壳聚糖改性与在水处理方面的应用

合集下载

壳聚糖薄膜的制备方法及在水处理中的应用

壳聚糖薄膜的制备方法及在水处理中的应用

壳聚糖薄膜的制备方法及在水处理中的应用壳聚糖是一种天然的生物聚合物,具有良好的生物相容性和生物可降解性,因此在环境领域广泛应用。

壳聚糖薄膜作为壳聚糖的一种形式,具有高度的透水性和选择性吸附性,已被广泛用于水处理和环境污染控制。

本文将介绍壳聚糖薄膜的制备方法及其在水处理中的应用。

一、壳聚糖薄膜制备方法1. 溶液浇注法:将壳聚糖溶液倒在平整的玻璃基板上,通过自然干燥或烘干,形成壳聚糖薄膜。

这种方法简单易行,适用于制备较厚的壳聚糖薄膜。

2. 涂覆法:先将壳聚糖溶液涂覆在玻璃或聚苯乙烯等基材上,再通过干燥或化学交联等方法形成壳聚糖薄膜。

这种方法制备的膜薄且均匀,可控性较好。

3. 化学交联法:壳聚糖薄膜可通过与交联剂(如戊二醛、乙二醇等)的反应形成。

这种方法可提高壳聚糖薄膜的稳定性和机械强度,适用于制备需要耐久性的薄膜。

4. 蒸发沉积法:通过将壳聚糖溶液放置在真空环境下蒸发,使溶液中的壳聚糖形成薄膜。

这种方法制备的薄膜具有较高的纯度和结晶度,适用于需要高纯度的壳聚糖薄膜。

二、壳聚糖薄膜在水处理中的应用1. 水过滤:壳聚糖薄膜具有狭窄的孔径和高度的透水性,可以用作水处理中的微过滤膜或超滤膜,有效去除水中的悬浮物、胶体和微生物等。

2. 水分离:壳聚糖薄膜可用于水中溶解物质的分离,如有机物质和无机物质的分离、重金属离子的吸附和去除。

3. 水净化:壳聚糖薄膜的独特结构和电荷性质,使其能够吸附和去除水中的有害物质,如重金属、有机污染物等,从而达到净化水质的目的。

4. 水资源回收:壳聚糖薄膜可用于水资源回收和再利用,在处理生活污水、工业废水和农业灌溉水等方面发挥重要作用。

5. 水分析:壳聚糖薄膜可用于水中微量元素的检测和分析,通过吸附和浸出等方法,检测水中微量元素的含量和种类。

三、壳聚糖薄膜的优势与展望1. 环境友好:壳聚糖是一种天然的生物聚合物,具有良好的生物相容性和生物可降解性,不会对环境造成污染。

2. 高选择性:壳聚糖薄膜具有高度的选择性吸附性,可以选择性地吸附不同类型的污染物,提高水处理的效率。

壳聚糖作用

壳聚糖作用

壳聚糖作用
壳聚糖是一种由葡萄糖分子组成的天然聚合物,具有许多重要的生物学特性和广泛的应用领域。

壳聚糖具有以下作用:
1. 医药领域:壳聚糖具有良好的生物相容性和生物可降解性,被广泛应用于药物输送系统中。

壳聚糖的阳离子性能够与阴离子药物形成稳定的复合物,在胃肠道中缓慢释放,提高药物的生物利用度。

此外,壳聚糖还可用作人工血液、组织工程材料、伤口敷料等领域。

2. 食品工业:壳聚糖是一种安全无毒的食品添加剂,能够提高食品的质感、增加食品的稳定性和延长保鲜期。

壳聚糖在果蔬保鲜、肉类保鲜、乳品加工等方面有广泛的应用。

