关于x,y的六次单项式,∴m+2≠0,3+n﹣2=6,解得m≠﹣2,n=5.故答案为:﹣2,5.【点评】此题考查的是单项式的定义,熟知一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.18.〔3分〕观察以下板式:22﹣12=2+1=3;32﹣22=3+2=5;42﹣32=4+3=7;52﹣42=5+4=9;62﹣52=6+5=11;…假设字母n表示自然数,请把你观察到的规律用含n的式子表示出来:〔n+1〕2﹣n2=n+1+n=2n+1.【考点】规律型:数字的变化类.【分析】观察各式,发现:运用了平方差公式,其中由于两个数相差是1,差等于1,所以最后结果等于两个数的和.【解答】解:第n个式子:〔n+1〕2﹣n2=n+1+n=2n+1.故答案为:〔n+1〕2﹣n2=n+1+n=2n+1.【点评】此题考查数字的变化规律,熟练掌握平方差公式是解决问题的关键.三、解答题〔共46分〕19.〔21分〕计算:〔1〕2a﹣〔3b﹣a〕+b〔2〕5a﹣6〔a﹣〕〔3〕3〔x2﹣y2〕+〔y2﹣z2〕﹣2〔z2﹣y2〕【考点】整式的加减.【分析】〔1〕先去括号,然后合并同类项;〔2〕先去括号,然后合并同类项;〔3〕先去括号,然后合并同类项.【解答】解:〔1〕2a﹣〔3b﹣a〕+b=2a﹣3b+a+b=3a﹣2b;〔2〕5a﹣6〔a﹣〕=5a﹣6a+2〔a+1〕=a+2;〔3〕3〔x2﹣y2〕+〔y2﹣z2〕﹣2〔z2﹣y2〕=3x2﹣3y2+y2﹣z2﹣2z2+2y2=3x2﹣3z2.【点评】此题考查了整式的加减,解答此题的关键是掌握去括号法那么和合并同类项法那么.20.〔9分〕2x2﹣[x2﹣2〔x2﹣3x﹣1〕﹣3〔x2﹣1﹣2x〕]其中:.【考点】整式的加减—化简求值.【分析】此题应先对整式去括号,合并同类项,将整式化为最简,然后再把x的值代入解题即可.【解答】解:原式=2x2﹣〔x2﹣2x2+6x+2﹣3x2+3+6x〕=2x2﹣〔﹣4x2+12x+5〕=6x2﹣12x﹣5∵x=,代入原式可得:6×﹣12×﹣5=﹣.【点评】此题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.21.〔8分〕如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,假设圆形的半径为r米,广场长为a米,宽为b米.〔1〕请列式表示广场空地的面积;〔2〕假设休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积〔计算结果保存π〕.【考点】列代数式;代数式求值.【专题】几何图形问题.【分析】〔1〕观察可得空地的面积=长方形的面积﹣圆的面积,把相关数值代入即可;〔2〕把所给数值代入〔1〕得到的代数式求值即可.【解答】解:〔1〕空地的面积=ab﹣πr2;〔2〕当a=400,b=100,r=10时,空地的面积=400×100﹣π×102=40000﹣100π〔平方米〕.【点评】考查列代数式及代数式的相关计算;得到空地局部的面积的关系式是解决此题的关键.22.〔8分〕试说明:不管x取何值代数式〔x3+5x2+4x﹣3〕﹣〔﹣x2+2x3﹣3x﹣1〕+〔4﹣7x﹣6x2+x3〕的值是不会改变的.【考点】整式的加减.【分析】解答此题要先将代数式进行化简,化简后代数式中不含x,所以不管x 取何值,代数式的值是不会改变的.【解答】解:将代数式〔x3+5x2+4x﹣3〕﹣〔﹣x2+2x3﹣3x﹣1〕+〔4﹣7x﹣6x2+x3〕去括号化简可得原式=2,即此代数式中不含x ,∴不管x 取何值,代数式的值是不会改变的.【点评】此题关键是将代数式化简,比较简单,同学们要熟练掌握.第3章 分式一、选择题:〔每题3分,共30分〕 1、假设a ,b 为有理数,要使分式ba的值是非负数,那么a ,b 的取值是〔 〕 (A)a ≥0,b ≠0; (B)a ≥0,b>O ;(C)a ≤0,b<0; (D)a ≥0,b>0或a ≤0,b<0.2、以下各式:()xx x x y x x x 2225 ,1,2 ,34 ,151+---π其中分式共有〔 〕个。

七年级数学专题训练:整式的加减计算题100题(含答案)

七年级数学专题训练:整式的加减计算题100题(含答案)

题减整式的加计算1、已知A =4x 2-4xy +y 2,B =x 2-xy -5y 2,求3A -B2、已知A=x 2+xy +y 2,B=-3xy -x 2,求2A-3B.3、已知1232+-=a a A ,2352+-=a a B ,求BA 32-4、已知325A x x =-,2116B x x =-+,求:⑴A+2B;⑵、当1x =-时,求A+5B 的值。

