弹簧模型(动力学问题)

合集下载

弹簧模型中的力与能(解析版)

弹簧模型中的力与能(解析版)

弹簧模型中的力与能目录【模型一】静力学中的弹簧模型【模型二】动力学中的弹簧模型【模型三】与动量、能量有关的弹簧模型【模型一】静力学中的弹簧模型静力学中的弹簧模型一般指与弹簧相连的物体在弹簧弹力和其他力的共同作用下处于平衡状态的问题,涉及的知识主要有胡克定律、物体的平衡条件等,难度中等偏下。

1(2024·全国·高三专题练习)如图所示,倾角为θ的斜面固定在水平地面上,两个质量均为m 的物块a 、b 用劲度系数为k 的轻质弹簧连接,两物块均恰好能静止在斜面上。

已知物块a 与斜面间的动摩擦因数是物块b 与斜面间的动摩擦因数的两倍,可认为最大静摩擦力等于滑动摩擦力,重力加速度大小为g ,弹簧始终在弹性限度内。

则弹簧的长度与原长相比()A.可能伸长了mg sin θ3k B.可能伸长了2mg sin θ3k C.可能缩短了mg sin θ3k D.可能缩短了2mg sin θ3k 【答案】A【详解】AB .设b 与斜面间的动摩擦因数为μ弹簧的形变量为x ,对a 物体受力分析,由平衡条件得kx +mg sin θ=2μmg cos θ对b 物体受力分析,由平衡条件得kx +μmg cos θ=mg sin θ解得x =mg sin θ3kA 正确,B 错误;CD .因物块a 与斜面间的动摩擦因数大于物块b 与斜面间的动摩擦因数,当弹簧处于压缩状态时两物体不能均恰好能静止在斜面上,CD 错误;故选A 。

2(2023上·黑龙江哈尔滨·高三校联考期末)如图所示,倾角为θ且表面光滑的斜面固定在水平地面上,轻绳跨过光滑定滑轮,一端连接物体c,另一端连接物体b,b与物体a用轻弹簧连接,c与地面接触且a、b、c均静止。

已知a、b的质量均为m,重力加速度大小为g。

则()A.c的质量一定等于2m sinθB.剪断竖直绳瞬间,b的加速度大小为g sinθC.剪断竖直绳之后,a、b将保持相对静止并沿斜面下滑D.剪断弹簧瞬间,绳上的张力大小为mg sinθ【答案】D【详解】A.根据平衡条件对a、b整体受力分析可得T=2mg sinθ对c受力分析可得m c g=2mg sinθ+F N可知m c≥2m sinθ故A错误;D.剪断弹簧的瞬间,弹簧弹力消失,因m c>m b sinθ,故物体b仍保持静止,b的加速度为0,绳子拉力T=mg sinθ故D正确;B.弹簧的弹力为kx=mg sinθ剪断竖直绳后瞬间,弹簧弹力不突变,此时对b物体kx+mg sinθ=ma则加速度为2g sinθ,故B错误;C.剪断竖直绳后瞬间,弹簧弹力不变,a的加速度大小为0,与b物体的加速度不同,两物体不会保持相对静止沿斜面下滑,故C错误。

弹簧问题(动力学)

弹簧问题(动力学)

弹簧问题(动力学)知识升华一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。

数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。

说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长(或压缩)跟外力成正比这一性质可制成弹簧秤。

2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。

(1)定义:在弹性限度内,弹簧产生的弹力F(也可认为大小等于弹簧受到的外力)和弹簧的形变量(伸长量或者压缩量)x的比值,也就是胡克定律中的比例系数k。

(2)劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。

弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之则越大。

如两根完全相同的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;若两根完全相同的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。

由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。

性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。

其伸长量等于弹簧任意位置受到的力和劲度系数的比值。

如图1和2中相同的轻弹簧,其端点受到相同大小的力时,无论弹簧是处于静止、匀速还是加速运动状态,各个弹簧的伸长量都是相同的。

性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间变化——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。

如在图1、2、3、4、中撤出任何一个力的瞬间,弹簧的长度不会变化,弹力的大小也不会变化;但是在图5中撤出力F的瞬时,弹簧恢复原长,弹力变为零。

2020高三物理模型组合讲解——绳件弹簧杆件模型(动力学问题)

2020高三物理模型组合讲解——绳件弹簧杆件模型(动力学问题)

2020高三物理模型组合讲解——绳件弹簧杆件模型(动力学问题)张家栋[模型概述]挂件咨询题是力学中极为常见的模型,其中绳件、弹簧件更是这一模型中的要紧模具,相关试题在高考中一直连续不断。

它们间的共同之处是均不计重力,然而它们在许多方面有较大的差不。

[模型回忆][模型讲解]例1. 如图1中a 所示,一质量为m 的物体系于长度分不为l 1、l 2的两根细线上,l 1的一端悬挂在天花板上,与竖直方向夹角为θ,l 2水平拉直,物体处于平稳状态。

现将l 2线剪断,求剪断瞬时物体的加速度。

图1〔1〕下面是某同学对题的一种解法:解:设l 1线上拉力为F T 1,l 2线上拉力为F T 2,重力为mg ,物体在三力作用下保持平稳F mg T 1cos θ=,F F T T 12sin θ=,F mg T 2=tan θ剪断线的瞬时,F T 2突然消逝,物体即在F T 2反方向获得加速度。

因为mg ma tan θ=,因此加速度a g =tan θ,方向沿F T 2反方向。

你认为那个结果正确吗?请对该解法作出评判并讲明理由。

〔2〕假设将图a 中的细线l 1改为长度相同、质量不计的轻弹簧,如图b 所示,其他条件不变,求解的步骤和结果与〔1〕完全相同,即a g =tan θ,你认为那个结果正确吗?请讲明理由。

