第八章齿 轮 系
第八章齿轮机构案例
§8-1 齿轮传动的特点和基本类型
一、齿轮传动的特点
优点:1)传动效率高 2)传动比恒定 3)结构紧凑 4)工作可 靠、寿命长 缺点:1)制造、安装精度要求较高 2)不适于中心距a较大两轴 间传动 3)使用维护费用较高 )精度低时、噪音、振动较大 二、齿轮传动的主要类型 平面齿轮机构: ①外啮合;②内啮合; 直齿圆柱齿轮机构(直齿轮)—— ③齿轮齿条 平行轴斜齿轮机构(斜齿轮):①外;②内;③齿轮齿条 空间齿轮机构: 圆锥齿轮机构—— ①直齿;②斜齿;③曲线齿 交错轴斜齿轮机构 蜗杆机构:两轴垂直交错
二、标准齿轮的基本参数 1、模数m
d zp
d p
分度圆就是齿轮上 具有标准模数和标 准压力角的圆。
p
z
定义模数 m
或
p m
∴d=mz 单位:mm ; 2、分度圆压力角α
rK rb cos K
m标准化。
分度圆和节圆区别 与联系
rb r cos
mz cos (α 是决定渐开线齿廓形状的一个基本参数) 2
O P r r i12 1 2 2 b 2 常数 2 O1 P r1 rb1
Ⅰ
1 r'1
O1
rb1 g' 2
' N1 P g2 g' 1 rb2 r'2 K g1 ' t
t II N2
' 2 O2
§8-4 渐开线标准齿轮的各部分名称和几何尺寸
一、齿轮各部分名称和基本参数
GB1356-88规定标准值α=20° 某些场合:α =14.5°、15°、22.5°、25°。
3、齿数z
d mz 表明:齿轮的大小和渐开线齿轮 mz rb cos 2 形状都与齿数有关
第八章 齿轮传动(1,2概论,啮合几何学)
α A A rA F α A D
A
θ A
O
这就是渐开线上任意一点的极坐 标方程。见图8-3。 说明: (1)invα=tgα-α=θ称为渐开线函数, θ 叫展开角,α为渐开线压力角.
证明:
2 O 2 K 2
1 O 1 K 1 .......... .......... .(1)
因两齿廓接触,则在齿廓法线方向无相对运动,只 在切线方向有相对滑动。 因此1、 2在 NN方向的投影相等:
v1 v2
n n
v 1 cos k 1 v 2 cos k 2 .......... .........( 2 )
r1
'
a 1 i12 ai 12 1 i12
' '
,
r2
'
a r1 r2 r1
cos cos
'
r2
cos cos
'
( r1 r2 )
cos cos
'
B.齿条
1.齿条同侧齿廓是相互平行的直线 2.与齿条移动方向平行且齿厚等于齿间的直线为模数线 3.模数线的垂直线与直线齿廓的夹角为齿条齿形角 特点:(1)与模数线平行的任一直线上模数相等 (2)齿廓上各点的压力角相等,且在数值上等于齿形角
1 2
O2P O1 P
r2 r1
' '
两齿廓公法线与连心线的交点P点称为节点;它 的特点是在这点上两齿轮上有相同的速度(大小,方 向),即
1
8-齿轮传动-2
• 一对渐开线直齿圆柱齿轮啮合时,齿廓曲面的接触线是与
轴平行的直线。
• 啮合情况是沿着整个齿宽突然同时进入啮合和退出啮合,
• 传动平稳性差,冲击和噪声大。
2020/5/3
第八章 齿轮传动
24
① 渐开线直齿圆柱齿轮齿面的形成
k
渐开线形成2
k0
N' k'
k'0
当发生面沿基圆柱作纯滚动时, 若平行于齿轮的轴线的直线kk’在空间 的轨迹为直齿圆柱齿轮的齿面。
2020/5/3
第八章 齿轮传动
28
二、斜齿圆柱齿轮的基本参数和几何尺寸的计算
(一) 基本参数
1. 螺旋角:
• 斜齿圆柱齿轮的各圆柱面上的螺旋角 不同
• 通常指分度圆上的螺旋角,用β表示
2. 齿距和模数
① 斜齿圆柱齿轮有法面和端面之分
• 法面:与分度圆柱螺旋线垂直的平面, 参数mn、n、han*、cn* ,法面参数 为标准值。
▪ 第八节 斜齿圆柱齿轮传动 ▪ 第九节 齿轮传动的失效形式和材料 ▪ 第十节 圆柱齿轮传动的强度计算 ▪ 第十一节 圆锥齿轮传动 ▪ 第十二节 蜗杆传动 ▪ 第十三节 轮系 ▪ 第十四章 齿轮传动精度 ▪ 第十五章 齿轮传动的空间 ▪ 第十六章 齿轮传动链的设计
2020/5/3
第八章 齿轮传动
3
第七节 变位齿轮
2020/5/3
第八章 齿轮传动
5
二、变位齿轮及其特点
2. 与标准齿轮相比,变位齿轮的特点
① 两者截取的渐开线区段不同。各区段渐开线的曲率半径 不同,可利用变位的方法改善齿轮传动质量。
② 标准齿轮分度圆齿厚s=齿槽宽e;正变位齿轮s>e,负变 位齿轮s<e。
齿_轮_系_教科书
所谓变速和换向,是指主动轴转速不变时,利用
轮系使从
动轴获得多种工作速度,并能方便地在传动过程中改
变速度的
方向,以适应工件条件的变化。
所谓分路传动,是指主动轴转速一定时,利用轮
系将主动
轴的一种转速同时传到几根从动轴上,获得所需的各
种转速。
(1) 变速
(2) 换向:在主动轴转向不变的情况下,利用惰轮可以改变从动轮的转向。