5、)(4)()(3222222y z z y y x ---+-6、2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =27、-)32(3)32(2a b b a -+-8、21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.9、222213344a b ab ab a b ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭10、()()323712p p p p p +---+11、21x-3(2x-32y 2)+(-23x+y 2)12、5a-[6c-2a-(b-c)]-[9a-(7b+c)]13、2237(43)2x x x x ⎡⎤----⎣⎦14、-22225(3)2(7)a b ab a b ab ---15、2(-a 3+2a 2)-(4a 2-3a+1)16、(4a 2-3a+1)-3(1-a 3+2a 2).17、3(a 2-4a+3)-5(5a 2-a+2)18、3x 2-[5x-2(14x -32)+2x 2]19、7a +(a 2-2a )-5(a -2a 2)20、-3(2a +3b )-31(6a -12b )21、222226284526x y xy x y x xy y x x y+---+-22、3(2)(3)3ab a a b ab -+--+;23、22112()822a ab a ab ab ⎡⎤--+-⎢⎥⎣⎦;24、(a 3-2a 2+1)-2(3a 2-2a +21)25、x-2(1-2x+x 2)+3(-2+3x-x 2)26、)24()215(2222ab ba ab b a +-+-27、-4)142()346(22----+m m m m28、)5(3)8(2222xy y x y x xy ++--+-29、ba ab b a ab ab b a 222222]23)35(54[3--+--30、7xy+xy 3+4+6x-25xy 3-5xy-331、-2(3a 2-4)+(a 2-3a)-(2a 2-5a+5)32、-12a 2b-5ac-(-3a 2c-a 2b)+(3ac-4a 2c)33、2(-3x 2-xy)-3(-2x 2+3xy)-4[x 2-(2x 2-xy+y 2)]34、-2(4a-3b)+3(5b-3a)35、52a -[2a +(32a -2a)-2(52a -2a)]36、-5xy 2-4[3xy 2-(4xy 2-2x 2y)]+2x 2y-xy37、),23()2(342222c a ac b a c a ac b a +-+---38、(2)()xy y y yx ---+39、2237(43)2x x x x ⎡⎤----⎣⎦40、7-3x-4x 2+4x-8x 2-1541、2(2a 2-9b)-3(-4a 2+b)42、8x 2-[-3x-(2x 2-7x-5)+3]+4x43、)(2)(2b a b a a +-++;44、)32(2[)3(1yz x x xy +-+--]45、)32(3)23(4)(5b a b a b a -+--+;46、)377()5(322222a b ab b ab a a ---+--47、)45()54(3223--++-x x x x 48、)324(2)132(422+--+-x x x x49、)69()3(522x x x +--++-.50、)35()2143(3232a a a a a a ++--++-51、)(4)(2)(2n m n m n m -++-+52、]2)34(7[522x x x x ----53、(2)(3)x y y x ---54、()()()b a b a b a 4227523---+-55、()[]22222223ab b a ab b a ---56、2213[5(3)2]42a a a a ---++57、()()()xy y x xy y xy x -+---+-2222232258、-32ab +43a 2b +ab +(-43a 2b )-159、已知m+n =-3,mn=2,求116432n mn mn m ⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭的值;60、(2x 2-21+3x )-4(x -x 2+21);61、2x -(3x -2y +3)-(5y -2);62、已知()()()2222A=232B=231A 22x xy y x xy y B A B A -++-+--,,求;63、已知()()222222120522422a b a b a b ab a b ab ⎡⎤++-=-----⎣⎦,求;64、1-3(2ab +a )十[1-2(2a -3ab )].65、3x 2-[7x -(4x -3)-2x 2].66、已知323243253A a a a B a a a =--++=--,,当a =-2时,求A-2B 的值.67、已知xy=2,x+y=-3,求整式(4xy+10y)+[5x-(2xy+2y-3x)]的值.68、已知2222224132a ab b ab a b a ab b +=+=--++,,求及的值.69、221131222223233x y x y x y ⎛⎫⎛⎫--+-+=-= ⎪ ⎪⎝⎭⎝⎭,,70、()()232334821438361a a a a a a a -+---+-=-,其中71、已知()()()()23412043535712714m n m m n m n m n ++--=---+++-,求的值72、已知222232542A b a ab B ab b a =-+=--,,当a=1,b =-1,求3A-4B 的值.73、已知222A=23B=25C=1276x x x x x ----+,,,求A-(B-4C)的值.74、已知22A=23211x kx x B x kx +--=-+-,,且2A+4B 的值与x 无关,求k 的值.75、()()2221254322x x x x x x -----+=,其中.76、已知()()()222222120745223a a b a b a b ab a b ab -++=--+--,求的值.77、2222220A=3B=23A B C a b c a b c ++=+---+已知,且,,求C.78、()()22221532722a b ab a b ab a b ---==,且,79、(5x-3y-2xy)-(6x+5y-2xy),其中5-=x ,1-=y 80、若()0322=++-b a ,求3a 2b-[2ab 2-2(ab-1.5a 2b)+ab]+3ab 2的值;81、233(4333)(4),2;a a a a a a +----+=-其中82、22222222(22)[(33)(33)],1, 2.x y xy x y x y x y xy x y ---++-=-=其中83、()()()2222223224b ab a ab b a b ab a +-+-+----其中4.0,41=-=b a 84、3-2xy +2yx 2+6xy -4x 2y ,其中x =-1,y =-2.85、(-x 2+5+4x 3)+(-x 3+5x -4),其中x =-2;86、(3a 2b -ab 2)-(ab 2+3a 2b ),其中a =-3,b =-287、已知222244,5A x xy y B x xy y =-+=+-,其中1122x y ==-,,求3A -B88、已知A =x 2+xy +y 2,B =-3xy -x 2,其中,113x y =-=-,,求2A -3B .89、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.90、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;91、21x 2-2⎪⎭⎫ ⎝⎛+--⎪⎭⎫ ⎝⎛-222231322331y x y x ,其中x =-2,y =-3492、2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =293、()()233105223xy x y xy y x xy y x =-+=++-+-⎡⎤⎣⎦已知,,求的值94、已知()()22222322322A x xy y B x xy y A B B A =-+=+-+---⎡⎤⎣⎦,,求95、已知()222232232M a ab b N a ab b M N M M N =-+=+-----⎡⎤⎣⎦,,化简96、小美在计算某多项式减去2235a a +-的差时,误认为加上2235a a +-,得到答案是24a a +-,问正确答案是多少?97、已知2222113532A a b abB ab a b x y =-=+==-,,当,,求5A-3B 的值.98、已知2223226mx xy y x nxy y +--+-+的值与x 的取值无关,求22m n -的值99、已知231x x -=,求326752019x x x +-+的值100、()()11111111321014122m n n m m n x y y x x y m n +--++-⎛⎫+---- ⎪⎝⎭,其中为自然数,为大于的整数整式的加减计算100题答案1、2211118x xy y -+2、225112x xy y ++3、2954a a -+-4、()()3231322122553084x x x x x --+--+;,5、222325x y z +-6、322312ab ab -+,7、-13a+12b8、24369x y -+,9、22122a b ab -10、325797p p p +--11、273x y -+12、-2a+8b-6c13、2533x x --14、22729a b ab -+15、3231a a -+-16、323232a a a ---17、22271a a ---18、2932x x --19、211a 20、-8a-5b 21、2224382x xy x y y x ---+22、3a+b23、2592a ab -24、32524a a a --+25、25148x x -+-26、2232a b ab+27、2261213m m --+28、22272x xy y --29、2231532a b ab+30、332615y xy x +++31、2723a a -++32、22122a b ac a c --33、224154x xy y -+34、-17a+21b 35、2112a a -36、226xy x y xy ---37、22474a b ac a c--38、xy39、2533x x --40、2128x x -+-41、21621a b -42、2108x -43、a-b44、1-3x-3xy-6yz45、-a+4b 46、2266a ab b -+47、32341x x -+48、-8x-249、2534x x -++50、32941a a a --++51、4m+4n 52、2733x x --53、4x-3y 54、4a-b 55、22710a b ab -56、2912a a -+57、225x xy y -+58、113ab -59、2660、21622x x --61、-x-3y-162、2222424109x xy y x xy y ---+;63、221462a b ab -+;64、2-7a 65、2533x x --66、7967、-2068、5,269、24369x y -+;70、-5371、-1.7572、2221716a ab b --+;73、2473026x x -+74、2/575、-2.576、22710a b ab +-;77、222a c --78、221352a b ab -;79、-x-8y;1380、212ab ab +;81、327353a a a -++-;5582、222x y xy -+;83、22478150a ab b --;84、224315x y xy -++;--21---21-85、3235137x x x -++-;86、2224ab -;87、22111388x xy y -+;88、228511289x y y ++;89、A<B90、323668x x x +-+;91、2211226x y --;827-92、232223a b ab ab -+;4893、2294、224611x xy y +-95、2221614a ab b -+96、2356a a --+97、23-98、-899、2022100、118m n x y +--+。