解析:因为l 2被剪断的瞬时,l 1上的张力发生突变,故物体获得的瞬时加速度由重力的分力提供,大小为g sin θ,方向垂直l 1斜向下,因此〔1〕错。

因为l 2被剪断的瞬时,弹簧的长度不能发生突变而导致弹力不能突变,因此〔2〕对。

拓展:在〔1〕中假设l 1、l 2皆为弹性绳,剪断l 2的瞬时,小球的加速度为多少?〔参考答案a g =tan θ〕 假设l 1、l 2皆为弹性绳,剪断l 1的瞬时,小球的加速度为多少?〔参考答案a g =/cos θ〕在〔2〕中剪断l 1的瞬时,小球的加速度为多少?〔参考答案a g =〕例2. 如图2所示,斜面与水平面间的夹角θ=30,物体A 和B 的质量分不为m kg A =10、m kg B =5。

专题04 弹簧模型(解析版)

专题04 弹簧模型(解析版)

2023年高三物理二轮常见模型与方法强化专训专练专题04 弹簧模型一、高考真题1.(2022年江苏卷)如图所示,轻质弹簧一端固定,另一端与物块A 连接在一起,处于压缩状态,A 由静止释放后沿斜面向上运动到最大位移时,立即将物块B 轻放在A 右侧,A 、B 由静止开始一起沿斜面向下运动,下滑过程中A 、B 始终不分离,当A 回到初始位置时速度为零,A 、B 与斜面间的动摩擦因数相同、弹簧未超过弹性限度,则( )A .当上滑到最大位移的一半时,A 的加速度方向沿斜面向下B .A 上滑时、弹簧的弹力方向不发生变化C .下滑时,B 对A 的压力先减小后增大D .整个过程中A 、B 克服摩擦力所做的总功大于B 的重力势能减小量【答案】B【详解】B .由于A 、B 在下滑过程中不分离,设在最高点的弹力为F ,方向沿斜面向下为正方向,斜面倾角为θ,AB 之间的弹力为F AB ,摩擦因素为μ,刚下滑时根据牛顿第二定律对AB 有()()()A B A B A B sin cos F m m g m m g m m a θμθ++−+=+对B 有B B AB B sin cos m g m g F m a θμθ−−=联立可得AB A B BF F m m m =−+由于A 对B 的弹力F AB 方向沿斜面向上,故可知在最高点F 的方向沿斜面向上;由于在最开始弹簧弹力也是沿斜面向上的,弹簧一直处于压缩状态,所以A 上滑时、弹簧的弹力方向一直沿斜面向上,不发生变化,故B 正确;A .设弹簧原长在O 点,A 刚开始运动时距离O 点为x 1,A 运动到最高点时距离O 点为x 2;下滑过程AB 不分离,则弹簧一直处于压缩状态,上滑过程根据能量守恒定律可得()()22121211sin 22kx kx mg f x x θ=++− 化简得()122sin mg f k x x θ+=+当位移为最大位移的一半时有()121in =s +2F f x x k x mg θ−⎛⎫−− ⎪⎝⎭合带入k 值可知F 合=0,即此时加速度为0,故A 错误;C .根据B 的分析可知AB A B BF F m m m =−+再结合B 选项的结论可知下滑过程中F 向上且逐渐变大,则下滑过程F AB 逐渐变大,根据牛顿第三定律可知B 对A 的压力逐渐变大,故C 错误;D .整个过程中弹力做的功为0,A 重力做的功为0,当A 回到初始位置时速度为零,根据功能关系可知整个过程中A 、B 克服摩擦力所做的总功等于B 的重力势能减小量,故D 错误。

弹簧模型专题(有答案)

弹簧模型专题(有答案)

高中物理弹簧模型专题一、弹簧称的示数例1.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上;②中弹簧的左端受大小也为 F 的拉力作用;③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以 l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则判断l 1、l 2、l 3、l 4的大小关系。

变式训练.一个质量为m 的物体在一弹簧称的作用下沿竖直向上做加速度为a 的匀加速直线运动,忽略空气阻力,重力加速度为g ,求弹簧称的示数.规律总结:弹簧称的示数等于轻质弹簧一端的拉力大小,并不一定等于物体的重力二、与物体平衡相关的弹簧问题例2.如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为 ( C )A.m 1g/k 1B.m 2g/k 2C.m 1g/k 2D.m 2g/k 2三、弹簧的瞬时性问题例3.质量分别为m 和2m 的小球P 、Q 用轻弹簧相连,P 用细线悬挂在天花板下,开始系统处于静止。

求:(1)剪断细线瞬间,P 、Q 的加速度(2)剪断弹簧瞬间,P 、Q 的加速度 变式训练.如图所示,小球P 、Q 质量均为m ,分别用轻弹簧b 和细线c 悬挂在天花板下,再用另一细线d 、e 与左边的固定墙相连,静止时细线d 、e 水平,b 、c 与竖直方向夹角均为θ=37º。

下列判断正确的是A .剪断d 瞬间P 的加速度大小为0.6gB .剪断d 瞬间P 的加速度大小为0.75gC .剪断e 前c 的拉力大小为0.8mgD .剪断e 后瞬间c 的拉力大小为1.25mg规律总结:当弹簧两端都有约束时,弹簧弹力不发生突变;细绳的弹力可以发生突变四、与动力学相关的弹簧问题例4.如图所示,一轻质弹簧竖直放在水平地面上,小球A 由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是( BD )A.小球加速度方向始终向上B.小球加速度方向先向下后向上C.小球速度一直减小D.小球速度先增大后减小边式训练:如图所示,轻弹簧下端固定,竖立在水平面上。