此外,壳聚糖还可以用作食品包装材料,具有阻隔湿气和氧气的功能,可以延缓食品的变质。

3. 环境保护:壳聚糖可用作水处理剂,对有机物和重金属离子具有很强的吸附能力。

壳聚糖在水中形成胶状物,能够吸附水中悬浮物、胶体和离子,净化水质。

此外,壳聚糖还可用于土壤修复,吸附土壤中的污染物,提高土壤环境的质量。

4. 纺织工业:壳聚糖可以与纤维表面形成稳定的化学键,提高纤维的染色质量和牢度。

壳聚糖还具有很好的抗菌性能,可以用于制造抗菌纺织品和医用纤维材料。

此外,壳聚糖纳米颗粒还可以用于纺织品的功能性改性,如防水、防尘、防静电等。

5. 化妆品工业:壳聚糖具有极高的吸湿性和保湿性,可以增加
化妆品的保湿效果。

壳聚糖还具有很好的厚度流变特性,可以调整化妆品的质地和稠度。

此外,壳聚糖还具有抗菌性能,可以用于制作抗菌洗护产品和抗菌化妆品。

总之,壳聚糖具有广泛的应用前景和潜力。

随着科学技术的发展,对壳聚糖的研究还将进一步深入,为其在更多领域的应用提供支持。

PVDF膜改性与及其在水处理中的应用解析

PVDF膜改性与及其在水处理中的应用解析

总结与展望
PVDF 有机膜的改性方法众多,各有优缺点 。 大量研 究表明,共混改性由于成本较低,改性膜的综合性能得到 提高,极具可操作性,因而前景广阔 。 随着各学科的交 叉发展,有许多新兴的改性技术得到广泛研究,但是多数 研究还只是停留在实验室阶段 。 因此,今后的研究方向 应该针对污 、 废水不同的特点,考查 PVDF改性膜在工程 应用中的综合性能 。 由于目前改性后的膜普遍缺乏一定 的稳定性,所以要加强对成膜的动力学和热力学机理的研 究,同时进一步加强膜改性与膜清洗有机结合的研究,能 够在增强膜法水处理各项指标的基础上,有效地控制膜污 染程度 。

辐射表面接枝改性
通过高能射线福射来引发膜表面单体接枝聚合 左丹英等通过高能电子束辖照PVDF基膜,将丙稀酸和苯乙稀磺酸钠混合溶液与福照过 的PVDF膜反应,得到了既含有羧酸基团又含有礎酸基团的PVDF亲水膜。
PVDF膜表面改性方法

等离子体表面改性
PVDF 超滤膜的低温等离子体改性是先用低温等离子体照射膜来产生活性自 由基,再将亲水性物质接枝到膜表面以达到改性的目的。 Mariana等用Ar等离子体对PVDF膜表面进行改性,脱除PVDF链上的HF,同时将
度范围为-50~150℃。由于 C-F 键长短,键能高(486KJ·mol-1),故具有耐
酸碱腐蚀性、抗紫外光辐照性、良好的化学稳定性和较大的机械强度。
PVDF
PVDF中空纤维膜
PVDF结构式
PVDF膜表面改性方法
PVDF膜疏水性特别强,在蛋白类药物富集、提纯和油水分离及过程中应用时 容易产生严重污染,使膜的通量产生较大幅度的下降,使其在相关领域的应用中
目前,PVDF的共混改性主要包括与高聚物共混改性和与无机小分子共混改性。