初中数学专项练习《整式的加减》50道计算题包含答案(历年真题)

初中数学专项练习《整式的加减》50道计算题包含答案(历年真题)

初中数学专项练习《整式的加减》50道计算题包含答案一、解答题(共50题)1、已知、、满足:① ;② 与是同类项,求代数式的值.2、先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x、y满足|x﹣2|+(y+1)2=0.3、先化简,后求值:(其中x=﹣2,y=).4、实数a,b,c是数轴上三点A,B,C所对应的数,如图,化简:+|a-b|+ -|b-c|5、在平面直角坐标系xOy中,直线为一、三象限角平分线.点P关于y轴的对称点称为P的一次反射点,记作;关于直线的对称点称为点P的二次反射点,记作.若点A在轴左侧,点,分别是点A的一次、二次反射点,△ 是等腰直角三角形,请直接写出点A在平面直角坐标系xOy中的位置.6、先化简,再求值:其中,.7、已知有理数在数轴上的位置如图,化简:8、(1)先化简,再求值:3x2﹣(2x2﹣xy+y2)+(﹣x2+3xy+2y2),其中x=﹣2,y=3.(2)一个角比它的余角大20°,求这个角的补角度数.9、已知a、b、c在数轴上的位置如图所示,化简:|a﹣b|+|b+c|﹣|a﹣c|.10、已知多项式3x2﹣y3﹣5xy2﹣x3﹣1;(1)按x的降幂排列;(2)当x=﹣1,y=﹣2时,求该多项式的值.11、已知:A=2x2+xy﹣3,B=﹣x2+2xy﹣1,求2A﹣B.12、已知多项式3 +-8与多项式-+2 +7的差中,不含有、,求+的值.13、已知|x﹣2|+(y﹣1)2=0,求x2+(2xy﹣3y2)﹣2(x2+xy﹣2y2)的值.14、若单项式n y2n-1的次数是3,求当y=3时此单项式的值.15、有理数a,b,c在数轴上的位置如图所示,化简代数式.16、先化简,再求值:﹣5x2y﹣[2x2y﹣3(xy﹣2x2y)]+2xy,其中x=﹣1,y=﹣2.17、已知m、n是系数,且与的差中不含二次项,求的值.18、已知实数a,b,c在数轴上的位置如图,且,化简19、为了出行方便,现在很多家庭都购买了小汽车.又由于能源紧张和环境保护,石油的市场价格常常波动.为了在价格的波动中尽可能减少损失,常常有两种加油方案.方案一:每次加50元的油.方案二:每次加50升的油.请同学们以2次加油为例(第一次油价为a元/升,第二次油价为b元/升,a>0,b>0且a≠b),计算这两种方案中,哪种加油方案更实惠便宜(平均单价小的便宜)?20、已知多项式3x2+my﹣8与多项式﹣nx2+2y+7的和中,不含有x、y,求m n+mn 的值.21、观察下列单项式﹣2x,4x2,﹣8x3, 16x4,﹣32x5, 64x6,…(1)分别指出单项式的系数和指数是怎样变化的?(2)写出第10个单项式;(3)写出第n个单项式.22、已知﹣3x m y2与5x2y n﹣2是同类项,求m2﹣5mn的值.23、如果A=5x2+4x﹣1,B=﹣x2﹣3x﹣3,C=8﹣7x﹣6x2,小聪在计算A﹣B+C 的值后判断A﹣B+C的值与x无关,请你说明小聪的判断是否正确,并说明理由.24、去括号,并合并同类项:3(5m﹣6n)+2(3m﹣4n).25、先化简,再求值: (a2b−ab2)−(1−ab2−a2b) ,其中 a=−3, b=2 .26、如图,是两种长方形铝合金窗框,已知窗框的长都是y米,窗框宽是x 米,若一用户需A型的窗框2个,B型的窗框5个,则共需铝合金多少米?27、3a2﹣2a+4a2﹣7a.28、若展开后不含x2、x3项,求pq的值.29、若单项式n y2n-1的次数是3,求当y=3时此单项式的值.30、计算某个整式减去多项式时,一个同学误认为是加上此多项式,结果得到的答案是.请你求出原题的正确答案.31、已知﹣5.2x m+1y3与﹣100x4y n+1是同类项,求:m n+n m32、先化简,再求值.3(x2﹣2xy)﹣[3x2+2(﹣2xy+y2+3)﹣4y2],其中,.33、有三个有理数x、y、z,其中x=(n为正整数)且x与y互为相反数,y与z互为倒数.(1)当n为奇数时,求出x、y、z这三个数,并计算xy﹣y n﹣(y﹣2z)2015的值.(2)当n为偶数时,你能求出x、y、z这三个数吗?为什么?34、如图,A、B、C,依次为直线l上三点,M为AB的中点,N为BC的中点,且AM=3cm,BC=10cm,求MN的长。

