导数压轴题处理专题讲解

合集下载

导数压轴题的几种处理方法

导数压轴题的几种处理方法

x +1 恒成立,求实数 k 的取值范围;x >1 g (x) == ,等号两边无法求导的导数恒成立求参数范围几种处理方 法常见导数恒成立求参数范围问题有以下常见处理方法:1、求导之后,将参数分离出来,构造新函数,计算1+ ln x例:已知函数 f (x) =.1(Ⅰ)若函数在区间 (a, a + 2) (其中 a > 0 )上存在极值,求实数 a 的取值范围;(Ⅱ)如果当 x ≥ 1 时,不等式 f (x) ≥k解:(Ⅰ)因为1+ ln x ,,则 'ln x , … 1 分当f (x) = x x > 0 f (x) =- x时, ' ;当 时, ' . 所以在(0,1)上单调递0 < x < 1f (x) > 0 f (x) < 0f (x)增 ; 在 (1, +∞) 上 单 调 递 减 ,所 以 函 数 f (x) 在 x = 1 处 取 得 极 大 值 .… 2 分因为函数 f (x) 在区间 (a, a + 1) (其中 a > 0 )上存在极值,2⎧a < 1所以 ⎨⎪1⎪a +⎩2, 解得 1 < a < 1. > 1 2… 4 分(Ⅱ)不等式 f (x) ≥ k ,即为 (x +1)(1+ ln x) ≥ k, 记 g (x) = (x +1)(1+ ln x) ,所以 'x +1 x'xx - ln x … 6 分[(x +1)(1+ ln x)] x - (x +1)(1+ ln x)x 2x 21令 h (x) = x - ln x, 则 h '(x) = 1 - x , x ≥ 1,∴ h '(x) ≥ 0.∴ h (x) 在 [1, +∞) 上单调递增,∴[h(x)]min = h(1) = 1 > 0 ,从而 g '(x) > 0故 g (x) 在 [1, +∞) 上也单调递增,∴[g (x)]min = g (1) = 2 ,所以 k ≤ 2…8 分2、直接求导后对参数展开讨论,然后求出含参最值,从而确定参数范围,且值;(2)求证:对一切x∈0,+∞,都有ln x>ex-ex例题:设(1)若(2)若当,其中有极值,求的取值范围;,恒成立,求的取值范围..解:(1)由题意可知:有极值,则解得:(2)由于有两个不同的实数根,故,即,恒成立,则(4分),即,(6分)由于①当时,,则在处取得极大值、在处取得极小值,则当②当时,时,,即在,解得:上单调递增,且;(8分),则③当时,恒成立;在处取得极大值、在(10分)处取得极小值,则当时,,解得:综上所述,的取值范围是:但是对于导数部分的难题,上述方法不能用时,我们得另辟蹊径:一、分开求左右最值:1、已知函数f(x)=x ln x。

2021年高考数学理科导数压轴题各种解法

2021年高考数学理科导数压轴题各种解法

2021年高考数学理科导数压轴题各种解法
以下是2021年高考数学理科导数压轴题的各种解法:
解法一:使用导数的定义求解
根据导数的定义,导数表示函数在某一点处的斜率,可以通过求取函数在该点的左导数和右导数的极限值来得到函数的导数。

首先,找到函数在给定点的左导数和右导数的表达式,然后计算它们的极限值,最终得到函数在该点的导数。

解法二:使用导数的性质求解
导数具有一系列的性质,包括线性性、常数因子性、乘积法则、和差法则、链式法则等。

通过运用这些性质,可以将复杂的函数通过简单的代数运算转化为更容易求导的形式,从而简化求解的过程。

解法三:使用隐函数求解
对于一些隐式定义的函数,可以通过求解隐函数的导数方程来得到导数。

具体的求解过程包括将隐函数对自变量求导,然后将求导结果代入到原方程中,进一步简化方程解的求取。

解法四:使用导数的几何意义求解
导数可以表示函数曲线在某一点处的切线的斜率,因此可以通过求取切线斜率的方式来得到导数。

根据函数的几何性质,寻找函数曲线在给定点的切线方程,然后计算切线方程的斜率,即可得到函数在该点的导数。

综上所述,针对2021年高考数学理科导数压轴题,可以运用
不同的解法来求解,其中包括导数的定义、性质、隐函数以及几何意义等多种方法。

具体选择哪种解法取决于题目的具体情况和自己的熟悉程度。

导数极难压轴题解法罗比达法则

导数极难压轴题解法罗比达法则

导数极难压轴题解法罗比达法则罗比达法则是一种常用的解法,用来求解导数极难的压轴题。

在数学中,导数是函数的一个重要性质,能够帮助我们研究函数的变化趋势和性质。

然而,有些函数的导数的求解过程非常困难,需要借助于特殊的方法来解决。

本文将介绍罗比达法则及其应用,帮助读者更好地理解和掌握这一方法。

罗比达法则(L'Hopital's Rule)是由法国数学家奥波尔·罗比达发现并提出的。

当我们需要求解一个函数的极限,而该函数在该点的导数难以计算时,罗比达法则就派上了用场。

该法则的核心思想是将分子和分母同时求导,然后再进行极限运算。

具体的步骤如下:首先,我们需要找到一个函数的极限,例如:lim(x→a) [f(x)/g(x)]这里的f(x)和g(x)是两个函数,我们需要求解的是当x趋近于a时,f(x)/g(x)的极限。

如果在x=a的附近,f(x)和g(x)都为0或者都是无穷大的情况下,我们可以使用罗比达法则。

具体的做法是,分别对f(x)和g(x)求导,得到f'(x)和g'(x)。

接着,我们计算f'(x)/g'(x)的极限,即:lim(x→a) [f'(x)/g'(x)]如果这个极限存在,那么它就是原函数极限的值。

如果这个极限不存在,那么我们可以继续应用罗比达法则,重复上述步骤,直到得到一个确定的值或者证明不存在极限。

需要注意的是,使用罗比达法则的前提是函数在x=a附近的导数存在且非零。

另外,使用该法则求解函数极限时,要考虑函数的右导数和左导数是否一致,即:lim(x→a+) [f'(x)/g'(x)] = lim(x→a-) [f'(x)/g'(x)]只有当这两个极限相等时,我们才能得出最终的极限值。

下面我们通过一个具体的例子来演示罗比达法则的应用。

例子:求解极限lim(x→0) [sin(x)/x]首先,我们注意到当x趋近于0时,分子sin(x)和分母x都变为0。

导数压轴题全解

导数压轴题全解

导数压轴题全解一、导数的定义导数是描述函数变化率的概念,它表示函数在某一点处的变化速率。

具体地说,对于函数f(x),如果它在x=a处的导数存在,那么它的导数就是:f'(a) = lim (x→a) [f(x) - f(a)] / (x - a)其中,lim表示极限,x→a表示x趋近于a时的极限,f(x) - f(a)表示函数在x 处和a处的差值,x - a表示自变量的变化量。

二、导数的计算1. 常数函数的导数对于常数函数f(x) = c,它在任何一点处的导数都是0,即f'(x) = 0。

2. 幂函数的导数对于幂函数f(x) = x^n,它在任何一点处的导数都是f'(x) = nx^(n-1)。

3. 指数函数的导数对于指数函数f(x) = a^x,它在任何一点处的导数都是f'(x) = a^x * ln(a)。

4. 对数函数的导数对于对数函数f(x) = log_a(x),它在任何一点处的导数都是f'(x) = 1 / (x * ln(a))。

5. 三角函数的导数对于正弦函数f(x) = sin(x),它在任何一点处的导数都是f'(x) = cos(x)。

对于余弦函数f(x) = cos(x),它在任何一点处的导数都是f'(x) = -sin(x)。

对于正切函数f(x) = tan(x),它在任何一点处的导数都是f'(x) = sec^2(x)。

6. 反三角函数的导数对于反正弦函数f(x) = arcsin(x),它在任何一点处的导数都是f'(x) = 1 / sqrt(1-x^2)。

对于反余弦函数f(x) = arccos(x),它在任何一点处的导数都是f'(x) = -1 / sqrt(1-x^2)。

对于反正切函数f(x) = arctan(x),它在任何一点处的导数都是f'(x) = 1 / (1+x^2)。

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)

函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。

下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。

其中描述正确的个数有(。

)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。

当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。

当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。

当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。

因此,答案为$\boxed{\textbf{(C) }2}$。

导数压轴题-----题型解法归纳无答案

导数压轴题-----题型解法归纳无答案

导数压轴题-----题型解法归纳一、导数在高考中的地位:常作为压轴题来考察,尤其是解答题,至少占到14分;当然在选择题或者是填空题里 也会出现1~2道,因此高考试卷中它占到了20分左右的比重二、导数可以结合考察的知识点:1、数列;2、不等式与方程;3、函数;4、解析几何其中最常见的就是和函数、不等式的结合,解决这类题目的汉族到思想是构造新函数, 利用导数求解单调性,进而证明不等式或者最值又或者是参数的X 围等等。

三、题型归纳:(新题、难题、考察知识点总结)(一)基础题目小试身手1.(不等式、函数的性质)已知函数mx x x f ++=21ln )((Ⅰ))(x f 为定义域上的单调函数,XX 数m 的取值X 围;(Ⅱ)当1-=m 时,求函数)(x f 的最大值;(Ⅲ)当1=m 时,且10≤<≤a b ,证明:2)()(34<--<b a b f a f2.(不等式恒成立问题)设函数),10(3231)(223R b a b x a ax x x f ∈<<+-+-=. (Ⅰ)求函数f (x )的单调区间和极值;(Ⅱ)若对任意的],2,1[++∈a a x 不等式a x f ≤)('恒成立,求a 的取值X 围3.(导数的简单应用)已知函数x x f ln )(=(Ⅰ)若)()()(R a xa x f x F ∈+=,求)(x F 的极大值; (Ⅱ)若kx x f x G -=2)]([)(在定义域内单调递减,求满足此条件的实数k 的取值X 围4.(不等式的证明)已知函数x x x f -+=)1ln()(.(1)求函数)(x f 的单调递减区间;(2)若1->x ,求证:111+-x ≤)1ln(+x ≤x5、(不等式、存在性问题)已知)0,[),ln()(e x x ax x f -∈--=,xx x g )ln()(--=,其中 e 是自然常数,R a ∈(1)讨论1-=a 时, )(x f 的单调性、极值;(2)求证:在(1)的条件下,21)()(+>x g x f (3)是否存在实数a ,使)(x f 的最小值是3,若存在,求出a 的值;若不存在,说明理由。

导数压轴题十种构造方法大全以及解题方法导引

导数压轴题十种构造方法大全以及解题方法导引

导数压轴题十种构造方法大全以及解题方法导引方法一 等价变形,转化构造 方法导读研究函数的性质是高考压轴题的核心思想,但直接构造或者简单拆分函数依然复杂,这时候需要依赖对函数的等价变形,通过恒等变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。

方法导引例1 已知函数f(x)=a e x (a ∈R ),g(x)=lnx x+1.(1)求函数g(x)的极值;(2)当a ≥1e 时,求证:f(x)≥g(x). 解析:(1)由g (x )=ln x x+1,得g ′(x )=1−ln x x 2,定义域为(0,+∞).令g ′(x )=0,解得x =e , 列表如下:结合表格可知函数g (x )的极大值为g (e )=1e +1,无极小值. (2)要证明f (x )≥g (x ),即证ae x ≥ln x x+1,而定义域为(0,+∞),所以只要证axe x −ln x −x ≥0,又因为a ≥1e,所以axe x −ln x −x ≥1exe x −ln x −x , 所以只要证明1e xe x −ln x −x ≥0.令F (x )=1e xe x −ln x −x ,则F ′(x )=(x +1)(e x−1−1x ), 记ℎ(x )=e x−1−1x ,则ℎ(x )在(0,+∞)单调递增且ℎ(1)=0,所以当x ∈(0,1)时,ℎ(x )<0,从而F ′(x )<0;当x ∈(1,+∞)时,ℎ(x )>0,从而F ′(x )>0,即F (x )在(0,1)单调递减,在(1,+∞)单调递增,F (x )≥F (1)=0. 所以当a ≥1e 时,f (x )≥g (x ).例2已知a ∈R ,a ≠0,函数f (x ) =e ax -1-ax ,其中常数e =2.71828.(1)求f (x ) 的最小值;(2)当a ≥1时,求证:对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 解析:(1)因为()1ax f x eax -=-,则()()11ax f x a e -'=-,()210ax f x a e -'=>'故()f x '为R 上的增函数,令()0f x '=,解得1x a= 故当()1,,0x f x a ⎛⎫∈-∞< '⎪⎝⎭,()f x 单调递减; 当()1,,0x f x a ⎛⎫∈+∞>'⎪⎝⎭,()f x 单调递增, 则()10min f x f a ⎛⎫==⎪⎝⎭故函数()f x 的最小值为0.(2)证明:要证明xf (x ) ≥ 2ln x +12ax - 等价于证明121ax xe lnx -≥+由(1)可知:10ax e ax --≥,即1ax e ax -≥ 因为0x >,故12ax xe ax -≥ 故等价于证明221ax lnx ≥+即()2210,0,ax lnx x --≥∈+∞令()221g x ax lnx =--,即证()()0,0,g x x ≥∈+∞恒成立.又())21122g x ax x x+-=-='令()0g x '=,解得x =故当(),0x g x⎛'∈< ⎝,()g x 单调递减; 当(),0x g x⎫∈+∞>'⎪⎭,()g x 单调递增;故()2g x g lna≥== 有因为1a ≥,故0lna ≥ 故()0g x lna ≥≥即证.即对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 方法二:构造常见典型函数 方法导读常见典型函数主要包括xlnx ,x/lnx ,lnx/x ; xe x ,xe x ,e x /x 等,通过变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。

导数压轴大题归类 (解析版)

导数压轴大题归类 (解析版)