壳聚糖的降解及其应用研究

壳聚糖的降解及其应用研究

壳聚糖的降解及其应用研究介绍壳聚糖是一种天然高分子聚合物,具有许多独特的性质和广泛的应用潜力。

本文将探讨壳聚糖的降解机制以及其在不同领域的应用研究。

壳聚糖的降解机制1. 酶降解壳聚糖可以通过酶的作用被降解。

在生物体内,壳聚糖酶是一种特殊的酶,能够将壳聚糖分解为较小的单元,如壳寡糖和壳二糖。

这种酶降解的过程是高度特异性的,壳聚糖酶只能降解壳聚糖,而对其他多糖类物质无作用。

2. 酸降解除了酶降解外,壳聚糖还可以通过酸的作用被降解。

在酸性条件下,壳聚糖分子中的酸性基团会与酸反应,导致壳聚糖链断裂,从而实现降解的目的。

酸降解是一种常见的壳聚糖降解方法,可以通过调节酸性条件的强弱和时间来控制壳聚糖的降解速度。

3. 热降解壳聚糖在高温条件下也可以发生降解。

热降解是一种非常快速的降解方式,可以在短时间内将壳聚糖分解为低分子量的物质。

热降解的温度和时间可以通过调节加热条件来控制,从而实现对壳聚糖降解速度的控制。

壳聚糖的应用研究1. 医药领域(1) 药物传递系统壳聚糖具有良好的生物相容性和生物可降解性,因此在药物传递系统中得到广泛应用。

通过将药物包裹在壳聚糖纳米粒子中,可以增加药物的稳定性和生物利用度,从而提高药物的疗效。

(2) 创伤敷料壳聚糖具有良好的吸水性和抗菌性能,因此被广泛应用于创伤敷料的制备中。

壳聚糖敷料能够吸收伤口渗出液,促进伤口愈合,并具有抗菌作用,可以预防伤口感染。

2. 环境保护领域(1) 水处理剂壳聚糖具有良好的吸附性能,可以用作水处理剂去除水中的重金属离子和有机污染物。

壳聚糖的阳离子性能使其能够与阴离子污染物形成络合物,从而实现水中污染物的去除。

(2) 土壤修复剂壳聚糖可以用作土壤修复剂,帮助修复受到重金属污染的土壤。

壳聚糖能够与土壤中的重金属形成络合物,减少重金属的毒性,同时还能增强土壤的保水性和肥力。

3. 食品工业(1) 保鲜剂壳聚糖具有良好的抗菌性能和膜形成能力,可以用作食品保鲜剂。

将壳聚糖膜覆盖在食品表面,可以有效阻隔氧气和水分的进入,延长食品的保鲜期。

壳聚糖基磁性杂化材料在水处理应用中的进展

壳聚糖基磁性杂化材料在水处理应用中的进展

关键词 :磁性纳米粒 子;壳聚糖 ;吸 附性 能 中图分类号 :X7 9 文献标识码 :A 文章编号 :10— 302 l)9 0 1— 5 05 95(020— 00 0
Pr g e i a lc ton fc ios nba e m a n tchy o r  ̄ n pp i a i o h t a s d g e b ̄d o p ie nwa e r a me i c m ost si t rt e t nt
Abs r c t a t: Cht a a o d bolgia o p t it n e r d bly th s go d a f i o m e al o , i os n h s g o i o c l m a i ly a d d g a a it .I a o fi t t t lc in c bi i ny i
和性 、生物 相容性 、无 毒和 易于化 学 改性等独 特 的 性 能。 由于 其优 良的吸 附和 絮凝作用 ,近 年来 在 国 内外 水处理 中得 到越来越 多 的应用 。通过 将壳 聚糖 包裹 纳米磁 性粒 子制备 成 的磁性壳 聚糖 微球 ,具有
多孔 、 易回收 、可再生 等优 点 ,并 且该磁 性微 球稳
dy s a d p o ei f r i i h h d o y n m i o g o p o t i e n i o e u a h i .I i iel pp i d i t e e n r t n o ’t r y r x l d a n r u s c n a n d i t m l c l rc a n t s w d y a l n h s c a s e b O—e gi e i g i n n er ,m e ci e o d n di n ,f o ,c e i a n s r n n io m en i ds t .Bi m a r m ol c l o t d w ih h m c li du t y a d e v n r tf el ,e c o co e ue c a e t