高三物理一轮复习资料【弹簧模型】

高三物理一轮复习资料【弹簧模型】

高三物理一轮复习资料【弹簧模型】1.弹簧模型的问题特点弹簧模型是高考中常见的物理模型之一,该模型涉及共点力的平衡、牛顿运动定律、动能定理、机械能守恒定律以及能量守恒定律等知识.运动过程中,从力的角度看,弹簧上的弹力是变力,从能量的角度看,弹簧是储能元件.因此,借助弹簧模型,可以很好地考查考生的分析综合能力.在高考试题中,弹簧(主要是轻质弹簧)模型主要涉及四个方面的问题:静力学中的弹簧问题、动力学中的弹簧问题、与能量转化和与动量有关的弹簧问题.2.弹簧模型的解题策略(1)力学特征:轻质弹簧不计质量,并且因软质弹簧的形变发生改变需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹簧的弹力不突变.(2)过程分析:弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,首先要注意弹力的大小和方向与形变相对应,从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来综合分析物体的运动状态.(3)功能关系:在求弹簧的弹力做功时,因该变力随形变量而线性变化,可以先求平均力,再用功的定义进行计算,也可根据动能定理和功能关系求解.同时要注意弹力做功等于弹性势能增量的负值,因此在求弹力的功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解.(4)临界分析:弹簧一端有关联物、另一端固定时,当弹簧伸长到最长或压缩到最短时,物体速度有极值,弹簧的弹性势能最大,此时也是物体速度方向发生改变的时刻;若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零;若关联物与接触面间粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零.3.弹簧模型的主要问题(1)与弹簧关联物体受力变化前后的加速度问题.(2)与弹簧关联两个相互接触的物体分离的临界问题.(3)与弹簧关联物体的碰撞问题.(4)与热力学、振动、电磁学综合的弹簧问题.视角1:弹簧模型中的平衡问题1.如图所示,质量为m 1的物体A 压在放于地面上的竖直轻弹簧L 1(劲度系数为k 1)上,上端与轻弹簧L 2(劲度系数为k 2)相连,轻弹簧L 2上端与质量为m 2的物体B 相连,物体B 通过轻绳跨过光滑的定滑轮与轻质小桶P 相连,A 、B 均静止.现缓慢地向小桶P 内加入细沙,当弹簧L 1恰好恢复原长时(小桶一直未落地),求:(1)小桶P 内所加入细沙的质量;(2)小桶在此过程中下降的距离.解析:(1)当L 1恢复原长时,对A 、B 整体分析,绳子的拉力为F =(m 1+m 2)g ,即小桶中细沙的质量为m 1+m 2.(2)开始时,对A 、B 整体受力分析得k 1x 1=(m 1+m 2)g ,式中x 1为弹簧L 1的压缩量,则x 1=(m 1+m 2)g k 1 对B 受力分析得k 2x 2=m 2g ,式中x 2为弹簧L 2的压缩量,则x 2=m 2g k 2当L 1恢复原长时,对A 受力分析得k 2x 2′=m 1g ,式中x 2′为弹簧L 2的伸长量,则x 2′=m 1g k 2在整个过程中,小桶下降的距离h =x 1+x 2+x 2′=(m 1+m 2)g ⎝⎛⎭⎫1k 1+1k 2. 答案:(1)m 1+m 2 (2)(m 1+m 2)g ⎝⎛⎭⎫1k 1+1k 2视角2:弹簧模型中的瞬时问题2.细绳拴一个质量为m 的小球,小球将左端固定在墙上的轻弹簧压缩了距离x (小球与弹簧不连接),小球静止时弹簧在水平位置,细绳与竖直方向的夹角为53°,小球距地面的高度为h ,如图所示.下列说法中正确的是( )A .细绳烧断后,小球做平抛运动B .细绳烧断后,小球落地的速度等于2ghC .剪断弹簧瞬间,细绳的拉力为53mg D .细绳烧断瞬间,小球的加速度大小为53g 解析:D 将细绳烧断后,小球受到重力和弹簧弹力的共同作用,合力方向斜向右下方,并不是只有重力的作用,所以小球不是做平抛运动,故A 错误;小球只做自由落体运动时,根据v 2=2gh 得落地速度是v =2gh ,而现在除重力外还有弹簧的弹力对小球做功,所以小球落地时的速度一定大于2gh ,故B 错误;小球静止时,对小球进行受力分析如图所示,由平衡条件得,细绳的拉力大小T =mg cos 53°=53mg ,弹簧弹力的大小F =mg tan 53°=43mg ,剪断弹簧瞬间,细绳的拉力发生突变,不再为T =53mg ,故C 错误;细绳烧断瞬间,弹簧的弹力不变,则小球所受的合力与细绳烧断前细绳中的拉力大小相等、方向相反,此时F 合=T ,可知此瞬间小球的加速度大小a =F 合m =53g ,故D 正确.3.A 、B 两球质量相同,静止在倾角为30°的斜面上.两球之间拴接有轻弹簧.A 球与挡板接触,B 球通过细线与斜面顶端相连,细线绷紧,系统处于静止状态.则撤去挡板瞬间( )A .弹簧弹力一定变大B .