信号与系统_第一章答案

合集下载

信号与系统第一章习题答案

信号与系统第一章习题答案

t 0 > 0 函数式的信号的波形如图 1.2(b)所示. 。
3
cos ωt
1 … …

5π 2ω

3π 2ω

π 2ω
-1
π 2ω
(a)
3π 2ω
5π 2ω
t
cos ωtε (t )
1
ε (t )
1

π 2ω
3π 2ω
5π 2ω
t
t
(b)
-1 (c ) 图 1.1
cos ωtε (t − t 0 )
1
P = lim
E =∞
1 T → ∞ 2T
1 ∫ [ε (t )] dt = 2
T 2 −T
(2) ε (t ) − ε (t − 1) 是脉冲信号,其为能量信号,能量为:
E = lim
[ε (t ) − ε (t − 1)]2 dt = ∫0 [ε (t ) − ε (t − 1)]2 dt =1 T →∞ ∫−T
T
2
(4) 3 cos (ω 0t + θ ) 是功率信号,其平均功率为:
P = lim
1 T → ∞ 2T
2 ∫−T [3 cos (ω0 t + θ )] dt = Tlim →∞ T
1 2T
2

T
−T
9
cos 2(ω0 t + θ ) + 1 1 9 9 dt = lim ⋅ ⋅ 2T = T → ∞ 2 2T 2 2
T 2
2ω t 1 − cos 0 1 cos ω0 t + 1 9ω 0t ω t 5 dt = lim + sin − sin 0 + ∫ − T T →∞ 2T 2 20 20 2

信号与系统(西安工程大学)知到章节答案智慧树2023年

信号与系统(西安工程大学)知到章节答案智慧树2023年

信号与系统(西安工程大学)知到章节测试答案智慧树2023年最新第一章测试1.周期信号,其周期为()参考答案:82.=( )参考答案:13.积分的值为()。

参考答案:24.已知,则等于()。

参考答案:5.已知某语音信号,对其进行运算得到信号,与信号相比,信号将发生什么变化( )参考答案:长度变长、音调变低第二章测试1.系统的零输入响应是指仅由系统的激励引起的响应。

()参考答案:错2.系统的零输入响应表达形式一定与其微分方程的通解形式相同,系统的零状态响应表达形式一定与其微分方程的特解形式相同。

()参考答案:错3.卷积的方法只适用于线性时不变系统的分析()。

参考答案:对4.单选题:单位阶跃信号作用于某线性时不变系统时,零状态响应为,则此系统单位冲激响应为()参考答案:5.判断题:两个线性时不变系统级联,其总的输入输出关系与它们在级联中的次序没有关系。

()参考答案:对第三章测试1.连续非周期信号频谱的特点是( )。

参考答案:连续;非周期2.若对进行理想取样,其奈奎斯特取样频率为,对进行取样,其奈奎斯特取样频率为 ( )。

参考答案:3.如图所示信号,其傅里叶变换=F [],等于()。

参考答案:24.如图:所示周期信号,该信号不可能含有的频率分量是()。

参考答案:1 Hz5.已知信号的频谱的最高角频率为,的频谱的最高角频率为,信号的最高角频率等于( )。

参考答案:第四章测试1.请判断下面说法是否正确:若连续时间信号是有限时宽信号,且绝对可积,则其拉氏变换的收敛域为整个s平面。

( )参考答案:对2.利用常用函数的象函数及拉普拉斯变换的性质,函数的拉普拉斯变换为()。

参考答案:3.描述某LTI系统的微分方程为,则激励下的零状态响应为()。

参考答案:4.如图所示的复合系统,由四个子系统组成,若各个子系统的系统函数或冲激响应分别为:则复合系统的冲激响应为()。

参考答案:5.描述某连续线性时不变系统的微分方程为,系统的冲激响应为(),阶跃响应为()。

信号与系统--完整版答案--纠错修改后版本

信号与系统--完整版答案--纠错修改后版本
3.6、求下列差分方程所描述的LTI离散系统的零输入相应、零状态响应和全响应。
1)
3)
5)
3.8、求下列差分方程所描述的离散系统的单位序列响应。
2)5)
3.9、求图所示各系统的单位序列响应。
(a)
(c)
3.10、求图所示系统的单位序列响应。
3.11、各序列的图形如图所示,求下列卷积和。
(1)(2)(3)(4)
4.34 某LTI系统的频率响应,若系统输入,求该系统的输出。
4.35 一理想低通滤波器的频率响应
4.36 一个LTI系统的频率响应
若输入,求该系统的输出。
4.39 如图4-35的系统,其输出是输入的平方,即(设为实函数)。该系统是线性的吗?
(1)如,求的频谱函数(或画出频谱图)。
(2)如,求的频谱函数(或画出频谱图)。
(1) (2) (3) (4) (5)
4.19 试用时域微积分性质,求图4-23示信号的频谱。
图4-23
4.20 若已知,试求下列函数的频谱:
(1)(3) (5)
(8)(9)
4下列方式求图4-25示信号的频谱函数 (1)利用xx和线性性质(门函数的频谱可利用已知结果)。
(1)
5-18 已知系统函数和初始状态如下,求系统的零输入响应。
(1),
(3),
5-22 如图5-5所示的复合系统,由4个子系统连接组成,若各子系统的系统函数或冲激响应分别为,,,,求复合系统的冲激响应。
5-26 如图5-7所示系统,已知当时,系统的零状态响应,求系数a、b、c。
5-28 某LTI系统,在以下各种情况下起初始状态相同。已知当激励时,其全响应;当激励时,其全响应。
(7)(8)
1-7 已知序列的图形如图1-7所示,画出下列各序列的图形。