壳聚糖和三聚磷酸钠

壳聚糖和三聚磷酸钠

壳聚糖和三聚磷酸钠壳聚糖和三聚磷酸钠:环保材料的重要组成部分近年来,环境保护意识的提升使得人们对于环保材料的需求不断增加。

在众多的环保材料中,壳聚糖和三聚磷酸钠以其优异的性能和广泛的应用领域成为了研究的热点。

壳聚糖是一种天然的聚合物,而三聚磷酸钠是一种无机化合物,它们的结合产生了许多创新的应用,不仅在环保领域有着广泛的应用,还在医药、食品等领域展现出了巨大的潜力。

首先,壳聚糖和三聚磷酸钠在环保领域的应用不可忽视。

壳聚糖具有良好的生物降解性和可再生性,可以替代传统塑料制品。

而三聚磷酸钠是一种无毒、无害的化合物,可以用于处理废水中的重金属离子和污染物。

将壳聚糖和三聚磷酸钠结合使用,可以制备出一种高效的环境净化材料,用于净化污水、处理工业废水等,具有重要的环保意义。

其次,壳聚糖和三聚磷酸钠在医药领域有着广泛的应用前景。

壳聚糖具有良好的生物相容性和生物可降解性,可以作为药物的载体用于控释药物。

三聚磷酸钠具有良好的抗菌性能,可以用于制备抗菌药物。

壳聚糖和三聚磷酸钠的结合不仅可以提高药物的溶解度和稳定性,还可以改善药物的生物利用度。

因此,壳聚糖和三聚磷酸钠在医药领域的应用前景非常广阔,可以用于药物传递、组织工程和生物医学材料等方面。

除此之外,壳聚糖和三聚磷酸钠还可以用于食品领域。

壳聚糖具有良好的保湿性和保鲜性,可以用于包装食品,延长食品的保质期。

三聚磷酸钠作为一种食品添加剂,可以用于食品的防腐和增稠。

将壳聚糖和三聚磷酸钠结合使用,可以制备出一种具有抗菌性和保湿性的食品包装材料,提高食品的安全性和品质。

总结起来,壳聚糖和三聚磷酸钠作为环保材料的重要组成部分,具有广泛的应用前景。

在环保领域,可以用于净化污水、处理废水等;在医药领域,可以用于药物传递、组织工程等;在食品领域,可以用于食品包装、防腐等。

壳聚糖和三聚磷酸钠的结合使用,不仅可以提高材料的性能,还可以拓展材料的应用领域。

因此,壳聚糖和三聚磷酸钠的研究与应用具有重要的意义,将为环境保护、医药和食品等领域的发展带来巨大的潜力和机遇。

羧甲基壳聚糖的性能及应用概况

羧甲基壳聚糖的性能及应用概况

羧甲基壳聚糖的性能及应用概况一、本文概述《羧甲基壳聚糖的性能及应用概况》这篇文章旨在全面介绍羧甲基壳聚糖(Carboxymethyl Chitosan,简称CMC)的基本性能及其在各个领域的应用情况。

羧甲基壳聚糖是一种由壳聚糖经过化学改性得到的水溶性多糖衍生物,具有良好的水溶性、生物相容性、生物可降解性和独特的物理化学性质。

由于其独特的性质,羧甲基壳聚糖在医药、食品、环保、农业和化妆品等多个领域得到了广泛应用。

本文将系统介绍羧甲基壳聚糖的基本性质、合成方法、改性技术,以及在不同领域中的应用实例和研究进展,以期为相关领域的研究人员和企业提供有价值的参考信息,推动羧甲基壳聚糖在各领域的应用和发展。