导数压轴大题归类目录重难点题型归纳 1【题型一】恒成立求参 1【题型二】三角函数恒成立型求参 4【题型三】同构双变量绝对值型求参 7【题型四】零点型偏移证明不等式 10【题型五】非对称型零点偏移证明不等式 14【题型六】条件型偏移证明不等式 18【题型七】同构型证明不等式 21【题型八】先放缩型证明不等式 24【题型九】放缩参数型消参证明不等式 26【题型十】凸凹翻转型证明不等式 28【题型十一】切线两边夹型证明不等式 30【题型十二】切线放缩型证明不等式 32【题型十三】构造一元二次根与系数关系型证明不等式 35【题型十四】两根差型证明不等式 38【题型十五】比值代换型证明不等式 41【题型十六】幂指对与三角函数型证明不等式 43【题型十七】不等式证明综合型 46好题演练 50一、重难点题型归纳重难点题型归纳题型一恒成立求参【典例分析】1.已知函数f x =x+2aln x(a∈R).(1)讨论f x 的单调性;(2)是否存在a∈Z,使得f x >a+2对∀x>1恒成立?若存在,请求出a的最大值;若不存在,请说明理由.【答案】(1)当a≤0时,f x 在0,+∞上单调递减,在上单调递增;当a>0时,f x 在0,2a2a,+∞上单调递增.(2)不存在满足条件的整数a,理由见解析【分析】(1)构造新函数g x =f x ,分a≤0及a>0两种情况,利用导数研究函数的单调性即可求解;(2)将问题进行转化x ln x-x-ax+2a>0,构造新函数并求导,分a≤0和a>0两种情况分别讨论,利用导数研究函数的单调性及最值,整理求解.(1)因为f x =x +2a ln x x >0 ,所以f x =ln x +1+2ax.记g x =f x =ln x +1+2axx >0 ,则g x =1x -2a x 2=x -2ax 2,当a ≤0时,g x >0,即g x 在0,+∞ 上单调递增;当a >0时,由g x >0,解得x >2a ,即g x 在2a ,+∞ 上单调递增;由g x <0,解得0<x <2a ,即g x 在0,2a 上单调递减.综上所述,当a ≤0时,f x 在0,+∞ 上单调递增;当a >0时,f x 在0,2a 上单调递减,在2a ,+∞ 上单调递增.(2)假设存在a ∈Z ,使得f x >a +2对任意x >1恒成立,即x ln x -x -ax +2a >0对任意x >1恒成立.令h x =x ln x -x -ax +2a x >1 ,则h x =ln x -a ,当a ≤0且a ∈Z 时,h x >0,则h x 在1,+∞ 上单调递增,若h x >0对任意x >1恒成立,则h 1 =a -1≥0,即a ≥1,矛盾,故舍去;当a >0,且a ∈Z 时,由ln x -a >0得x >e a ;由ln x -a <0得1<x <e a ,所以h x 在1,e a 上单调递减,在e a ,+∞ 上单调递增,所以h x min =h e a =2a -e a ,则令h x min =2a -e a >0即可.令G t =2t -e t t >0 ,则G t =2-e t ,当2-e t >0,即t <ln2时,G t 单调递增;当2-e t <0,即t >ln2时,G t 单调递减,所以G t max =G ln2 =2ln2-2<0,所以不存在a >0且a ∈Z ,使得2a -e a >0成立.综上所述,不存在满足条件的整数a .【技法指引】恒成立基本思维:①若k ≥f (x )在[a ,b ]上恒成立,则k ≥f (x )max ;②若k ≤f (x )在[a ,b ]上恒成立,则k ≤f (x )min ;③若k ≥f (x )在[a ,b ]上有解,则k ≥f (x )min ;④若k ≤f (x )在[a ,b ]上有解,则k ≤f (x )max ;【变式演练】1.已知函数f (x )=1+xex ,g (x )=1-ax 2.(1)若函数f (x )和g (x )的图象在x =1处的切线平行,求a 的值;(2)当x ∈[0,1]时,不等式f (x )≤g (x )恒成立,求a 的取值范围.【答案】(1)a =12e (2)-∞,1-2e【分析】(1)分别求出f (x ),g (x )的导数,计算得到f (1)=g (1),求出a 的值即可;(2)问题转化为h x ≤0对任意x ∈[0,1]的恒成立,求导,对参数分类讨论,通过单调性与最值即可得到结果.(1)f (x )=-x ex,f (1)=-1e ,g (x )=-2ax ,g (1)=-2a ,由题意得:-2a =-1e ,解得:a =12e;(2)令h x =f (x )-g (x ),即h x ≤0对任意x ∈[0,1]的恒成立,h x =-xex +2ax ,①a ≤0时,h x ≤0在x ∈[0,1]的恒成立,所以h x 在[0,1]上单调递减. h x max =h 0 =0,满足条件;②a >0时,hx =-x +2axe x e x =x 2ae x -1 e x,令h x =0,得x 1=0,x 2=ln12a(i )当ln 12a ≤0,即a ≥12时,h x ≥0在x ∈[0,1]的恒成立,仅当x =0时h x =0,所以h x 在[0,1]上单调递增.又h 0 =0,所以h x ≥0在[0,1]上恒成立,不满足条件;(ii )当0<ln 12a <1,即12e <a <12时,当x ∈0,ln 12a时,h x <0,h x 上单调递减,当x ∈ln 12a,1 时,h x >0,h x 上单调递增,又h 0 =0,h 1 =2e -1+a ≤0,得a ≤1-2e,于是有12e <a ≤1-2e .(iii )当ln 12a ≥1,即0<a ≤12e时,x ∈[0,1]时,h x ≤0,h x 上单调递减,. 又h 0 =0,所以h x ≤0对任意x ∈[0,1]的恒成立,满足条件综上可得,a 的取值范围为-∞,1-2e题型二三角函数恒成立型求参【典例分析】1.已知函数f (x )=e x +cos x -2,f (x )为f (x )的导数.(1)当x ≥0时,求f (x )的最小值;(2)当x ≥-π2时,xe x +x cos x -ax 2-2x ≥0恒成立,求a 的取值范围.【答案】(1)1(2)(-∞,1]【分析】(1)求导得f ′(x )=e x -sin x ,令g x =e x -sin x ,利用导数分析g (x )的单调性,进而可得f (x )的最小值即可.(2)令h (x )=e x +cos x -ax -2,问题转化为当x ≥-π2时,x ⋅h (x )≥0恒成立,分两种情况:当a ≤1时和当a >1时,判断x e x +cos x -ax -2 ≥0是否成立即可.【详解】(1)由题意,f (x )=e x -sin x ,令g (x )=e x -sin x ,则g (x )=e x -cos x ,当x ≥0时,e x ≥1,cos x ≤1,所以g (x )≥0,从而g (x )在[0,+∞)上单调递增,则g (x )的最小值为g (0)=0,故f (x )的最小值0;(2)由已知得当x ≥-π2时,x e x +cos x -ax -2 ≥0恒成立,令h x =e x+cos x -ax -2,h x =e x -sin x -a ,①当a ≤1时,若x ≥0时,由(1)可知h x ≥1-a ≥0,∴h x 为增函数,∴h x ≥h 0 =0恒成立,∴x ⋅h x ≥0恒成立,即x e x +cos x -ax -2 ≥0恒成立,若x ∈-π2,0 ,令m x =e x -sin x -a 则m x =e x-cos x ,令n x =e x -cos x ,则n x =e x +sin x ,令p x =e x +sin x ,则p x =e x +cos x ,∵在p x 在x ∈-π2,0 内大于零恒成立,∴函数p x 在区间-π2,0 为单调递增,又∵p -π2=e -π2-1<0,p 0 =1,,∴p x 上存在唯一的x 0∈-π2,0 使得p x 0 =0,∴当x ∈-π2,x 0 时,nx <0,此时n x 为减函数,当x ∈x 0,0 时,h x >0,此时n x 为增函数,又∵n -π2=e -π2>0,n 0 =0,∴存在x 1∈-π2,x 0 ,使得n x 1 =0,∴当x ∈-π2,x 1 时,m x >0,m x 为增函数,当x ∈x 1,0 时,mx <0,m x 为减函数,又∵m -π2=e -π2+1-a >0,m 0 =1-a ≥0,∴x ∈-π2,0时,hx >0,则h x 为增函数,∴h x ≤h 0 =0,∴x e x +cos x -ax -2 ≥0恒成立,②当a >1时,m (x )=e x -cos x ≥0在[0,+∞)上恒成立,则m x 在[0,+∞)上为增函数,∵m 0 =1-a <0,m (ln (1+a ))=eln (1+a )-sin (ln (1+a ))-a =1-sin (ln (1+a ))≥0,∴存在唯一的x 2∈0,+∞ 使h x 2 =0,∴当0≤x <x 2时,h (x )<0,从而h (x )在0,x 2 上单调递减,∴h x <h 0 =0,∴x e x +cos x -ax -2 <0,与xe x +x cos x -ax 2-2x ≥0矛盾,综上所述,实数a 的取值范围为(-∞,1].【变式演练】1.已知函数f (x )=2x -sin x .(1)求f (x )的图象在点π2,f π2 处的切线方程;(2)对任意的x ∈0,π2,f (x )≤ax ,求实数a 的取值范围.【答案】(1)2x -y -1=0(2)2-2π,+∞ 【分析】(1)根据导数的几何意义即可求出曲线的切线方程;(2)将原不等式转化为a ≥2-sin x x =h (x )x ∈0,π2,利用二次求导研究函数h (x )的单调性,求出h (x )max 即可.解(1)因为f π2=π-1,所以切点坐标为π2,π-1 ,因为f x =2-cos x ,所以f π2=2,可得所求切线的方程为y -π-1 =2x -π2,即2x -y -1=0.(2)由f x ≤ax ,得2x -sin x ≤ax ,所以a ≥2-sin x x ,其中x ∈0,π2,令h x =2-sin x x ,x ∈0,π2 ,得hx =sin x -cos x x 2,设φx =sin x -x cos x ,x ∈0,π2,则φ x =x sin x >0,所以φx 在0,π2上单调递增,所以φx >φ0 =0,所以h x >0,所以h x 在0,π2上单调递增,h x max =h π2 =2-2πsin π2=2-2π,所以a ≥2-2π,即a 的取值范围为2-2π,+∞ .题型三同构双变量绝对值型求参【典例分析】1.已知函数f x =a ln x +x 2(a 为实常数).(1)当a =-4时,求函数f x 在1,e 上的最大值及相应的x 值;(2)若a >0,且对任意的x 1,x 2∈1,e ,都有f x 1 -f x 2 ≤1x 1-1x 2,求实数a 的取值范围.【答案】(1)当x =e 时,取到最大值e 2-4(2)a ≤1e-2e 2【分析】(1)求导,由导函数判出原函数的单调性,从而求出函数在1,e 上的最大值及相应的x 值;(2)根据单调性对f x 1 -f x 2 ≤1x 1-1x 2转化整理为f x 2 +1x 2≤f x 1 +1x 1,构造新函数h x =f x +1x在1,e 单调递减,借助导数理解并运用参变分离运算求解.解:(1)当a =-4时,则f x =-4ln x +x 2,fx =2x 2-4x(x >0),∵当x ∈1,2 时,f x <0.当x ∈2,e 时,f x >0,∴f x 在1,2 上单调递减,在2,e 上单调递增,又∵f e -f 1 =-4+e 2-1=e 2-5>0,故当x =e 时,取到最大值e 2-4(2)当a >0时,f x 在x ∈1,e 上是增函数,函数y =1x在x ∈1,e 上减函数,不妨设1≤x 1≤x 2≤e ,则f x 1 -f x 2 ≤ 1x 1-1x 2可得f x 2 -f x 1 ≤1x 1-1x 2即f x 2 +1x 2≤f x 1 +1x 1,故原题等价于函数h x =f x +1x 在x ∈1,e 时是减函数,∵h 'x =a x +2x -1x 2≤0恒成立,即a ≤1x -2x 2在x ∈1,e 时恒成立.∵y =1x -2x 2在x ∈1,e 时是减函数∴a ≤1e -2e 2.【变式演练】1.已知f x =x 2+x +a ln x (a ∈R ).(1)讨论f x 的单调性;(2)若a =1,函数g x =x +1-f x ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 恒成立,求实数λ的取值范围.【答案】(1)当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)-∞,12ln2+52【分析】(1)先求出f x 的导数fx =2x 2+x +ax,根据a 的取值范围进行分类讨论即可;(2)当x 1x 2>0,时,x 1g x 2 -x 2g x 1 >λx 1-x 2 ⇔g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,去绝对值后,构造函数求解即可.【详解】(1)由已知,f x =x 2+x +a ln x (a ∈R )的定义域为0,+∞ ,fx =2x +1+a x =2x 2+x +ax,①当a ≥0时,f x >0在区间0,+∞ 上恒成立,f x 在区间0,+∞ 上单调递增;②当a <0时,令f x =0,则2x 2+x +a =0,Δ=1-8a >0,解得x 1=-1-1-8a 4<0(舍),x 2=-1+1-8a4>0,∴当x ∈0,-1+1-8a4时,2x 2+x +a <0,∴f x <0,∴f x 在区间0,-1+1-8a4上单调递减,当x ∈-1+1-8a4,+∞ 时,2x 2+x +a >0,∴f x >0,∴f x 在区间-1+1-8a4,+∞ 上单调递增,综上所述,当a ≥0时,f x 在区间0,+∞ 上单调递增;当a <0时,f x 在区间0,-1+1-8a 4 上单调递减,在区间-1+1-8a4,+∞ 上单调递增.(2)当a =1时,g x =x +1-x 2+x +ln x =-x 2-ln x +1,x ∈0,+∞ ,∀x 1,x 2∈(0,+∞),x 1≠x 2,x 1g x 2 -x 2g x 1 >λx 1-x 2 等价于x 1g x 2 -x 2g x 1x 1x 2>λx 1-x 2x 1x 2,即g x 2 x 2-g x 1 x 1 >λ1x 2-1x 1,令h x =g x x ,x ∈0,+∞ ,则h x 2 -h x 1 >λ1x 2-1x 1恒成立hx =xg x -g x x 2=x -2x -1x --x 2-ln x +1 x 2=ln x -x 2-2x 2,令F x =ln x -x 2-2,x ∈0,+∞ ,则Fx =1x -2x =1-2x 2x,令F x =0,解得x =22,当x ∈0,22时,Fx >0,F x 在区间0,22 单调递增;当x ∈22,+∞ 时,F x <0,F x 在区间22,+∞ 单调递减,∴当x ∈0,+∞ 时,F x 的最大值为F 22 =ln 22-12-2=-12ln2-52<0,∴当x ∈0,+∞ 时,F x =ln x -x 2-2≤-12ln2-52<0,即hx =ln x -x 2-2x2<0,∴h x =g xx在区间0,+∞ 上单调递减,不妨设x 1<x 2,∴∀x 1,x 2∈(0,+∞),有h x 1 >h x 2 ,又∵y =1x 在区间0,+∞ 上单调递减,∀x 1,x 2∈(0,+∞),且x 1<x 2,有1x 1>1x 2,∴h x 2 -h x 1 >λ1x 2-1x 1等价于h x 1 -h x 2 >λ1x 1-1x 2,∴h x 1 -λx 1>h x 2 -λx 2,设G x =h x -λx,x ∈0,+∞ ,则∀x 1,x 2∈(0,+∞),且x 1<x 2,h x 1 -λx 1>h x 2 -λx 2等价于G x 1 >G x 2 ,即G x 在(0,+∞)上单调递减,∴G x =h x +λx2≤0,∴λ≤-x 2h x ,∴λ≤-x 2⋅ln x -x 2-2x 2=-F x ,∵当x ∈0,+∞ 时,F x 的最大值为F 22 =-12ln2-52,∴-F x 的最小值为12ln2+52,∴λ≤12ln2+52,综上所述,满足题意的实数λ的取值范围是-∞,12ln2+52.题型四零点型偏移证明不等式【典例分析】1.已知函数f x =x ln x ,g x =ax 2+1.(1)求函数f x 的最小值;(2)若不等式x +1 ln x -2x -1 >m 对任意的x ∈1,+∞ 恒成立,求m 的取值范围;(3)若函数f x 的图象与g x 的图象有A x 1,y 1 ,B x 2,y 2 两个不同的交点,证明:x 1x 2>16.(参考数据:ln2≈0.69,ln5≈1.61)【答案】(1)-1e;(2)-∞,0 ;(3)证明见解析.【分析】(1)先求函数f x 的定义域,然后求导,令f (x )>0,可求单调递增区间;令f (x )<0可求单调递减区间.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),只需利用二次求导的方法求函数h x 的最小值即可.(3)首先根据题意得出ax 1=ln x 1-1x 1,ax 2=ln x 2-1x 2,从而可构造出ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x 2x 1;然后根据(2)的结论可得出x 1+x 2x 2-x 1ln x2x 1>2,即得出ln (x 1x 2)-2(x 1+x 2)x 1x 2>2成立;再根据基本不等式得到ln x 1x 2-2x 1x 2>1,从而通过构造函数G (x )=ln x -2x 即可证明结论.解:(1)已知函数f (x )=x ln x 的定义域为0,+∞ ,且f (x )=1+ln x ,令f (x )>0,解得x >1e ;令f (x )<0,解得0<x <1e ,所以函数f x 在0,1e 单调递减,在1e,+∞ 单调递增,所以当x =1e 时,f (x )取得最小值-1e.(2)设函数h (x )=(x +1)ln x -2(x -1)(x >1),则m <h (x )对任意的x ∈1,+∞ 恒成立.h (x )=ln x +1x-1,设函数ϕ(x )=ln x +1x -1(x >1),则ϕ (x )=x -1x 2>0,所以ϕ(x )在1,+∞ 上单调递增,所以ϕ(x )>ϕ(1)=0,即h (x )>0,所以h (x )在1,+∞ 上单调递增,所以h (x )>h (1)=0,所以m 的取值范围是-∞,0 .(3)因为函数f x 的图象与g (x )的图象有A (x 1,y 1),B (x 2,y 2)两个不同的交点,所以关于x 的方程ax 2+1=x ln x ,即ax =ln x -1x有两个不同的实数根x 1,x 2,所以ax 1=ln x 1-1x 1①,ax 2=ln x 2-1x 2②,①+②,得ln (x 1x 2)-x 1+x2x 1x 2=a (x 1+x 2),②-①,得ln x 2x 1+x 2-x1x 1x 2=a (x 2-x 1),消a 得,ln (x 1x 2)-2(x 1+x 2)x 1x 2=x 1+x 2x 2-x 1ln x2x 1,由(2)得,当m =0时,(x +1)ln x -2(x -1)>0,即x +1x -1ln x >2对任意的x ∈1,+∞ 恒成立.不妨设x 2>x 1>0,则x 2x 1>1,所以x 1+x 2x 2-x 1ln x2x 1=x 2x 1+1x 2x 1-1lnx 2x 1>2,即ln (x 1x 2)-2(x 1+x 2)x 1x 2>2恒成立.因为ln (x 1x 2)-2(x 1+x 2)x 1x 2<ln (x 1x 2)-2×2x 1x 2x 1x 2=2ln x 1x 2-4x 1x 2,所以2ln x1x2-4x1x2>2,即ln x1x2-2x1x2>1.令函数G(x)=ln x-2x,则G(x)在0,+∞上单调递增.又G(4)=ln4-12=2ln2-12≈0.88<1,G(5)=ln5-25≈1.21>1,所以当G(x1x2)>1时,x1x2>4,即x1x2>16,所以原不等式得证.【变式演练】1.已知函数f(x)=12x2+ln x-2x.(1)求函数f(x)的单调区间;(2)设函数g(x)=e x+12x2-(4+a)x+ln x-f(x),若函数y=g(x)有两个不同的零点x1,x2,证明:x1 +x2<2ln(a+2).【答案】(1)f(x)的单调递增区间为(0,+∞),无单调减区间(2)证明见解析【分析】(1)求得函数的导数f (x)=x+1x-2,结合基本不等式求得f (x)≥0恒成立,即可求解;(2)由y=g(x)有两个不同的零点x1,x2,转化为(a+2)=e xx有两个根,设I(x)=e xx,利用导数求得最大值I(1)=e,得到a>e-2,转化为x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1,转化为2ln t-t+1t <0恒成立,设h(t)=2ln t-t+1t,结合导数求得函数的单调性,即可求解.【解析】(1)解:由函数f(x)=12x2+ln x-2x定义域为(0,+∞),且f (x)=x+1x-2,因为x+1x≥2x⋅1x=2,当且仅当x=1x时,即x=1时,等号成立,所以f (x)≥0恒成立,所以f x 在(0,+∞)单调递增,故函数f(x)的单调递增区间为(0,+∞),无单调减区间.(2)解:由函数g(x)=e x-(a+2)x,(x>0),因为函数y=g(x)有两个不同的零点x1,x2,所以e x=(a+2)x有两个不同的根,即(a+2)=e xx有两个不同的根,设I(x)=e xx,可得I(x)=e x(x-1)x2,当x∈(0,1)时,I (x)<0;当x∈(1,+∞)时,I (x)>0,所以y=I(x)在(0,1)上单调递减,(1,+∞)上单调递增,当x=1时,函数y=I(x)取得最小值,最小值为I(1)=e,所以a+2>e,即a>e-2,由e x1=(a+2)x1e x2=(a+2)x2,可得x1=ln(a+2)+ln x1x2=ln(a+2)+ln x2,即x1-x2=ln x1-ln x2x1+x2=2ln(a+2)+ln x1x2,所以x1-x2ln x1-ln x2=1x1+x2=2ln(a+2)+ln x1x2 ,不妨设x1>x2,要证x1+x2<2ln(a+2),只需证明x1x2<1即可,即证x1x2<x1-x2ln x1-ln x2,只需证明:lnx1x2<x1x2-x2x1,设x1x2=t(t>1),即证:2ln t-t+1t<0恒成立,设h(t)=2ln t-t+1t,t>1,可得h (t)=2t-1t2-1=-t2+2t-1t2=-(t-1)2t2<0,所以y=h(t)在(1,+∞)上单调递减,所以h(t)<h(1)=0,故x1x2<1恒成立,所以x1+x2<2ln(a+2).题型五非对称型零点偏移证明不等式【典例分析】1.