信号与系统课后习题答案

信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。

因此,公共周期3110==f T s 。

(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。

因此,公共周期5110==f T s 。

(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。

所以是非周期的。

(d) 两个分量是同频率的,基频 =0f 1/π Hz 。

因此,公共周期π==01f T s 。

1-2 解 (a) 波形如图1-2(a)所示。

显然是功率信号。

t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。

显然是能量信号。

3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。

1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。

信号与系统(应自炉)习题答案第1章 习题解重点

信号与系统(应自炉)习题答案第1章 习题解重点
(
(222222j t k j t j t j k f t k e
e
e
e
f t π
π
π
πππ+++++==⨯==
∴原函数是周期函数,令1k =,则基波周期为2π。
1-2.
求信号( 14sin( 110cos(2--+=t t t f的基波周期。
解:cos(101 t +的基波周期为15
π,s i n (4
1-8.
用阶跃函数写出题图1-8所示各波形的函数表达式。
t
t
t
(a (
bc
题图1-8
解:(a)((((((3[31]2[11]f t t u t u t u t u t =++-+++-- (((3[13]t u t u t +-+---
(((((
(3 3(1 1(1 1(3 3f
t t u t t u t t u t t u t =+++--++-+-+--(b)([( (1]2[(1 (2]4(2 f t u t u t u t u t u t =--+---+-
1 t -的基波周期为
1
2
π二者的最小公倍数为π,故( 14sin( 110cos(2--+=t t t f的基波周期为π。
1-3.
设(3, 0<=tt f ,对以下每个信号确定其值一定为零的t值区间。
(1)(t f -1(2)((t f t f -+-21(3)((t f t f --21(4)(t f 3(5)(f

信号与系统 人民邮电出版社 第二版第一章 课后答案

信号与系统 人民邮电出版社 第二版第一章 课后答案
w
w
w
.k hd
第一章 信号与系统的基本概念 习题
南京邮电大学 信号分析与信息处理教学中心
aw
信号与系统
2006.1
.c
SIGNALS AND SYSTEMS
om
.c

1 2 0
1-1 下列信号中哪些是周期信号,哪些是脉冲信号?哪 些是能量信号?哪些是功率信号它们的平均功率各为多 少? ω 0t ω 0t j (ω 0t +θ )
om

q
w
画系统 x (t ) q ∑ 模拟图:

15

y (t )
w
5
11
15
w
aw
) 1-23 已知某系统的数学模型为 y " ( t ) + a y ' ( t ) + a y ( t ) = b ' x ( t ) + b x ( t, 其模拟图如下,试导出微分方程中的系数 a1, a0 , b1, b0 与模拟图 与模拟 中的系数 α1,α0 , β1, β0的关系。 解:设辅助函数 q" x(t ) β0 β1 如图所示,则 q" = β 0 x + α 0 y + α1q' y (t ) q' q"
w
w
1 y ( t ) = {[[ x1( t ) + x2 ( t )]2 [[ x1( t ) x2 (t )]2 } 4 = x1(t ) x2 ( t )
.k hd
对所假设系统,有:
q(3) (t ) = x (t ) 5q" (t ) 11q' (t ) 15q(t )

信号与系统第一、二、三章自测题解答

信号与系统第一、二、三章自测题解答

第一章自测题答案1.已知)()4()(2t u t t f +=,则)(''t f =(t)4δ2u(t)'+ 2.2(2)1()t t d t t δ∞-∞+⋅+-=⎰3=-⋅+⎰∞∞-dt t t t )1()2(2δ。

3.=-⎰∞∞-dt t t e tj )(0δωoj ωet 。

4.试画出下列各函数式表示的信号图形: (1)0 ),()(001>-=t t t u t f(2))]4()([3cos )(2--=t u t u t t f π在0到4区间内的6个周期的余弦波,余弦波的周期为2/3。

(3)][sin )(3t u t f π=5.已知f (t )的波形如图1.1所示,求f (2-t )与f (6-2t )的表达式,并画出波形。

答:函数表达式:f(2-t) = [u(t)-u(t-1)]+2[u(t-1)-u(t-2)] f(6-2t)=[u(t-2)-u(t-2.5)]+2[u(t-2.5)-u(t-3)]6.信号f (5-3t )的波形如图1.2所示,试画出f (t )的波形。