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析1.已知x-y=4,x-3y=1,则x2-4xy+3y2的值为.【答案】4.【解析】把x2-4xy+3y2分解为(x-y)(x-3y),然后把x-y=4,x-3y=1代入求值即可.试题解析:原式=(x-y)(x-3y)把x-y=4,x-3y=1代入上式得:原式=4×1=4.【考点】1.因式分解.2.求代数式的值.2.因式分解:(1)x3-4x; (2)(3a-b)(x-y)+(a+3b)(y-x).【答案】(1) x(x+2)(x-2);(2) 2(x-y)(a-2b).【解析】(1)先提出公因式x,剩下的因式用平方差公式分解即可;(2)两次提取公因式即可得解.试题解析:(1)原式=x(x2-4)=x(x+2)(x-2);(2)原式=(3a-b)(x-y)-(a+3b)(x-y)=(x-y)(2a-4b)=2(x-y)(a-2b).【考点】1.因式分解——提公因式法;2.因式分解——公式法.3.先化简,再求值:若,求代数式的值.【答案】156.【解析】依据绝对值和有理数的偶次方的性质,可得;把原式化简代入即可. ∵,又∵,∴,∴,原式=,=,=,=,当时,原式= ,=-4×9×(-2)+7×3×4,=72+84,=156.【考点】1.整式的加减;2.绝对值;3.有理数的乘方.4.(1)5x-(3x-2y)-3(x+y),其中x=-2,y=1.(2)先化简,再求值:a(a-1)-(a2-b)= -5 求:代数式-ab的值.【答案】(1)3;(2).【解析】(1)先去括号、合并同类项得出-x-y,再把x=-2,y=1代入求出即可.(2)先去括号、合并同类项求出a-b=5;再化简,代入即可求值.试题解析:(1)原式=5x-3x+2y-3x-3y=-x-y,当x=-2,y=1时,原式=-(-2)-(-1)=3.(2)原等式变形得:a2-a-a2+b=-5∴a-b=5将a-b=5代入上式得:原式=.【考点】整式的加减—化简求值.5.(-8x2-16y)- (3x2-9y) ,其中x=,y=【答案】-1.【解析】原式去括号合并得到最简结果,将x、y的值代入计算即可求出值.试题解析: (-8x2-16y)- (3x2-9y)=-2x2-4y-x2+3y=-3x2-y当x=,y=时,-3x2-y=-3×()2-=-1考点: 整式的加减—化简求值.6.已知代数式的值为,求代数式的值.【答案】-6【解析】解:.因为3,故上式.7.在排成每行七天的日历表中取下一个方块(如图).若所有日期数之和为189,则的值为()A.21B.11C.15D.9【答案】A【解析】日历的排列是有一定规律的,在日历表中取下一个3×3方块,当中间的数是的话,它上面的数是,下面的数是,左边的数是,右边的数是,左边最上面的数是,最下面的数是,右边最上面的数是,最下面的数是.若所有日期数之和为189,则,即,解得:,故选A.8.观察烟花燃放图形,找规律:依此规律,第9个图形中共有_________个★.【答案】20【解析】根据图形易知,当图形n=1时,个数=2×(n+1)。