细线拉力一定变大C .A 球一定处于失重状态D .B 球一定处于平衡状态解析:D 开始时,弹簧可能处于压缩状态,则撤去挡板瞬间,小球A 向下运动,弹簧伸长,弹力变小,则绳的拉力增大,选项A 错误;若开始时弹簧处于伸长状态,且挡板的弹力为零,则撤去挡板瞬间,A 球仍静止,不是处于失重状态,选项B 、C 错误;B 球被细线拉住,一定处于平衡状态,选项D 正确.视角3:弹簧模型中的动力学和能量问题4.如图所示,有一倾角为θ=37°的粗糙硬杆,其上套一底端固定且劲度系数为k =10 N/m 的轻弹簧,弹簧自然伸长时上端在Q 点,弹簧与杆间摩擦忽略不计.一个质量为m =5 kg 的小球套在此硬杆上,从P 点由静止开始滑下,经过t =2 s 后,P 与弹簧自由端Q 相碰,PQ 间的距离L =4 m ,弹簧的弹性势能与其形变量x 的关系为E p =12kx 2.已知sin 37°=0.6,cos 37°=0.8,重力加速度g 取10 m/s 2.求: (1)小球与硬杆之间的动摩擦因数μ;(2)小球向下运动过程中速度最大时弹簧的弹性势能.解析:小球做匀加速直线运动,根据运动学公式和牛顿第二定律即可求出动摩擦因数;当小球加速度为零时,速度最大,根据平衡条件求出压缩量,再根据E p =12kx 2求出速度最大时弹簧的弹性势能.(1)小球由静止做匀加速直线运动,则有:L =12at 2, 解得:a =2 m/s 2.根据牛顿第二定律得:mg sin 37°-μmg cos 37°=ma解得:μ=0.5.(2)当小球加速度为零时,速度最大即有:mg sin 37°=μmg cos 37°+kx解得:x =1 m所以弹性势能为:E p =12kx 2=12×10×12 J =5 J. 答案:(1)0.5 (2)5 J5.(多选)如图甲所示,倾角为θ=30°的光滑斜面固定在水平面上,自然伸长的轻质弹簧一端固定在斜面底端的挡板上.一质量为m 的小球,从离弹簧上端一定距离的位置由静止释放,接触弹簧后继续向下运动.小球运动的v -t 图象如图乙所示,其中OA 段为直线段,AB 段是与OA 相切于A 点的平滑曲线,BC 是平滑曲线,不考虑空气阻力,重力加速度为g .关于小球的运动过程,下列说法正确的是( )A .小球在tB 时刻所受弹簧的弹力等于12mg B .小球在t C 时刻的加速度大于12g C .小球从t C 时刻所在的位置由静止释放后,能回到出发点D .小球从t A 时刻到t C 时刻的过程中,重力势能的减少量等于弹簧弹性势能的增加量 解析:ABC 小球在t B 时刻速度达到最大,此时弹簧的弹力等于重力沿斜面的分力,即此时F 弹=mg sin 30°=12mg ,故A 正确;由题意可知,t A 时刻小球刚好与弹簧接触且弹簧无形变,此时小球的加速度a A =12g ,由图乙可知,A 点图线斜率的绝对值小于C 点图线斜率的绝对值,分析可知小球在t C 时刻的加速度大于12g ,故B 正确;整个过程中,弹簧和小球组成的系统机械能守恒,故小球从C 点释放能到达原来的释放点,故C 正确;小球从t A 时刻到t C 时刻的过程中,由系统机械能守恒知小球重力势能的减少量与动能的减少量之和等于弹簧弹性势能的增加量,故D 错误.视角4:弹簧模型中的动量问题6.如图所示,轻弹簧的一端固定在竖直墙上,质量为2m 的光滑弧形槽静止放在光滑水平面上.弧形槽底端与水平面相切,一个质量为m 的物块从槽高h 处开始自由下滑,下列说法错误的是( )A .在下滑过程中,物块和弧形槽组成的系统机械能守恒B .在下滑过程中,物块和槽的水平方向动量守恒C .物块压缩弹簧的过程中,弹簧的最大弹性势能E p =23mgh D .物块被弹簧反弹后,离开弹簧时的速度大小为 2gh 3解析:D 物块下滑过程,只有重力做功,系统机械能守恒,故A 正确;物块下滑过程,滑块与弧形槽组成的系统水平方向所受合外力为零,系统水平方向动量守恒,故B 正确;设物块到达水平面时速度大小为v 1,槽的速度大小为v 2,且可判断物块速度方向向右,槽的速度方向向左,以向右为正方向,在物块下滑过程中,槽和物块组成的系统水平方向动量守恒,由动量守恒定律得:m v 1-2m v 2=0,由机械能守恒定律得:mgh =12m v 21+12·2m v 22,由以上两式解得:v 1=2 gh 3,v 2= gh 3,物块与弹簧相互作用过程系统机械能守恒,物块离开弹簧时速度大小与物块接触弹簧前的速度大小相等,v =v 1=2gh 3,故D 错误;物块与弹簧相互作用过程系统机械能守恒,物块速度为零时,弹簧的弹性势能最大,由机械能守恒定律可知,最大弹性势能E p =12m v 21=2mgh 3,故C 正确. 7.(多选)如图所示,连接有轻弹簧的物块a 静止于光滑水平面上,物块b 以一定初速度向左运动.下列关于a 、b 两物块的动量p 随时间t 的变化关系图象,合理的是( )解析:BCD b与弹簧接触后,弹力慢慢增大,故两物块的加速度一定先增大后减小,故A不正确;b与弹簧接触后,压缩弹簧,b做减速运动,a做加速运动,且在运动过程中系统的动量守恒,如果b的质量较小,可能出现b反弹的现象,故B正确;由B中分析可知,两物块满足动量守恒定律,并且如果a、b两物块的质量相等,则可以出现C中的运动过程,故C正确;由B中分析可知,两物块满足动量守恒定律,如果a的质量很小,可能出现D中的运动过程,故D正确.。