答:f(5-3t)左移5/3得到f(-3t),然后再扩展3倍得到f(-t),最后反褶可得到f(t)7.对于下述的系统,输入为e (t ), 输出为r (t ),T [e (t )]表示系统对e (t )的响应,试判定下述系统是否为: (1) 线性系统;(2)非时变系统;(3)因果系统;(4)稳定系统:(a) r (t )=T [e (t )]=e (t -2)线性、非时变、因果、稳定系统 (b) r (t )=T [e (t )]=e (-t )线性、时变、非因果、稳定系统 (c) r (t )=T [e (t )]=e (t )cos t 线性、时变、因果、稳定系统 (d) r (t )=T [e (t )]=a e (t )非线性、时不变、因果、稳定系统9. 一线性非时变系统,当输入为单位阶跃信号u (t )时,输出r (t )为 )1()()(t u t u e t r t --+=-,试求该系统对图1.3所示输入e (t )的响应。

信号与系统课后习题答案

信号与系统课后习题答案

f 2 (−1) (t) =
δ (t − 2) − δ (t − 3)
*
t ε e(−t+1) (t + 1)dt
−∞
= [δ (t − 2) − δ (t − 3)]* (1 − e−(t+1) )ε (t + 1)
= (1 − e−(t−2+1) )ε (t − 2 + 1) − (1 − e−(t−3+1) )ε (t − 3 + 1)
) − iL (t) − uC (t) R1
R2
状态方程为:
⎪⎪⎧u&C (t) ⎨
=
f (t) R1C

uC (t) R1C

iL (t) C
⎪⎪⎩i&L
(t)
=
uC
(t)
− R2iL L
(t)
1.17 写出题图 1.8 系统的输入输出方程。
解: (b)系统框图等价为:
⎧x′′(t) = f (t) − 3x′(t) − 2 y(t)
x2(0-)=1 时,y2(t)=4e-t-2e-3t,t≥0 则 x1(0-)=5,x2(0-)=3 时,系统的零输入响应: yx(t)=y(t)=5y1(t)+3y2(t)=22e-t 十 9e-3t,t≥0
1.22 在题 1.21 的基础上,若还已知 f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,有 y(t)=2+e-t+2e-3t,t≥0 试求当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统响应 y(t)。 解: 记,f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,系统响应 yf(t)=y(t)=2+e-t+2e-3t,t≥0 则当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统全响应 y(t)为: y(t)=3yf(t)+2y1(t)+5y2(t)

信号与系统智慧树知到课后章节答案2023年下宁波大学

信号与系统智慧树知到课后章节答案2023年下宁波大学

信号与系统智慧树知到课后章节答案2023年下宁波大学宁波大学第一章测试1.下列信号的分类方法不正确的是()A:数字信号和离散信号 B:确定信号和随机信号 C:周期信号和非周期信号 D:连续信号与离散信号答案:数字信号和离散信号2.下列表达式中正确的是()A:δ(2t)=δ(2/t) B:δ(2t)=δ(t) C:δ(2t)=2δ(t) D:δ(2t)=δ(t)/2答案:δ(2t)=δ(t)/23.信号平移、反转和尺度变化的最佳作图顺序是()A:先平移,再尺度变换,最后反折 B:先尺度变换,再平移,最后反折 C:先平移,再反折,最后尺度变换 D:先反折,再尺度变换,最后平移答案:先平移,再尺度变换,最后反折4.差分方程是指由未知输出序列项与输入序列项构成的方程。

未知序列项变量最高序号与最低序号的差数,称为差分方程的阶数。

()A:对 B:错答案:对5.系统y(t)=2(t+1)x(t)+cos(t+1)是因果系统。

()A:对 B:错答案:对第二章测试1.线性系统响应满足以下规律()A:若初始状态为零,则零状态响应为零 B:若系统的零状态响应为零,则强迫响应也为零 C:若系统的起始状态为零,则系统的自由响应为零 D:若初始状态为零,则零输入响应为零。

答案:若初始状态为零,则零输入响应为零。

2.卷积δ(t)*f(t)*δ(t)的结果为()A:δ(t) B:f(2t) C:f(t) D:δ(2t)答案:f(t)3.()A: B: C: D:答案:4.若y(t)=x(t)*h(t),则y(-t)=x(-t)*h(-t)。

()A:对 B:错答案:错5.已知,,则的非零值区间为[0,3]。

()A:错 B:对答案:对第三章测试1.某人每月初在银行存入一定数量的款f(k),月息为β,建立求第k个月初存折上款数的差分方程()。

A: B:C:D:答案:2.ε(k)∙ε(k-5)=()A:ε(k-5) B:ε(k) C:ε(k-4) D:(k-4)ε(k-5)答案:ε(k-5)3.某离散时间系统的差分方程a1y(k+1)+a2y(k)+a3y(k-1)=b1f(k+1)+b2f(k),该系统的阶次为()A:4 B:2 C:3 D:1答案:24.离散系统的零状态响应等于激励信号f(k)与单位样值响应h(k)的卷积()A:对 B:错答案:对5.若y(t)=x(t)*h(t),则y(-t)=x(-t)*h(-t)。