机械的设计基础(8-10)
第八章 齿 轮 系
§8—1 齿轮系的分类 在复杂的现代机械中,为了满足各种不同的需要,常常采用一系列齿轮组成的传动 系统。这种由一系列相互啮合的齿轮(蜗杆、蜗轮)组成的传动系统即齿轮系。本章主 要讨论齿轮系的常见类型、不同类型齿轮系传动比的计算方法。 齿轮系可以分为两种基本类型:定轴齿轮系和行星齿轮系。 一、定轴齿轮系 在传动时所有齿轮的回转轴线固定不变齿轮系,称为定轴齿轮系。定轴齿轮系是最基 本的齿轮系,应用很广。如下图所示。
(1)定轴轮系 3’-4-5
(2)行星轮系 1-2-2’-3-H
ω 3' = − z5
ω5
z3'
包含行
系部分。 分的传
间的运 间的传
轮
系
扬机机构中
Z4=40, 速
少。
由定轴轮系可得: 由行星轮系可得:补充方 ω3' = ω3
ωH = ω5 程
ω1 − ωH = − z2z3
ω3 −ωH
z1z2'
其余联立方程求解即可。
解:根据定轴齿轮系传动比公式,并考虑 1 到 5 间有 3 对外啮合,故
末
i=
n1 n5
= (−1)3
Z2 Z3Z5 Z1Z 2 / Z3/
机械原理+阶段练习四及答案(8-10-11)word版本
华东理工大学网络教育学院机械原理课程阶段练习四(第8章—第10章—第11章)第八章 齿轮系及其设计一、填空题1、周转轮系根据自由度不同可分为 差动轮系 和 行星轮系 ,其自由度分别为 2 和 1 。
2、组成周转轮系的基本构件有: 太阳轮 ; 行星轮 , 系杆 。
3、K i 1与H K i 1不同,K i 1是 构件1和K 的传动比 ;HK i 1是 构件1和K 相对系杆H 的传动比 。
二、简答题1、什么是复合轮系?写出计算复合轮系传动比的步骤。
复合轮系:由定轴轮系和周转轮系或者由两个以上的周转轮系组成的轮系。
步骤:(1)划清组成复合轮系中的定轴轮系和周转轮系;(2)分别采用定轴轮系和周转轮系传动比的计算公式列出计算方程式; (3)根据这些轮系的组合方式联立解出所求的传动比。
2、在图示轮系中,根据齿轮1的转动方向,在图上标出蜗轮4的转动方向,并指出蜗轮4的旋向。
答:蜗轮4为顺时针转动,蜗轮4的旋向为左旋。
3 在图示的手摇提升装置中,已知各轮齿数为:z 1=20,z 2=50,z 3=15,z 4=30,z 6=40,z 7=18,z 8=51,蜗杆z 5=1,且为右旋,试求传动比i 18;并指出提升重物时手柄的转向。
答:所示轮系为定轴轮系;各轮转向为:8-逆时针、7-顺时针、4-箭头向左、3-箭头向上、2-箭头向上、1-箭头向上;传动比:67.56618=i4 在图示的蜗杆传动中,试分别在左右两图上标出蜗杆1的旋向和转向。
答:左图为右旋蜗杆;右图蜗杆逆时针转动。
三 计算题1 在图示的轮系中,已知z 1=20,z 2=30,z 3=18,z 6=48,齿轮1的转速n 1=150 r/min ,试求系杆 H 的转速n H 的大小和方向。
1.667.534124114-=⨯-=--=Z Z Z Z i H H Hωωωω因为:04=ω所以:667.511+=Hωω m in/5.22r H =ω2、在图中,已知:Z 1=20 ,Z 2=30 ,Z 2’=25,Z 3=75,Z 4=30,Z5=25,。
齿轮传动机械设计
选择齿宽系数d
确定主要参数: 中心距a——圆整 模数m——取标准值 反求齿数z1、z2
根据材料硬度确定设计准则 (按?设计;按?校核)
计算小、大齿轮的各许用应力 [σH1]、 [σH2]、 [σF1] 、[σF2]
计算主要尺寸:d1=mz1 (满足设计条件)d2=mz2 …
机械设计 (8)
第八章 齿轮传动
概述 齿轮传动的失效形式和设计准则 标准直齿圆柱齿轮的强度计算 齿轮的材料和许用应力 斜齿圆柱齿轮传动 圆锥齿轮传动
齿轮的结构设计
§8.1 概 述
一、齿轮传动的主要特点:
传动效率高 可达99%。在常用的机械传动中,齿轮传动的效率最高;
结构紧凑 与带传动、链传动相比,在同样的使用条件下,齿轮传动所需
Fn
αF
F2 hF
弯曲力矩: M K Fn cosF hF
30˚ 30˚
危险截面的弯曲截面系数:W
bS
2 F
6
SF rb
弯曲应力:
F
M W
6KFnhF cos F
bS
2 F
O
∵ Fn
Ft
cos
F
6KFt hF cos F
bS
2 F
cos
§8.3 标准直齿圆柱齿轮强度计算
弯曲应力: F
6KFt hF cos F
径向力:Fr
Ft
tan
2T1 d1
tan
d1——小齿轮节圆直径
径向力方向:指向各自轮心
法向力:Fn
Ft
cos
2T1
d1 cos
§8.3 标准直齿圆柱齿轮强度计算
二、轮齿的计算载荷
第八章 齿轮传动
m n
0 . 318 d z 1 tan
8-10 齿轮的结构设计 (1)齿轮轴 如果圆柱齿轮齿根圆到键槽底面的径向距离 e2.5m(mn),则可将齿轮与轴做成一体称为齿轮轴.