部编数学七年级上册专题02整式的加减(解析版)含答案

部编数学七年级上册专题02整式的加减(解析版)含答案

专题02 整式的加减一、单选题1.下列代数式属于二次三项式的是( )A .2231x y x ++B .21x y x ++C .2x y xy ++D .22xy yx +-2.下列运算错误的是( )A .﹣5x 2+3x 2=﹣2x 2B .5x +(3x ﹣1)=8x ﹣1C .3x 2﹣3(y 2+1)=﹣3D .x ﹣y ﹣(x +y )=﹣2y 【答案】C【分析】根据整式的加减计算法则,进行逐一求解判断即可.【解析】解:A 、222532x x x -+=-,故此选项不符合题意;B 、5(31)53181x x x x x +-=+-=-,故此选项不符合题意;C 、222233(1)333x y x y -+=--,故此选项符合题意;D 、()2x y x y x y x y y --+=---=-,故此选项不符合题意;故选C .【点睛】本题主要考查了整式的加减运算,解题的关键在于能够熟练掌握相关计算法则.3.下列说法中正确的有( )个.①27xy -的系数是7;②2xy -与3x 没有系数;③23ab c 的次数是5;④3m -的系数是1-;⑤2323m n -的次数是232++;⑥213r h p 的系数是13.A .0B .1C .2D .34.下列各组中的两个单项式不是同类项的是( )A .32a b 与3ba-B .-3与0C .3212m n 与232m n -D .26m a 与29ma -5.已知23x y +=,则多项式241x y +-的值是( )A .7B .2C .1-D .5【答案】D【分析】根据已知23x y +=可得()22246x y x y +=+=,代入计算后即可求得结果.【解析】解:∵23x y +=,∴()2224236x y x y +=+=´=,∴241615x y +-=-=.故选:D .【点睛】此题考查了代数式求值,利用了整体代入的思想,能准确判断代数式之间的关系是解题的关键.6.黑板上有一道题,是一个多项式减去2351x x -+,某同学由于大意,将减号抄成加号,得出结果是2537x x +-,这道题的正确结果是( ).A .2826x x --B .214125x x --C .2288x x +-D .2139x x -+-【答案】D【分析】先利用加法的意义列式求解原来的多项式,再列式计算减法即可得到答案.【解析】解:()22537351x x x x +---+22=537351x x x x +--+-2288x x =+-所以的计算过程是:()22288351x x x x +---+22288351x x x x =+---+2139x x =-+-故选:.D 【点睛】本题考查的是加法的意义,整式的加减运算,熟悉利用加法的意义列式,合并同类项的法则是解题的关键.7.如果一个多项式是三次多项式,那么( )A .这个多项式至少有两项,并且最高次项的次数是3B .这个多项式一定是三次四项式C .这个多项式最多有四项D .这个多项式只能有一项次数是3【答案】A【分析】根据多项式次数和多项式的概念,逐一判断选项即可.【解析】解:如果一个多项式是三次多项式,那么这个多项式至少有两项,并且最高次项的次数是3,如果一个多项式是三次多项式,这个多项式不一定是三次四项式,如果一个多项式是三次多项式,这个多项式不一定有四项,如果一个多项式是三次多项式,这个多项式不一定只有一项次数是3,故选A .【点睛】本题主要考查多项式相关概念,掌握多项式次数和项数的定义是解题的关键.8.已知多项式2222A x y z =+-,222432B x y z =-++且0A B C ++=,则C 为( )A .2225x y z --B .22235x y z --C .22233x y z --D .22235x y z +-【答案】B【分析】由题意得222222=()3)24(2C x y z z A y B x +--+-+=---,进行计算即可得.【解析】解:由于多项式2222A x y z =+-,222432B x y z =-++且0A B C ++=,则222222=()3)24(2C x y z z A y B x +--+-+=---=2222222432x y z x y z ++----=22235x y z --,故选:B .【点睛】本题考查了整式的加减,解题的关键是掌握整式加减的步骤.9.若3223323M x x y xy y =-++,322325N x x y xy y =-+-,则322327514x x y xy y -++的值为( ).A .M N+B .M N -C .3M N -D .3N M -【答案】C【分析】分别计算:M N +,M N -,3M N -,3N M -化简后可得答案.【解析】解:32232532M N x x y xy y +=-+-,故A 不符合题意;2238M N x y xy y -=-++,故B 不符合题意;322332233396925M N x x y xy y x x y xy y -=-++-+-+3223=27514x x y xy y -++,故C 符合题意;322332233=36315323N M x x y xy y x x y xy y --+--+--3223=2318x x y xy y -+-,故D 不符合题意;故选:.C 【点睛】本题考查的是整式的加减运算,掌握合并同类项的法则与去括号的法则是解题的关键.10.在学校温暖课程数字兴趣课中,嘉淇同学将一个边长为a 的正方形纸片(如图1)剪去两个相同的小长方形,得到一个的图案(如图2),剪下的两个小长方形刚好拼成一个“T”字形(如图3),则“T”字形的外围周长(不包括虚线部分)可表示为( )A .35a b-B .58a b -C .57a b -D .46a b-二、填空题11.在下列各式①235a bc ,②0,③3x y -,④3p ,⑤2s r p =,⑥75x -+,⑦24b ac -,⑧m ,⑨11a +中,其中单项式是_______,多项式是_______,整式是_______.(填序号)【点睛】本题主要考查单项式、多项式、整式的定义,熟练掌握上述定义是解题的关键.12.多项式3251x x -+-是______次______项式,其中三次项是______,二次项系数是______,一次项系数是______,常数项是______.【答案】 三##3 三##3 32x - 0 5 1-【分析】根据多项式的次数、项、系数的定义写出即可.【解析】多项式3251x x -+-是三次三项式,其中三次项是32x -,二次项系数是0,一次项系数是5,常数项是1-.故答案为:三;三;32x -;0;5;1-.【点睛】本题考查了多项式的项数,系数,此时,掌握多项式的定义是解题的关键.多项式的每一项都有次数,其中次数最高的项的次数,就是这个多项式的次数,一个多项式的项数就是合并同类项后用“+”或“-”号之间的多项式个数,次数就是次数和最高的那一项的次数; 一个多项式中,次数最高的项的次数,叫做这个多项式的次数;多项式的项数就是多项式中包含的单项式的个数.13.添括号:(1)22916a b -+=-();(2)23()b a a b -+-=-()23()a b +-.【答案】 22916a b - -a b【分析】(1)(2)利用添括号法则计算得出答案.