信号与系统第三版郑君里课后习题答案

信号与系统第三版郑君里课后习题答案

信号与系统第三版郑君里课后习题答案第一章习题参考解1,判刑下列信号的类型解:()sin[()];y t A x t = 连续、模拟、周期、功率型信号 。

()()tt y t x e d τττ--∞=⎰ 连续、模拟、非周期、功率型信号。

()(2y n x n =) 离散、模拟、非周期、功率型信号。

()()y n nx n = 离散、模拟、非周期、功率型信号。

1-6,示意画出下列各信号的波形,并判断其类型。

(1) 0()sin()x t A t ωθ=+ 连续、模拟、周期、功率型(2) ()tx t Ae -= 连续、模拟、非周期、只是一个函数,不是物理量。

(3) ()cos 0t x t e t t -=≥ 连续、模拟、非周期、能量型 (4) ()2112,x t t t =+-≤≤ 连续、模拟、非周期、能量型(5) 4()(),0.5kx k k =≥ 离散、模拟、非周期、能量型 (6) 0().j kx k eΩ= 离散、模拟、周期、功率型()sin[()];()()()(2);()()tt y t A x t y t x ed y n x n y n nx n τττ--∞====⎰1-6题,1-4图。

t=-pi:1/200:pi;y1=1.5*sin(2*t+pi/6);subplot(4,1,1),plot(t,y1),title('1.5sin(2*t+pi/6)'),gridy2=2*exp(-t);subplot(4,1,2),plot(t,y2),title('2exp(-t)'),gridt1=0:1/200:2*pi;y3=10*exp(-t1).*cos(2*pi*t1);subplot(4,1,3),plot(t1,y3),title('10exp(-t1)cos(2*pi*t1)'),grid t2=-1:1/200:2;y4=2*t2+1;subplot(4,1,4),plot(t2,y4),title('2x+1'),grid习题1-6 5-6题 n=0:pi/10:2*pi; y=(0.8).^n;subplot(4,1,1),stem(n,y,'fill '),title('(0.8)^n'),grid n1=0:pi/24:2*pi;y1=cos(2*pi*n1);y2=sin(2*pi*n1);subplot(4,1,2),stem3(y1,y2,n1,'fill '),title('exp[2*pi*n1'),grid subplot(4,1,4),stem(n1,sin(2*pi*n1),'fill '),title('sin2pin1'),grid subplot(4,1,3),stem(n1,cos(2*pi*n1),'fill'),title('cos2pin1)'),grid1-8,判断下列系统的类型。

奥本海姆《信号与系统(第二版)》习题参考答案.

奥本海姆《信号与系统(第二版)》习题参考答案.
故:时移系统是线性系统;(2时不变性:y1 (t = x1 (t − t1令:x 2 (t = x1 (t − t 0 → y 2 (t = x 2 (t − t1 = x1 (t − t 0 − t1而:y1 (t − t 0 = x1 (t − t1 − t 0 y1 (t − t 0 = y 2 (t故时移系统是时不变系统。(3)因果性:由定义可知,当t1 ≥ 0,则系统是因果的;否则为非因果系统;(4)记忆性:由定义可知,时移系统是记忆系统;(5)稳定性:由于信号进行时移后,不影响幅度,故时移系统是稳定的;二反折系统:线性、时变、非因果、记忆、稳定;三尺度系统:线性、时变、非因果、记忆、稳定;(a y (t = x(t − 2 + x(2 − t解:由于该系统由时移与反折系统所组成,故性质由二者决定:线性、时变、非因果、记忆、稳定;(b)y(t = [cos 3t ]x(t线性(略:是线性的时不变性:y1 (t = [cos 3t ]x(t令:x 2 (t = x1 (t − t 0 → y 2 (t = [cos 3t ]x 2 (t = [cos 3t ]x1 (t − t 0而:y1 (t − t 0 = [cos 3(t − t 0 ]x1 (t − t 0 y1 (t − t 0 ≠ y 2 (t故系统时变(总结:若y(t与x(t之间的关系除了x(t的形式外,还包括有关于t的函总结:的形式外,总结与之间的关系除了的形式外则该系统是时变系统数,则该系统是时变系统因果性:输出仅与x(t的当前值有关,故系统因果;(注意,因果性的定义:仅与当前值或以前值有关【二者只要满足一个就注意,注意因果性的定义:仅与当前值或以前值有关【是】记忆性:输出仅与x(t的当前值有关,故为非记忆系统;稳定性:由于cos3t是有界的函数,则x(t有界,y(t有界,故系统稳定;(c)y (t = ∫−∞ x(τ dτ解:线性:该系统是线性的(参考1小题证明);时不变性:2t y1 (t = ∫ x1 (τ dτ −∞ 2t 8

信号与系统自测题(第1章 参考答案)