二、羧甲基壳聚糖的基本性质羧甲基壳聚糖(Carboxymethyl chitosan,简称CMC)是一种重要的壳聚糖衍生物,具有一系列独特的物理化学性质。

其最基本的性质源于其分子结构中的氨基和羧基官能团,这些官能团赋予了CMC出色的水溶性、离子交换能力和生物活性。

羧甲基壳聚糖的溶解性相较于未改性的壳聚糖有了显著提升。

由于羧甲基的引入,CMC在水中的溶解度大大增加,可以在广泛的pH值范围内溶解,这使得其在各种水溶液体系和生物应用中具有更大的灵活性。

CMC具有良好的离子交换能力。

其分子中的羧基可以发生电离,产生带有负电荷的离子,从而与带有正电荷的离子进行交换。

这种离子交换性质使得CMC在重金属离子吸附、水处理、药物载体等领域具有广泛的应用前景。

羧甲基壳聚糖还表现出良好的生物相容性和生物活性。

其分子结构中的氨基和羧基可以与生物体内的多种物质发生相互作用,如蛋白质、多糖、核酸等,从而显示出良好的生物相容性。

其生物活性使得CMC在生物医药、组织工程、生物传感器等领域具有潜在的应用价值。

羧甲基壳聚糖的基本性质使其在多个领域具有广泛的应用前景。

随着科学技术的不断发展,对CMC的研究和应用将会越来越深入,其在各个领域的应用也将不断拓展。

壳聚糖及其衍生物在处理含氟水中的应用

壳聚糖及其衍生物在处理含氟水中的应用
第4 3 卷 第 1 期 2 0 1 4年 1 月







Vo 1 . 43 No . 1
T e c h n o l o g y & De v e l o p me n t o f C h e mi c a l I n d u s t r y
J a n . 2 0 1 4
5 2







第 4 卷
除氟剂 , 用于含氟水 的处理。当负载钛 的壳聚糖用 量为 1 . 0 g ・ L ~ , 起始氟离子浓度为 5 m g ・ L ~ , p H值 为7 , 温度 为 3 0 3 K, 吸附剂对氟离子 吸附 2 4 h 时达 到饱和 , 其饱和吸附容量为 3 0 m g・ g ~ 。动力学分析 表明 , 颗粒 内扩散 过程和液膜形成的边界层是吸附
1 壳聚糖 的物化性质
壳 聚糖( c h i t o s a n ) 是 甲壳 素 N 一 脱 乙酰基 的产 物, 又称脱 乙酰甲壳素 , 是一种聚氨基葡萄糖线性高
氧化镁是 一种 良好 的除氟 剂。为 了克服其在
吸附中的不足 , S u n d a r a m等 将氧化镁与壳聚糖按
照 3: 2的配 比进 行反 应 , 然 后在 温 度 为 4 0 0  ̄ C 条 件 分子物质 , 其化学 名是 p 一 ( 1 . 4 ) 一 2 氨基 . 2 一 脱氧 . D . 下进行锻烧 , 制备得到氧化镁 / 壳聚糖复合物 , 用于 葡萄 糖( 图1 o一 般 而 言 , N 一 乙酰基脱 去 5 5 % 以 含 氟 水 的 吸 附处 理 。实 验 结果 显 示 , 当氟离 子 初 始 上的就可称之为壳 聚糖 l 6 J 。从 图 1 可 以看出 , 壳聚 浓度 为 1 0 m g・ L ~ , 温度 为 3 0 3 K , p H值 为 3 — 1 1 , 吸
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《文献检索与科技论文写作》作业壳聚糖的改性在水处理中的应用进展年级:学院:专业:高分子材料学生:学号:指导教师:提纲0 引言壳聚糖是性能优异、应用广泛且具有开发价值的天然高分子絮凝剂。

虽然在应用中有一些不足,但可以通过物理或化学改性来提高其性能,拓展其应用围。

本文主要介绍壳聚糖改性后在水处理中的应用进展。

1 壳聚糖的改性在饮用水处理中的应用从对氟离子的吸附及对浊度的降低介绍改性壳聚糖的应用效果;2 壳聚糖的改性在工业废水中的应用2.1 印染废水从对偶氮染料的吸附及对阳离子染料的吸附介绍改性壳聚糖的应用;2.2 重金属离子2+、Th4+的吸附及对Cr(VI)的吸附,主要从对铜离子、对镍离子的吸附;对UO2来介绍改性壳聚糖的应用;2.3 造纸废水主要介绍接枝改性壳聚糖和壳聚糖微球对造纸废水的处理效果;3 壳聚糖的改性在城市污水和海水中的应用主要介绍改性壳聚糖对SS、浊度、BOD5及COD等的处理效果;4 结语与展望介绍目前的改性研究情况及未来研究的方向。