高三二轮复习专题:弹簧模型的动力学分析(有答案解析)

高三二轮复习专题:弹簧模型的动力学分析(有答案解析)

高三二轮复习专题:弹簧模型的动力学分析能根据胡克定律和牛顿运动定律,准确、全面地分析物体在压缩(拉伸)弹簧的的不同位置的受力大小和加速度大小,判断物体的运动状态。

弹簧相关知识要点:1、计算弹簧弹力(胡克定律):F=k△x2、结合物体运动状态,判断弹力的大小。

(1)当物体速度最大时,加速度为0,此时弹力的大小=其它外力的大小(2)在物体压缩(或拉伸)弹簧的过程中,一般当物体速度为零时,弹性势能最大。

3、根据W=FS,且弹簧弹力F随s变化,所以在F-△x图象中,图线与坐标轴围成的面积=弹簧弹力做的功。

由此可以求解弹簧弹力做功(变力做功);得到弹性势能表达式Ep=1k∆x224、从功能关系出发,由能量转化入手处理弹性势能的求解。

利用能量守恒,其它能量的减小=弹性势能的增加与弹簧相关的动力学分析一、竖直方向弹簧的动力学分析a:物体自由下落 b:物体刚接触弹簧 c:弹力=重力 d:弹簧压缩最短a→b过程,物体匀加速,a=gb→c过程,弹力<重力,F合=mg-F弹=ma,a向下,a和v同向,物体加速。

因为F弹不断增大,所以a不断减小。

物体做加速度越来越小的变加速运动。

在C位置,物体加速度a=0,速度最大。

c→d过程,弹力>重力,F合= F弹-mg=ma,a向上,a和v反向,物体减速。

因为F弹不断增大,所以a不断减大。

物体做加速度越来越大的变减速运动。

在d位置,物体速度减为0,弹簧压缩最短,弹性势能最大。

(1)不计阻力,若物体轻放在弹簧上端,释放后v-t图如下,刚接触弹簧时加速度大小为g。

方法一:根据v-t图象分析,由于对称性(加速度为0的位置就是对称位置),可知压缩弹簧最短时,加速度也为g。

方法二:根据机械能守恒:从开始到弹簧压缩最短,有mg△x=12k∆x2解得:2mg=k△x,说明最低点是弹力是重力的两倍,加速度大小也为g。

(2)不计阻力,若物体从弹簧上端一定高度释放,释放后v-t图如下,方法一:根据v-t图象分析:t 1时刻,刚接触弹簧,a=g;t2时刻,弹簧弹力=重力,速度最大;t3时刻,弹力=2倍重力,a=g,此时还有向下的速度,继续向下运动t4时刻,速度变为0,弹簧压缩最短,加速度a>g。

弹簧类问题的分类解析

弹簧类问题的分类解析

弹簧类问题分类解析弹簧模型是高考中出现最多的模型之一,在填空、实验、计算题中都经常出现,考查范围很广,变化较多,是考查学生推理、分析综合能力的热点模型。

由于弹力与弹簧的形变成正比,在有关弹簧的题目中,物体的运动要影响弹簧的长度,长度的改变会影响力的变化.这样力与运动相联系,运动反过来又影响力的变化,几个矛盾联系在一起,学生往往感到感到较难分析.其实只要抓住弹簧几方面的特征,在解决问题的过程中如果就相关力学知识并结合弹簧本身特性进行分析,问题就可迎刃而解了。

一、对轻质弹簧而言,其内部弹力处处相等,等于弹簧一端所受外力F例1.如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的力F 的作用,③中弹簧的左端拴一个小木块,木块在光滑的平面上滑动,④中弹簧的左端拴一个小木块,木块在有摩擦的桌面上滑动。

若认为弹簧的质量都为零,以1 、2 、3 、4 依次表示四个弹簧的伸长量,则有( )A .2 >1B .4 >3C .1 >3D .2 =4解析 弹簧的伸长量与弹簧内部弹力相关,由此分析四根弹簧的伸长量的关系,只要将四种情况下弹簧内部弹力的大小关系分析清楚即可。

将整根弹簧从右到左分成很多小段,每小段标上序号1、2、3、4……,设每小段弹簧质量均为∆m ,则对1号小段弹簧,设2号小段弹簧对其向左的拉力为f 1,由牛顿第二定律有F – f 1 = ∆ma ;对2号小段弹簧,设3号小段弹簧对其向左拉力为f 2,因1号小段弹簧对其向右拉力为f 1',则有f 1' - f 2 = ∆ma .图中①、②两种情况下弹簧处于平衡状态,加速度a = 0,虽③、④弹簧加速度a ≠ 0,但弹簧为轻质弹簧,∆m = 0,则由上面两式有f 1 = f 2 = F ,以此类推可知弹簧中各小段间张力处处相等,均为F ,则四种情况下弹簧伸长量必均相等,应选择选项D .二.弹簧弹力的大小遵循胡克定律F = kx ,其中x 为弹簧的形变量,当形变量x 发生变化时,弹力F 也随之变化,是变力例2.一个弹簧台秤的秤盘质量和弹簧质量都可不计,盘内放一个物体PF F ② ③ ④处于静止。

模型组合讲解弹簧模型动力学问题

模型组合讲解弹簧模型动力学问题

模型组合讲解一一弹簧模型(动力学问题)李涛[模型概述]弹簧模型是高考中出现最多的模型之一,在填空、实验、计算包括压轴题中都经常出现, 考查范围很广,变化较多,是考查学生推理、分析综合能力的热点模型。