已知函数f x =a ln x-x a∈R.(1)求函数y=f x 的单调区间;(2)若函数y=f x 在其定义域内有两个不同的零点,求实数a的取值范围;(3)若0<x1<x2,且x1ln x1=x2ln x2=a,证明:x1ln x1<2x2-x1.【答案】(1)当a≤0时,函数y=f x 的单调递减区间为0,+∞;当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞.(2)a>e(3)证明见解析【分析】(1)先求定义域,然后对a进行分类讨论,求解不同情况下的单调区间;(2)在第一问的基础上,讨论实数a的取值,保证函数有两个不同的零点,根据函数单调性及极值列出不等式,求出a>e时满足题意,再证明充分性即可;(3)设x2=tx1,对题干条件变形,构造函数对不等式进行证明.解:(1)函数f x 定义域为0,+∞,∵f x =a ln x-x a∈R,∴f x =ax -1=a-xx①当a≤0时,f x <0在0,+∞上恒成立,即函数y=f x 的单调递减区间为0,+∞;②当a>0时,f x =0,解得x=a,当x∈0,a时,f x >0,∴函数y=f x 的单调递增区间为0,a,当x∈a,+∞时,f x <0,∴函数y=f x 的单调递减区间为a,+∞,综上可知:①当a≤0时,函数y=f x 的单调递减区间为0,+∞;②当a>0时,函数y=f x 的单调递增区间为0,a,单调递减区间为a,+∞;(2)由(1)知,当a≤0时,函数y=f x 在0,+∞上单调递减,∴函数y=f x 至多有一个零点,不符合题意,当a>0时,函数y=f x 在0,a上单调递增,在a,+∞上单调递减,∴f(x)max=f a =a ln a-a,又函数y=f x 有两个零点,∴f a =a ln a-a=a ln a-1>0,∴a>e又f1 =-1<0,∴∃x1∈1,a,使得f x1=0,又f a2=a ln a2-a2=a2ln a-a,设g a =2ln a-a,g a =2a-1=2-aa∵a>e,∴g a <0∴函数g a 在e,+∞上单调递减,∴g a max=g e =2-e<0,∴∃x2∈a,a2,使得f x2=0,综上可知,a>e为所求.(3)依题意,x1,x20<x1<x2是函数y=f x 的两个零点,设x2=tx1,因为x2>x1>0⇒t>1,∵a=x1ln x1=x2ln x2=tx1ln x1+ln t,∴ln x1=ln tt-1,ax1=1ln x1=t-1ln t不等式x1ln x1<2x2-x1⇔x1ln x1<2tx1-x1⇔1ln x1<2t-1⇔t-1ln t<2t-1,∵t>1,所证不等式即2t ln t-ln t-t+1>0设h t =2t ln t-ln t-t+1,∴h t =2ln t+2-1t-1,h t =2t+1t2>0,∴h t 在1,+∞上是增函数,且h t >h 1 =0,所以h t 在1,+∞上是增函数,且h t >h1 =0,即2t ln t-ln t-t+1>0,从而所证不等式成立.【变式演练】1.函数f x =ln x-ax2+1.(1)若a=1,求函数y=f2x-1在x=1处的切线;(2)若函数y=f x 有两个零点x1,x2,且x1<x2,(i)求实数a的取值范围;(ii)证明:x22-x1<-a2+a+1a2.【答案】(1)y=-2x-1;(2)(i)0<a<e2;(ii)证明见解析.【分析】(1)先设g x =f2x-1,再对其求导,根据导数的几何意义,即可求出切线方程;(2)(i)根据题中条件,得到方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,对g x 求导,得到其单调性,结合函数值的取值情况,即可得出结果;(ii)先由题中条件,得到ln x2-ln x1x2-x1=a x2+x1,令h t =ln t-2t-1t+1,t>1,证明ln t>2t-1t+1对任意的t>1恒成立;得出ln x2-ln x1x2-x1>2x2+x1;进一步推出x2+x1>2e;得到x22-x1<x22+x2-1,因此只需证明x22+x2≤1a2+1a即可,即证x2≤1a,即证f x2≥f1a,即证0≥f1a ,即证ln 1a≤1a-1成立;构造函数证明ln1a≤1a-1成立即可.【详解】(1)设g x =f2x-1=ln2x-1-2x-12+1,∴g x =22x-1-42x-1,∴g 1 =-2,且g1 =0,∴切线方程:y=-2x-1.(2)(i)由f x =ln x-ax2+1可得定义域为0,+∞,因为函数y=f x 有两个零点x1,x2,且x1<x2,所以方程ln x-ax2+1=0有两不等实根,即方程ln x+1x2=a有两不等实根,令g x =ln x+1x2,则g x =ln x+1x2的图象与直线y=a有两不同交点,因为g x =1x⋅x2-ln x+1⋅2xx4=-1-2ln xx3,由g x >0得0<x<e-12;由g x <0得x>e-12,所以g x =ln x+1x2在0,e-12上单调递增,在e-12,+∞上单调递减;因此g x max=g e-1 2=-12+1e-1=e2,又当0<x<1e时,ln x+1<0,即g x =ln x+1x2<0;当x>1e时,ln x+1>0,即g x =ln x+1x2>0,所以为使g x =ln x+1x2的图象与直线y=a有两不同交点,只需0<a<e2;即实数a的取值范围为0<a<e 2;(ii)由(i)可知,x1与x2是方程ln x-ax2+1=0的两根,则ln x1-ax12+1=0ln x2-ax22+1=0,两式作差可得ln x2-ln x1=a x22-x12,因为0<x 1<x 2,所以x 2x 1>1,则ln x 2-ln x 1x 2-x 1=a x 2+x 1 ;令h t =ln t -2t -1 t +1=ln t +4t +1-2,t >1,则ht =1t -4t +1 2=t -1 2t t +1 2>0对任意的t >1恒成立,所以h t 在t ∈1,+∞ 上单调递增,因此h t >h 1 =0,即ln t >2t -1t +1对任意的t >1恒成立;令t =x 2x 1,则ln x 2x 1>2x2x 1-1 x 2x 1+1=2x 2-x 1 x 2+x 1,所以ln x 2-ln x 1x 2-x 1>2x 2+x 1,因此a x 2+x 1 =ln x 2-ln x 1x 2-x 1>2x 2+x 1,所以x 2+x 1 2>2a >4e ,则x 2+x 1>2e ;∴x 22-x 1<x 22+x 2-2e<x 22+x 2-1,因此,要证x 22-x 1<-a 2+a +1a 2=1a 2+1a -1,只需证x 22+x 2≤1a2+1a ,因为二次函数y =x 2+x 在0,+∞ 单调递增,因此只需证x 2≤1a ,即证f x 2 ≥f 1a,即证0≥f 1a ,即证ln 1a ≤1a -1成立;令u (x )=ln x -x +1,x >0,则u (x )=1x -1=1-xx,当x ∈0,1 时,u (x )>0,即u (x )单调递增;当x ∈1,+∞ 时,u (x )<0,即u (x )单调递减;所以u (x )≤u (1)=0,所以ln x ≤x -1,因此ln 1a ≤1a -1,所以结论得证.题型六条件型偏移证明不等式【典例分析】1.已知函数f x =ln x +axx,a ∈R .(1)若a =0,求f x 的最大值;(2)若0<a <1,求证:f x 有且只有一个零点;(3)设0<m <n 且m n =n m ,求证:m +n >2e.【答案】(1)1e(2)证明见解析(3)证明见解析【分析】(1)由a =0,得到f x =ln x x ,求导f x =1-ln xx 2,然后得到函数的单调性求解;(2)求导fx =1x +a x -ln x -ax x 2=1-ln x x 2,结合(1)的结论,根据0<a <1,分x >e ,0<x <e ,利用零点存在定理证明;(3)根据m n =n m 等价于ln m m =ln n n ,由(1)知f x =ln xx的单调性,得到0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,用导数法得到g x 在0,e 上单调递增,则ln xx<ln 2e -x 2e -x ,0<x <e ,再结合0<m <e <n 且ln m m =ln nn ,利用f x 在e ,+∞ 上单调递减求解.(1)解:由题知:若a =0,f x =ln xx,其定义域为0,+∞ ,所以f x =1-ln xx2,由fx =0,得x =e ,所以当0<x <e 时,f x >0;当x >e 时,f x <0,所以f x 在0,e 上单调递增,在e ,+∞ 上单调递减,所以f x max =f e =1e;(2)由题知:f x =1x +a x -ln x -axx 2=1-ln xx 2,由(1)知,f x 在0,e 上单调递增,在e ,+∞ 上单调递减,因为0<a <1,当x >e 时,f x =ln x +ax x =a +ln xx>a >0,则f x 在e ,+∞ 无零点,当0<x <e 时,f x =ln x +ax x =a +ln xx,又因为f 1e =a -e <0且f e =a +1e>0,所以f x 在0,e 上有且只有一个零点,所以,f x 有且只有一个零点.(3)因为m n =n m 等价于ln m m =ln nn,由(1)知:若a =0,f x =ln xx,且f x 在0,e 上单调递增,在e ,+∞ 上单调递减,且0<m <n ,所以0<m <e ,n >e ,即0<m <e <n ,令g x =2e -x ln x -x ln 2e -x ,0<x <e ,所以g x =-ln x +2e -x x -ln 2e -x +x2e -x ,=-ln x 2e -x +2e -x x +x2e -x ,=-ln x -e 2+e 2 +2e -x x +x2e -x>-ln e 2+2=0,所以g x 在0,e 上单调递增,g x <g e =0,所以ln x x <ln 2e -x 2e -x,0<x <e ,又因为0<m <e <n 且ln m m =ln nn ,所以ln n n =ln mm <ln 2e -m 2e -m ,又因为n >e ,2e -m >e ,且f x 在e ,+∞ 上单调递减,所以n >2e -m ,即m +n >2e.【变式演练】1.已知函数f x =2ln x +x 2+a -1 x -a ,(a ∈R ),当x ≥1时,f (x )≥0恒成立.(1)求实数a 的取值范围;(2)若正实数x 1、x 2(x 1≠x 2)满足f (x 1)+f (x 2)=0,证明:x 1+x 2>2.【答案】(1)-3,+∞ ;(2)证明见解析.【分析】(1)根据题意,求出导函数f x ,分类讨论当a ≥-3和a <-3两种情况,利用导数研究函数的单调性,结合x ≥1时,f (x )≥0恒成立,从而得出实数a 的取值范围;(2)不妨设x 1<x 2,由f (x 1)+f (x 2)=0得出f (x 2)=-f (x 1),从而可知只要证明-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,构造新函数g (x )=f (x )+f (2-x ),求出g(x )=4(x -1)3x (x -2),利用导数研究函数的单调性得出g (x )在区间(0,1)上单调增函数,进而可知当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,从而即可证明x 1+x 2>2.(1)解:根据题意,可知f x 的定义域为0,+∞ ,而f (x )=2x+2x +(a -1),当a ≥-3时,f (x )=2x+2x +(a -1)≥a +3≥0,f 1 =0,∴f (x )为单调递增函数,∴当x ≥1时,f (x )≥0成立;当a <-3时,存在大于1的实数m ,使得f (m )=0,∴当1<x <m 时,f (x )<0成立,∴f (x )在区间(1,m )上单调递减,∴当1<x <m 时,f (x )<f 1 =0;∴a <-3不可能成立,所以a ≥-3,即a 的取值范围为-3,+∞ .(2)证明:不妨设x 1<x 2,∵正实数x 1、x 2满足f (x 1)+f (x 2)=0,有(1)可知,0<x 1<1<x 2,又∵f (x )为单调递增函数,所以x 1+x 2>2⇔x 2>2-x 1⇔f (x 2)>f (2-x 1),又∵f (x 1)+f (x 2)=0⇔f (x 2)=-f (x 1),所以只要证明:-f (x 1)>f (2-x 1)⇔f (x 1)+f (2-x 1)<0,设g (x )=f (x )+f (2-x ),则g (x )=2[ln x +ln (2-x )+x 2-2x +1],可得g(x )=4(x -1)3x (x -2),∴当0<x <1时,g (x )>0成立,∴g (x )在区间(0,1)上单调增函数,又∵g 1 =0,∴当0<x <1时,g (x )<0成立,即f (x )+f (2-x )<0,所以不等式f (x 1)+f (2-x 1)<0成立,所以x 1+x 2>2.题型七同构型证明不等式【典例分析】1.材料:在现行的数学分析教材中,对“初等函数”给出了确切的定义,即由常数和基本初等函数经过有限次的四则运算及有限次的复合步骤所构成的,且能用一个式子表示的.如函数f x =x x x >0 ,我们可以作变形:f x =x x =e ln x x =e x ⋅ln x =e t t =x ln x ,所以f x 可看作是由函数f t=e t 和g x =x ln x 复合而成的,即f x =x x x >0 为初等函数,根据以上材料:(1)直接写出初等函数f x =x x x >0 极值点(2)对于初等函数h x =x x 2x >0 ,有且仅有两个不相等实数x 1,x 20<x 1<x 2 满足:h x 1 =h x 2 =e k .(i )求k 的取值范围.(ii )求证:x e 2-2e 2≤e-e 2x 1(注:题中e 为自然对数的底数,即e =2.71828⋯)【答案】(1)极小值点为x =1e ,无极大值点(2)(i )k ∈-12e,0 ;(ii )证明见解析【分析】(1)根据材料中的信息可求得极小值点为x =1e;(2)(i )将问题转化为求函数的最小值问题,同时要注意考查边界;(ii )通过换元,将问题转化为求函数的最值问题,从而获得证明.解:(1)极小值点为x =1e,无极大值点.(2)由题意得:x x 211=x x 222=e k 即x 21ln x 1=x 22ln x 2=k .(i )问题转化为m x =x 2ln x -k 在0,+∞ 内有两个零点.则m x =x 1+2ln x 当x ∈0,e-12时,mx <0,m x 单调递减;当x ∈e -12,+∞ 时,m x >0,m x 单调递增.若m x 有两个零点,则必有m e -12<0.解得:k >-12e若k ≥0,当0<x <e-12时,m x =x 2ln x -k ≤x 2ln x <0,无法保证m x 有两个零点.若-12e<k <0,又m e 1k>0,m e -12 <0,m 1 =-k >0故∃x 1∈e 1k ,e-12使得m x 1 =0,∃x 2∈e -12,1 使得m x 2 =0.综上:k ∈-12e ,0(ii )设t =x 2x 1,则t ∈1,+∞ .将t =x 2x 1代入x 21ln x 1=x 22ln x 2可得:ln x 1=t 2ln t 1-t 2,ln x 2=ln t 1-t 2(*)欲证:x e 2-2e2≤e -e 2x 1,需证:ln x e 2-2e2≤ln e -e 2x 1即证:ln x 1+e 2-2e ln x 2≤-e 2.将(*)代入,则有t 2+e 2-2e ln t 1-t 2≤-e2则只需证明:x +e 2-2e ln x1-x ≤-e x >1 即ln x ≥e x -1 x +e 2-2ex >1 .构造函数φx =x -1ln x -x e -e +2,则φ x =ln x -x -1xln 2x -1e ,φ x =x +1 2x -1 x +1-ln xx 2ln 3xx >1 (其中φ x 为φx 的导函数)令ωx =2x -1 x +1-ln x x >1 则ωx =-x -1 2x x +1 2<0所以ωx <ω1 =0则φ x <0.因此φ x 在1,+∞ 内单调递减.又φ e =0,当x ∈1,e 时,φ x >0,φx 单调递增;当x ∈e ,+∞ 时,φ x <0,φx 单调递减.所以φx =x -1ln x -x e -e +2≤φe =0,因此有x -1ln x -xe ≤e -2即ln x ≥e x -1x +e 2-2ex >1 .综上所述,命题得证.【变式演练】1.已知函数f x =e ax x ,g x =ln x +2x +1x,其中a ∈R .(1)试讨论函数f x 的单调性;(2)若a =2,证明:xf (x )≥g (x ).【答案】(1)答案见解析;(2)证明见解析.【分析】(1)f x 的定义域为(-∞,0)∪(0,+∞),求出f x ,分别讨论a >0,a =0,a <0时不等式f x >0和fx <0的解集即可得单调递增区间和单调递减区间,即可求解;(2)g x 的定义域为0,+∞ ,不等式等价于xe 2x ≥ln x +2x +1,e ln x +2x ≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,利用导数判断单调性和最值即可求证.解:(1)f x 的定义域为(-∞,0)∪(0,+∞),由f x =e ax x 可得:f x =ae ax ⋅x -e ax ⋅1x 2=e ax (ax -1)x 2,当a >0时,令f x >0,解得x >1a ;令f x <0,解得x <0或0<x <1a;此时f x 在1a ,+∞上单调递增,在-∞,0 和0,1a上单调递减:当a =0时,f (x )=1x,此时f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,令f x >0,解得x <1a ,令f x <0,解得1a<x <0或x >0,此时f x 在-∞,1a 上单调递增,在1a,0 和(0,+∞)上单调递减:综上所述:当a >0时,f x 在1a ,+∞ 上单调递增,在(-∞,0)和0,1a上单调递减;当a =0时,f x 在(-∞,0)和(0,+∞)上单调递减;当a <0时,f x 在-∞,1a 上单调递增,在1a ,0 和(0,+∞)上单调递减.(2)因为a =2,g x =ln x +2x +1x的定义域为0,+∞ ,所以xf (x )≥g (x )即xe 2x ≥ln x +2x +1,即证:e ln x ⋅e 2x =e ln x +2x≥ln x +2x +1,令t =ln x +2x ∈R ,只需证e t ≥t +1,令h t =e t -t -1,则h t =e t-1,令h t >0,解得:t >0;h t <0,解得t <0;所以h t 在(-∞,0)上单调递减,在(0,+∞)上单调递增;所以h t ≥h 0 =e 0-0-1=0,所以e t ≥t +1,所以e ln x +2x ≥ln x +2x +1,即xf (x )≥g (x )成立.题型八先放缩型证明不等式【典例分析】1.设函数f x =a ln x +1x-1a ∈R .(1)求函数f x 的单调区间;(2)当x ∈0,1 时,证明:x 2+x -1x-1<e x ln x .【答案】(1)答案不唯一,具体见解析;(2)证明见解析.【分析】(1)求得f x =ax -1x2,分a ≤0、a >0两种情况讨论,分析导数f x 在0,+∞ 上的符号变化,由此可得出函数f x 的增区间和减区间;(2)由(1)可得出ln x >1-1x,要证原不等式成立,先证e x <x +1 2对任意的x ∈0,1 恒成立,构造函数h x =e x -x +1 2,利用导数分析函数h x 在0,1 上的单调性,由此可证得e x <x +1 2对任意的x ∈0,1 恒成立,即可证得原不等式成立.(1)解:f x 的定义域为0,+∞ ,则f x =a x -1x 2=ax -1x2,当a ≤0时,fx ≤0在0,+∞ 恒成立,则函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,当x ∈0,1a 时,f x <0;当x ∈1a ,+∞ 时,f x >0.则函数f x 的单调减区间为0,1a,单调增区间为1a ,+∞ .综上所述,当a ≤0时,函数f x 的单调减区间为0,+∞ ,没有增区间:当a >0时,函数f x 的单调减区间为0,1a ,单调增区间为1a,+∞ .(2)证明:由(1)可知当a =1时,f x 的单调减区间为0,1 ,单调增区间为1,+∞ ;当x =1时,f x 取极小值f 1 =0,所以f x ≥f 1 =0,当x ∈0,1 时,即有ln x +1x -1>0,所以ln x >1-1x,所以要证x 2+x -1x -1<e x ln x ,只需证x 2+x -1x -1<e x 1-1x ,整理得e x ⋅x -1x>x +1 2x -1x,又因为x ∈0,1 ,所以只需证e x <x +1 2,令h x =e x -x +1 2,则h x =e x -2x +1 ,令H x =h x =e x -2x +1 ,则H x =e x -2,令H x =e x -2=0,得x =ln2,当0<x <ln2时,H x <0,H x 单调递减,当ln2<x <1时,H x >0,H x 单调递增,所以H x min =H ln2 =e ln2-2ln2+1 =-2ln2<0,又H 0 =e 0-2=-1<0,H 1 =e -4<0,所以在x ∈0,1 时,H x =h x <0恒成立,所以h x 在0,1 上单调递减,所以h x <h 0 =0,即h x =e x -x +1 2<0,即e x <x +1 2成立,即得证.【变式演练】1.已知函数f x =ae x -2-ln x +ln a .(1)若曲线y =f x 在点2,f 2 处的切线方程为y =32x -1,求a 的值;(2)若a ≥e ,证明:f x ≥2.【答案】(1)a =2(2)证明见解析【分析】(1)由f 2 =32,可得a 的值,再验证切点坐标也满足条件;(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2也即证e x -1-ln x -1≥0,设g x =e x -1-ln x -1,求出导数分析其单调性,得出其最值可证明.解:(1)f x =ae x -2-1x ,则f 2 =ae 2-2-12=a -12=32,解得a =2又f 2 =32×2-1=2,f 2 =ae 2-2-ln2+ln a =2,可得a =2综上a =2(2)由a ≥e ,e x -2>0知要证f x =ae x -2-ln x +ln a ≥2即证e ⋅e x -2-ln x +ln e =e x -1-ln x +1≥2也即证e x -1-ln x -1≥0。