(2)实心式齿轮
当da 200mm,且e>2.5m(mn),则可做成实心 式
(3) 腹板式齿轮
当da 500mm时,为了减少 质量和节约材料,通常采用 腹板式结构
B
机械性能 屈服极限σ s ( M Pa) 硬 度 HB、 HRC 调质 调质、表 面淬火
580 640
290 350
H B 162~217 H B 217~255 H R C 40~50( 齿 面)
低中速、中载的 非重要齿轮 低中速、中载的 重要齿轮 高速、中载而冲 击较小的齿轮 低中速、中载的 重要齿轮 高速、中载、无 剧烈冲击的齿轮 低中速、中载的 重要齿轮 高速、中载、无 剧烈冲击的齿轮
一、使用系数KA 使用系数KA是考虑由于齿轮啮合外部因素 引起附加动载荷影响的系数。
影响KA的主要因素:原动机和工作机的工作特 性。
二、动载系数K
动载系数K是考虑由于齿轮制造精度、 运转速度等轮齿内部因素引起的附加动载荷 影响系数。
影响K的主要因素:基节和齿形误差产生的 传动误差、节线速度和轮齿啮合刚度等。
2 ( u 1) cos b d 1 u sin t
接触线长度L
KF t Z u 1
2
L
br cos b
F
M W
F n cos F h F bS 6
2 F
Ft bm
6( (
hF m
) cos F ) cos
2014考研西安交通大学《802机械设计基础》习题解析 (4)
8-4 何谓重合度
,它的物理意义是什么?
BB 解:1.重合度是指实际啮合线长度与基圆齿距的比值。 1 2 pb 2. 物理意义:表示同时参与啮合的轮齿对数的多少。
4
8-5 渐开线直齿圆柱齿轮的正确啮合条件和连续传动条件是 什么?一对齿轮如果模数m和压力角 能正确啮合? 解:1. 一对渐开线齿轮的正确啮合条件是——两轮的模数 和压力角应分别相等。 为保证齿轮能连续传动,必须使得前一对轮齿尚未脱 离啮合时,后一对轮齿进入啮合,即重合度大于等于1。 2.是。
15
2. 图(a)所示为直齿圆锥—斜齿圆柱齿轮两级减速器。
在图(b)中 (1)分别标出这三个齿轮受力的作用点和三
个分力(圆周力Ft、径向力Fr、轴向力Fa)的方向。 (若某力作用线垂直纸面,则说明垂直纸面箭头朝里或朝外)。 (2)用文字说明斜齿圆柱齿轮是左旋齿轮还是右旋齿轮。
(a)
(b)
16
8
8-11 设计齿轮传动时为何引入载荷系数K?它由哪几部分组成?
解:为了使齿轮的承载能力计算尽量接近实际情况,引入了载 荷系数K。
它由使用系数KA,动载系数KV,齿向载荷分布系数 K ,
齿间载荷分配系数 K 。
8-12 齿面点蚀为何都发生在齿根表面靠近节线处?
解:在两齿轮作啮合传动时,齿面间的接触应力是按脉动循环变 化的,在节线附近靠近齿根的部位是接触应力变化最频繁的,如 果齿面硬度不够时,就会在这一区间发生疲劳点蚀。
不相等是否就一定不Fra bibliotek58-6 一对斜齿轮在啮合传动时,齿廓接触线的长度是如何变
化的?
解:齿廓接触线是逐渐增大,知道整个轮齿全部进入啮合,脱
离啮合时接触线长度也是逐渐变短的。
《机械设计基础》第8章 齿轮系
48 24 4 48 18 3
250 H 4 100 H 3
H 2
2
1
2‘ H
3
3H
3
1
H 1
H 50
周转轮系传动比计算方法小结:
定轴齿轮系
平面定轴齿轮系 空间定轴齿轮系
二.行星齿轮系
1. 定义
在齿轮系运转时,若至少有一个齿轮的几何轴线 绕另一齿轮固定几何轴线转动,则该齿轮系称为行星 齿轮系(如图8-3)。它主要由行星齿轮、行星架(系 杆)、和中心轮所组成。
2. 基本构件
行星齿轮系中由于一般都以中心轮和行星架作 为运动的输入或输出构件,故称它们为行星齿轮系 的基本构件
上角标 H
周转轮系
-w
H
正负号问题
转化机构:假想的定轴轮系
i1H n 1 n H i1n
计算转化机构的传动比 计算周转轮系传动比
1H z 2 z n i H z1 z n1 n
H 1n
i1 n 1
n
例题8-2 :
一差动齿轮系如图 所示,已知个轮齿数为: z1 16, z 2 24, z3 64, 当轮1和轮3的转速为:
式中:G为主动轮,K为从动轮,中间各轮的主 从地位也应按此假定判定。m为齿轮G至K间外啮合 的次数。
求行星齿轮系传动比时,必须注意以下几点:
(1) nG , K ,nH 必须是轴线平行或重合的相应齿轮的 n 转速。 (2)将nG,nK,nH 的已知值代入公式时必须带正 号或负号。