信号与系统自测题(第1章 参考答案)
2 1 2 1 2 1 2 1 0 0
、 f (−at ) 左移 t B、 f ( at ) 右移 t t t C、 f ( at ) 左移 D、 f ( −at ) 右移 a a 注: f (t − at ) = f [−a(t − ta )] 20、 f ( −t + 2) 是下面哪一种运算的结果( B ) 。 B、 f ( −t ) 向右移 2 个单位 A、 f (t ) 向左移 2 个单位 C、 f ( −2t ) 向右移 1 个单位 D、 f (t ) 向右移 2 个单位 注: f (−t + 2) = f [−(t − 2)] 21、 f (2t ) 是下面哪一种运算的结果( C ) 。 A、 f (t ) 向左移 2 个单位 B、 f ( −t ) 向右移 2 个单位 C、 f (t ) 压缩 1 倍 D、 f (t ) 扩展 1 倍 22、已知信号的波形如下图所示,则 f (t ) 的表达式为( C ) 。
A
0 0 0 0 0 0
f (t )
t
、 f (t ) = tu(t ) B、 f (t ) = (t − 1)u (t − 1) C、 f (t ) = tu (t − 1) D、 f (t ) = 2(t − 1)u (t − 1) 注: 23、已知信号 f (t ) 的波形如下图所示,则 f (5 − 2t ) 的波形为( C ) 。
∞ 2 −∞
t
D 2δ (2t ) =

1 δ (t ) 2
、 ∫ (t + t )δ (t − 1)dt = 3 D、 tδ ′(t ) = tδ (t ) 6、积分 ∫ (τ − 2)δ (τ )dτ 等于( B ) 。 A、−2δ (t ) B、−2u (t ) C、u (t − 2) 注: ∫ (τ − 2)δ (τ )dτ = (0 − 2)∫ δ (τ )dτ = −2u(t )

[信号与系统作业解答]第一章

[信号与系统作业解答]第一章
第一章 绪论
1-3、分别求下列各周期信号的周期 T 1) cos(10 t ) cos(30 t) ; 2) e j 10 t ; 4)
(1)n[u(t nT ) u(t nT T )]
n 0

n
(1) [u(t nT ) u(t nT T )]
图(b)表达式为:
f ( t ) u( t ) u( t 1) 2[u( t 1) u( t 2)] 3u( t 2) ; u( t ) u( t 1) u( t 2)
图(c)表达式为: f ( t ) sin
t [u( t ) u( t T )] ; T
C1e1 (t ) C2e2 (t ) sin[C1e1 (t ) C2e2 (t )]u(t ) C1r1 (t ) C2r2 (t )
由于
所以系统是非线性的。
e( t ) r (t ) sin[e( t )]u(t )

e(t t0 ) sin[e(t t0 )]u(t ) r (t t0 ) sin[e(t t0 )]u(t t0 )
5)由于 e1 (t ) r1 (t ) e1 (2t ) , e2 (t ) r2 (t ) e2 (2t ) , 而
C1e1 (t ) C2e2 (t ) C1e1 (2t ) C2e2 (2t ) C1r1 (t ) C2r2 (t )
由于
所以系统是线性的。
C1e1 ( t ) C 2e2 ( t ) C1e1 (t ) C 2e2 (t ) C1r1 (t ) C 2r2 (t )
由于
2
所以系统是非线性的。

信号与系统第一章答案

信号与系统第一章答案

w0 )*m, and m=3. w0 )*m=10
Because
w0 =3 /5, N=(2 /
m/3 ,
it’s not a rational number.
13/37
5 Exercises Answers
1.11 Solution
x[n ] 1 e e
j 4 n 7 j 4 n 7 j 2 n 5
Then,
y[n] 2 x[n 2] 5x[n 3] 2 x[n 4]
16/37
5 Exercises Answers
(b) No. For it’s linearity.
the relationship between
y1 [ n ]
and x 2 [n]
is the same in-out relationship with (a).
2
9/37
5 Exercises Answers
(e) x 2 [n] e
E
j(
) 2n 8 2 j( ) 2n 8
n


e
12
n -

N 1 1 1 P lim E lim 1 lim 2N+1 1 N 2N 1 N 2N 1 N 2N 1 n -N (f) x 2 [n ] cos( 4 n ) n 1 cos 2 E cos2 ( n ) 4 2 n n 1 cos n N 1 1 1 1 2 P lim E lim lim N N 2N 1 N 2N 1 N 2 2N 1 2 n N

信号与系统课后答案

信号与系统课后答案

与奇分量的波形,相应如图题 1.12 中所示。
1-13 已知信号 f(t)的偶分量 fe(t)的波形如图题 1-13(a)所示, 信号 f(t+1)×U(-t-1)的波形如图题 1-13(b) 所示。求 f(t)的奇分量 fo(t),并画出 fo(t)的波形。
解 因
f (t ) = f e (t ) + f 0 (t )