5 参考文献壳聚糖的改性在水处理中的应用进展--------大学材料科学与工程学院14级高分子材料专业马舒颜摘要:本文阐述了壳聚糖絮凝剂改性后在水处理方面的应用进展,着重说明其在重金属离子处理、印染废水处理中的应用。

壳聚糖絮凝剂在水处理中应用极广,环境友好,从可持续发展角度来看有着巨大的发展潜力和研究意义。

关键词:壳聚糖的改性絮凝水处理0 引言水是人类生存最基本的需求,传统的水处理剂会在水中有残留,对人体健康及环境造成危害。

因此,兼具环境友好、可再生、来源广泛的绿色水处理剂备受关注。

而壳聚糖就是性能最为优异的的天然高分子材料之一。

壳聚糖是由自然界广泛存在的甲壳素经过脱乙酰作用得到的,又称脱乙酰甲壳素,一般而言,甲壳素的N-乙酰基脱去55%以上就可称为壳聚糖,其分子式为(C6H11NO4)N。

壳聚糖结构中含有大量活泼的氨基和羟基,在酸性溶液中能形成阳离子型聚电解质,有良好的絮凝作用;且可通过表面侵蚀、酶降解、溶解等多种降解方式进行可控性降解,无毒副作用;同时还具有很好的生物相容性、吸附性、吸湿性、成膜性、抵抗免疫反应性和抗菌性等,广泛应用于造纸、纺织、制革、工业废水处理;在医药、食品保健品等领域也发挥着巨大的作用。

因此,壳聚糖是一种用途广泛且富开发价值的天然高分子絮凝剂。

然而,壳聚糖在实际应用中还存在一些不足,譬如:化学性质不活泼、溶解性较差、分子量相对较低等,在一定程度上限制了它的使用围。

但因其结构中含有羟基、乙酰基和氨基等官能团,故可以利用烷基化、酯化、接枝、交联等改性方法来改善壳聚糖的性质,提高其性能,从而拓展应用围,得到更大的利用空间。

1 壳聚糖的改性在饮用水处理中的应用饮用水的处理,目的是将水处理为对人体有生物安全性和化学安全性的水,同时水的浊度、色度、硬度、气味等给人的感受要好[1]。

壳聚糖因其天然、无毒、安全性,在饮用水处理中显示了其独特的优越性。

壳聚糖特有的分子结构,可有效去除水中的悬浮物、有机物、颜色和气味,可降低水中COD含量并减少水中毒副物质的产生;此外,壳聚糖可以有效吸附去除饮用水中重金属及其藻类物质;还可以去除无机絮凝剂处理后残留的铝离子,且能一定程度上抑制水中微生物的繁殖和生长,从而具有一定的杀菌作用[2]。

我国是世界上地方性氟中毒较严重的国家之一。

氟离子是人体不可或缺的微量元素之一,饮用水中氟离子含量在0.4mg/L~0.6 mg/L时对人体有益,国家卫生饮用水标准要求氟的含量不能超过1.0mg/L[3]。

氟含量超标对人体伤害极大,若长期饮用,不仅会对人体的软组织和硬组织造成损伤,还可能会导致患者骨骼变形等。

因此,去除或控制饮用水中的氟的含量十分重要。

梁鹏等[4]以壳聚糖为基体,首次利用成本较低的高La3+稀土改性片状壳聚糖,得到新型除氟剂CR;针对片状壳聚糖使用性能不稳定、不易与介质分离等缺陷,采用反相悬浮法合成了La3+和高La3+稀土改性壳聚糖树脂(CLB和CLRB),吸附饱和容量分别为6.01mg/g,3.34mg/g。