H (3) i GK i GK。 i GK为转化机构中轮G与K的转速之 比,其大小与正负号应按定轴齿轮系传动比的计算 方法确定。
齿轮系及其设计第8章
2)行星轮系:自由度为1的周转轮系。在这种轮系中只 需要一个原动件,就可确定其它各构件的运动。
F 3n 2PL PH 3 3 2 3 2 1
复合轮系:由定轴轮系和周转轮系的组合或几套周转轮系 的组合,称为复合轮系(或称为混合轮系)。
行星轮系
二、周转轮系的组成
中心轮 :几何轴线固定不动 的齿轮, 或称为太阳轮,如齿 轮1、3 。
行星轮:若齿轮一方面绕自 己的几何轴线O2转动(自 转),另一方面又随杆H绕 几何轴线O转动(公转), 其运动犹如天上的行星。如 齿轮2
行星架:支持行星轮作自转和公转的构件,或称为系杆,如构件H 。
结论:一个周转轮系必须具有一个行星架H,一个或几个行星轮,以 及与行星轮相啮合的中心轮K。 工程上,行星架常以H表示,中心轮常以K表示,因而上图所 示的周转轮系可表示为: “2K-H” 或“1-2(H)-3 ” 的形式。
1)平面轮系 :在轮系中,所有齿轮轴线全部平行。
2) 空间轮系 :在轮系中,至少有一个齿轮轴线不平行。
2.根据各齿轮轴线是否全部固定,轮系可分为:
1)定轴轮系:在轮系中,所有齿轮轴线全部固定。
2)周转轮系:在轮系中,至少有一个齿轮轴线不固定。
定轴轮系.exe
周转轮系.exe
在周转轮系中,根据其自由度的不同,它又可分成 两类: 1)差动轮系:自由度为2的周转轮系。在这种轮系中 应有两个原动件,才能确定其它各构件的运动。
第8 章
齿轮系及其设计
§8-1 齿轮系及其分类 §8-2 定轴轮系的传动比
§8-3 周转轮系的传动比 §8-4 复合轮系的传动比
§8-5பைடு நூலகம்轮系的功用
机械设计-齿轮传动
径向力 Fr 的方向指向各自的轮心(外齿轮)。
1. 直齿圆柱齿轮
(8-1)
§8-4 圆柱齿轮传动的受力分析和载荷计算
用集中作用于分度圆上齿宽中点处的法向力 代替轮齿所受的分布力,将 分解,得:
啮合传动中,轮齿的受力分析
2. 斜齿圆柱齿轮
切向力:
径向力:
轴向力:
(8-2)
斜齿轮受力
轴向力Fx的方向:用“主动轮左右手法则”判断。
圆柱齿轮传动的受力分析和载荷计算
1 主动
2
1 主动
2
1 主动
2
二级受力分析
练 习
K 为载荷系数
上述Fn 为轮齿所受的名义法向力。实际传动中由于原动机、工作机性能的影响以及制造误差的影响,载荷会有所增大。
轴交角为90º的直齿锥齿轮传动:
§8-8 直齿锥齿轮传动
一、主要参数和尺寸
直齿锥齿轮的大端参数为标准值。
直齿锥齿轮传动的几何参数
令 R = b/R--齿宽系数,设计中常取R =0.25~0.35。
齿数比:
锥距:
C
t
二、轮齿的受力分析
用集中作用于齿宽中点处的法向力 Fn 代替轮齿所受的分布力。 将Fn分解为:切向力Ft,径向力Fr和轴向力Fx。
第八章 齿轮传动
§8-1 概述
§8-2 齿轮传动的失效形式及设计准则
§8-3 齿轮的常用材料
§8-4 圆柱齿轮传动的受力分析和计算载荷
§8-5 直齿圆柱齿轮传动的强度计算
§8-6 齿轮的许用应力
§8-8 直齿锥齿轮传动
§8-10 齿轮的结构
§8-9 齿轮传动的润滑与效率
§8-7 斜齿圆柱齿轮传动的强度计算
机械原理+阶段练习四及答案(8-10-11)
华东理工大学网络教育学院机械原理课程阶段练习四(第8章—第10章—第11章)第八章 齿轮系及其设计一、填空题1、周转轮系根据自由度不同可分为 差动轮系 和 行星轮系 ,其自由度分别为 2 和 1 。
2、组成周转轮系的基本构件有: 太阳轮 ; 行星轮 , 系杆 。
3、K i 1与H K i 1不同,K i 1是 构件1和K 的传动比 ;HK i 1是 构件1和K 相对系杆H 的传动比 。
二、简答题1、什么是复合轮系?写出计算复合轮系传动比的步骤。
复合轮系:由定轴轮系和周转轮系或者由两个以上的周转轮系组成的轮系。
步骤:(1)划清组成复合轮系中的定轴轮系和周转轮系;(2)分别采用定轴轮系和周转轮系传动比的计算公式列出计算方程式; (3)根据这些轮系的组合方式联立解出所求的传动比。
2、在图示轮系中,根据齿轮1的转动方向,在图上标出蜗轮4的转动方向,并指出蜗轮4的旋向。