【解析】解:(1)()2222916916a b a b -+=--,(2)()223()3()b a a b a b a b -+-=--+-,故答案为:(1)22916a b -;(2)-a b .【点睛】此题主要考查了添括号,正确把握运算法则是解题关键.14.若单项式2+7m n a b -与单项式443a b -的和仍是一个单项式,则m -n =_______.【答案】9【分析】直接利用合并同类项法则得出m ,n 的值,进而得出答案.【解析】由题意知:单项式2+7m n a b -与单项式443a b -是同类项,∴m -2=4,n +7=4,解得:m =6,n =-3,故m -n =6-(-3)=9.故答案为:9.【点睛】此题主要考查了合并同类项,正确得出m ,n 的值是解题关键.15.某超市搞促销活动,对一种软皮本的销售方式是买一赠一,即买一本软皮本赠送一支铅笔,这种软皮本每本定价2元,铅笔每支定价0.3元,若小明的爸爸买回软皮本x 本,铅笔y 支,则需要付______________元钱【答案】2x 或1.70.3x y+【分析】根据题意列式计算即可得.【解析】解:当x y ³时:2x (元);当x <y 时:[]20.3()(1.70.3)x y x x y +-=+(元),故答案为:2x 或1.70.3x y +.【点睛】本题考查了代数式,解题的关键是找出题意中的关系列出代数式.16.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如 ()2222153x x x x --+=-+-,则所捂住的多项式是_____.【答案】232+-x x 【分析】根据加减法互为逆运算移项,然后去括号、合并同类项即可.【解析】解: 捂住的多项式是:()2253221x x x x -+-+-+=2253221x x x x -+-+-+=232+-x x 故答案为: 232+-x x .【点睛】此题考查的是整式的加减法,掌握去括号法则和合并同类项法则是解决此题的关键.17.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.【答案】3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【解析】解:()221325x k xy y xy +----=()22335x k xy y +---,∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则.18.已知22251,34A x ax y B x x by =+-+=+--,且对于任意有理数,x y ,代数式2A B - 的值不变,则12()(2)33a Ab B ---的值是_______.三、解答题19.下列代数式中哪些是单项式?哪些是多项式?分别填入所属的圈中.指出其中各单项式的系数;多项式中哪个次数最高?次数是多少?222223315,,23,44,,2x a b x y a b ab b a x y xp ---+-+-20.已知多项式212336m x y xy x ++--是六次四项式,单项式256n m x y -的次数与这个多项式的次数相同,求m n +的值.【答案】5m n +=.【分析】根据多项式的次数和项数以及单项式的次数的定义求得,m n 的值,进而求得m n +的值.【解析】因为多项式212336m x y xy x ++--是六次四项式,所以216m ++=, 解得3m =.因为单项式256n m x y -的次数与这个多项式的次数相同,所以256n m +-=,所以2134n =+=,解得2n =.故325m n +=+=.【点睛】本题考查了多项式的次数和项数,掌握多项式的次数和项数是解题的关键.21.计算:(1)3323235912322ab a b a b ab a b a b -+----(2)()2246312x x x x éù----ëû(2)原式=()2246312x x x x --+-=2246312x x x x -+-+=2631x x --.【点睛】本题主要考查整式的加减运算,掌握去括号,再合并同类项是解题的关键.22.已知 A −B =7a 2−7ab +1,且B =−4a 2+6ab +5,(1)求A ;(2)若2|1|(2)0a b ++-=,求A B +的值.【答案】(1)3a 2−ab +6;(2)A +B =0.【分析】(1)根据A =A -B +B ,代入计算即可;(2)根据非负数的性质得到a 和b ,求出A +B ,代入计算即可.【解析】解:(1)∵A −B =7a 2−7ab +1,B =−4a 2+6ab +5,∴A =A -B +B=7a 2−7ab +1+(−4a 2+6ab +5)=7a 2−7ab +1−4a 2+6ab +5=3a 2−ab +6;(2)∵|a +1|+(b −2)2=0,∴a +1=0,b -2=0,∴a =-1,b =2,∴A +B=3a 2−ab +6−4a 2+6ab +5=−a 2+5ab +11=−(−1)2+5×(−1)×2+11=0.【点睛】本题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.23.小刚在计算一个多项式A 减去多项式22b -3b-5的差时,因一时疏忽忘了对两个多项式用括号括起来,因此减式后面两项没有变号,结果得到的差是2b 3b-2+.(1)求这个多项式A ;(2)求出这两个多项式运算的正确结果;(3)当b =﹣2时,求(2)中结果的值.【答案】(1)3b 2+6b +3;(2)b 2+9b +8;(3)-6.【分析】(1)依题意得A =(b 2+3b ﹣2)+(2b 2+3b +5)即可计算;(2)利用整式的加减运算即可求解;(3)把b =﹣2代入即可求解.【解析】(1)A =(b 2+3b ﹣2)+(2b 2+3b +5),=b 2+3b ﹣2+2b 2+3b +5,=3b 2+6b +3;(2)(3b 2+6b +3)﹣(2b 2﹣3b ﹣5)=3b 2+6b +3﹣2b 2+3b +5,=b 2+9b +8;(3)当b =﹣2时,原式=(﹣2)2+9×(﹣2)+8=4-18+8=-6.【点睛】此题主要考查整式的加减运算,解题的关键是熟知整式的加减运算法则.24.(1)已知2223,1A x x B x x =-=-+,求当1x =-时代数式3A B -的值.(2)已知,a b 为常数,且三个单项式234,,3b xy axy xy -相加得到的和仍然是单项式.那么a b +的值可能是多少?请你说明理由.【答案】(1)-4;(2)-3或-1【分析】(1)先把A 、B 代入得出(2x 2-3x )-3(x 2-x +1),去括号、合并同类项后得出-x 2-3,把x =-1代入求出即可.(2)根据已知得出4xy 2,axy 3-b ,3xy 是同类项,根据同类项定义得出a =-4,3-b =2或a =-3,3-b =1,代入求出即可.【解析】解:(1)∵A =2x 2-3x ,B =x 2-x +1,∴A -3B=(2x 2-3x )-3(x 2-x +1)=2x 2-3x -3x 2+3x -3=-x 2-3,当x =-1时,原式=-(-1)2-3=-4.(2)∵4xy 2,axy 3-b ,3xy 的和仍是一个单项式,∴a =-4,3-b =2,解得:b =1,则a +b =-4+1=-3;或a =-3,3-b =1,解得:b =2,则a +b =-3+2=-1.故a +b 的值可能是-3或-1.