导数压轴题总结

导数压轴题总结

导数压轴题常用技巧归类总结---沐志伟一.隐零点代换导函数为超越函数,零点存在却无法求出,我们称之为隐零点。

对零点“设而不求”,通过整体代换,从而解决问题.我们称这类问题为“隐零点”问题。

操作步骤如下:第一步:用零点存在性定理判定导函数零点的存在性,列出零点方程()00'=x f ,并结合()x f '的单调性得到零点范围;第二步:以零点为分界点,说明导函数()x f '的正负,进而得到()x f 的最值表达式;第三步:将零点方程适当变形,整体代入最值式子进行化简。

题型一不需要估计零点的取值范围例1已知函数ax xx x f --=1ln )(.(1)求函数)(x f 的单调区间;(2)若21<<a ,求证:1)(-<x f .解:(1)令()22ln 2x x x g --=,()041'<-=x xx g 所以()x g 在(0,+∞)上单调递减,且()01=g 当()1,0∈x 时,()0>x g ,()0'>x f ;当()+∞∈,1x 时,()0<x g ,()0'<x f ;综上所述,()x f 的单调递增区间是()1,0,单调递减区间是()+∞,1.(2)证明:()1-<x f ,即11ln -<--ax xx 设()11ln +--=ax x x x h ,()()02ln 22'>+--=x xx ax x h ,设()2ln 2+--=x ax x t ,()012'<--=xax x t ,所以()x h '在()+∞,0上单调递减.因为21<<a ,所以02)1('>-=a h ,()02'<-=a eh ,所以在()2,1e 上必存在一个0x 使得()02ln 20200'=+--=x x ax x h ,即2ln 200+-=ax x ,所以当()0,0x x ∈时,()0'>x h ,()x h 单调递增,当()+∞∈,0x x 时,()0'<x h ,()x h 单调递减,所以()()11ln 0000max +--==ax x x x h x h ,因为2ln 20+-=ax x ,所以()0020012x x ax x h ++-=,令()00=x h 得a ax 48110+±=,因为21<<a ,所以04811<+-a a ,14811<++aa,因为()20,1ex ∈,所以()00<x h 恒成立,即()0<x h 恒成立,综上所述,当21<<a 时,()1-<x f .题型二估计隐零点的范围(卡根问题)例2已知函数()ln f x x x x =+,若k Z ∈,且()1f x k x <-对任意1x >恒成立,求k 最大值.解: ()ln 11f x x x x k x x +<=--恒成立,min ln 1x x x k x +⎛⎫∴< ⎪-⎝⎭;令()ln 1x x x g x x +=-,则()()'2ln 21x x g x x --=-,令()ln 2h x x x =--,()'1110x h x x x-=-=>()h x ∴在()1,+∞单调递增。

高一数学导数压轴题解题技巧

高一数学导数压轴题解题技巧

高一数学导数压轴题解题技巧
高一数学导数压轴题通常是考察学生对导数概念的理解和应用
能力的重要考试,以下是一些解题技巧:
1. 理解导数定义
导数定义是理解导数概念的基础,需熟练掌握并能熟练运用。

2. 熟练掌握导数的基本性质
导数具有线性性、乘积法则、商法则、链式法则等基本性质,需要熟练掌握并灵活运用。

3. 熟练掌握求导公式
常用的求导公式包括常函数导数、幂函数导数、指数函数导数、对数函数导数、三角函数导数等,需要熟练掌握并能够正确运用。

4. 理解导数的物理意义
导数的物理意义是变化率,需要理解并能够将其应用到实际问题中。

5. 灵活应用导数解决实际问题
在解决实际问题时,需要灵活运用导数概念和求导公式,并联系实际情况进行分析和解答。

通过以上解题技巧,相信学生们可以在高一数学导数压轴题中取得好成绩。

- 1 -。

高考满分数学压轴题22 导数中的参数问题(可编辑可打印)

高考满分数学压轴题22 导数中的参数问题(可编辑可打印)

【方法综述】导数中的参数问题主要指的是形如“已知不等式恒成立、存在性、方程的根、零点等条件,求解参数的取值或取值范围”.这类问题在近几年的高考中,或多或少都有在压轴选填题或解答题中出现,属于压轴常见题型。

而要解决这类型的题目的关键,突破口在于如何处理参数,本专题主要介绍分离参数法、分类讨论法及变换主元法等,从而解决常见的导数中的参数问题。

【解答策略】一.分离参数法分离参数法是处理参数问题中最常见的一种手段,是把参数和自变量进行分离,分离到等式或不等式的两边(当然部分题目半分离也是可以的),从而消除参数的影响,把含参问题转化为不含参数的最值、单调性、零点等问题,当然使用这种方法的前提是可以进行自变量和参数的分离. 1.形如()()af x g x =或()()af x g x <(其中()f x 符号确定)该类题型,我们可以把参数和自变量进行完全分离,从而把含参数问题转化为不含参数的最值、单调性或图像问题.例1.已知函数432121()ln 432e f x x x ax x x x =-++-在(0,)+∞上单调递增,则实数a 的取值范围是 A .21[,)e e++∞B .(0,]eC .21[2,)e e--+∞ D .[21,)e -+∞【来源】广东省茂名市五校2020-2021学年高三上学期第一次(10月)联考数学(理)试题 【答案】A【解析】32()2ln 0f x x ex ax x '=-+-≥在(0,)+∞上恒成立2ln 2xa ex x x⇔≥+-, 设2ln ()2x p x ex x x =+-,221ln 2()()x e x x p x x-+-'=, 当0x e <<时,()0p x '>;当x e >时,()0p x '<;()p x ∴在(0,)e 单调递增,在(,)e +∞单调递减,21()()p x p e e e∴≤=+,21a e e ∴≥+.故选:A .导数中的参数问题【举一反三】1.(2020·宣威市第五中学高三(理))若函数()f x 与()g x 满足:存在实数t ,使得()()f t g t '=,则称函数()g x 为()f x 的“友导”函数.已知函数21()32g x kx x =-+为函数()2ln f x x x x =+的“友导”函数,则k 的最小值为( ) A .12B .1C .2D .52【答案】C【解析】()1g x kx '=-,由题意,()g x 为函数()f x 的“友导”函数,即方程2ln 1x x x kx +=-有解,故1ln 1k x x x=++, 记1()ln 1p x x x x =++,则22211()1ln ln x p x x x x x-'=+-=+, 当1x >时,2210x x ->,ln 0x >,故()0p x '>,故()p x 递增; 当01x <<时,2210x x-<,ln 0x <,故()0p x '<,故()p x 递减, 故()(1)2p x p ≥=,故由方程1ln 1k x x x=++有解,得2k ≥,所以k 的最小值为2.故选:C. 2.(2020·广东中山纪念中学高三月考)若函数()()()2ln 2010a x x x f x x a x x ⎧-->⎪=⎨++<⎪⎩的最大值为()1f -,则实数a 的取值范围为( )A .20,2e ⎡⎤⎣⎦B .30,2e ⎡⎤⎣⎦C .(20,2e ⎤⎦D .(30,2e ⎤⎦【答案】B【解析】由12f a -=-+() ,可得222alnx x a --≤-+ 在0x > 恒成立, 即为a (1-lnx )≥-x 2,当x e = 时,0e -> 2显然成立;当0x e << 时,有10lnx -> ,可得21x a lnx ≥-,设201x g x x e lnx =-(),<<,222(1)(23)(1)(1)x lnx x x lnx g x lnx lnx (),---'==-- 由0x e << 时,223lnx << ,则0g x g x ()<,()'在0e (,)递减,且0g x ()< , 可得0a ≥ ;当x e > 时,有10lnx -< ,可得21x a lnx ≤- , 设22(23)1(1)x x lnx g x x e g x lnx lnx -='=--(),>,(), 由32 e x e << 时,0g x g x ()<,()' 在32 e e (,)递减, 由32x e >时,0g x g x '()>,() 在32 ,x e ⎛⎫+∞ ⎪⎝⎭递增, 即有)g x ( 在32x e = 处取得极小值,且为最小值32e , 可得32a e ≤ ,综上可得302a e ≤≤ .故选B .3.(2020湖南省永州市高三)若存在,使得成立,则实数的取值范围是( )A .B .C .D .【答案】D 【解析】原不等式等价于:令,则存在,使得成立又 当时,,则单调递增;当时,,则单调递减,,即当且仅当,即时取等号,即,本题正确选项:2.形如()(),f x a g x =或()()af x g x <(其中(),f x a 是关于x 一次函数)该类题型中,参数与自变量可以半分离,等式或不等式一边是含有参数的一次函数,参数对一次函数图像的影响是比较容易分析的,故而再利用数形结合思想就很容易解决该类题目了.【例2】已知函数2ln 1()x mx f x x+-=有两个零点a b 、,且存在唯一的整数0(,)x a b ∈,则实数m 的取值范围是( )A .0,2e ⎛⎫ ⎪⎝⎭B .ln 2,14e ⎡⎫⎪⎢⎣⎭ C .ln 3,92e e ⎡⎫⎪⎢⎣⎭ D .ln 2e 0,4⎛⎫ ⎪⎝⎭【答案】B【解析】由题意2ln 1()0x mx f x x+-==,得2ln 1x m x +=, 设2ln 1()(0)x h x x x +=>,求导4332(ln 1)12(ln 1)(2ln 1)()x x x x x h x x x x-+-+-+'=== 令()0h x '=,解得12x e -=当120x e -<<时,()0h x '>,()h x 单调递增;当12x e ->时,()0h x '<,()h x 单调递减; 故当12x e -=时,函数取得极大值,且12()2e h e -=又1=x e时,()0h x =;当x →+∞时,2ln 10,0x x +>>,故()0h x →; 作出函数大致图像,如图所示:又(1)1h =,ln 21ln 2(2)44eh +== 因为存在唯一的整数0(,)x a b ∈,使得y m =与2ln 1()x h x x+=的图象有两个交点, 由图可知:(2)(1)h m h ≤<,即ln 214em ≤< 故选:B.【方法点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 【举一反三】1.(2020·重庆市第三十七中学校高三(理))已知函数32()32f x x x ax a =-+--,若刚好有两个正整数(1,2)i x i =使得()0i f x >,则实数a 的取值范围是( )A .20,3⎡⎫⎪⎢⎣⎭B .20,3⎛⎤ ⎥⎦⎝C .2,13⎡⎫⎪⎢⎣⎭D .1,13⎡⎫⎪⎢⎣⎭【答案】A【解析】令32()3,()(2)()()()g x x x h x a x f x g x h x =-+=+∴=-,且2'()36g x x x =-+, 因为刚好有两个正整数(1,2)i x i =使得()0i f x >,即()()i i g x h x >, 作出(),()g x h x 的图象,如图所示,其中()h x 过定点(2,0)-,直线斜率为a ,由图可知,203a ≤≤时, 有且仅有两个点()()1,2,2,4满足条件, 即有且仅有121,2x x ==使得()0i f x >. 实数a 的取值范围是20,3⎛⎤ ⎥⎦⎝,故选:A2(2020济宁市高三模拟)已知当时,关于的方程有唯一实数解,则所在的区间是( ) A .(3,4) B .(4,5)C .(5,6)D .(6.7)【答案】C 【解析】由xlnx+(3﹣a )x+a =0,得,令f (x )(x >1),则f′(x ).令g (x )=x ﹣lnx ﹣4,则g′(x )=10,∴g(x )在(1,+∞)上为增函数, ∵g(5)=1﹣ln5<0,g (6)=2﹣ln6>0, ∴存在唯一x 0∈(5,6),使得g (x 0)=0,∴当x∈(1,x 0)时,f′(x )<0,当x∈(x 0,+∞)时,f′(x )>0. 则f (x )在(1,x 0)上单调递减,在(x 0,+∞)上单调递增.∴f(x)min=f(x0).∵﹣4=0,∴,则∈(5,6).∴a所在的区间是(5,6).故选:C3.(2020蚌埠市高三)定义在上的函数满足,且,不等式有解,则正实数的取值范围是()A.B.C.D.【答案】C【解析】因为,故,因,所以即.不等式有解可化为即在有解.令,则,当时,,在上为增函数;当时,,在上为减函数;故,所以,故选C.二.分类讨论法分类讨论法是指通过分析参数对函数相应性质的影响,然后划分情况进行相应分析,解决问题的方法,该类方法的关键是找到讨论的依据或分类的情况,该方法一般在分离参数法无法解决问题的情况下,才考虑采用,常见的有二次型和指对数型讨论. 1.二次型根的分布或不等式解集讨论该类题型在进行求解过程,关键步骤出现求解含参数二次不等式或二次方程, 可以依次考虑依次根据对应定性(若二次项系数含参),开口,判别式,两根的大小(或跟固定区间的端点比较)为讨论的依据,进行分类讨论,然后做出简图即可解决.【例3】(2020·全国高三专题)函数()()23xf x x e =-,关于x 的方程()()210fx mf x -+=恰有四个不同实数根,则正数m 的取值范围为( ) A .()0,2 B .()2,+∞C .3360,6e e ⎛⎫+ ⎪⎝⎭D .336,6e e ⎛⎫++∞ ⎪⎝⎭【答案】D 【解析】【分析】利用导函数讨论函数单调性与极值情况,转化为讨论210t mt -+=的根的情况,结合根的分布求解.【详解】()()()()22331x xx x e x f e x x =+-=+-',令()0f x '=,得3x =-或1x =,当3x <-时,()0f x '>,函数()f x 在(),3-∞-上单调递增,且()0f x >; 当31x -<<时,()0f x '<,函数()f x 在()3,1-上单调递减; 当1x >时,()0f x '>,函数()f x 在()1,+∞上单调递增. 所以极大值()363f e-=,极小值()12f e =-,作出大致图象:令()f x t =,则方程210t mt -+=有两个不同的实数根,且一个根在360,e ⎛⎫ ⎪⎝⎭内,另一个根在36,e ⎛⎫+∞ ⎪⎝⎭内, 或者两个根都在()2,0e -内.因为两根之和m 为正数,所以两个根不可能在()2,0e -内.令()21g x x mx =-+,因为()010g =>,所以只需360g e ⎛⎫< ⎪⎝⎭,即6336610m e e -+<,得3366e m e >+,即m 的取值范围为336,6e e ⎛⎫++∞ ⎪⎝⎭.故选:D【举一反三】1.(2020·湖南衡阳市一中高三月考(理))已知函数()f x kx =,ln ()xg x x=,若关于x 的方程()()f x g x =在区间1[,]e e内有两个实数解,则实数k 的取值范围是( )A .211[,)2e eB .11(,]2e eC .21(0,)e D .1(,)e+∞【答案】A【解析】易知当k ≤0时,方程只有一个解,所以k >0.令2()ln h x kx x =-,2121(21)(21)()2kx k x k x h x kx x x x--+=-==', 令()0h x '=得12x k =,12x k=为函数的极小值点, 又关于x 的方程()f x =()g x 在区间1[,]e e内有两个实数解,所以()01()01()02112h e h e h k e ek ≥⎧⎪⎪≥⎪⎪⎨<⎪⎪⎪<<⎪⎩,解得211[,)2k e e ∈,故选A.2.(2020扬州中学高三模拟)已知函数有两个不同的极值点,,若不等式恒成立,则实数的取值范围是_______.【答案】【解析】∵,∴.∵函数有两个不同的极值点,,∴,是方程的两个实数根,且,∴,且,解得.由题意得.令,则,∴在上单调递增,∴.又不等式恒成立,∴,∴实数的取值范围是.故答案为.2.指数对数型解集或根的讨论该类题型在进行求解过程,关键步骤出现求解含参指对数型不等式或方程, 可以依次考虑依次根据对应指对数方程的根大小(或与固定区间端点的大小)为讨论的依据,进行分类讨论. 即可解决.【例4】(2020•泉州模拟)已知函数f (x )=ae x ﹣x ﹣ae ,若存在a ∈(﹣1,1),使得关于x 的不等式f (x ) ﹣k ≥0恒成立,则k 的取值范围为( ) A .(﹣∞,﹣1] B .(﹣∞,﹣1)C .(﹣∞,0]D .(﹣∞,0)【答案】A【解析】不等式f (x )﹣k ≥0恒成立,即k ≤f (x )恒成立; 则问题化为存在a ∈(﹣1,1),函数f (x )=ae x ﹣x ﹣ae 有最小值,又f ′(x )=ae x ﹣1,当a ∈(﹣1,0]时,f ′(x )≤0,f (x )是单调减函数,不存在最小值; 当a ∈(0,1)时,令f ′(x )=0,得e x =,解得x =﹣lna , 即x =﹣lna 时,f (x )有最小值为f (﹣lna )=1+lna ﹣ae ; 设g (a )=1+lna ﹣ae ,其中a ∈(0,1),则g ′(a )=﹣e ,令g ′(a )=0,解得a =,所以a ∈(0,)时,g ′(a )>0,g (a )单调递增;a ∈(,1)时,g ′(a )<0,g (a )单调递减;所以g (a )的最大值为g ()=1+ln ﹣•e =﹣1; 所以存在a ∈(0,1)时,使得关于x 的不等式f (x )﹣k ≥0恒成立,则k 的取值范围是(﹣∞,﹣1].故选:A . 【举一反三】1.函数()()211,12x f x x e kx k ⎛⎫⎛⎤=--∈⎪⎥⎝⎦⎝⎭,则()f x 在[]0,k 的最大值()h k =( ) A . ()32ln22ln2-- B . 1- C . ()22ln22ln2k -- D . ()31k k e k --【答案】D2.(2020·浙江省杭州第二中学高三期中)已知函数()f x 的图象在点()00,x y 处的切线为():l y g x =,若函数()f x 满足x I ∀∈(其中I 为函数()f x 的定义域,当0x x ≠时,()()()00f x g x x x -->⎡⎤⎣⎦恒成立,则称0x 为函数()f x 的“转折点”,已知函数()2122x f x e ax x =--在区间[]0,1上存在一个“转折点”,则a 的取值范围是 A .[]0,e B .[]1,eC .[]1,+∞D .(],e -∞ 【答案】B【解析】由题可得()2xf x e ax =--',则在()00,x y 点处的切线的斜率()0002xk f x e ax ==--',0200122x y e ax x =--,所以函数()f x 的图象在点()00,x y 处的切线方程为:00200001(2)(2)()2x x y e ax x e ax x x ---=---,即切线()00200001:=(2)()+22x xl y g x e ax x x e ax x =-----,令()()()h x f x g x =-, 则002200011()2(2)()222x x xh x e ax x e ax x x e ax x =-------++,且0()0h x = 0000()2(2)=+x x x x h x e ax e ax e ax e ax =-------',且0()0h x '=,()x h x e a ='-',(1)当0a ≤时,()0xh x e a =-'>',则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(2)当01a <<时, ()0xh x e a =-'>'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=,所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(3)当1a =,()10x h x e =-'≥'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,取00x =,则()10x h x e x =-->',所以()h x 在区间(]0,1上单调递增,0()()0h x h x >=,当00x x ≠=时,0()()0h x x x ->恒成立,故00x =为函数()2122x f x e ax x =--在区间[]0,1上的一个“转折点”,满足题意。