答:蜗轮4为顺时针转动,蜗轮4的旋向为左旋。
3 在图示的手摇提升装置中,已知各轮齿数为:z 1=20,z 2=50,z 3=15,z 4=30,z 6=40,z 7=18,z 8=51,蜗杆z 5=1,且为右旋,试求传动比i 18;并指出提升重物时手柄的转向。
答:所示轮系为定轴轮系;各轮转向为:8-逆时针、7-顺时针、4-箭头向左、3-箭头向上、2-箭头向上、1-箭头向上;传动比:67.56618=i4 在图示的蜗杆传动中,试分别在左右两图上标出蜗杆1的旋向和转向。
答:左图为右旋蜗杆;右图蜗杆逆时针转动。
三 计算题1 在图示的轮系中,已知z 1=20,z 2=30,z 3=18,z 6=48,齿轮1的转速n 1=150 r/min ,试求系杆 H 的转速n H 的大小和方向。
1.667.534124114-=⨯-=--=Z Z Z Z i H H Hωωωω因为:04=ω所以:667.511+=Hωω m in/5.22r H =ω2、在图中,已知:Z 1=20 ,Z 2=30 ,Z 2’=25,Z 3=75,Z 4=30,Z5=25,。
机械设计基础-第8章-轮系
构件
太阳轮1 行星轮2 太阳轮3 行星架H
行星齿轮系中的 转化齿轮系中的
转速
转速
n1
n1H n1 nH
n2
n2H n2 nH
n3
n3H n3 nH
nH
nHH nH nH 0
转化机构中1、3两轮的传动比可以根据定轴齿轮系传动的计算方法得出
i1H3
n1H n3H
n1 nH n3 nH
[解]
该齿轮系为一平面定轴齿轮系,齿轮 2和4为惰轮,齿轮系中有两对外啮合齿 轮,根据公式可得
i 15
n1 n5
(1)2
z3z5 z1 z3'
因齿轮1、2、3的模数相等,故它们之间
的中心距关系为
m 2
( z1
z2
)
m 2
(z3
z2
)
因此: z1 z2 z3 z2
同理:
z3 z1 2z2 20 2 20 60 z5 z3' 2z4 20 2 20 60
在机床、计算机构和补偿装置等得到广泛应用。
滚齿机中的差动齿轮系(下图)
如图所示为滚齿机中的差动
齿轮系。滚切斜齿轮时,由齿轮4
传递来的运动传给中心轮1,转速
为n1;由蜗轮5传递来的运动传给 H,使其转速为nH。这两个运动 经齿轮系合成后变成齿轮3的转速
n3输出。
因 Z1 Z3
则
i1H3
n1 nH n3 nH
i 12
z 1 2
2
z1
z 3' i 3'4
4;3
'
2 3
3
Z
' 2
i 45
z 4 5
5
第八章 齿轮系分解
i1K
n1 轮1至轮K间所有从动轮齿数的乘积 n K 轮1至轮K间所有主动轮齿数的乘积
§8-2 定轴齿轮系传动比的计算
– 如右图所示轮
系由 7 个齿轮组
成,形成 4 对齿 轮啮合。已知
各轮齿数,传
动比i15 为:
n1 n1 n2 n3' n4' z 2 z 3 z 4 z 5 i15 i12i23i3'4 i4'5 n5 n 2 n3 n 4 n5 z1 z 2 z 3' z 4'
i1K
n1 至轮K间所有从动轮齿数的乘积 m 轮1 ( 1 ) nK 轮1至轮K间所有主动轮齿数的乘积
如上图所示轮系中由齿轮1至齿轮4间的传动比可表示为
i14 n1 z z z z z z (1) 2 2 3 4 2 3 4 n4 z1 z 2 z 3' z1 z 2 z 3'
须满足的基本条件之一,称为同心条件。
§8-3 行星齿轮系传动比的计算
二、周转轮系的传动比 – 求解周转轮系传动比,常用的方法是 转化
轮系法。
– 假定给整个周转轮系加上一个公共转速-nH (图b),轮系中各构件之间的相对运动关系 保持不变,行星架的转速变成为 nH-nH= 0 ,因而行星轮的轴线就转化为“固定轴 线”。这样,周转轮系就转化为假想的“ 定轴轮系”(图c),称为转化轮系。
§8-2 定轴齿轮系传动比的计算
当首轮与末轮的轴线平行时,可以在传动比数值前冠以正、 负号,表示转向与首轮转向相同或相反。
对由圆柱齿轮组成的平面定轴轮系部分,由于内啮合时齿轮
的转动方向相同,而每经过一次外啮合齿轮转向改变一次, 若有m次外齿合,其转向就改变几次,因此可用(-1)m来确定 传动比前的“+”、“-”号。
第八章轮系
推广:设轮1为起始主动轮,轮K为最末从动轮,则平面定 轴轮系的传动比的一般公式为 :
n1 轮 1至 轮 k间 所有 从动轮 齿数的 连 乘积 i1k nk 轮 1至 轮 k间 所有 主 动轮 齿数的 连 乘积