FTIR表明CLB和CLRB二者结构中形成了N-La3+配位键和N-高La3+稀土配位键,使热稳定性较不含稀土树脂得到了较大提高。

为了进一步提高稀土改性壳聚糖树脂的利用效率,研究制得稀土改性磁性壳聚糖树脂MCLB和MCLRB,它们的吸附饱和容量分别可达20.53mg/g和22.35mg/g。

几种除氟剂应用于模拟高氟饮用水除氟时,都能取得了良好的效果。

与传统除氟剂相比,稀土改性壳聚糖除氟剂具有吸附容量高、吸附速率快、成本低廉、可多次重复利用且使用性能稳定等特点,有望进一步推广使用。

夏红[5]等采用稀土铈对壳聚糖进行改性成球,经戊二醛交联后制得新型除氟吸附材料稀土铈改性壳聚糖微球(CeCh),CeCh在吸附平衡时吸附量为0.268mg/g,是壳聚糖未改性前的6.06倍,可见改性后的CeCh可以显著提高氟离子的吸附效果,可用于对水中氟离子进行脱氟处理。

徐美等[6]采用硝酸镧改性壳聚糖的方法,制备新型除氟剂( La-CTS) 吸附水中氟离子,确定最佳条件为:氟离子初始浓度为8.16 mg/L时,pH值为6,温度为20 ℃,吸附剂用量为0.7 g,吸附时间为160 min 时,吸附达到平衡,除氟率达98.3%。

R.Fabris[7]等人研究发现,使用壳聚糖作为混凝剂,去除饮用水浊度的效果远)的用量,远超过其他的无机混凝剂,与此同时还可以有效的减少消毒剂(如Cl2降低消毒时副产物的生成量。

2 壳聚糖的改性在工业废水中的应用2.1 对于印染废水的处理印染废水是加工棉、麻及其混纺产品为主的印染厂排出的废水,我国沿海地区日益严重的印染废水已经极度恶化了海洋生物的生存环境。

染料废水由于其高COD、高色度、有机成分复杂、微生物降解程度低等诸多特点,一直以来,印染废水都是最难以处理的工业废水之一[8-9]。

吸附作为目前应用最为广泛的印染废水脱色方法之一,具有工艺流程与操作简单、投资小、能耗低、环保、处理量大、脱色率高、无需添加其他化学药品且吸附剂有望再生和重复使用等优点[10-11],特别适用于吸附脱除不能生物降解的染料。

近年来,针对染料废水吸附法的研究主要集中在寻找新型廉价且环保的吸附剂上,使印染废水的处理在安全经济的同时,减少染料在环境中的积累。

壳聚糖是一种可吸附水体多种污染物的天然高分子材料,已被广泛应用于废水处理的研究中。

但它存在一些缺陷,譬如:机械强度低、酸稳定性低、孔隙率低等,这些都限制了其在水处理中的的应用围与潜力。

但是我们可通过物理改性和化学改性法对壳聚糖的性能进行改善,从而扩展其应用围,有效吸附水中污染物。

关于吸附偶氮染料的研究有如下进展:Wu等[12]制备了多孔壳聚糖-三聚磷酸盐球,与非多孔壳聚糖-三聚磷酸盐球相比,多孔球的比表面积显著增大,对水溶液中Cu2+的最大吸附容量为208.3 mg/g,吸附速率更快,吸附性能更强。

Rego 等[13]采用流涎法制备了壳聚糖膜并用于去除水溶液中的偶氮染料,与文献中报道的其他形态壳聚糖[14]相比较,该壳聚糖膜对柠檬黄和苋菜红的吸附容量分别为413.8 mg/g 和278.3 mg/g,吸附性能大大提高,且吸附过程完成后,该膜很容易从水溶液中分离,可将其投入工业化应用中。

丽等[15]以氧化石墨烯(GO)和壳聚糖(CS)为前体物,以乙二胺四乙酸二钠Na)为表面改性剂,制备了一种新型改性氧化石墨烯/壳聚糖功能材料(GEC) ( EDTA2并将此材料作为吸附剂用于水中刚果红(一种典型的偶氮染料)的吸附去除,GEC对水中刚果红具备良好的吸附能力,且在 pH =2~12 的围都具有较佳的吸附效果。