[模型讲解]正确理解弹簧的弹力例1.如图1所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上。

②中弹簧的左端受大小也为F 的拉力作用。

③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动。

④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。

若认为弹簧的质量都为零,以11、|2、|3、14依次表示四个弹簧的伸长量,则有()③ ④图1B. |4 |3C. |1 13D. 12 |4解析:当弹簧处于静止(或匀速运动)时,弹簧两端受力大小相等,产生的弹力也相等,用其中任意一端产生的弹力代入胡克定律即可求形变。

当弹簧处于加速运动状态时,以弹簧为研究对象,由于其质量为零,无论加速度a为多少,仍然可以得到弹簧两端受力大小相等。

由于弹簧弹力F弹与施加在弹簧上的外力F是作用力与反作用的关系,因此,弹簧的弹力也处处相等,与静止情况没有区别。

在题目所述四种情况中,由于弹簧的右端受到大小皆为F的拉力作用,且弹簧质量都为零,根据作用力与反作用力关系,弹簧产生的弹力大小皆为F,又由四个弹簧完全相同,根据胡克定律,它们的伸长量皆相等,所以正确选项为D。

二.双弹簧系统例2. (2004年苏州调研)用如图2所示的装置可以测量汽车在水平路面上做匀加速直线运动的加速度。

该装置是在矩形箱子的前、后壁上各安装一个由力敏电阻组成的压力传感器。

A. 12 11①用两根相同的轻弹簧夹着一个质量为 2.0kg的滑块,滑块可无摩擦的滑动,两弹簧的另一端分别压在传感器a、b上,其压力大小可直接从传感器的液晶显示屏上读出。

现将装置沿运动方向固定在汽车上,传感器b在前,传感器a在后,汽车静止时,传感器a、b的示数均为10N (取g 10m/s2)a i的方向向右或向前。

高中物理弹簧模型详解

高中物理弹簧模型详解

高中物理弹簧模型详解弹簧模型是物理中常用的简化实验模型,可以应用于弹性力学、动力学、波浪等多种领域。

在高中物理课程中,弹簧模型常常用来分析物体在不同条件下的弹性变形及恢复力等问题。

下面详细介绍一下高中物理中弹簧模型的相关内容。

I. 弹簧模型的基本概念弹簧模型是用弹簧代替物体之间的接触面,以研究物体之间的弹性变形和弹性力的模型。

它可以用来模拟各种物体的弹性特性,具有简化实验和便于分析的优势。

在弹簧模型中,物体可以被看作是由若干个质点组成的系统。

质点与质点之间通过一根弹簧连接,弹簧的特性可以用弹性系数k来描述。

当弹簧被压缩或拉长时,会产生恢复力(弹力),大小与弹簧形变的大小成正比,与弹簧形变的方向成反比。

II. 弹簧模型的应用1. 弹性变形当外力作用于物体上后,物体发生形变,但形变量又不足以改变物体的结构,这种形变称为弹性变形。

在弹簧模型中,外力就是作用于质点上的力,当外力大小不超过弹簧的弹性限度时,质点会发生弹性变形,而当外力大小超过弹性限度时,弹簧会进入塑性变形区,质点将发生塑性变形。

2. 弹性力弹性力是被压缩或拉长的弹簧恢复到原状时产生的力。

根据胡克定律,弹簧恢复力的大小与弹簧形变的大小成正比,与形变的方向成反比。

因此,在弹簧模型中,弹性力也可以用弹簧的弹性系数k来计算。

3. 振动弹簧模型还可以用来研究物体的振动。

例如,可以用一根手摇弹簧将质点与质点之间的耦合作用建立起来,通过摇动弹簧可以激发质点的振动。

这种振动可以用弹簧的弹性系数和质点的质量等参数来描述。

III. 弹簧模型的计算方法在使用弹簧模型时,需要根据具体情况建立起质点与质点之间的耦合关系。

通常,假设所有质点间连接的弹簧都相等,弹性系数为k,每个质点的质量均为m,这样就可以通过牛顿第二定律推导出弹簧模型的运动方程:F = mam(d^2)x/dt^2 = -kx其中,F表示合力,a表示加速度,x表示形变,t表示时间。

这个动力学方程描述了弹簧模型中物体的运动规律,可以用来计算物体的位移、速度和加速度等参数。

2025人教版高中物理必修一知识点-专题进阶课六 弹簧模型

2025人教版高中物理必修一知识点-专题进阶课六 弹簧模型

专题进阶课六弹簧模型核心归纳1.胡克定律(1)内容:在弹性限度内,弹簧发生弹性形变时,弹力F的大小跟伸长或缩短的长度x 成正比。

(2)表达式:F=kx①k为劲度系数,由本身的材料、长度、绕圈横截面积等决定。

②x为形变量,即弹簧伸缩后的长度L与原长L0的差:x=|L-L0|,不能将x当作弹簧的长度L。

2.涉及弹簧的瞬时性问题(1)轻弹簧、橡皮条模型的形变量大,形变恢复需要较长时间,在瞬时性问题中,它们的自由端连接有物体时其弹力的大小不能突变,往往可以看成是不变的。

提醒:若弹簧只有一端有附着物时弹力突变为零。

(2)几类瞬时性问题比较:类别形变特点弹力方向能否突变橡皮条明显沿橡皮条收缩方向不能轻弹簧明显沿弹簧轴线方向不能轻绳微小沿绳收缩方向能轻杆微小不确定能3.轻弹簧连接体模型(1)同条件同加速度轻弹簧连接体模型的动力学计算问题:力的质量正比例分配原则法:一起加速运动的物体,物体间的相互作用力按质量正比例分配。