定轴轮系传动比的计算
1.平面定轴轮系传动比的计算 从动轮转向的确定 传动比正负号规定:两轮转向相 同(内啮合) 时传动比取正号,两轮转 向相反(外啮合)时传动比取负号,轮 系中从动轮与主动轮的转向关系,可 根据其传动比的正负号确定。外啮合 次数为偶数(奇数)时轮系的传动比 为正(负),进而可确定从动件的转 向。图中外啮合次数为3次,所以传 动比为负,说明轮5与轮1转向相反。 平面定轴轮系从动轮的转向,也可以采用画箭头的方 法确定。箭头方向表示齿轮(或构件)最前点的线速度方 向。作题方法如图所示。 惰轮:不影响传动比大小,只起改变从动轮转向作用的齿轮。
齿轮系的类型
周转轮系的组成
如图所示,黄色齿轮既自转又公转 称为行星轮;绿色和白色齿轮和齿轮的 几何轴线的位置固定不动称为太阳轮, 它们分别与行星轮相啮合;支持行星轮 作自转和公转的构件称为行星架或系杆。 行星轮、太阳轮、行星架以及机架组成 周转轮系。一个基本周转轮系中,行星 轮可有多个,太阳轮的数量不多于两个, 行星架只能有一个。
H 1k
+
注意:
1.公式只适用于平面周转轮系。正、负号可按画箭头的方法来 确定,也可根据外啮合次数还确定(-1)m。对于空间周转轮 系,当两太阳轮和行星架的轴线互相平行时,仍可用转化轮系 法来建立转速关系式,但正、负号应按画箭头的方法来确定。 2.公式中的“+”、“-”号表示输入和输出轮的转向相同或相反。 3.对于差动轮系,必须给定n 1 、 n k 、n H中任意两个(F=2, 两个原动件),运动就可以确定。对于简单周转轮系,有一太 阳轮固定(n k=0),在n 1 、n H只需要给定一个(F=1,需பைடு நூலகம்一 个原动件),运动就可以确定。
齿轮传动
2
一、齿轮传动的使用要求
长周期误差:影响齿轮传动准确性 短周期误差:影响齿轮传动平稳性
2019/8/15
第八章 齿轮传动
3
一、齿轮传动的使用要求
3. 载荷分布的均匀性
• 要求齿轮啮合时齿面沿齿高 和齿宽方向都接触良好。
• 齿面接触精度差会引起载荷 集中,使齿面局部失效,影 响齿轮的使用寿命。
一对齿轮的侧隙最大值 jt 2 Esi1 Esi2
3. 基圆偏心、齿形误差
jt 3
(Ft1''
Ft
'' 2
)
tan
Ft'', 径向综合误差
2019/8/15
第八章 齿轮传动
22
二、空回误差的估算
(二)齿轮与轴的配合间隙
jt4 2(e1 e2 ) tan
e1,e2,两齿轮偏心量
轮精度的工作,可以提高检验效率,使之经济合理。
③ 齿轮和齿轮副的检验
根据工作要求和生产规模,对每个齿轮须在三个公差组中各选一个检 验组进行检定和验收
同时另选一个检验组来检定齿轮副的精度及侧隙的大小。表8-24
2019/8/15
第八章 齿轮传动
12
二、齿轮及其传动的误差来源和精度要求
3. 侧隙
由于侧隙引起的从动轮滞后角(空回误差角)
' 12
2
jt
d2
d
,从动轮分度圆直径。
2
两级传动链输出轴空回误差角
' 13
'2'3
' 12
i2'3
第八章 齿轮传动
rk
)
θk αk
rb
O
N
θk =invαk =tgαk-αk
5、渐开线齿廓满足啮合基本定律 如图: ① 基圆-----rb1, rb2 ②K-----齿廓交点(啮合点) ③N1N2---- 过 k 的 两 齿 廓 的 公 法
N2
ω1
O1
N1 K C2 C1
rb1
K’
P
ω2 P O2
要使两齿轮作定传动比 传动,则两轮的齿廓无 论在任何位置接触,过 接触点所作公法线必须 与两轮的连心线交于一 个定点。
§8-1 概述
三.缺点: 要求较高的制造和安装精度,加工成本高、不 适宜远距离传动(如单车)。
分类:
齿 轮 传 动 的 类 型
直齿 圆柱齿轮 斜齿 齿轮齿条 平面齿轮传动 人字齿 (轴线平行) 非圆柱齿轮 直齿 按相对 圆锥齿轮 斜齿 运动分 两轴相交 曲线齿 球齿轮 空间齿轮传动 蜗轮蜗杆传动 (轴线不平行) 两轴交错 交错轴斜齿轮 渐开线齿轮(1765年) 准双曲面齿轮
αk Fn
③离中心越远,渐开线上的压力角越大。 vk
k
压力角αk :啮合时K点正压力Fn与速度vk 所夹锐角为渐开线上该点之压力角αk。 ∆KOB中 cosαk = rb/rk
④渐开线形状取决于基圆半径, 当rb→∞,渐开线变成直线。(齿轮变成 什么?)