【点睛】本题考查了整式的加减,求代数式的值等知识点,解此题的关键是正确化简,题目具有一定的代表性,是一道比较好的题目.25.已知关于x 、y 的多项式mx2+4xy ﹣x ﹣3x2+2nxy ﹣4y 合并后不含有二次项,求n ﹣m 的值.【答案】-5【解析】试题分析:由于多项式mx 2+4xy ﹣x ﹣2x 2+2nxy ﹣4y 合并后不含有二次项,即二次项系数为0,在合并同类项时,可以得到二次项为0,由此得到故m 、n 的方程,即m ﹣3=0,4+2n=0,解方程即可求出m ,n ,然后把m 、n 的值代入n ﹣m ,即可求出代数式的值.试题解析:解:mx2+4xy ﹣x ﹣3x2+2nxy ﹣4y=(m ﹣3)x2+(4+2n )xy ﹣x ﹣4y ,∵合并后不含二次项,∴m ﹣3=0,4+2n=0,∴m=3,n=﹣2,∴n ﹣m=﹣2﹣3=﹣526.(1)先化简,再求值: 22225(3)4(3)a b ab ab a b ---+,其中2,3a b =-=.(2)已知226,2a b ab +==-,求代数式2222(43)(752)a ab b a ab b +---+的值.【答案】(1)3a 2b -ab 2,54;(2)-34【分析】(1)原式去括号合并得到最简结果,把a 与b 的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把已知等式代入计算即可求出值.【解析】解:(1)原式=15a 2b -5ab 2+4ab 2-12a 2b=3a 2b -ab 2,当a =-2,b =3时,原式=()()2232323´-´--´=54;(2)原式=4a 2+3ab -b 2-7a 2+5ab -2b 2=-3(a 2+b 2)+8ab ,当a 2+b 2=6,ab =-2时,原式=-18-16=-34.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.27.(1)某同学做一道数学题:“两个多项式A 、B ,其中2231B x x =--,试求2A B +”,这位同学把“2A B +”看成“2A B -”,结果求出答案是2571x x -++,那么2A B +的正确答案是多少?(2)已知781a b c +=+=-,求代数式222()()()b a c b c a -+-+-的值.【答案】(1)2353x x --;(2)146【分析】(1)先根据条件求出多项式A ,然后将A 和B 代入A +2B 中即可求出答案.(2)对所给的等式变形,分别求出b -a ,c -b ,c -a 的值,再整体代入所求代数式中,求值即可.【解析】解:(1)由题意可得:A =()225712231x x x x -+++--=22571462x x x x -+++--=21x x -+-∴A +2B =()2212231x x x x -+-+--=221462x x x x -+-+--=2353x x --;(2)∵781a b c +=+=-,∴b -a =-1,c -b =9,c -a =8,∴原式=(-1)2+92+82,=1+81+64,=146.【点睛】本题考查的是整式的加减,代数式求值,利用整体代入求代数式的值比较关键.28.定义:若a b ab +=,则称a 、b 是“白马湖数”例如:3 1.5315+=´.,因此3和1.5是一组“白马湖数”(1)1-与_____是一组“白马湖数”;(2)若m 、n 是一组“白马湖数”,112323622mn m n m mn éùæö-+-+-ç÷êúèø的值.29.小方家住房户型呈长方形,平面图如下(单位:米),现准备铺设地面,三间卧室铺设木地板,其它区域铺设地砖.(1)a的值为_______.(2)铺设地面需要木地板和地砖各多少平方米(用含x的代数式表示)?(3)已知卧室2的面积为21平方米,按市场价格,木地板单价为400元/平方米,地砖单价为10元/平方米,求铺设地面总费用.【答案】(1)3;(2)木地板(75-7x)平方米;地砖(7x+53)平方米;(3)25070元【分析】(1)根据长方形的对边相等可得a+5=4+4,即可求出a的值;(2)根据三间卧室铺设木地板,其它区域铺设地砖,可知将三间卧室的面积的和为木地板的面积,用长方形的面积-三间卧室的面积,所得的差为地砖的面积;(3)先根据卧室2的面积为21平方米求出x,再求出所需的费用即可.【解析】解:(1)根据题意得a+5=4+4,解得a=3;(2)铺设地面需要木地板:4×2x+a[10+6-(2x-1)-x-2x]+6×4=8x+3(17-5x)+24=(75-7x)平方米;铺设地面需要地砖:16×8-(75-7x)=128-75+7x=(7x+53)平方米;(3)∵卧室2的面积为21平方米,∴3[10+6-(2x-1)-x-2x]=21,∴3(17-5x)=21,∴x=2,∴铺设地面需要木地板:75-7x=75-7×2=61,铺设地面需要地砖:7x+53=7×2+53=67.铺设地面的总费用:61×400+67×10=25070(元).故铺设地面的总费用为25070元.【点睛】本题考查了列代数式,长方形的面积,分别求出铺设地面需要木地板与地砖的面积是解题的关键.30.如图,某校的“图书码”共有7位数字,它是由6位数字代码和校验码构成,其结构分别代表“种类代码、出版社代码、书序代码和校验码”.其中校验码是用来校验图书码中前6位数字代码的正确性.它的编制是按照特定的算法得来的.以上图为例,其算法为:a=++=;步骤1:计算前6位数字中偶数位数字的和a,即91313b=++=;步骤2:计算前6位数字中奇数位数字的和b,即6028c=´+=;步骤3:计算3a与b的和c,即313847d=;步骤4:取大于或等于c且为10的整数倍的最小数d,即50X=-=.步骤5:计算d与c的差就是校验码X,即50473请解答下列问题:(1)《数学故事》的图书码为978753Y,则“步骤3”中的c的值为______,校验码Y的值为______.(2)如图①,某图书码中的一位数字被墨水污染了,设这位数字为m,你能用只含有m的代数式表示上述步骤中的d吗?从而求出m的值吗?写出你的思考过程.(3)如图②,某图书码中被墨水污染的两个数字的差是4,这两个数字从左到右分别是多少?请直接写出结果.【答案】(1)73,7;(2)3,过程见解析;(3)4、0或9、5或2、6【分析】(1)根据特定的算法代入计算计算即可求解;(2)根据特定的算法依次求出a,b,c,d,再根据d为10的整数倍即可求解;(3)根据校验码为8结合两个数字的差是4即可求解.【解析】(1)∵《数学故事》的图书码为978753Y,∴a=7+7+3=17,b=9+8+5=22,则“步骤3”中的c的值为3×17+22=73,校验码Y的值为80-73=7.故答案为:73,7;(2)依题意有:a=m+1+2=m+3,b=6+0+0=6,c=3a+b=3(m+3)+6=3m+15,d=c+X=3m+15+6=3m+21,∵d为10的整数倍,∴3m的个位数字只能是9,∴m的值为3;(3)可设这两个数字从左到右分别是p,q,依题意有:a=p+9+2=p+11,b=6+1+q=q+7,c=3(p+11)+(q+7)=3p+q+40,∵校验码是8,则3p+q的个位是2,∵|p-q|=4,∴p=4,q=0或p=9,q=5或p=2,q=6.故这两个数字从左到右分别是4,0或9,5或2,6.【点睛】本题考查了列代数式以及整式的加减,正确理解题意,学会探究规律、利用规律是解题的关键.。