(2)轻弹簧连接体模型接触与脱离的临界极值问题刚好脱离时物体间的弹力恰好为零,两物体此时的速度、加速度均相同。

典题例析角度1涉及弹簧的牛顿第二定律【典例1】(2024·淄博高一检测)质量均为5kg的物块1、2放在水平面上并用轻质弹簧测力计相连,如图所示,物块1的表面光滑,物块2与地面间的动摩擦因数为0.2,整个系统在水平拉力F作用下向左做匀加速运动,此时弹簧测力计的示数为15N;若拉力变为2F,其他条件不变,重力加速度大小取g=10m/s2,则此时弹簧测力计的示数为()A.30NB.25NC.20ND.15N【解析】选B。

当拉力F作用时,对整体,加速度a=-B21+2,对物块2:F T-μm2g=m2a,F T=15N,联立得F=20N;若拉力变为2F,对整体,加速度a1=2-B21+2=3m/s2,对物块2:F T'-μm2g=m2a1,代入数据得F T'=25N,故选B。

20第二讲动力学三大模型

20第二讲动力学三大模型
物体以 v0 的初速度从 B 端开始向上运动,物体与传送带之间的动摩擦因数 μ>
tanθ,传送带的速度为 v(v0<v)
,方向未知,重力加速度为 g.物体在传送带上
运动过程中,摩擦力对物体做功的最大瞬时功率是(

A.μmg√ 2 + 02cosθ
B.μmgv0cosθ
C.μmgvcosθ
D. μmg(v+v0)cosθ
送带之间的动摩擦因数为 μ,A、B 间的距离为 l.则(

A.行李在传动带上始终做匀加速直线运动
B.行李在传送带上始终受到向右的摩擦力
C.行李在传送带上可能有一段时间不受摩擦力
D.行李在传送带上的时间一定小于√ 2

【例13】如图所示为地铁站用于安全检查的装置,主要由安检传送带和 x 光透视系统两部
B.t2 时刻,小物块相对传送带滑动的距离达到最大
C.0~t3 时间内,小物块受到的摩擦力方向先向右后向左
D.0~t3 时间内,小物块始终受到大小不变的摩擦力作用
倾斜传送带
【例17】如图所示,物块 M 在静止的传送带上匀速下滑时,传送带突然顺时针(图中箭头
所示)转动起来,则传送带转动后,下列说法正确的是(
D.v 、t 、μ 任何一个增大 d 都将增大
0
0
0
0ቤተ መጻሕፍቲ ባይዱ
【例22】(多选)如图甲所示的水平传送带 AB 逆时针匀速转动,一物块沿曲面从一定高度
处由静止开始下滑,以某一初速度从传送带左端滑上,在传送带上由速度传感器记
录下物块速度随时间的变化关系如图乙所示(图中取向左为正方向,以物块刚滑上
传送带时为计时起点)。已知传送带的速度保持不变,重力加速度 g 取 10 m/s2。

机械能守恒定律专题10 能量守恒定律(4) 弹簧模型18.5.23

机械能守恒定律专题10    能量守恒定律(4)  弹簧模型18.5.23

机械能守恒定律专题10 能量守恒定律应用(4)弹簧类问题弹簧类动力学观点和功能观点解题综合问题:弹簧初末态形变量相同,弹性势能相等,或者两个过程弹簧的形变量变化量相等,弹性势能变化两相同或者弹性势能与形变量的平方成正比例题1、如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h。

若将小球A换为质量为3m的小球B,仍从弹簧原长位置由静止释放,则小球B下降h时的速度为(重力加速度为g,不计空气阻力。

)(B)A.B.C.D.试题分析:小球A下降h过程,根据动能定理,有mgh-W1=0;小球B下降h过程,根据动能定理,有,联立解得v=.选项B正确。

例题2、如图所示,轻质弹簧的劲度系数为k,下面悬挂一个质量为m的砝码A,手持木板B托住A缓慢向上压弹簧,至某一位置静止.此时如果撤去B,则A的瞬时加速度为1.6g现用手控制B使之以a=0.4g的加速度向下做匀加速直线运动.求:(1):砝码A能够做匀加速运动的时间?(2):砝码A做匀加速运动的过程中,弹簧弹力对它做了多少功?木板B对它的支持力做了多少功?小题1:小题2:(1)设初始状态弹簧压缩量为x1则kx1+mg=m×可得x1=……………(1分)当B以匀加速向下运动时,由于a<g,所以弹簧在压缩状态时A、B不会分离,分离时弹簧处于伸长状态. ……(2分)设此时弹簧伸长量为x2,则mg-kx2= m×可得x2=(1分)A匀加速运动的位移s=x1+x2=(1分)s=解得: …(2分)(2)∵x 1=x 2∴这一过程中弹簧对物体A 的弹力做功为0…………(3分)A 、B 分离时(2分)由动能定理得:…(2分)代入得: (2分)例题3、如图甲,质量为m 的小木块左端与轻弹簧相连,弹簧的另一端与固定在足够大的光滑水平桌面上的挡板相连,木块的右端与一轻细线连接,细线绕过光滑的质量不计的轻滑轮,木块处于静止状态.在下列情况中弹簧均处于弹性限度内,不计空气阻力及线的形变,重力加速度为g .(1)图甲中,在线的另一端施加一竖直向下的大小为F 的恒力,木块离开初始位置O 由静止开始向右运动,弹簧开始发生伸长形变,已知木块过P 点时,速度大小为v ,O 、P 两点间距离为s .求木块拉至P 点时弹簧的弹性势能;(2)如果在线的另一端不是施加恒力,而是悬挂一个质量为M 的物块,如图乙所示,木块也从初始位置O 由静止开始向右运动,求当木块通过P 点时的速度大小.(1)用力F 拉木块至P 点时,设此时弹簧的弹性势能为E P ,根据功能关系有Fs=E P +1/2mv 2…①代入数据可解得:E P =Fs-1/2mv 2…(2)悬挂钩码M 时,当木块运动到P 点时,弹簧的弹性势能仍为E p ,设木块的速度为v′,由机械能守恒定律得:Mgs=E P +1/2(m+M)v′2…③联立②③解得v′= √(mv 2+2(Mg-F)s)/(M+m)例题4、如图,质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k , A 、B 都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向.现在挂钩上挂一质量为m 3的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升.若将C 换成另一个质量为(m 1+ m 3)的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D 的速度的大小是多少?已知重力加速度为g解析: 开始时,A 、B 静止,设弹簧压缩量为1x ,有11g kx m =挂C 并释放后,C 向下运动,A 向上运动,设B 刚要离地时弹簧伸长量为2x ,有22kx m g =B 不再上升,表示此时A 和C 的速度为零,C 已降到其最低点.由机械能守恒,与初始状态相比,弹簧弹性势能的增加量为 312112=m ()()E g x x m g x x ∆+-+C 换成D 后,当B 刚离地时弹簧势能的增量与前一次相同,由能量关系得311311211211()()()()2222m m υm υm m g x x m g x x E ++=++-+-∆联立解得υ=例题5、如图,一个倾角θ=30°的光滑直角三角形斜劈固定在水平地面上,顶端连有一轻质光滑定滑轮。