高考数学导数压轴大题7大题型梳理归纳

高考数学导数压轴大题7大题型梳理归纳

导数压轴大题7个题型梳理归纳题型一:含参分类讨论 类型一:主导函数为一次型例1:已知函数()ln f x ax a x =--,且()0f x ≥.求a 的值 解:()1ax f x x-'=.当0a ≤时,()0f x '<,即()f x 在()0,+∞上单调递减,所以当01x ∀>时,()()010f x f <=,与()0f x ≥恒成立矛盾.当0a >时,因为10x a <<时()0f x '<,当1x a>时()0f x '>,所以()min 1f x f a ⎛⎫= ⎪⎝⎭,又因为()1ln10f a a =--=,所以11a =,解得1a =类型二:主导函数为二次型例2: 已知函数()()320f x x kx x k =-+<.讨论()f x 在[],k k -上的单调性. 解:()f x 的定义域为R ,()()23210f x x kx k '=-+<,其开口向上,对称轴3k x =,且过()0,1,故03kk k <<<-,明显不能分解因式,得2412k ∆=-.(1)当24120k ∆=-≤时,即0k ≤<时,()0f x '≥,所以()f x 在[],k k -上单调递增;(2)当24120k ∆=->时,即k <令()23210f x x kx '=-+=,解得:12x x ==,因为()()210,010f k k f ''=+>=>,所以两根均在[],0k 上.因此,结合()f x '图像可得:()f x 在,,33k k k k ⎡⎡⎤+-⎢⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦上单调递增,在⎢⎥⎣⎦上单调递减.类型三:主导函数为超越型例3:已知函数()cos xf x e x x =-.求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最值. 解:定义域0,2π⎡⎤⎢⎥⎣⎦,()()cos sin 1x f x e x x '=--,令()()cos sin 1xh x e x x =--,则()()cos sin sin cos 2sin .xx h x e x x x x e x '=---=-当0,2x π⎡⎤∈⎢⎥⎣⎦,可得()0h x '≤,即()h x 在0,2π⎡⎤⎢⎥⎣⎦递减,可得()()()000h x h f '≤==,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦递减,所以()()()max01,.22f x f f x f ππ⎛⎫====- ⎪⎝⎭类型四:复杂含参分类讨论例4:已知函数()()33f x x x a a R =+-∈.若()f x 在[]1,1-上的最大值和最小值分别记为()(),M a m a ,求()()M a m a -.解:()33333,333,x x a x a f x x x a x x a x a ⎧+-≥⎪=+-=⎨-+<⎪⎩,()2233,33,x x af x x x a⎧+≥⎪'=⎨-<⎪⎩ ①当1a ≤-时,有x a ≥,故()333f x x x a =+-,所以()f x 在()1,1-上是增函数,()()()()143,143M a f a m a f a ==-=-=--,故()()8M a m a -=.②当11a -<<时,若()()3,1,33x a f x x x a ∈=+-,在(),1a 上是增函数;若()1,x a ∈-,()333f x x x a =-+,在()1,a -上是减函数,()()(){}()()3max 1,1,M a f f m a f a a =-==,由于()()1162f f a --=-+因此当113a -<≤时,()()334M a m a a a -=--+;当113a <<时,()()332M a m a a a -=-++.③当1a ≥时,有x a ≤,故()333f x x x a =-+,此时()f x 在()1,1-上是减函数,因此()()()()123,123M a f a m a f a =-=+==-+,故()()4M a m a -=.题型二:利用参变分离法解决的恒成立问题类型一:参变分离后分母跨0例5:已知函数()()()242,22xf x x xg x e x =++=+,若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:由题意()24221xx x ke x ++≤+,对于任意的2x ≥-恒成立.当1x =-,上式恒成立,故k R ∈;当1x >-,上式化为()24221x x x k e x ++≥+,令()()()2421,21x x x h x x e x ++=>-+ ()()()22+221x xxe x h x e x -'=+,所以()h x 在0x =处取得最大值,()01k h ≥= 当21x -≤<-时,上式化为()24221x x x k e x ++≤+,()h x 单调递增,故()h x 在2x =-处取得最小值,()22k h e ≤-=.综上,k 的取值范围为21,e ⎡⎤⎣⎦.类型二:参变分离后需多次求导例6:已知函数()()()()212ln ,f x a x x a R =---∈对任意的()10,,02x f x ⎛⎫∈> ⎪⎝⎭恒成立,求a 的最小值.解:即对12ln 0,,221xx a x ⎛⎫∈>-⎪-⎝⎭恒成立. 令()2ln 12,0,12x l x x x ⎛⎫=-∈ ⎪-⎝⎭,则()()()()222212ln 2ln 211x x x x x l x x x --+-'=-=-- 再令()()()222121122ln 2,0,,02x m x x x m x x x x x --⎛⎫'=+-∈=-+=< ⎪⎝⎭()m x 在10,2⎛⎫ ⎪⎝⎭上为减函数,于是()122ln 202m x m ⎛⎫>=->⎪⎝⎭,从而,()0l x '>,于是()l x 在10,2⎛⎫ ⎪⎝⎭上为增函数,()124ln 22l x l ⎛⎫<=- ⎪⎝⎭,故要2ln 21xa x >--恒成立,只要[)24ln 2,a ∈-+∞,即a 的最小值24ln 2-. 变式1:已知函数()()1ln ,0x f x x a R a ax -=+∈≠,()()()11x g x b x xe b R x=---∈(1)讨论()f x 的单调性;(2)当1a =时,若关于x 的不等式()()2f x g x +≤-恒成立,求b 取值范围.类型三:参变分离后零点设而不求例7:已知函数()ln f x x x x =+,若k Z ∈,且()1f x k x <-对于任意1x >恒成立,求k 的最大值.解:恒成立不等式()minln ln ,111f x x x x x x x k k x x x ++⎛⎫<=< ⎪---⎝⎭,令()ln 1x x x g x x +=-,则()()2ln 21x x g x x --'=-,考虑分子()ln 2,h x x x =-- ()110h x x'=->,()h x 在()1,+∞单调递增.()()31ln 30,42ln 20h h =-<=->由零点存在定理,()3,4b ∃∈,使得()0h b =.所以()1,x b ∈,()()00h x g x '<⇒<,同理()(),,0x b g x '∈+∞>,所以()g x 在 ()1,b 单调递减,在(),b +∞单调递增.()()min ln 1b b bg x g b b +==-,因为()0h b =即ln 20ln 2b b b b --=⇒=-,()()()23,4,1b b b g b b b +-==∈-所以,k b <得max 3k =变式1:(理)已知函数().x ln x eaxx f x +-=(2)当0>x 时,()e x f -≤,求a 的取值范围.题型三:无法参变分离的恒成立问题类型一:切线法例8:若[)20,,10x x e ax x ∈+∞---≥,求a 的取值范围.类型二:赋值法例9:已知实数0a ≠,设函数()ln 1,0f x a x x x =++>.(1)当34a =-时,求函数()f x 的单调区间; (2)对于任意21,e ⎡⎫+∞⎪⎢⎣⎭均有()2x f x a ≤,求a 的取值范围. 解析:(1)当34a =-时,3()ln 1,04f x x x x =-++>. 3(12)(21()42141x x f 'x x x x x++=-=++ 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得0a <≤当04a <≤时,()2f x a≤等价于22ln 0x a a --≥.令1t a=,则t ≥.设()22ln ,g t t x t =≥,则()2ln g t g x ≥=.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤则()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-=.故所以,()(1)0p x p ≥= .因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,1()1g t g x ⎛+= ⎝.令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭.由(i )得11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x . 因此1()10g t g x ⎛+=>⎝.由(i )(ii )得对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a.综上所述,所求a 的取值范围是⎛ ⎝⎦题型四:零点问题类型一:利用单调性与零点存在定理讨论零点个数 例10:已知函数()()31+ln .4f x x axg x x =+=-,(2)用{}min ,m n 表示,m n 中最小值,设函数()()(){}()min ,0h x f x g x x =>讨论()h x 零点个数.解:(2)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =<≤,∴()h x 在(1,)+∞无零点.当x =1时,若54a -≥,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===, 故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a -≤或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调,而1(0)4f =,5(1)4f a =+,所以当3a -≤时,()f x 在(0,1)有一个零点; 当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增,故当x ()f x 取的最小值,最小值为f 14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+, 所以当5344a -<<-时,()f x 在(0,1)有两个零点; 当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 由一个零点;当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.类型二:±∞方向上的函数值分析例11:已知函数()()22.x xf x ae a e x =+--若()f x 有两个零点,求a 取值范围.(2)(ⅰ)若0a ≤,由(1)知,()f x 至多有一个零点. (ⅱ)若0a >,由(1)知,当ln x a =-时,()f x 取得最小值,最小值为1(ln )1ln f a a a-=-+.①当1a =时,由于(ln )0f a -=,故()f x 只有一个零点; ②当(1,)a ∈+∞时,由于11ln 0a a-+>,即(ln )0f a ->,故()f x 没有零点; ③当(0,1)a ∈时,11ln 0a a-+<,即(ln )0f a -<. 又422(2)e(2)e 22e 20f a a ----=+-+>-+>,故()f x 在(,ln )a -∞-有一个零点.设正整数0n 满足03ln 1n a ⎛⎫>+⎪⎝⎭,则()()000032ln 10n nf n e ae n f a ⎛⎫⎛⎫>-->+> ⎪ ⎪⎝⎭⎝⎭, 因此()f x 在(ln ,)a -+∞有一个零点.综上,a 的取值范围为(0,1).总结:若()01,ln 0a f a <<-<,要证明()f x 有两个零点,结合零点存在定理,分别在a 的左右两侧,这两个点的函数值()f x 都大于0,这时候需要我们对函数进行适当地放缩,化简,以便取值.先分析当x →-∞,2,x x ae ae 虽然为正,但是对式子影响不大,因此可以大胆的舍掉,得出()2xf x x e >--,显然我们对于右侧这个式子观察,就容易得出一个足够小的x (如1x =-),使得式子大于0了.再分析当x →+∞,我们可以把x ae 这个虽然是正数,但贡献比较小的项舍掉来简化运算,得到()()2xxf x eaex >--,显然当x 足够大,就可以使()2x ae -大于任何正数.那么把它放缩成多少才可以使得x e 的倍数大于x 呢?由常用的不等式1x e x x ≥+>,因此只需要使得21x ae ->即3ln x a >(如3ln 1x a=+)就可以了.题型五:极值点偏移类型一:标准极值点偏移例13:已知函数()()()221x f x x e a x =-+-有两个零点1,2x x ,证明12 2.x x +<解: 不妨设12x x <,由(Ⅰ)知12(,1),(1,)x x ∈-∞∈+∞,22(,1)x -∈-∞,又()f x 在(,1)-∞上单调递减,所以122x x +<等价于12()(2)f x f x >-,即2(2)0f x -<.由于222222(2)(1)x f x x e a x --=-+-, 而22222()(2)(1)0xf x x e a x =-+-=,所以222222(2)(2)x x f x x ex e --=---.设2()(2)xx g x xex e -=---,则2'()(1)()x x g x x e e -=--.所以当1x >时,'()0g x <,而(1)0g =,故当1x >时,()0g x <. 从而22()(2)0g x f x =-<,故122x x +<.类型二:推广极值点偏移例14:已知()()()12ln ,f x x x f x f x ==,求证121x x +<. 解:我们可以发现12,x x 不一定恒在12x =两侧,因此需要分类讨论: (1)若12102x x <<<,则1211122x x +<+=,该不等式显然成立; (2)若121012x x <<<<,令()()()()()1ln 1ln 1g x f x f x x x x x =--=---102x <<,故()()()()12ln ln 12,01x g x x x g x x x -'''=+-+=>-,()g x '在10,2⎛⎫ ⎪⎝⎭上单调递增,当0x →时,()1;22ln 202g x g ⎛⎫''→-∞=-> ⎪⎝⎭.010,2x ⎛⎫∃∈ ⎪⎝⎭使()00g x '=即()g x 在()00,x 上单调递减,在01,2x ⎛⎫ ⎪⎝⎭上单调递增,又0x →时,()0g x →,且102g ⎛⎫=⎪⎝⎭,故()0g x <,即()()1f x f x <-对10,2x ⎛⎫∈ ⎪⎝⎭成立,得证.题型六:双变量问题类型一:齐次划转单变量例15:已知函数()()1ln 1a x f x x x -=-+()2a ≤.设,m n R +∈,且m n ≠,求证ln ln 2m n m nm n -+<-. 解:设m n >,证明原不等式成立等价于证明()2ln m n mm n n-<+成立,即证明21ln 1m m n m n n⎛⎫- ⎪⎝⎭<+成立.令m t n =,1t >,即证()()21ln 01t g t t t -=->+.由(1)得,()g t 在()0,+∞上单调递增,故()()10g t g >=,得证.变式1:对数函数()x f 过定点⎪⎭⎫ ⎝⎛21,e P ,函数()()()为常数m ,n x f m n x g '-=,()()的导函数为其中x f x f '.(1)讨论()x g 的单调性;(2)若对于()+∞∈∀,x 0有()m n x g -≤恒成立,且()()n x x g x h -+=2在()2121x x x ,x x ≠=处的导数相等,求证:()()22721ln x h x h ->+.解:(2)因为()1g n m =-,而()0,x ∀∈+∞有()()1g x n m g ≤-=恒成立,知()g x 当1x =时有最大值()1g ,有(1)知必有1m =.∴()()()11ln ,22ln ,g x n x h x g x x n x x x x=--=+-=-- 依题意设()()211122221120,1120k x x h x h x k k x x ⎧-+-=⎪⎪''==⎨⎪-+-=⎪⎩∴12111x x +=121212+=4x x x x x x ⇒≥>∴()()()()121212*********+ln ln 21ln h x h x x x x x x x x x x x ⎛⎫+=-+-+=-- ⎪⎝⎭令()124,21ln t x x t t t ϕ=>=--,()()1204t t tϕ'=->> ∴()t ϕ在4t >单调递增,∴()()472ln 2t ϕϕ>=-类型二:构造相同表达式转变单变量例16:已知,m n 是正整数,且1m n <<,证明()()11.nmm n +>+解:两边同时取对数,证明不等式成立等价于证明()()ln 1ln 1n m m n +>+,即证明()()ln 1ln 1m n m n ++>,构造函数()()ln 1x f x x+=,()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x =-++,()()()22110111x g x x x x -'=-=<+++,故()()00g x g <=,故()0f x '<,结合1,m n <<知()()f m f n >类型三:方程消元转单变量例17:已知()ln xf x x=与()g x ax b =+,两交点的横坐标分别为1,2x x ,12x x ≠,求证:()()12122x x g x x ++>解:依题意11211112222222ln ln ln ln x ax b x x ax bx x x ax bx ax b x ⎧=+⎪⎧=+⎪⎪⇒⎨⎨=+⎪⎪⎩=+⎪⎩,相减得: ()()()12121212ln ln x x a x x x x b x x -=+-+-,化简得()()121212lnx x a x x b x x ++=-,()()()()()()112121121212121122221ln ln 1x x x x x x x x g x x x x a x x b x x x x x x ++++=+++==⎡⎤⎣⎦-- 设12x x >,令121x t x =>,()()()12122112ln 2ln 011t t x x g x x t t t t -+++>⇔>⇔->-+ 再求导分析单调性即可.变式1:已知函数()1++=ax x ln x f 有两个零点21x ,x .()10a -<<(2)记()x f 的极值点为0x ,求证:()0212x ef x x >+.变式2:设函数()()3211232xf x ex kx kx =--+. 若()f x 存在三个极值点123,,x x x ,且123x x x <<,求k 范围,证明1322x x x +>.变式3:已知函数()122ln 21x ef x a x x x-⎛⎫=++-- ⎪⎝⎭在定义域()0,2内有两个极值点.(1)求实数a 的取值范围;(2)设12,x x 是()f x 两个极值点,求证12ln ln ln 0x x a ++>.类型四:利用韦达定理转单变量例18:已知()()21ln 02f x x x a x a =-+>,若()f x 存在两极值点1,2x x , 求证:()()1232ln 24f x f x --+>.解:()21,a x x af x x x x-+'=-+=由韦达定理12121,x x x x a +==1140,4a a ∆=->< ()()()()()212121212121+2ln 2f x f x x x x x x x a x x ⎡⎤=+--++⎣⎦ ()11121ln ln 22a a a a a a =--+=--令()()11ln ,0,ln 024g a a a a a g a a '=--<<=<,()g a 在10,4⎛⎫⎪⎝⎭上单调递减,故()132ln 244g a g --⎛⎫>=⎪⎝⎭. 变式1:已知函数().R a ,x ax x ln x f ∈-+=22(2)若n ,m 是函数()x f 的两个极值点,且n m <,求证:.mn 1>方法二:变式2:已知函数()213ln 222f x x ax x =+-+()0a ≥. (1)讨论函数()f x 的极值点个数;(2)若()f x 有两个极值点12,x x ,证明()()110f x f x +<.题型六:不等式问题类型一:直接构造函数解决不等式问题例19:当()0,1x ∈时,证明:()()221ln 1x x x ++<.解:令()()()221ln 1f x x x x =++-,则()00f =,而()()()()2ln 1ln 12,00f x x x x f ''=+++-=,当()0,1x ∈时,有()ln 1x x +<,故()()()ln 12222ln 10111x f x x x x x x+''=+-=+-<⎡⎤⎣⎦+++, ()f x '在()0,1上递减,即()()00f x f ''<=,从而()f x 在()0,1递减,()()00f x f ≤=,原不等式得证.变式1:已知函数()()()R a ex x ln x a x f ∈+-=1.(1)求函数()x f 在点1=x 处的切线方程;(2)若不等式()0≤-x e x f 对任意的[)+∞∈,x 1恒成立,求实数a 的取值范围解:(2)令()()()()1ln 1,x xg x f x e a x x ex e x =-=-+->()1ln 1xg x a x e e x ⎛⎫'=+-+- ⎪⎝⎭, ①若0a ≤,则()g x '在[)1,+∞上单调递减,又()10g '=.即()0g x '≤恒成立,所以()g x 在[)1,+∞上单调递减,又()10g =,所以()0g x ≤恒成立.②0a >,令()()1ln 1,x h x g x a x e e x ⎛⎫'==+-+- ⎪⎝⎭所以()211xh x a e x x ⎛⎫'=+-⎪⎝⎭,易知211x x +与x -e 在[)1,+∞上单调递减,所以()h x '在[)1,+∞上单调递减,()12h a e '=-. 当20a e -≤,即02ea <≤时,()0h x '≤在[)1,+∞上恒成立,则()h x 在[)1,+∞上单调递减,即()g x '在[)1,+∞上单调递减,又()10g '=,()0g x '≤恒成立,()g x 在[)1,+∞上单调递减,又()10g =,()0g x ≤恒成立.当20a e ->时,即2ea >时,()01,x ∃∈+∞使()00h x '=,所以()h x 在()01,x 上单调递增,此时()()10h x h >=,所以()0g x '>所以()g x 在()01,x 递增,得()()10g x g >=,不符合题意. 综上,实数a 的取值范围是2e a ≤. 变式2:(文)已知函数()()()().R a ,x a x g ,x ln x x f ∈-=+=11(1)求直线()x g y =与曲线()x f y =相切时,切点T 的坐标. (2)当()10,x ∈时,()()x f x g >恒成立,求a 的取值范围.解:(1)设切点坐标为()00x y ,,()1ln 1f x x x'=++,则()()000001ln 11ln 1x a x x x a x ⎧++=⎪⎨⎪+=-⎩,∴00012ln 0x x x -+=.令()12ln h x x x x=-+,∴()22210x x h x x -+'=-≤,∴()h x 在()0+∞,上单调递减, ∴()0h x =最多有一根.又∵()10h =,∴01x =,此时00y =,T 的坐标为(1,0).(2)当()0 1x ∈,时,()()g x f x >恒成立,等价于()1ln 01a x x x --<+对()0 1x ∈,恒成立. 令()()1ln 1a x h x x x -=-+,则()()()()2222111211x a x ah x x x x x +-+'=-=++,()10h =. ①当2a ≤,()1x ∈0,时,()22211210x a x x x +-+≥-+>, ∴()0h x '>,()h x 在()0 1x ∈,上单调递增,因此()0h x <. ②当2a >时,令()0h x '=得1211x a x a =-=-由21x >与121x x =得,101x <<.∴当()1 1x x ∈,时,()0h x '<,()h x 单调递减, ∴当()1 1x x ∈,时,()()10h x h >=,不符合题意; 综上所述得,a 的取值范围是(] 2-∞,.变式3:(文)已知函数().x x x ln x f 12---=(2)若存在实数m ,对于任意()∞+∈0x ,不等式()()()0212≤+-+x x m x f 恒成立,求实数m 的最小整数值.解:(2)法一:参变分离+二次局部求导+虚设零点变式4:(理)已知函数()()()R a x a eae x f xx∈-++=-22.(1)讨论()x f 的单调性;(2)当0≥x 时,()(),x cos a x f 2+≥求实数a 的取值范围.变式5:已知()1ln ,mf x x m x m R x-=+-∈. (1)当202e m <≤时,证明()21x e x xf x m >-+-.类型二:利用min max f g >证明不等式问题例20:设函数()1ln x xbe f x ae x x-=+曲线()y f x =在点()()1,1f 的切线方程为()12y e x =-+.(1)求,a b 值; (2)证明:()1f x >【解析】(1)函数()f x 的定义域为(0,)+∞,112()ln xx x x a b b f x ae x e e e x x x--=+-+. 由题意可得(1)2f =,(1)f e '=.1, 2.a b ==故(2)由(1)知12()ln xx f x e x e x -=+,从而()1f x >等价于2ln x x x xe e->-. 设函数()1g x x nx =,则'()1g x nx =.所以当1(0,)x e ∈时,()0g x '<;当1(,)x e ∈+∞时,()0g x '>.故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增,从而()g x 在(0,)+∞的最小值为11()g e e=-. 设函数2()xh x xee-=-,则'()(1)x h x e x -=-. 所以当(0,1)x ∈时()0h x '>;当(1,)x ∈+∞时,()0h x '<故()h x 在(0,1)单调递增, 在(1,)+∞单调递减,从而()h x 在(0,)+∞的最大值为1(1)h e=-.变式1. 已知函数()x ln a bx x f +=2的图像在点()()11f ,处的切线斜率为2+a .(1)讨论()x f 的单调性; (2)当20e a ≤<时,证明:()222-+<x e xx x f 解:(2)要证()222x f x x e x -<+,需证明22ln 2x a x e x x-<.令()ln 02a x e g x a x ⎛⎫=<≤ ⎪⎝⎭,则()()21ln a x g x x -'=, 当()0g x '>时,得0x e <<;当()0,g x '<得x e >. 所以()()max ag x g e e==. 令()()2220x e h x x x -=>,则()()2322x e x h x x--'=. 当()0h x '>时,得2x >;当()0h x '<时,得02x <<. 所以()()min 122h x h ==.因为02e a <≤,所以()max 12a g x e ==. 又2e ≠,所以22ln 2x a x e x x-<,即()222x f x x e x -<+得证.变式2:(理)已知函数()().ax ln axx f -=(1)求()x f 的极值;(2)若()012≤+-++m x e mx x ln e x x ,求正实数m 的取值范围.变式3:已知()1ln ,mf x x m x m R x-=+-∈. (2)当202e m <≤时,证明()21x e x xf x m >-+-.类型三:利用赋值法不等式问题例21:已知函数()2x xf x e e x -=--.(1)讨论()f x 的单调性;(2)设()()()24g x f x bf x =-,当0x >,()0g x >,求b 的最大值. (3)估计ln 2(精确小数点后三位).解:因为()()()()()2224484xx x x g x f x bf x e e b e e b x --=-=---+-所以()()()()()2222422222xx x x x x x xg x ee b e e b e e e e b ----⎡⎤'=+-++-=+-+-+⎣⎦①当2b ≤时,()0,g x '≥等号仅当0x =时成立,所以()g x 在R 上单调递增,而()00g =,所以对于任意()0,0x g x >>.②当2b >,若x 满足222x x e e b -<+<-,即(20ln 12x b b b <<-+-时,()0g x '<,而()00g =,因此当(20ln 12x b b b <≤--时,()0g x <,综上最大为2.(3)由(2)知,(()3221ln 22g b =-+-,当2b =时,(36ln 20,ln 20.69282g =->>>;当14b =+时,(ln 1b -+=(()32ln 202g =--<,18ln 20.69328+<<,所以近似值为0.693类型四:利用放缩法构造中间不等式例22:若0x >,证明:()ln 1.1x x xx e +>- 解:转化成整式()()2ln 11xx e x +->.令()()()2ln 11xf x x e x =+--,则()()1ln 121x xe f x e x x x -'=++-+()()()21ln 1211x x x e x e f x e x x x +''=+++-++.由()+1ln 11x x e x x x ≥+≥+,, 得()()()()3222112120,11x x x x f x x x x +++''≥++-=>++()()00,f x f ''≥=故()()00f x f ≥=,得证.变式1:(2020河南鹤壁市高三期末)已知函数()21xf x e kx =--,()()()2ln 1g x k x x k R =+-∈.(2)若不等式()()0f x g x +≥对任意0x ≥恒成立,求实数k 范围.变式2:(2020年河南六市联考)已知函数()()2ln 1sin 1f x x x =+++,()1ln g x ax b x =-- 证明:当1,x >-()()2sin 22xf x x x e<++类型五:与数列相关的不等式例23:设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求m 的最小值.解:(2)由(1)知当(1,)x ∈+∞时,1ln 0x x -->令112n x =+得11ln(1)22n n +<,从而 221111111ln(1)ln(1)ln(1)112222222n n n ++++⋅⋅⋅++<++⋅⋅⋅+=-<故2111(1)(1)(1)222n e ++⋅⋅⋅+<而23111(1)(1)(1)2222+++>,所以m 的最小值为3.变式1:(理)已知函数()()()021>+-+=a ax xx ln x f .(1)若不等式()0≥x f 对于任意的0≥x 恒成立,求实数a 的取值范围;(2)证明:().N n ln ln ln ln n n n *-∈⎪⎭⎫⎝⎛->⎪⎪⎭⎫ ⎝⎛-++⋅⋅⋅+++1212121279353变式1:(2020河南开封二模)已知函数()1xf x e x =--.(1)证明()0f x >;(2)设m 为整数,且对于任意正整数n ,2111111222n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 求m 的最小值.类型六:与切、割线相关的不等式例24:已知函数()()2901xf x a ax =>+ (1)求()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值;(2)若直线2y x a =-+为曲线()y f x =的切线,求实数的值;(3)当2a =时,设12141,,22x x x ⎡⎤⋅⋅⋅∈⎢⎥⎣⎦,且121414x x x +⋅⋅⋅+=,若不等式()()()1214f x f x f x λ+⋅⋅⋅+≤恒成立,求实数λ的最小值.解:证明()29412xf x x x=≤-++,即32281040x x x -+-+≥, 令()3228104F x x x x =-+-+,()261610F x x x '=-+-,所以()F x在1,12⎛⎫⎪⎝⎭,5,23⎛⎫ ⎪⎝⎭递减,在51,3⎛⎫ ⎪⎝⎭递增.而()50,203F F ⎛⎫>> ⎪⎝⎭,表明不等式()29412xf x x x =≤-++成立.所以()()()12141244+442n f x f x f x x x x ++⋅⋅⋅+≤-+-+⋅⋅⋅-+=, 等号在全部为1时成立,所以λ最小值为42。