根据Langmuir模型计算得到GEC室温条件下最大吸附量为175.43mg/g。

用2mol/LNaOH溶液在60℃水浴条件下对GEC进行脱附再生实验,在重复循环利用6次后,GEC对刚果红的吸附量仅下降了5.89%,刚果红的去除率仍保持在88%以上。

以上结果表明,GEC适合作为一种有效的吸附剂去除水中刚果红。

Chatterjee等[16]采用浸渍法制备了壳聚糖/碳纳米管凝胶球,以该凝胶球作为吸附剂吸附水溶液中的刚果红。

所制备壳聚糖/碳纳米管凝胶球对刚果红的吸附等温线更符合L型模型,最大吸附容量为450.4 mg/g。

对于阴离子、阳离子染料的吸附剂多采用对壳聚糖进行化学改性。

壳聚糖分子中包含的氨基、羟基等活性官能团有利于其进行化学改性,通过化学改性可获得一系列性能优良的壳聚糖衍生物,而壳聚糖的基本结构不会改变。

这种改性可以增加壳聚糖在酸性介质中的机械强度和化学稳定性,提高其吸附性能。

壳聚糖的化学改性主要包括交联、浸渍、和接枝等方法。

Kyaw等[17]分别以三聚磷酸盐和环氧氯丙烷为交联剂制备了交联壳聚糖球并将其用于去除溶液中的阴离子和阳离子染料。

随着染料溶液pH的下降,该球对染料的吸附容量显著增加。

在pH为4,吸附时间为60min,吸附剂用量为3.5g时,三聚磷酸盐交联壳聚糖球对阴离子染料的去除率(87.2%)高于环氧氯丙烷交联壳聚糖球(81.9%)。

在同等pH条件下,两种交联壳聚糖球对阳离子染料的去除率均低于50%。

田秀枝等人[18]在酸性条件下将氨基离子化,然后用一步自由基聚合法将长脂肪链的乙烯基单体——新壬酸乙烯酯(VNA)接枝到CTS上,制备得到VNS-CTS 新型染料吸附剂。

该合成方法简单易操作,制备成本低,无二次污染。

相对于其他壳聚糖衍生物,VNS-CTS在低接枝率的情况下,就具有很强的疏水性和耐酸稳定性,并且其低接枝率使CTS的相对含量更高,对染料具有更强的吸附能力。

2.2 对于水中重金属离子的处理随着工业和城市中生活污水、废水的大量排放,水体中含铜等重金属离子明显增多,而铜废水影响水生植物的光合作用,能够致癌、致畸、危害人类健康,使人们赖以生存的生态环境日益恶化,因此对重金属污染水的治理具有十分重要的意义[19-21]。

吸附法作为一种传统的水处理技术,在工业废水中应用较广,其常用的吸附剂有活性炭、膨润土、壳聚糖、沸石、黏土和生物吸附剂等,其中的壳聚糖因分子中含有的氨基和羟基,能通过氢键、盐键、螯合等作用对重金属离子进行物理和化学吸附,同时壳聚糖还具有可生物降解及低毒性能,因此常作为重金属离子及其他有害物质的吸附剂[22]。

但是,壳聚糖有易溶胀、可溶于稀酸等特性,且力学性能较差,故很难直接应用于废水中重金属污染的去除,通常需要通过物理或化学改性对其进行优化。

韩小茜等[23]用正硅酸四乙酯(TEOS)修饰Fe3O4表面,并将其与经4-氯苯基异氰酸酯改性的壳聚糖通过六亚甲基双异氰酸酯(HDI)连接,制得功能化Fe3O4@SiO2-壳聚糖磁性微球(磁性微球C),采用扫描电镜、傅里叶红外光谱仪等手段对其进行表征,考察了所得磁性微球C对Cu2+的吸附性能。

相关文档
最新文档