t
−∞
δ (τ )dτ ,故根据现行系统的积分性有
y (t ) = ∫ h(τ (dτ = ∫ [δ (τ ) − δ (τ − 1) − δ (τ − 2) + δ (τ − 3)]dτ = u (t ) − u (t − 1) − u (t − 2) + u (t − 3)
1-2 已知各信号的波形如图题 1-2 所示,试写出它们各自的函数式。
解: f 1 (t ) = t[u (t ) − u (t − 1)] + u (t − 1)
f 2 (t ) = −(t − 1)[u (t ) − u(t − 1)]
f 3 (t ) = (t − 2)[u(t − 2) − u(t − 3)]
y 2 (t ) 的波形如图题 1.17(c)所示.
1-18 图题 1-18(a)所示为线性时不变系统,已知 h1(t)=δ(t)-δ(t-1), h2(t)=δ(t-2)-δ(t-3)。(1)求响 应 h(t); (2) 求当 f(t)=U(t)时的响应 y(t)(见图题 1-18(b))。
解(1) h(t ) = h1 (t ) − h2 (t ) = δ (t ) − δ (t − 1) − δ (t − 2) + δ (t − 3) (2) 因 f (t ) = u (t ) =

信号与系统课后习题与解答第一章

信号与系统课后习题与解答第一章

1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号;(e )离散信号,数字信号; (f )离散信号,数字信号。

1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-; (2)nT e -; (3))cos(πn ;(4)为任意值)(00)sin(ωωn ;(5)221⎪⎭⎫⎝⎛。

解由1-1题的分析可知: (1)连续信号; (2)离散信号;(3)离散信号,数字信号; (4)离散信号; (5)离散信号。

1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -; (2)j10t e ;(3)2)]8t (5sin [;(4)[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----。

解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。

(1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15T 2π=。

由于5π为21T T 、的最小公倍数,所以此信号的周期5T π=。

(2)由欧拉公式)t (jsin )t (cos e t j ωωω+= 即)10t (jsin )10t (cos e j10t +=得周期5102T ππ==。

信号与系统吴大正--完整版答案详解--纠错修改后版本

信号与系统吴大正--完整版答案详解--纠错修改后版本

精彩文档第一章 信号与系统1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为(2)∞<<-∞=-t e t f t,)((3))()sin()(t t t f επ=精彩文档(4))(sin )(t t f ε=(5))(sin )(t r t f =(7))(2)(k t f k ε=精彩文档(10))(])1(1[)(k k f k ε-+=1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 解:各信号波形为精彩文档(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε精彩文档(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε1-3 写出图1-3所示各波形的表达式。

精彩文档1-4 写出图1-4所示各序列的闭合形式表达式。

信号与系统第一、二、三章自测题解答

信号与系统第一、二、三章自测题解答

第一章自测题答案1.已知)()4()(2t u t t f +=,则)(''t f =(t)4δ2u(t)'+ 2.2(2)1()t t d t t δ∞-∞+⋅+-=⎰3=-⋅+⎰∞∞-dt t t t )1()2(2δ。

3.=-⎰∞∞-dt t t e tj )(0δωoj ωet 。

4.试画出下列各函数式表示的信号图形: (1)0 ),()(001>-=t t t u t f(2))]4()([3cos )(2--=t u t u t t f π在0到4区间内的6个周期的余弦波,余弦波的周期为2/3。

(3)][sin )(3t u t f π=5.已知f (t )的波形如图1.1所示,求f (2-t )与f (6-2t )的表达式,并画出波形。

答:函数表达式:f(2-t) = [u(t)-u(t-1)]+2[u(t-1)-u(t-2)] f(6-2t)=[u(t-2)-u(t-2.5)]+2[u(t-2.5)-u(t-3)]6.信号f (5-3t )的波形如图1.2所示,试画出f (t )的波形。

答:f(5-3t)左移5/3得到f(-3t),然后再扩展3倍得到f(-t),最后反褶可得到f(t)7.对于下述的系统,输入为e (t ), 输出为r (t ),T [e (t )]表示系统对e (t )的响应,试判定下述系统是否为: (1) 线性系统;(2)非时变系统;(3)因果系统;(4)稳定系统:(a) r (t )=T [e (t )]=e (t -2)线性、非时变、因果、稳定系统 (b) r (t )=T [e (t )]=e (-t )线性、时变、非因果、稳定系统 (c) r (t )=T [e (t )]=e (t )cos t 线性、时变、因果、稳定系统 (d) r (t )=T [e (t )]=a e (t )非线性、时不变、因果、稳定系统9. 一线性非时变系统,当输入为单位阶跃信号u (t )时,输出r (t )为 )1()()(t u t u e t r t --+=-,试求该系统对图1.3所示输入e (t )的响应。

信号与系统(郑君里)课后答案 第一章习题解答

信号与系统(郑君里)课后答案  第一章习题解答

1-4 分析过程:(1)例1-1的方法:()()()()23232f t f t f t f t →−→−→−− (2)方法二:()()()233323f t f t f t f t ⎡⎤⎛⎞→→−→−−⎜⎟⎢⎥⎝⎠⎣⎦(3)方法三:()()()()232f t f t f t f t →−→−+→−−⎡⎤⎣⎦ 解题过程:(1)方法一:方法二:(1)()−f at 左移0t :()()()000−+=−−≠−⎡⎤⎣⎦f a t t f at at f t at (2)()f at 右移0t :()()()000−=−≠−⎡⎤⎣⎦f a t t f at at f t at (3)()f at 左移0t a :()()000⎡⎤⎛⎞+=+≠−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a (4)()f at 右移0t a :()()000⎡⎤⎛⎞−−=−+=−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a 故(4)运算可以得到正确结果。