导数压轴题与解题套路

导数压轴题与解题套路

导数压轴题与解题套路
导数压轴题是高中数学中比较有难度的题目之一,很多同学在考试中遇到这种题目时会感到比较头疼。

但是,只要理解了导数的概念和解题套路,就能够轻松地解决这类题目。

首先,我们需要明确导数的定义和意义,即导数表示函数在某一点处的变化率。

根据这个定义,我们可以通过求导数来求函数在某一点处的切线斜率、函数的最值等。

对于导数压轴题,我们可以采用以下解题套路:
1.找出函数的定义域和导数的定义域,确定导数的存在性。

2.计算函数的导数,并化简。

3.求出导数为0或不存在的点,这些点可能是函数的极值点或拐点。

4.求出导数的正负性,确定函数的单调性。

5.求出导数的符号变化点,确定函数的凸凹性和拐点。

6.结合上述信息,画出函数的草图。

通过这样的解题流程,我们就可以轻松地解决导数压轴题。

当然,实际解题时还需要注意一些细节问题,比如边界点处的导数计算等。

总之,掌握导数的概念和解题套路是解决导数压轴题的关键。

只要多加练习,相信大家都能够轻松地应对这类题目。

- 1 -。

专题11 导数压轴题之隐零点问题(解析版)

专题11 导数压轴题之隐零点问题(解析版)

导数章节知识全归纳专题11 导数压轴题中有关隐零点问题一.隐零点问题知识方法讲解:1.“隐零点”概念:隐零点主要指在研究导数试题中遇到的对于导函数f ’(x)=0时,不能够直接运算出来或是不能够估算出来,导致自己知道方程有根存在,但是又不能够找到具体的根是多少,通常都是设x=x 0,使得f ’(x)=0成立,这样的x 0就称为“隐藏零点”。