⑤ 基圆内无渐开线。 K
A
rk
θk αk
O
B
rb1
ra1
P N2 B1
B2 N 1
B1B2 -实际啮合线 N1N2 :因基圆内无渐开线 理论上可能的最长啮合线段-理论啮合线段 N1、N 2 -啮合极限点
N
si
s Sb
第八章 轮系
例1:图示定轴轮系,z1=15,z2=25,z2′=z4=14, z3=24,z4′=20,z5=24, z6=40,z7=2, z8=60;若n1=800 r/min, 求传动比 i18、蜗轮8转速和转向。
i nn zz zz zz zz zz zz 18
2、实现分路传动
主动轴I通过锥齿轮1轮 齿轮2将运动传给滚刀;同 时主动轴又通过直齿轮3轮 经齿轮4、5、6、7、8传至 蜗轮9,带动被加工的轮坯 转动,以满足滚刀与轮坯的 传动比要求。
3、实现变速传动
第一档 齿轮5、6相啮合; 第二档 齿轮3、4相啮合; 第三挡 离合器A、B相嵌合; 倒退挡 齿轮6、8相啮合;此时由于
设n1转向为正
n in H
1 6000 1840 1H 3.26
r/min
由
n n H i n n 12
1 2
H H
z2 z1
6000 1840
n2 1840
17 27
n24767 r/min
负号表示n2和n1转向相反。
四、轮系的功用
1、实现较远距离运动传递
如图示,用四个小 齿轮代替一对大齿轮实 现啮合传动,既节省空 间、材料,又可方便制 造、安装。
解:
三、周转轮系及其传动比
行星轮运动既有自转又有公转,不能直接利用
定轴轮系传动比的计算方法来求其传动比。
思路:
2
把动轴齿轮 定轴齿
轮 套用定轴轮系传
动比公式
1HБайду номын сангаас
nH
2
nH H
3
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H n2 n2 nH Z1 H i21 H n1 n1 nH Z 2
i2 H
Z1 Z1 Z 2 1 Z2 Z2 1 i2 H Z2 Z1 Z 2 iHV Z 2
iHV iH 2
两齿数差越大,传动比越大,通常Z1 Z 2 1 4 当Z1 Z 2 1时
(2).空间轮系 : 如果轮系中各齿轮的轴线不完全平行,称为空间轮系 (有圆锥齿轮传动或蜗杆传动)
2、行星轮系 轮系中,至少有一个齿轮的几何轴线不固定,而绕其它齿轮的固定 几何轴线回转,称为周转轮系
运动演示 拆装
行星轮2:既做自转又做公转 中心轮1、3:轴线位置固定 1:太阳轮 3:内齿圈 行星架(系杆)H:支持行星轮 (其轴线必须与太阳轮轴线重合)
n1 1450r / min
nH n1 1450 46.77r / min i1H 31
(三) 3 3 H 5
§8—4 齿轮系的功用
1、传递相距较远的两轴之间的运动和动力;
2、获得大的传动比:一对外啮合圆柱齿轮传动,其传动比一般 可为i<=5-7。但是行星轮系传动比可达i=1000,而且结构紧凑。
(4) 将各基本轮系传动比方程式联立求解,即可求得混 合轮系的传动比。
关键是找出行星轮系,剩下的就是定轴轮系。
例:已知各轮齿数, 求传动比i1H
3' 2 输入 1 3 2' 4 H 1' 输出
1、分析轮系的组成
1,2,2',3——定轴轮系 1',4,3',H——周转轮系 2、分别写出各轮系的传动比
§8—3 行星齿轮系传动比计算 一.单级行星齿轮系传动比的计算
不能直接用定轴轮系传动比的公式计算行星轮系的传动比。可 应用转化轮系法,即根据相对运动原理,假想对整个行星轮系 加上一个与nH大小相等而方向相反的公共转速-nH,则行星架被 固定,而原构件之间的相对运动关系保持不变。这样,原来的 行星轮系就变成了假想的定轴轮系。这个经过一定条件转化得 到的假想定轴轮系,称为原行星轮系的转化轮系。
H iGK H nG nG n H 齿轮G和K之间所有从动轮齿数的乘积 H () nK nH 齿轮G和K之间所有主动轮齿数的乘积 nK
注意: 1.公式只适用于G,K,H平行的场合。
2.转化轮系传动比的计算遵循定轴轮系的计算准则。
2.代入已知转速时,必须带入符号, 求得的转速与哪个已知量的 符号相同就与谁的转向相同。 H 3. iGK 不是周转轮系的传动比.
n4 i45 n5
所以
z5 n5 z4
r L z5 n1 n5 r z4
r L z5 n3 n5 r z4
当给定发动机的转速或转速n5和轮距L 时,左右两后轮的转速随转弯半径r的 大小不同而自动改变,即利用该差速器 在汽车转弯时可将原动机的转速分解为 两后车轮的两个不同的转速,以保证汽 车转弯时,两后轮与地面均作纯滚动
例图示的输送带行星轮系中,已知各齿轮的齿数分别为 Z1=12,Z2=33,Z'2=30,Z3=78,Z4=75。电动机的转速n1=1450r/min。试 求输出轴转速n4的大小与方向。
举例:图示为一大传动比的减速器, Z1=100,Z2=101,Z2'=100,Z3=99 求:输入件H对输出件1的传动比iH1
特点:传动比大,结构紧凑,加工容易
同时啮合齿数少,承载能力低,计算复杂(变位)
二、摆线针轮行星传动 摆线针轮行星传动的工作原理、输出机构与渐开线少齿差行星传动 基本相同,其结构上的差别在于固定太阳轮的内齿是带套筒的圆柱 形针齿(称为针轮),行星轮2改为短幅外摆线的等距曲线作齿廓 称为摆线轮。
运动演示
§8—2 定轴齿轮系传动比的计算 轮系的传动比: 轮系中输入轴和输出轴(即首、末两轮) 角速度(或转速)的比值。