注:1-4、1-5题考察信号时域运算:1-4题说明采用不同的运算次序可以得到一致的结果;1-5题提醒所有的运算是针对自变量t 进行的。

如果先进行尺度变换或者反转变换,再进行移位变换,一定要注意移位量和移位的方向。

1-9 解题过程: (1)()()()2tf t eu t −=− (2)()()()232tt f t ee u t −−=+(3)()()()255ttf t e eu t −−=− (4)()()()()cos 1012tf t et u t u t π−=−−−⎡⎤⎣⎦1-12 解题过程:((((注:1-9、1-12题中的时域信号均为实因果信号,即()()()=f t f t u t 1-18 分析过程:任何信号均可分解为奇分量与偶分量之和的形式,即()()()()1e o f t f t f t =+其中,()e f t 为偶分量,()o f t 为奇分量,二者性质如下:()()()()()()23e e o o f t f t f t f t =−=−−()()13∼式联立得()()()12e f t f t f t =+−⎡⎤⎣⎦ ()()()12o f t f t f t =−−⎡⎤⎣⎦ 解题过程:(a-1) (a-2)(a-3)(a-4)f t为偶函数,故只有偶分量,为其本身(b) ()(c-1)(c-2)(c-3)(c-4)(d-1)(d-2)(d-3)(d-4)1-20 分析过程:本题为判断系统性质:线性、时不变性、因果性(1)线性(Linearity):基本含义为叠加性和均匀性即输入()1x t ,()2x t 得到的输出分别为()1y t ,()2y t ,()()11T x t y t =⎡⎤⎣⎦,()()22T x t y t =⎡⎤⎣⎦,则()()()()11221122T c x t c x t c y t c y t +=+⎡⎤⎣⎦(1c ,2c 为常数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T 1
P=0
(3)
1 ε (t ) 是能量信号,其能量为: 1+ t
E = lim
∞ 1 1 ε ( t ) dt = ε (t ) dt =1 ∫ ∫ 0 1 + t T →∞ −T 1 + t T
2
2
1 P = lim T → ∞ 2T
1 ε (t ) dt = 0 ∫−T 1 + t
5
ε (t + t 0 )
1
ε (t 0 − t )
1
− t0
(a)
t
t0
(b) 图 1.5
t
ε (t 0 − 2t )
1
t0 2
图 1.6
t
(7) ε (t 0 − 2t ) − ε (− t 0 − 2t ) t 0 > 0 函数式的信号的波形如图 1.7(c )所示. 。
ε (− t 0 − t )
T 2
2ω t 1 − cos 0 1 cos ω0 t + 1 9ω 0t ω t 5 dt = lim + sin − sin 0 + ∫ − T T →∞ 2T 2 20 20 2
T
1 1 1 1 = lim ⋅ ⋅ 2T + ⋅ ⋅ 2T T →∞ 2T 2 2T 2 =1
(6) f (2 − t ) (8) f (− 2 − t )ε (− t )
图 1.14
【知识点窍】本题考察信号的绘制及自变量变换导致信号变换的概念 【逻辑推理】本题用到信号的时域运算与变换。 解: (1) f (2t ) 信号的波形如图 1.15 所示。 (2) f (t )ε (t ) 信号的波形如图 1.16 所示。
j ω 0 +θ ) 2
] dt = lim 9e
T→∞
2 j (ω 0 +θ )
2T = ∞
(6) e − at cos ω 0 tε (t ) 为能量信号,其能量为:
E = lim
T →∞ −T
∫ [e
T
− at
cos ω 0t ε (t ) dt = lim
]
2
T →∞ 0

T
e − 2at cos 2 ω0 tdt 1
图 1.9 (10) 2 −( n− 2) ε [n − 2] 函数式的信号的波形如图 1.10 所示. 。
2−( n−2) ε[n −2]
1 … -1 0 1 2 3
n
图 1.10 (11) − nε [n + 2] 函数式的信号的波形如图 1.11 (c )所示. 。
−n
… -1
1 0 1 2 … -2 -1
1 ε (t ) 1+ t
(5) 3e j (ω 0 +θ ) (7) 3t ε (t )
ω 0t ωt + sin 0 4 5
【 知识点窍】 本题考察周期信号、 脉冲信号、 能量信号、 功率信号的概念 【 逻辑推理】 时间间隔无穷大时, 周期信号都是功率信号,只存在有限时间内的信号是能量信 号。信号总能量为有限值而信号平均功率为零的是能量信号;信号平均功率为有限值而信号总能量 为无限大的是功率信号。 解: (1) ε (t ) 是功率信号,其平均功率:
1
ε (t − t 0 )
1