2.“隐零点”解决方向:针对隐零点问题通常解决步骤:1.求导判定是否为隐零点问题,2.设x=x 0,使得f ’(x)=0成立,3.得到单调性,并找到最值,将x 0带入f(x),得到f(x 0),4.再将x 0的等式代换,再求解(注意:x 0的取值范围)二.隐零点问题中的典型例题:典例1.已知函数()ln f x x =,()2sin g x x x =-.(1)求()g x 在()0,π的极值;(2)证明:()()()h x f x g x =-在()0,2π有且只有两个零点.解:(1)由()12cos g x x '=-,()0,x π∈, 当03x π<<时,()0g x '<,此时函数()g x 单调递减, 当3x ππ<<时,()0g x '>,此时函数()g x 单调递增,所以,函数()g x 的极小值为33g ππ⎛⎫=- ⎪⎝⎭ (2)证明:()()()ln 2sin h x f x g x x x x =-=-+,其中02x π<<.则()112cos h x x x '=-+,令()12cos 1x x x ϕ=+-,则()212sin x x xϕ'=--. 当()0,x π∈时,()212sin 0x x x ϕ'=--<,则()x ϕ在()0,π上单调递减, 303πϕπ⎛⎫=> ⎪⎝⎭,2102πϕπ⎛⎫=-< ⎪⎝⎭, 所以,存在0,32x ππ⎛⎫∈ ⎪⎝⎭,使得()()000x h x ϕ'==. 当00x x <<时,()0h x '>,此时函数()h x 在()00,x 上单调递增,当0x x π<<时,()0h x '<,此时函数()h x 在()0,x π上单调递减.()()0h x h x ∴=极大值,而ln 0333h πππ⎛⎫=-+> ⎪⎝⎭,()2ln ln 20h e πππππ=-<-=-<,则()003h x h π⎛⎫>> ⎪⎝⎭,又ln 1666h πππ⎛⎫=-+ ⎪⎝⎭, 令()ln 1m x x x =-+,其中01x <<,则()1110x m x x x-'=-=>, 所以,函数()m x 在()0,1上单调递增,则()()10m x m <=,所以,ln 10666h πππ⎛⎫=-+< ⎪⎝⎭.由零点存在定理可知,函数()h x 在()0,π上有两个零点;当[),2x ππ∈时,2sin 0x ≤,()ln 2sin ln h x x x x x x =-+≤-,设ln y x x =-,则1110x y x x-'=-=<对任意的[),2x ππ∈恒成立, 所以,ln ln 0x x ππ-≤-<,所以,函数()h x 在[),2ππ上没有零点,综上所述,函数()()()h x f x g x =-在()0,2π上有且只有两个零点.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.典例2.已知函数()ln 2a f x k x ax ⎛⎫=+- ⎪⎝⎭在()()1,1f 处的切线与直线l :(π)1y a x =-+平行.(1)求k 的值; (2)若()()2cos p x f x x =-,试讨论()p x 在π3π22⎡⎤⎢⎥⎣⎦,上的零点个数.解:(1)()ln 2a f x k x ax ⎛⎫=+- ⎪⎝⎭在()()1,1f 处的切线与直线l :(π)1y a x =-+平行, 则有()1πf a '=-,()k f x a x'=-,则(1)ππf k a a k '=-=-⇒= (2)()()2cos πln 2cos 2a p x f x x x ax x ⎛⎫=-=+-- ⎪⎝⎭,π3π,22x ⎡⎤∈⎢⎥⎣⎦, π()2sin p x x a x '=+-,令()()g x p x '=,则2π()2cos g x x x'=-+, 当π3π,22x ⎡⎤∈⎢⎥⎣⎦时,cos 0x ≤且2π0x -<,则2π()2cos 0g x x x '=-+<,则()g x 在π3π,22⎡⎤⎢⎥⎣⎦单调递减, ππ22422g p a a ⎛⎫⎛⎫'==+-=- ⎪ ⎪⎝⎭⎝⎭,3π3π2422233g p a a ⎛⎫⎛⎫'==--=-- ⎪ ⎪⎝⎭⎝⎭, 当4a ≥时,π02p ⎛⎫'≤ ⎪⎝⎭且()()p x g x '=在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则()0p x '≤,()p x 在π3π,22⎡⎤⎢⎥⎣⎦单调递减, ππππππln 2cos πln 0222222a a p ⎛⎫⎛⎫=+--=> ⎪ ⎪⎝⎭⎝⎭,3π3π3π3π3ππln 2cos πln 222222a a p a π⎛⎫⎛⎫=+--=- ⎪ ⎪⎝⎭⎝⎭, 由于4a ≥,则03π2p ⎛⎫< ⎪⎝⎭,()p x 在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则有一个零点, 当43a ≤-时,3π02p ⎛⎫'≥ ⎪⎝⎭,由于()()=p x g x '在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则()0p x '≥,()p x在π3π,22⎡⎤⎢⎥⎣⎦单调递增, ππ=πln 022p ⎛⎫> ⎪⎝⎭,则π()02p x p ⎛⎫≥> ⎪⎝⎭,则()p x 在π3π,22⎡⎤⎢⎥⎣⎦无零点, 当443a -<<时,π02p ⎛⎫'> ⎪⎝⎭,3π02p ⎛⎫'< ⎪⎝⎭,()p x '在π3π,22⎡⎤⎢⎥⎣⎦单调递减,则存在0π3π,22x ⎛⎫∈ ⎪⎝⎭使()0p x '=, 当0π,2x x ⎛⎫∈⎪⎝⎭,()0p x '>,()p x 单调递增,当03π,2x x ⎛⎫∈ ⎪⎝⎭,()0p x '<,()p x 单调递减,πππln 022p ⎛⎫=> ⎪⎝⎭,3π3ππln π22p a ⎛⎫=- ⎪⎝⎭, 若3π3π0ln 22p a ⎛⎫>⇒< ⎪⎝⎭,则由0π2p ⎛⎫> ⎪⎝⎭,3π02p ⎛⎫> ⎪⎝⎭及()p x 的增减性可得:()p x 在π3π,22⎡⎤⎢⎥⎣⎦无零点,此时43πln 32a -<<, 若3π3π0ln 22p a ⎛⎫≤⇒≥⎪⎝⎭,由0π2p ⎛⎫> ⎪⎝⎭,3π02P ⎛⎫≤ ⎪⎝⎭和()p x 的增减性可得:()p x 在π3π,22⎡⎤⎢⎥⎣⎦有一个零点,此时3πln 42a ≤<, 综上,当3πln2a <时,()p x 在π3π,22⎡⎤⎢⎥⎣⎦无零点,当3πln 2a ≥时,()p x 在π3π,22⎡⎤⎢⎥⎣⎦有一个零点.【点睛】关键点点睛:本题第二问考查利用导数分析函数的零点个数问题,解答此问题的关键在于多次求导以及分类讨论思想的运用;当原函数()f x 的导函数()f x '无法直接判断出正负时,可先通过将原函数的导函数看作新函数()g x ,利用导数思想先分析()g x '的单调性以及取值正负,由此确定出()g x 的单调性并分析其取值正负,从而()f x '的正负可分析,则根据()f x 的单调性以及取值可讨论零点个数.典例3.已知函数()e sin 1xf x x =+-. (1)判断函数f (x )在,2ππ⎡⎤-⎢⎥⎣⎦上的零点个数,并说明理由; (2)当[0,)x ∈+∞时,()0f x mx +,求实数m 的取值范围.解:(1)解法一:由题意得,()e cos x f x x '=+, 当,2x ππ⎡⎫∈--⎪⎢⎣⎭时,易得函数()'f x 单调递增, 而()e 10f ππ--=-<',2e 02f ππ-⎛⎫-=> ⎪⎝⎭', 故()00,,02x f x ππ⎛⎫∃∈--= ⎪⎝'⎭, 当[)0,x x π∈-时,()0f x '<; 当0,2x x π⎛⎫∈- ⎪⎝⎭时,()0f x '>, 而2()e 10,e 202f f ππππ--⎛⎫-=-<-=-< ⎪⎝⎭, ∴函数f (x )在,2ππ⎡⎫--⎪⎢⎣⎭上无零点;当,22x ππ⎡⎤∈-⎢⎥⎣⎦时,()e cos 0x f x x =+>', ∴函数f (x )在,22ππ⎡⎤-⎢⎥⎣⎦上单调递增, 而(0)0f =,∴函数f (x )在,22ππ⎡⎤-⎢⎥⎣⎦上有1个零点. 综上所述,函数f (x )在,2ππ⎡⎤-⎢⎥⎣⎦上有1个零点. (2)令()()e sin 1x g x f x mx x mx =+=++-,[0,)x ∈+∞,则()e cos xg x x m =++'. 0(0)e sin 0010g m =++⨯-=,0(0)e cos02g m m =++=+',令()()e cos x h x g x x m +'==+,()e sin xh x x =-' 因为0x =时,0()e sin 010h x =-=>', 当0x >时,e 1x >,sin 1x ≤,()e sin 110xh x x =>-'-=,所以()e sin 0x h x x -'=>在()0,+∞上恒成立, 则h (x )为増函数,即()'g x 为增函数①当20m +,即2m -时,()(0)20g x g m '='+,∴g (x )在[0,)+∞上为增函数,()(0)0g x g ∴=,即()0g x 在[0,)+∞上恒成立;②当m +2<0,即m <-2时,(0)20g m =+<',0(0,)x ∴∃∈+∞,使()00g x '=,当()()00,,0,()x x g x g x ∞∈+>'为增函数;当[)()000,,0,()x x g x g x <'∈为减函数, ()0(0)0g x g ∴<=,与()0g x 在[0,)+∞上恒成立相矛盾,2m ∴<-不成立.综上所述,实数m 的取值范围是[2,)-+∞.【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.典例4.设函数()2ln x f x e a x =-.(Ⅰ)讨论()f x 的导函数()f x '的零点的个数;(Ⅰ)证明:当0a >时()22ln f x a a a≥+. 解:(∴)()f x 的定义域为()0+∞,,()2()=20x a f x e x x '->.当0a ≤时,()0f x '>,()f x '没有零点;当0a >时,因为2x e 单调递增,a x -单调递增,所以()f x '在()0+∞,单调递增.又()0f a '>,当b 满足04a b <<且14b <时,()0f b '<,故当0a >时,()f x '存在唯一零点. (∴)由(∴),可设()f x '在()0+∞,的唯一零点为0x ,当()00x x ∈,时,()0f x '<; 当()0+x x ∈∞,时,()0f x '>. 故()f x 在()00x ,单调递减,在()0+x ∞,单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a e x -,所以00022()=2ln 2ln 2a f x ax a a a x a a++≥+. 故当0a >时,2()2ln f x a a a≥+. 考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.典例5.已知函数()()ln 1x a f x e x x a -=--∈R .(1)若1a =,讨论()f x 的单调性;(2)令()()(1)g x f x a x =--,讨论()g x 的极值点个数.解:(1)若1a =,则()1ln 1x f x e x x -=--,其定义域为()0,∞+,()1ln 1x f x e x -'=--.令()()1ln 1x m x f x e x -'==--,则()11x m x e x -'=-, 易知()m x '在()0,∞+上单调递增,且()10m '=,所以当()0,1x ∈时,()0m x '<,()m x 在()0,1上单调递减, 当()1,x ∈+∞时,()0m x '>,()m x 在()1,+∞上单调递增, 因此()()10m x m ≥=,即()0f x '≥,所以()f x 在()0,∞+上单调递增.(2)由题意知,()()ln 11x a g x e x x a x -=----,则()ln x a g x e x a -'=--,由(1)知,1ln 10x e x ---≥,当1a ≤时,()ln ln 10x a x a g x e x a e x --'=--≥--≥, 所以()g x 在()0,∞+上单调递增,此时()g x 无极值点. 当1a >时,令()()ln x a h x g x e x a -'==--,则()1x a h x ex -'=-,易知()h x '在()0,∞+上单调递增, 又()1110a h e -'=-<,()110h a a'=->, 故存在()01,x a ∈,使得()00010x a h x e x -'=-=, 此时有001x a e x -=,即00ln a x x =+, 当()00,x x ∈时,()0h x '<,()h x 在()00,x 上单调递减, 当()0,x x ∈+∞时,()0h x '>,()h x 在()0,x +∞上单调递增,所以()()00000min 01ln 2ln x ah x h x ex a x x x -==--=--. 令()12ln x x x xϕ=--,()1,x a ∈, 易知()x ϕ在()1,a 上单调递减, 所以()0x ϕ<,即()00h x <.因为()0aa eah e e---=>,()23ln 321ln 31ln 32ln 30a h a e a a a a a a =-->+--=+->->,且0013a e x a a -<<<<<,所以存在()10,ax e x -∈,()20,3x x a ∈,满足()()120h x h x ==,所以当()10,x x ∈时,()()0g x h x '=>,()g x 在()10,x 上单调递增, 当()12,x x x ∈时,()()0g x h x '=<,()g x 在()12,x x 上单调递减, 当()2,x x ∈+∞时,()()0g x h x '=>,()g x 在()2,x +∞上单调递增, 所以当1a >时,()g x 存在两个极值点.综上,当1a ≤时,()g x 不存在极值点;当1a >时,()g x 存在两个极值点. 【点睛】关键点点睛:本题第(2)问的关键有:(1)当1a ≤时,合理利用第(1)问中得到的1ln 10x e x ---≥以及不等式的性质得到()0g x '≥;(2)当1a >时,灵活构造函数,并根据等式将a 代换掉,得到()()090min 12ln nh x h x x x x ==--,最后巧妙取点,利用零点存在定理得到()h x 的零点,从而得到结果.变式1.已知函数()()xf x e ax a =-∈R . (1)讨论函数()f x 的单调性;(2)当2a =时,求函数()()cos g x f x x =-在,2π⎛⎫-+∞ ⎪⎝⎭上的零点个数. 解:(1)()x f x e ax =-,其定义域为R ,()xf x e a '=-①当0a ≤时,因为()0f x '>,所以()f x 在R 上单调递增, ②当0a >时,令()0f x '>得ln x a >,令()0f x '<得ln x a < 所以()f x 在(),ln a -∞上单调递减,()ln ,a +∞上单调递增, 综上所述:当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞单调递减,()ln ,a +∞单调递增,(2)已知得()2cos xg x e x x =--,,2x π⎛⎫∈-+∞ ⎪⎝⎭则()sin 2xg x e x '=+-①当,02x π⎛⎫∈- ⎪⎝⎭时,因为()()1(sin 1)0xg x e x '=-+-<所以()g x 在,02π⎛⎫- ⎪⎝⎭单调递减,所以()()00g x g >=, 所以()g x 在,02π⎛⎫- ⎪⎝⎭上无零点;②当0,2x π⎡⎤∈⎢⎥⎣⎦时,因为()g x '单调递增,且(0)10g '=-<,2102g e ππ⎛⎫'=-> ⎪⎝⎭,所以存在00,2x π⎛⎫∈ ⎪⎝⎭,使()00g x '= 当()00,x x ∈时,()0g x '<,当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '> 所以()g x 在[)00,x 递减0,2x π⎛⎤⎥⎝⎦递增,且()00g =,所以()00g x <,又因为202g e πππ⎛⎫=-> ⎪⎝⎭所以()002g x g π⎛⎫⋅< ⎪⎝⎭所以()g x 在0,2x π⎛⎫⎪⎝⎭上存在一个零点, 所以()g x 在0,2π⎡⎤⎢⎥⎣⎦上有两个零点; ③当,2x π⎛⎫∈+∞ ⎪⎝⎭时,2()sin 230x g x e x e π'=+->->,所以()g x 在,2π⎛⎫+∞⎪⎝⎭单调递增 因为02g π⎛⎫>⎪⎝⎭,所以()g x 在,2π⎛⎫+∞ ⎪⎝⎭上无零点;综上所述,()g x 在,2π⎛⎫-+∞ ⎪⎝⎭上的零点个数为2个. 【点睛】方法点睛:函数的零点问题常见的解法有:(1)方程法(直接解方程得解);(2)图象法(直接研究函数()f x 的图象得解);(3)方程+图象法(令()0f x =得到()()g x h x =,再研究函数(),()g x h x 图象性质即得解).要根据已知条件灵活选择方法求解.变式2.已知函数()sin ln(1)f x x x =-+,()'f x 为()f x 的导数.证明:(1)()'f x 在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.解:(1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+ 令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭ ()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭()211x +在1,2π⎛⎫- ⎪⎝⎭上单调递减,sin x -,在1,2π⎛⎫- ⎪⎝⎭上单调递减 ()g x '∴在1,2π⎛⎫- ⎪⎝⎭上单调递减 又()0sin0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++00,2x ∴∃∈ ⎪⎝⎭,使得()00g x '=∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '<即()g x 在()01,x -上单调递增;在0,2x π⎛⎫⎪⎝⎭上单调递减 则0x x =为()g x 唯一的极大值点即:()f x '在区间1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x .(2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞ ①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤= ()f x ∴在(]1,0-上单调递减又()00f =0x ∴=为()f x 在(]1,0-上的唯一零点②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在()00,x 上单调递增,在0,2x π⎛⎫ ⎪⎝⎭上单调递减 又()00f '= ()00f x '∴>()f x ∴在()00,x 上单调递增,此时()()00f x f >=,不存在零点又22cos 02222f ππππ⎛⎫'=-=-<⎪++⎝⎭10,2x x ∴∃∈ ⎪⎝⎭,使得()10f x '=()f x ∴在()01,x x 上单调递增,在1,2x π⎛⎫⎪⎝⎭上单调递减又()()000f x f >=,2sin ln 1lnln102222e f ππππ⎛⎫⎛⎫=-+=>= ⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫⎪⎝⎭上恒成立,此时不存在零点③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减 ()f x ∴在,2ππ⎡⎤⎢⎥⎣⎦上单调递减又02f π⎛⎫> ⎪⎝⎭,()()()sin ln 1ln 10f ππππ=-+=-+< 即()02ff ππ⎛⎫⋅<⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 ∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点 【点睛】本题考查导数与函数极值之间的关系、利用导数解决函数零点个数的问题.解决零点问题的关键一方面是利用零点存在定理或最值点来说明存在零点,另一方面是利用函数的单调性说明在区间内零点的唯一性,二者缺一不可.变式3.已知函数3()sin (),2f x ax x a R =-∈且在,0,2π⎡⎤⎢⎥⎣⎦上的最大值为32π-,(1)求函数f (x )的解析式;(2)判断函数f (x )在(0,π)内的零点个数,并加以证明 解:(1)由已知得f ′(x )=a (sinx +xcosx ),对于任意的x ∴(0,2π), 有sinx +xcosx >0,当a =0时,f (x )=−32,不合题意; 当a <0时,x ∴(0,2π),f ′(x )<0,从而f (x )在(0, 2π)单调递减, 又函数f (x )=axsinx −32 (a ∴R )在[0, 2π]上图象是连续不断的, 故函数在[0,2π]上的最大值为f (0),不合题意; 当a >0时,x ∴(0,2π),f ′(x )>0,从而f (x )在(0, 2π)单调递增, 又函数f (x )=axsinx −32(a ∴R )在[0, 2π]上图象是连续不断的, 故函数在[0,2π]上上的最大值为f (2π)=2πa −32=32π-,解得a =1,综上所述,得3()sin (),2f x x x a R =-∈; (2)函数f (x )在(0,π)内有且仅有两个零点。

导数压轴题题型归纳及处理技巧

导数压轴题题型归纳及处理技巧

导数压轴题题型归纳及处理技巧以下是 8 条关于导数压轴题题型归纳及处理技巧的内容:1. 哎呀,导数压轴题里有一种常见的题型就是求最值问题呀!就像在登山的时候,要找到那最高的山峰!比如函数y=x³-3x²+5,你能快速找到它的最值吗?2. 嘿,还有判断函数单调性的题型呢!这就像开汽车,要清楚什么时候加速什么时候减速。

像函数 f(x)=xlnx,你能判断它的单调性吗?3. 哇塞,导数里那种恒成立问题也很让人头疼啊!就好比要让一个球一直保持在一个固定的位置。

比如f(x)≥a 在某个区间恒成立,这可得好好琢磨琢磨怎么处理哦!像函数 f(x)=e^x+x,若f(x)≥kx 恒成立,你能搞定吗?4. 哦哟,导数压轴题里的不等式证明可不好惹呢!就像是要跨过一条很难跨的沟。

比如要证明某个不等式成立,怎么把导数的知识用上呀?比如 x>0 时,证明 e^x>1+x,你知道怎么下手吗?5. 嘿呀,有一种题型是利用导数求曲线的切线方程呢!这就像在给一条曲线画上漂亮的切线。

比如给定曲线y=x²,在某点处的切线怎么求呢,你会吗?6. 哇哦,那些与极值点有关的题型也挺有趣的嘛!就如同在一群小朋友里找到那个最特别的。

比如给定一个函数,怎么去找它的极值点呢?像函数g(x)=x³-3x,它的极值点在哪儿呀?7. 哈哈,还有根据导数信息画函数图象的题型呢!这可像是根据描述去画一幅神秘的画。

比如知道了导数的一些情况,那函数图象大概长啥样呢?你能想象出来吗?8. 哎呀呀,最后还有一类是把导数和其他知识综合起来的题型呢!这就像把不同的拼图块拼成一幅完整的画。

比如和数列结合起来,那可真是够有挑战性呢!像这样的综合题,你能勇敢挑战吗?我觉得导数压轴题虽然难,但只要掌握了这些题型和处理技巧,多练习多总结,就一定能攻克它!。

高考压轴题:导数题型及解题方法归纳

高考压轴题:导数题型及解题方法归纳

高考压轴题:导数题型及解题方法一.切线问题题型1 求曲线)(x f y =在0x x =处的切线方程。

方法:)(0x f '为在0x x =处的切线的斜率。

题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。

方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。

例 已知函数f (x )=x 3﹣3x .(1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x )(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。

将问题转化为关于m x ,0的方程有三个不同实数根问题。

(答案:m 的范围是()2,3--)练习 1. 已知曲线x x y 33-=(1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。

答案:(03=+y x 或027415=--y x )(2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。

2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1)题型3 求两个曲线)(x f y =、)(x g y =的公切线。

方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。

()(,22x f x );进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

例 求曲线2x y =与曲线x e y ln 2=的公切线方程。

(答案02=--e y x e )练习 1.求曲线2x y =与曲线2)1(--=x y 的公切线方程。

八个视角处理双变量导数压轴题(学生版)

八个视角处理双变量导数压轴题(学生版)