a na zb iab b nb za
1.大小 2.首、末两轮 转向关系
a——输入轴 b——输出轴
一、定轴轮系中齿轮传动方向的确定(图上画箭头) 1、一对圆柱齿轮传动 外啮合:相反 - 内啮合:相同 + 2、圆锥齿轮传动 同时指向(或背离)节点 3、蜗杆传动 左(右)手定则
3、找出轮系之间的运动关系
1 1 3 3
例图示的电动机卷扬机减速器中,已知各轮的齿数 Z1=18,Z2=39,Z'2=35,Z3=130,Z'3=18,Z4=30,Z5=78。求传动比i15。
例2: 电动卷扬机减速器 Z1=24,Z2=48,Z2'=30, Z3=90,Z3'=20,Z4=30, Z5=80,求i1H
柔轮材料加工热处理要求高;避免柔轮变形过大,传动 比一般要大于35。
结构观察
特点:传动比大,结构紧凑,效率高,同时承担载荷的齿数多 齿廓间为滚动摩擦,所以传动平稳,承载能力高,磨损小,寿 命长。
加工工艺复杂,精度要求高,加工摆线齿轮需专用机床 和刀具。
三、谐波齿轮传动 这种传动是借助波发生器迫使相当于行星轮的柔轮产生弹性变形, 来实现与钢轮的啮合。
谐波齿轮传动由三个基本构件组成: 谐波发生器(简称波发生器)……是凸轮(通常为椭圆形)及薄 壁轴承组成,随着凸轮转动,薄壁轴承的外环作椭圆形变形运动( 弹性范围内)。 (输入) 刚轮……是刚性的内齿轮。 柔轮……是薄壳形元件,具有弹性的外齿轮。(输出)
六、各档换档过程
1、一档
2、二档
3、三档
4、四档
5、五档
6、倒档
4、实现运动的合成与分解
差动轮系:2个输入,1个输出。——合成
差动轮系:1个输入,2个输出。——合成
差速器结构
直行:n1= n3=n4,行星轮2没有自转
拐弯:n1≠ n3,行星轮2既有自转又 有公转(当汽车转弯时,例如左转 弯,左轮走的是小圆弧,右轮走的 是大圆弧 ,以保证汽车转弯时, 两后轮与地面均作纯滚动 ,以减 轻轮胎的磨损 )
1 2 Z 2 Z3 定轴轮系 : i13 (1) 3 Z1Z 2
i3H1 周转轮系 :
4、联立求解:
Z 3 Z1 Z1 1 H 1 Z1Z 2 Z 3 Z 2 Z3
3 H Z1 (1) 1 H Z 3
i1H
二、定轴轮系传动比计算 1、平面定轴轮系
推广: 设首轮A的转速为n1,末轮K的转速为nK,m为圆柱齿轮外啮合 的对数,则平面定轴轮系的传动比可写为:
i1k
1 n1 m 所有从动轮齿数的乘积 (1) k nk 所有主动轮齿数的乘积
箭头法判断方向:
2、空间定轴轮系 大小仍用公式计算,但首末两轮的转向关系只能在图上画箭头得 到.(若首末两轮轴线平行,在大小数值前加正负号)
钢轮1,柔轮2,波发生H 柔轮2比钢轮1少z2-z1个齿
iH 2 nH 1 Z2 Z2 n2 ( Z 2 Z1 ) / Z 2 Z 2 Z1 Z1 Z 2
特点:传动比大,结构紧凑,效率高,不需等角速比机构,同 时啮合的齿数多,传动平稳,承载能力高,齿侧间隙小,适于 反向传动。
差动轮系不仅能将两个独立地运动合成为一个运动,而且还可将 一个基本构件的主动转动,按所需比例分解成另两个基本构件的 不同运动。汽车后桥的差速器就利用了差动轮系的这一特性。
§8—5 几种特殊形式的行星传动简介 一、渐开线少齿差行星传动
少齿差行星传动
固定的太阳轮1、行星轮2、行星架H及输出机构3(等角速比机构) 组成。 输出机构转速=行星轮的转速
i15
n1 4 z 2 z3 z 4 z5 (1) n5 z1 z 2, z 3, z 4
i15
n1 3 z 2 z3 z5 (1) n5 z1 z 2, z 3,
惰轮(过轮):不影响传动比大小只起改变转向作用的齿轮
例 图示的轮系中,已知各齿轮的齿数Z1=20, Z2=40, Z'2=15, Z3=60, Z'3=18, Z4=18, Z7=20, 齿轮7的模数m=3mm, 蜗杆头数为 1(左旋),蜗轮齿数Z6=40。齿轮1为主动轮,转向如图所示, 转速n1=100r/min,试求齿条8的速度和移动方向。
Байду номын сангаас
举例:图示为一大传动比的减速器, Z1=100,Z2=101,Z2'=100,Z3=99 求:输入件H对输出件1的传动比iH1
iH 1
1 i1H
1 10000 101 99 1 100 100
若Z1=99
iH 1 100
4、实现变速和换向
三轴五档位变速器结构简图
三轴式五档位变速器
H 4. iGK
是利用定轴轮系解决行星轮系问题的过渡环节。
圆锥齿轮组成的周转轮系
2
W1 WH 2 Z 2 Z3 i (1) W3 WH Z1 Z 2
H 13
O 1
H
3
O
W1 WH i W2 WH
H 12
(作矢量作)
例行星轮系如图所示。已知 Z1=15,Z2=25,Z3=20,Z4=60,n1=200r/min,n4=50r/min,且两太阳轮1、 4转向相反。试求行星架转速nH及行星轮转速n3。
第八章 齿轮系 在机器中,常将一系列相互啮合的齿轮组成传动系统,以实 现变速、换向、大传动比、分路传动、运动分解与合成等功用。 这种由一系列齿轮组成的传动系统称为轮系。
§8—1 齿轮系的分类
一、轮系的类型
根据轮系运转时齿轮的轴线位置相对于机架是否固定,又将轮系 分为两大类:定轴轮系、行星轮系。 1.定轴轮系 (1).平面轮系: 如果轮系中各齿轮的轴线 互相平行,称为平面轮系 (全部是圆柱齿轮)
iH 1
1 i1H
1 10000 101 99 1 100 100