t0 t0
(a) 图 1.2
π 2ω
t
-1
3π 2ω
5π 2ω
t
(b)
(3) cos[ω (t − t 0 )]ε (t )
t 0 > 0 函数式的信号的波形如图 1.3(b)所示. 。 t 0 > 0 函数式的信号的波形如图 1.4 所示. 。
(4) cos[ω (t − t 0 )]ε (t − t 0 )
1.4 已知信号 f (t ) 的波形如图 1.14 所示。试画出下列各信号的波形。 (1) f (2t ) (3) f (t − 3) (2) f (t )ε (t ) (4) f (t − 3)ε (t − 3)
9
(5) f (t + 2 ) (7) f (2 − t )ε (2 − t ) (9) f (t − 1)[ε (t ) − ε (t − 2)]
(a)
图 1.13
(b)
【知识点窍】本题考察信号的概念。 【逻辑推理】本题用到了基本信号的性质及描述。 解: (a)由图 1.13(a)可得:
t − 1 f (t ) = 1 0
(b)由图 1.13(b)可得:
1≤ t ≤ 2 2 <t ≤ 4 其它
t 2 0≤ t ≤ 2 f (t ) = 2t − 8 2<t ≤ 4 0 其它
t0 > 0
t0 > 0
(7) ε (t 0 − 2t ) − ε (− t 0 − 2t ) t 0 > 0 (9) 2 −n ε [n ] (11) − nε [n + 2]
1 5

【知识点窍】本题考察基本信号的绘制及自变量变换导致信号变换的概念 【逻辑推理】本题用到了基本信号的性质及信号的时域运算与变换。 解: (1) cos ωtε (t ) 函数式的信号的波形如图 1.1(c )所示. 。 (2) cos ωt ε (t − t 0 )

第一章 信号与系统的基本概念
1.1 学习重点
1、 信号与系统的基本概念,信号的分类,会画信号的波形。 2、 常用基本信号 (连续时间信号和离散时间信号) 的时域描述方法、 特点以及性质, 并会灵活运用性质。 3、 信号的时域分解、 变换与时域运算,及其综合运用。 4、 深刻理解线性时不变系统的定义与性质,并会应用这些性质。 5、 利用 MATLAB 表示信号、 实现信号的基本运算。
4
cos ω (t − t 0 )
1 … …
t0
-1 (a)
t
cos [ω (t − t 0 )]ε (t )
1 …
t0
-1
t
(b) 图 1.3
cos ω (t − t 0 )
1 …
t0
-1
t
图 1.4 (5) ε (t 0 − t ) (6) ε (t 0 − 2t )
t 0 > 0 函数式的信号的波形如图 1.5(b)所示. 。 t 0 > 0 函数式的信号的波形如图 1.6 所示. 。
f (t + 2 )
1
f (2 − t )
1
-4
-3
-2
-1 0
t
0
1
2
3
4
5
t
图 1.19
图 1.20
ε (t + 2 )
1
ε (2 − t )
1
-2
-1
0
t
0
1
2
t
(a)
(b)
f (2 − t )ε (2 − t )
1
0
1
2Байду номын сангаас
3
4
5
t
(c)
图 1.21
11
ε (− t )
1
f (t − 2 )
1
1
ε (− t 0 − 2t )
1
− t0
(a)
t
t −0 2
(b)
t
ε (t 0 − 2t ) − ε (− t0 − 2t )
1
t −0 2
t0 2
(c ) 图 1.7
6
t
(8) ε [sin πt ] 函数式的信号的波形如图 1.8(b)所示. 。
sin πt
1 … -2 -1 -1 (a) 1 2 3 …
t 0 > 0 函数式的信号的波形如图 1.2(b)所示. 。
3
cos ωt
1 … …

5π 2ω

3π 2ω

π 2ω
-1
π 2ω
(a)
3π 2ω
5π 2ω
t
cos ωtε (t )
1
ε (t )
1

π 2ω
3π 2ω
5π 2ω
t
t
(b)
-1 (c ) 图 1.1
cos ωtε (t − t 0 )
2 0
E = lim
T →∞ −T
∫ [3 cos(ω t + θ )] dt =∫ [3 cos (ω t + θ )] dt =∞
T ∞ 0 −∞
(5) 3e j (ω 0 +θ ) 为功率信号,其平均功率为:
P = 9e 2 j (ω0 +θ )
E = lim
T →∞ −T
( ∫ [3e
T
E =∞
1.2
试画出下列各函数式表示的信号的波形。 (1) cos ωtε (t ) (3) cos[ω (t − t 0 )]ε (t ) (5) ε (t 0 − t ) (2) cos ωt ε (t − t 0 )
t0 > 0 t0 > 0
t0 > 0
(4) cos[ω (t − t 0 )]ε (t − t 0 ) (6) ε (t 0 − 2t ) (8) ε [sin πt ] (10) 2 −( n− 2) ε [n − 2] (12) sin πn
1
P = lim
E =∞
1 T → ∞ 2T
1 ∫ [ε (t )] dt = 2
T 2 −T
(2) ε (t ) − ε (t − 1) 是脉冲信号,其为能量信号,能量为:
E = lim
相关文档
最新文档