八个视角处理双变量导数压轴题在高中数学中,导数算是难度天梯里排No.1的存在,在高考出题人的心中,导数算是一个超赞的存在,天生的守门员。

但其实,现在同学们接触的只是导数世界的“皮毛”,真正的精髓还是要到大学中才会学习。

导数大题是近年来高考的重点和热点问题,也是高考必考的板块之一,不管是简答题还是选择、填空都有涉及,也是拉分项。

我们不可否认导数解答题的难度,但也不能过分地夸大。

像导数、函数这样的大板块,同学们必须会解题。

遇到一个问题应该认真分析题型与问题条件,反复思考结论,每步做到“言必有据,步步合理”不用题海战术,每个板块都能攻克了!今天给大家整理总结了高考导数大题的常见类型及求解策略方法,大家通做一遍,复习提分效果更佳!热点题型1构造偏导数2整体规划统一变量3比(差)值换元4同构性双变量5切线估计与剪刀差模型6不等式放缩7主元法8多项式拟合经典例题1.构造偏函数注:1.构造偏差函数的基本应用①.函数f x 的极值点为x0;②.函数f x1,然后证明:x1+x2>2x0或x1+x2<2x0.=f x22.构造偏差证明极值点偏移的基本方法:①.构造一元差函数F x =f x -f2x0-x;-f x0-x或是F x =f x+x0②.对差函数F x 求导,判断单调性;③.结合F(x0)=0或F(0)=0,判断F x 的符号,从而确定f x 与f2x0-x的大小关系;④.由f x 1 =f x 2 =f x 0-x 0-x 2 _____f x 0+x 0-x 2 =f 2x 0-x 2 的大小关系,得到f x 1 ____f 2x 0-x 2 ,(横线上为不等号);⑤.结合f x 单调性得到x 1____2x 0-x 2,进而得到x 1+x 22___x 0.例1.(2023届福建七市联考)已知函数f (x )=e x -ax 22,a >0.(1)讨论f x 的极值点个数;(2)若f x 有两个极值点x 1,x 2,且x 1<x 2,当e <a <e 22时,证明:f x 1 +2f x 2 <3e 2.2.整体划归,统一变量法例2.(2023届泉州一诊).已知函数f x =e x x2-a+2x+a+3(1)讨论f x 的单调性;(2)若f x 在0,2有两个极值点x1,x2,求证:f x1f x2<4e2.例3.(2023届温州二模)已知函数f x =a2x2-x-x ln x a∈R.(1)若a=2,求方程f x =0的解;(2)若f x 有两个零点且有两个极值点,记两个极值点为x1,x2,求a的取值范围并证明f x1+f x2<12e.3.比(差)值代换消元例4.(2023届武汉二月调考)已知关于x的方程ax-ln x=0有两个不相等的正实根x1,x2,且x1<x2.(1)求实数a的取值范围;(2)设k为常数,当a变化时,若x k1x2有最小值e e,求常数k的值.例5.(2023届南通二模)已知函数f(x)=ax-ln x-a x.(1)若x>1,f(x)>0,求实数a的取值范围;(2)设x1,x2是函数f(x)的两个极值点,证明:f(x1)-f(x2)<1-4a2 a.4.同构型双变量例6.已知函数f(x)=axe x和g(x)=ln xax有相同的最大值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等比数列.5.切线估计与“剪刀差模型”注4.“剪刀模型”基本原理1.函数凸凹性:若函数f (x )在区间I 上有定义,若f (x )≥0,则称f (x )为区间I 上的凸函数. 反之,称f (x )为区间I 上的凹函数.2.切线不等式:f (x )在I 上为凸函数,∀x 0∈I ,有f (x )≥f (x 0)(x −x 0)+f (x 0). 反之,若f (x )为区间I 上的凹函数,则∀x 0∈I ,有f (x )≤f (x 0)(x −x 0)+f (x 0).注:切线不等式是剪刀模型的理论依据.3.剪刀模型已知函数f (x )为定义域上的凸函数,且图象与y =m 交于A ,B 两点,其横坐标为x 1,x 2,这样如下图所示,我们可以利用凸函数的切线与y =m 的交点将x 1,x 2的范围予以估计,这便是切线放缩的基本原理.如图,在函数图象先减后增的情形下,两条切线和两条割线即可估计出零点的一个上下界,而切割线的方程均为一次函数,这样我们就可以得到一个显式解(精确解)的估计.例7.(2023届皖南八校联考)已知函数f x =3x -e x +1,其中e =2.71828⋯是自然对数的底数.(1)设曲线y =f x 与x 轴正半轴相交于点P x 0,0 ,曲线在点P 处的切线为l ,求证:曲线y =f x 上的点都不在直线l 的上方;(2)若关于x 的方程f x =m (m 为正实数)有两个不等实根x 1,x 2x 1<x 2 ,求证:x 2-x 1<2-34m .6.不等式放缩例8.(2023届湖北七市州联考T22).已知函数f x =a ln x-x-1 x+1.(1)当a=1时,求函数f x 的单调区间;(2)若g x =a x2-1ln x-x-12a≠0有3个零点x1,x2,x3,其中x1<x2<x3.(ⅰ)求实数a的取值范围;(ⅱ)求证:3a-1x1+x3+2<2.注5. 一些重要的不等式放缩2x-1 x+1<3x2-1x2+4x+1<ln x,x∈1,+∞ln x<3x2-1x2+4x+1<2x-1x+1<x-1,x∈0,17.主元法例9.(2022北京卷)已知函数f(x)=e x ln(1+x).(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)设g(x)=f′(x),讨论函数g(x)在[0,+∞)上的单调性;(3)证明:对任意的s,t∈(0,+∞),有f(s+t)>f(s)+f(t).8.多项式拟合例10.(2021新高考1卷)已知函数f x =x1-ln x.(1)讨论f x 的单调性;(2)设a,b为两个不相等的正数,且b ln a-a ln b=a-b,证明:2<1a +1b<e.针对性训练1.已知函数f x =ae x-x-3有两个零点.(1)求实数a的取值范围.(2)函数g x =f x +x-ln x+1,证明:函数g x 有唯一的极小值点.2.已知f(x)=e x-a2x2-x.(1)若f x 在x=0处取得极小值,求实数a的取值范围;(2)若f x 有两个不同的极值点x1,x2(x1<x2),求证:fx1+x22<0(f x 为f x 的二阶导数).3.已知函数f x =2ae2xx,a≠0.(1)讨论函数f x 的单调性;(2)若ln x-xf x ≤ln a恒成立,求实数a的取值范围.4.已知函数f x =e x+x,g x =ax2+2x+1.(1)当a=12时,讨论函数F x =f x -g x 的单调性;(2)当a<0时,求曲线y=f x 与y=g x 的公切线方程.5.已知f x =a 2x 2-a +2 x +2ln x .(1)讨论f x 的单调性;(2)确定方程f x =a 2x 2的实根个数.6.已知函数f x =a -3 ln x -3ax -1xa ∈R ,ln3≈1.1.(1)当a <0时,试讨论f x 的单调性;(2)求使得f x ≤0在0,+∞ 上恒成立的整数a 的最小值;(3)若对任意a ∈-4,-3 ,当x 1,x 2∈1,4 时,均有m +ln4 ⋅a >f x 1 -f x 2 +3ln4成立,求实数m 的取值范围.7.已知函数f x =ln x-2ax.(1)讨论函数f(x)的单调性;(2)若f(x)≤0恒成立,求a的取值范围.8.已知m>0,e是自然对数的底数,函数f x =e x+m-m ln mx-m.(1)若m=2,求函数F x =e x+x2-4x+2-f x 的极值;2(2)是否存在实数m,∀x>1,都有f x ≥0?若存在,求m的取值范围;若不存在,请说明理由.9.已知函数f x =-ln x,g x =e-x-e x.(1)若∃x∈0,1,g x >f a 成立,求实数a的取值范围;(2)证明:h x =f x +cosπx2e有且只有一个零点x0,且1-e2e<g cosπx02e<1-e e.10.已知函数f x =e x tan x-1-1,f x 的导函数为f x .记函数f x 在区间nπ-3π2,nπ-π2内的零点为x n,n∈N∗.(1)求函数f x 的单调区间;(2)证明:x n+1-x n<π.11.已知函数f x =m ln x+x+m+1x.(1)求函数f x 的单调区间;(2)当m=1时,证明:x2f x <e x+x3.12.已知函数f x =m2x2+m-1x-1m∈R.(1)求函数f x 在区间1,2上的最大值;(2)若m为整数,且关于x的不等式f x ≥ln x恒成立,求整数m的最小值.13.已知函f x =x+ae x,a∈R.(1)讨论f x 在0,+∞的单调性;(2)是否存在a,x0,x1,且x0≠x1,使得曲线y=f x 在x=x0和x=x1处有相同的切线?证明你的结论.14.已知函数.(1)若,求在点处的切线方程;(2)若()是的两个极值点,证明:.15.已知函数.(1)证明:;(2)若,求实数的取值范围;(3)证明:.16.设函数.(1)讨论的单调性;(2)若当时,不等式恒成立,求m的取值范围.17.已知函数.(1)当时,讨论函数在上的单调性;(2)当时,,求实数的取值范围.18.对定义在区间上的函数,如果对任意都有成立,那么称函数在区间上可被替代.(1)若,试判断在区间上,能否可被替代?(2)若,且函数在上可被函数替代,求实数的取值范围.19.已知函数.(1)当时,求曲线在点处的切线方程;(2)对任意实数,都有恒成立,求实数的取值范围.20.已知函数.(1)求函数的零点;(2)证明:对于任意的正实数k,存在,当时,恒有.。

导数压轴题的几种处理方法

导数压轴题的几种处理方法

导数压轴题的几种处理方法导数压轴题在高等数学中属于比较重要的部分,对于学生来说也是比较难以掌握和解答的问题。

在解决导数压轴题的过程中,有一些常用的处理方法可以帮助我们更好地理解题目、分析问题以及解决问题。

接下来,我将介绍一些常见的导数压轴题处理方法。

1.代数化简法:对于一些复杂的函数表达式,我们可以通过代数化简的方法将它转化为更简单的形式。

在处理导数压轴题时,代数化简法也是一种常用的处理方法。

可以通过分子有理化、公式换元、加减引理等方法对函数进行化简,从而更方便地进行导数运算。

2.函数性质法:当给定函数的性质或公式时,可以通过利用函数的性质和公式进行求导。

对于一些常见函数,如指数函数、对数函数、三角函数等,有一些基本的求导公式,可以通过直接套用公式进行求导。

3.极限转换法:在求导过程中,有时候我们可以通过将导数的定义转化为极限的形式,然后利用极限的性质来求导。

极限转换法通常适用于一些特殊的函数形式,如分段函数、绝对值函数等。

4.高阶导数法:对于一些特殊的问题,我们还可以通过求取高阶导数来解决。

通过求取函数的一阶、二阶、甚至更高阶导数,可以更全面地了解函数的性质和特点,从而更好地解答问题。

5.导数的几何意义法:导数的几何意义是描述函数变化率的概念,一些导数压轴题可以通过对导数的几何意义进行分析来解决。

例如,利用导数的几何意义可以判断函数的增减性、极值点和拐点等。

6.隐函数求导法:一些函数的表达式难以直接求导,可以通过对方程两边同时求导的方法来解决。

这种方法通常适用于隐函数关系的导数压轴题,可以通过对隐函数关系进行求导然后解方程得到结果。

7.递归求导法:对于一些重复出现的函数表达式,可以通过递归求导法直接求取导数的表达式。

这种方法适用于一些具有规律性的函数,可以通过重复进行相同的导数运算来求取导数。

8.利用导数性质法:导数具有一些特定的性质,如导数的和、差、积、商、复合函数等性质。

在求导过程中,可以通过利用这些性质来简化计算过程,从而更快速地求解导数问题。

巧妙导数压轴题

巧妙导数压轴题

巧妙导数压轴题
摘要:
1.导数压轴题的概念和特点
2.解决导数压轴题的常用方法
3.导数压轴题的实战演练
4.总结与展望
正文:
一、导数压轴题的概念和特点
导数压轴题是指在高考数学压轴题中,涉及到导数知识的问题。

它具有以下特点:题目难度较大,对学生的综合运用能力要求高,涉及知识点较多,考查学生的逻辑思维能力和创新能力。

二、解决导数压轴题的常用方法
1.导数与函数的性质相结合:导数是函数在某一点的变化率,因此可以利用导数研究函数的极值、最值、单调性等性质。

2.导数的几何意义:导数可以表示函数在某一点的切线斜率,因此可以利用导数解决一些几何问题。

3.利用导数的应用:如求解速度与加速度、变化率、切线方程等问题。

4.利用导数的性质:如求解函数的极值、最值、单调性等问题。

5.构造函数:通过构造函数,将问题转化为求解导数问题。

三、导数压轴题的实战演练
例题:已知函数f(x)=x^3+ax^2+bx+c,求f"(x)。

解:由导数的定义可知,f"(x)=lim_(h->0) [(f(x+h)-f(x))/h]。

将函数f(x) 代入得f"(x)=lim_(h->0) [((x+h)^3+a(x+h)^2+b(x+h)+c)-
(x^3+ax^2+bx+c))/h]。

经过化简,得f"(x)=3x^2+2ax+b。

四、总结与展望
导数压轴题是高考数学中的一个重要题型,解决这类问题需要学生具备扎实的导数知识,并能灵活运用导数的性质、几何意义及应用。

高考数学导数压轴题解题技巧

高考数学导数压轴题解题技巧

高考数学导数压轴题解题技巧包括:
函数法:将参数k当成整个函数中的一部分,分情况讨论k的不同取值对函数的影响。

放缩法:有的参数给的一个范围,通过单调性分析,可以简化为一个端点值讨论即可。

比如给k≤2,你可以转化为
k=2,这样题中就没有参数了,大大降低难度。

此外,还有分离参数等方法。

在解决导数压轴题时,需要注意:
遇到有关单调性或最值的题目,考虑使用导数法。

对于存在性问题,如求参数的取值范围,可以运用分离参数法。

对于与零点存在性有关的问题,最好借助零点存在性定理严格说明,即需在给定单调区间【以单调增区间为例】上找到,进而严格说明使得。

在应用这些技巧时,要结合题目的具体条件和已知信息,灵活运用所学知识解决问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数压轴题处理专题讲解(上)专题一双变量同构式(含拉格朗日中值定理)..................................................... - 2 -专题二分离参数与分类讨论处理恒成立(含洛必达法则).................................... - 4 -专题三导数与零点问题(如何取点) .................................................................. - 7 -专题四隐零点问题整体代换.............................................................................. - 13 -专题五极值点偏移 ........................................................................................... - 18 -专题六导数处理数列求和不等式....................................................................... - 25 -专题一 双变量同构式(含拉格朗日中值定理)例1. 已知(1)讨论的单调性(2)设,求证:例2. 已知函数,。

(1)讨论函数的单调性;(2)证明:若,则对任意x ,x ,x x ,有。

例3. 设函数. (1)当(为自然对数的底数)时,求的最小值; (2)讨论函数零点的个数;(3)若对任意恒成立,求的取值范围.()()21ln 1f x a x ax =+++()f x 2a ≤-()()()121212,0,,4x x f x f x x x ∀∈+∞-≥-()21(1)ln 2f x x ax a x =-+-1a >()f x 5a <12∈(0,)+∞1≠21212()()1f x f x x x ->--()ln ,m f x x m R x=+∈m e =e ()f x ()'()3x g x f x =-()()0,1f b f a b a b a ->><-m例4. 已知函数(1)讨论函数的单调性(2)对任意的,有,求k 的取值范围例5. 已知函数,是否存在,对任意x ,x ,x x ,恒成立?若存在,求之;若不存在,说明理由。

例6. 已知函数()ln f x ax x x =+的图象在点x e =(e 为自然对数的底数)处的切线的斜率为3.(1)求实数a 的值;(2)若2()f x kx ≤对任意0x >成立,求实数k 的取值范围;(3)当1n m >>*(,)m n N ∈时,m n>.()1ln xf x x-=()y f x =)212,,x x e ⎡∈+∞⎣121212()()f x f x k x x x x ->-()21ln (2)2f x x a x a x =-+-a R ∈12∈(0,)+∞1≠21212()()f x f x a x x ->-专题二 分离参数与分类讨论处理恒成立(含洛必达法则)例1. 已知函数ln ()=1a x b f x x x++,曲线=()y f x 在点(1(1))f ,处的切线方程为23=0x y +-.(1)求a 、b 的值;(2)如果当0x >,且1x ≠时,ln ()1x k f x x x>+-,求k 的取值范围.例2. 设函数2()=1x f x e x ax ---.(1)若0a =,求()f x 的单调区间;(2)当0x ≥时,()0f x ≥,求a 的取值范围.例3. 已知函数2()(1)x f x x e ax =--.(1)若()f x 在1x =-时有极值,求函数()f x 的解析式;(2)当1x ≥时,()0f x ≥,求a 的取值范围.(3)当0x ≥时,()0f x ≥,求a 的取值范围.例4. 设函数()1x f x e -=-.(1)证明:当1x >-时,()1x f x x ≥+;(2)设当0x ≥时,()1x f x ax ≤+,求a 的取值范围.例5. 设函数sin ()=2cos x f x x+.(1)求()f x 的单调区间;(2)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.例6. 已知函数()=11x x f x e x λ-+-+(1)证明:当0λ=时间,()0f x ≥(2)若当0x ≥时,()0f x ≥,求实数λ的取值范围。

例7. 已知函数()()2()=ln 1f x x a x x ++-,其中Ra ∈(1)讨论函数()f x 的极值点个数,并说明理由(2)若()0,0x f x ∀>≥成立,求a 取值范围。

例8. 已知函数()211()=ln .022f x ax x ax a ⎛⎫++-> ⎪⎝⎭(1)求证02a <≤时,()f x 在1+2⎡⎫∞⎪⎢⎣⎭,上是增函数(2)若对任意的()1,2a ∈,总存在01,2x ⎡⎫∈+∞⎪⎢⎣⎭使不等式()20()1f x m a >-成立,求实数m 的取值范围例9. 已知函数2()=(2)e (1)x f x x a x -+-有两个零点.求a 的取值范围;例10. 已知函数()=(1)ln (1)f x x x a x +--.(1)当4=a 时,求曲线()y f x =在()1,(1)f 处的切线方程;(2)若当()1,∈+∞x 时,()0f x >,求a 的取值范围.专题三 导数与零点问题(如何取点)例1. 已知函数22()().x x f x a e a e x =+--(1)讨论()f x 单调性;(2)若()f x 有两个零点,求a 的取值范围;例2. 已知函数()()()221x f x x e a x =-+-有两个零点.求a 的取值范围;例3. 设函数()2=ln x f x e a x -.讨论()f x 的导函数()f x '的零点的个数;例4. 已知函数()()21x f x x e ax =-+有两个零点. (2) 求a 的取值范围例5. 已知函数212().x m f x e x m x =---当m<0时,试讨论y=f(x)的零点的个数;例6. 设函数11l n ()l n l n ()x f x x x x =-+++,是否存在实数a ,使得关于x 的不等式()a f x ≥的解集为0+∞(,)?若不存在,试说明理由。

例7. 已知函数2221()-(+)2.x x f x a e a x e x x =++当02a <≤时,证明()f x 必有两个零点例8. 已知函数()()n f x a x a R =∈(1)求()f x 的单调区间(2)求函数()f x 的零点个数,并证明你的结论例9. 设常数00,a λ>>,函数2()l n ,x f x a x x λ=-+对于任意给定的正数,a λ证明存在实数0x ,当0x x >时,0()f x > 例10. 已知函数().ln x a x x f +=(1)当1=a 时,求曲线()x f y =在点()()1,1f 处的切线方程;(2)求()x f 的单调区间;(3)若函数()x f 没有零点,求a 的取值范围.例11. 已知函数()()x e a x x f +=,其中e 是自然对数的底数,R a ∈.(1)求函数()x f 的单调区间;(2)当1<a 时,试确定函数()()2x a x f x g --=的零点个数,并说明理由.例12. 已知函数()().01ln ≠+=a xx a x f (1)求函数()x f 的单调区间;(2)若()}[]{c b x f x ,0=≤()c b <其中,求a 的取值范围,并说明[]().1,0,⊆c b 分析()}[]{c b x f x ,0=≤的形式类似不等式的解集,问题即转化为研究方程的根,即转化为研究函数的零点范围.例13. 已知函数2()(2)ln 22f x x a x a x a =--+++,其中2a ≤(1)求函数()f x 的单调区间;(2)若函数()f x 在(0,2]上有且只有一个零点,求实数a 的取值范围。

例14. 已知关于x 的函数()(0)xax af x a e-=≠,(1)当1a =-时,求函数()f x 的极值;(2)若函数()()1F x f x =+没有零点,求实数a 的取值范围。

例15. 已知函数(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 值;(2)若曲线()y f x =与直线y b =有两个不同交点,求b 的取值范围。

例16. 已知函数()f x a x =,()a R ∈(1)求函数()f x 的单调区间;(2)试求函数()y f x =的零点个数,并证明。

专题四 隐零点问题整体代换例1. 设函数()=2xf x e ax --(1)求()f x 的单调区间(2)若1a =,k 为整数,且当0x >时,()()10x k f x x '--+> ,求k 的最大值例2. 已知函数()ln f x ax x x =+的图像在点x e =(e 为自然对数的底数)处的切线斜率为3(1)求实数a 的值(2)若k Z ∈,且()1f x k x <-对任意1x >恒成立,求k 的最大值例3. 若对于任意0x >,2ln 10xxekx x ---≥恒成立,求k 的取值范围。

例4. 已知函数()()=ln xf x e x m -+.(1)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性;(2)当2m ≤时,证明()0f x >.例5. 已知函数()32213f x x x ax =+++在()1,0-上有两个极值点1x 、2x ,且12x x <. (1)求实数a 的取值范围;(2)证明:()21112f x >. 例6. 已知a R ∈,函数()2=xf x e ax +;()g x 是()f x 的导函数.(1)当12a =-时,求函数()f x 的单调区间;(2)当0a >时,求证:存在唯一的01,02x a ⎛⎫∈-⎪⎝⎭,使得()00g x =;(3)若存在实数,a b ,使得()f x b ≥恒成立,求a b -的最小值.例7. 已知函数满足满足. (1)求的解析式及单调区间;(2)若,求的最大值.例8. 已知函数()()222ln 22f x x a x x ax a a =-++--+,其中0>a .(1)设()g x 是()f x 的导函数,讨论()g x 的单调性;(2)证明:存在()0,1∈a ,使得()0≥f x 在区间()1,+∞内恒成立,且()0=f x 在区间()1,+∞内有唯一解.例9. 已知函数()22=2ln 2f x x x ax a -+-+,其中0>a ,设()g x 是()f x 的导函数.(1)讨论()g x 的单调性;(2)证明:存在()0,1∈a ,使得()0≥f x 恒成立,且()0=f x 在区间()1,+∞内有唯一解.()f x 121()(1)(0)2x f x f e f x x -'=-+()f x 21()2f x x ax b ≥++(1)a b +QQ 群 545423319例10. 已知函数()2=ln 12a f x x x x -++,()=21x ag x ae ax a x++--,其中a R ∈. (1)若2a =,求()f x 的极值点;(2)试讨论()f x 的单调性;(3)若0a >,()0,x ∀∈+∞,恒有()()g x f x '≥,求a 的最小值.例11. 已知函数()21=ln 2f x x ax x -+,a R ∈. (1)求函数()f x 的单调区间;(2)是否存在实数a ,使得函数()f x 的极值大于0?若存在,则求出a 的取值范围;若不存在,请说明理由.例12. 设函数()2ln xf x ea x =-.(1)讨论()f x 的导函数()f x '的零点的个数;(2)证明:当0a >时()22ln f x a a a≥+.例13. 设函数2)(--=ax e x f x. (1)求函数)(x f 的单调区间;(2)若1=a ,k 为整数,且当x >0时,1)(')(++-x x f k x >0,求k 的最大值。

相关文档
最新文档