部编数学七年级上册专题06整式的加减(解析版)含答案

部编数学七年级上册专题06整式的加减(解析版)含答案

2022-2023学年人教版数学七年级上册压轴题专题精选汇编专题06 整式的加减考试时间:120分钟 试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2022七上·城固期末)下列说法中,正确的是( )A .多项式 2223a a b ++ 是二次三项式B .单项式 2x y p - 的系数是 1-C .单项式 24m n 和 2nm - 是同类项D .3ab b + 是单项式【答案】C【完整解答】解:A 、多项式 2223a a b ++ 是三次三项式,故原说法错误;B 、单项式 2x y p - 的系数是 p - ,故原说法错误;C 、单项式 24m n 和 2nm - 是同类项,故原说法正确;D 、 3ab b + 是多项式,故原说法错误;故答案为:C.【思路引导】根据多项式的项与次数的概念可判断A ;单项式的系数:单项式中的数字因数叫做这个单项式的系数,据此判断B ;根据同类项是字母相同且相同字母的指数也相同的项可判断C ;根据数字与字母的乘积为单项式,单独的一个数或字母也是单项式,据此判断D.2.(2分)(2022七上·汇川期末)某商店在甲批发市场以每包a 元的价格进了50包茶叶,又在乙批发市场以每包b 元(a >b )的价格进了同样的70包茶叶,如果以每包2a b + 元价格全部卖出这种茶叶,那么这家商店( )A .盈利了B .亏损了C .不盈不亏D .盈亏不能确定【答案】A【完整解答】解:∵a >b ,∴(50+70)× 2a b + -(50a+70b )=60a+60b-50a-70b=10a-10b=10(a-b )>0,∴这家商店盈利了,故答案为:A.【思路引导】根据题意计算出售价与成本的差值,然后由a >b ,即可得解.3.(2分)(2021七上·洪山期末)已知数a ,b ,c 在数轴上的位置如图所示,化简|a + b| - |a - b| + |a + c|的结果为( )A .-a -cB .-a -b -cC .-a -2b -cD .a -2b +c【答案】C 【完整解答】解:通过数轴得到a <0,c >0,b >0,|a|>|c|>|b|,∴a+b <0,a -b <0,a +c <0∴|a +b| - |a -b| + |a +c|=-a-b +a -b ﹣a-c =-a -2b -c.故答案为:C.【思路引导】根据数轴可得:a<0<b<c 且|a|>|c|>|b|,然后判断出a+b 、a-b 、a+c 的正负,接下来根据绝对值的性质以及合并同类项法则进行化简.4.(2分)(2021七上·巢湖期末)把如图1的两张大小相同的长方形卡片放置在图2与图3中的两个相同大长方形中,已知这两个大长方形的长比宽长20cm ,若记图2中阴影部分的周长为C 1,图3中阴影部分的周长为C 2,那么C 1-C 2=( )A .10cmB .20cmC .30cmD .40cm【答案】D 【完整解答】解:设图2与图3中的大长方形的宽为acm ,则长为()20a +cm ,图1中的长方形长为xcm ,宽为ycm ,由图2可知:()1202440C a a a =++⨯=+;由图3可知:20x y a +=+,()()()222022C a a x a y =++-+-,()24042a a x y =++-+,6402(20)a a =+-+,4a =,则12440440C C a a -=+-=(cm ),故答案为:D .【思路引导】根据题意和图形,设图2与图3中的大长方形的宽为acm ,则长为()20a +cm ,图1中的长方形长为xcm ,宽为ycm ,再表示出阴影部分的周长()1202440C a a a =++⨯=+;图3可知:20x y a +=+,()()()222022C a a x a y =++-+-,再作差即可。

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析1.某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有个水龙头,个抽水马桶漏水。

如果一个关不紧的水龙头一个月漏掉a立方米水,一个抽水马桶一个月漏掉b立方米水,那么一个月造成的水流失量至少是( )立方米.A.6a+2b B.C.D.【答案】C.【解析】因为全市至少有个水龙头,一个关不紧的水龙头一个月漏掉a立方米水,所以全市水龙头一个月造成的水流失量至少是:立方米,全市至少有个抽水马桶漏水,个抽水马桶一个月漏掉b立方米水,所以全市马桶一个月造成的水流失量至少是:立方米,所以一个月造成的水流失量至少是:立方米,所以C正确.【考点】整式的加减.2.先化简,后求值:已知,求代数式的值.【答案】【解析】解:由得,,解得,.将代数式化简得.将,代入得原式.3.在排成每行七天的日历表中取下一个方块(如图).若所有日期数之和为189,则的值为()A.21B.11C.15D.9【答案】A【解析】日历的排列是有一定规律的,在日历表中取下一个3×3方块,当中间的数是的话,它上面的数是,下面的数是,左边的数是,右边的数是,左边最上面的数是,最下面的数是,右边最上面的数是,最下面的数是.若所有日期数之和为189,则,即,解得:,故选A.4.化简关于的代数式.当为何值时,代数式的值是常数?【答案】【解析】解:将去括号,得,合并同类项,得.若代数式的值是常数,则,解得.故当时,代数式的值是常数.5.已知实数,满足,则等于()A.3B.-3C.D.-1【答案】A【解析】根据根号下为非负数及任何数的平方为非负数可判断:x-2=0,y+1=0.x=2,y=-1。

所以x-y=3.选A【考点】整式运算点评:本题难度较低,主要考查学生对实数与整式运算知识点的掌握。

为中考常考题型,要求学生牢固掌握。

6.将n张长度为10厘米的纸条,一张接一张地粘成长纸条,粘合部分的长度都是3厘米,则这张粘合后的长纸条总长是______________厘米.(用含n的代数式表示)【答案】7n+3【解析】由题意可知10n-3(n-0)=7n-3.根据题意显然粘和部分共有(n-1)个,所以10n-3(n-1)=7n+3【考点】代数式的求法点评:本题属于利用代数式的基本形式进行找规律推导分析进而利用基本知识运算7.下列各式计算正确的是 ( )A.B.C.D.【答案】D【解析】A ;B.已经为最简式。

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析

初一数学整式的加减试题答案及解析1.为求1+2+22+23+…+22008的值,可令S=1+2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1.仿照以上推理计算出1+3+32+33+…+32014的值是()A.32015-1B.32014-1C.D.【答案】C.【解析】设S=1+3+32+33+ (32014)则有3S=3+32+33+ (32015)∴3S﹣S=32015﹣1,解得:S=(32015﹣1),则1+3+32+33+…+32014=.故选C.【考点】整式的混合运算.2.一个两位数,把它十位上的数字与个位数字对调,得到一个新的两位数.试说明原来的两位数与新两位数的差一定能被9整除.【答案】见解析【解析】解:设原来的两位数是,则调换位置后的新数是.∴.∴这个数一定能被9整除.3.先化简,再求值:,其中a是方程的一个根。

【答案】,1【解析】因为a是方程根据求根公式可得x=则代入【考点】整式运算及求根公式。

点评:本题难度中等,主要考查学生对整式化简求值运算的掌握。

需要涉及平方差公式和完全平方公式等等。

4.如图,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m.(1)按图示规律,第一图案的长度= ;第二个图案的长度= ;(2)请用代数式表示带有花纹的地面砖块数n与走廊的长度(m)之间的关系;(2)当走廊的长度L为30.3m时,请计算出所需带有花纹图案的瓷砖的块数。

【答案】(1) 0.9 ,1.5 (2) (3)50【解析】=0.3×3=0.9m,=0.3×5=1.5m(2)根据图像可知:n=1时,=0.3×3=0.9m,n=2时,=0.3×5=1.5m,…当n=n时,(3)30.3=0.3(2n+1),解得n=50【考点】探索规律点评:本题难度较高,需要学生通过图像分析总结出规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档