弹簧模型中平衡和动力学问题

弹簧模型中平衡和动力学问题

6.如图所示,一轻质弹簧一端系在墙上的 O 点,自由伸长到 B 点.今用一小物体
m 把弹簧压缩
到 A 点,然后释放,小物体能运动到 C 点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正
确的是 ( )
A.物体从 A 到 B 速度越来越大,从 B 到 C 速度越来越小
B.物体从 A 到 B 速度越来越小,从 B 到 C 加速度不变
对于盘和物体 P 整体应用牛顿第二定律可得:
F k (m 1 k m 2 )g x (m 1 m 2 )g (m 1 m 2 )a
xm2gm1a x 1 at 2
令 N=0,并由述二式求得
k
,而
2 ,所以求得 a=6m/s2.
当 P 开始运动时拉力最小,此时对盘和物体 P 整体有 Fmin=(m1+m2)a=72N. 当 P 与盘分离时拉力 F 最大,Fmax=m2(a+g)=168N. 8 解:因为在 t=0.2s 内 F 是变力,在 t=0.2s 以后 F 是恒力,所以在 t=0.2s 时,P 离开秤盘。此时 P 受 到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。在 0_____0.2s 这段时间内 P 向 上运动的距离:
1
2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此, 在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.
巩固练习 1 如图 6-4(A)所示,一质量为 m 的物体系于长度分别为 l1、l2 的两根细线上,l1 的一端悬挂在天花 板上,与竖直方向夹角为 θ,l2 水平拉直,物体处于平衡状态.现将 l2 线剪断,求剪断瞬时物体的加速度.
(2)结果正确,因为 l2 被剪断的瞬间、弹簧 l1 的长度不能发生突变、T1 的大小和方向都不变.

24个物理模型总结归纳

24个物理模型总结归纳

24个物理模型总结归纳物理模型是指通过建立数学模型或者物理实验来描述和解释物理系统的方法。

在物理学的研究中,各种物理模型被广泛应用于解决各种问题,帮助我们理解和预测自然界中发生的现象和规律。

本文将对24个常见的物理模型进行总结和归纳,以帮助读者更好地理解物理学中的重要概念和原理。

一、质点模型(Particle Model)质点模型是物理学中最简单的模型之一,它将物体简化为一个质点,忽略了物体的大小和形状,仅考虑其位置和质量。

这种模型通常用于研究质点在空间中的运动规律,如自由落体、抛体运动等。

二、弹簧模型(Spring Model)弹簧模型用于描述弹性物体的行为。

它基于胡克定律,即弹簧的伸长或缩短与外力成正比,这种模型被广泛应用于弹簧振子、弹簧劲度系统等物理问题的研究。

三、电路模型(Circuit Model)电路模型用于描述电流和电压在电路中的传递和转换规律。

通过建立电路图和应用基尔霍夫定律、欧姆定律等规律,可以计算电流、电压和阻抗等电路参数,解决各种电路问题。

四、热传导模型(Heat Conduction Model)热传导模型用于描述热量在物体或介质中的传递和分布规律。

它基于热传导方程和傅里叶定律,可以计算热传导过程中的温度变化和热流量等参数,解决热传导问题。

五、光线模型(Ray Optics Model)光线模型用于描述光在直线传播时的规律。

通过光的反射、折射等现象,可以计算光线的传播路径和光的成像特性,解决光学问题,如镜子、透镜等光学器件的成像原理。

六、气体模型(Gas Model)气体模型用于描述气体的状态和行为。

它基于理想气体状态方程和玻意耳定律,可以计算气体的压力、体积和温度等参数,解决气体的扩散、压缩等问题。

七、电磁场模型(Electromagnetic Field Model)电磁场模型用于描述电荷和电流在空间中产生的电场和磁场的分布和相互作用规律。

它基于麦克斯韦方程组,可以计算电荷受力、电流感应等问题,解决电磁场中的电磁现象。

专题04 弹簧模型(解析版)

专题04 弹簧模型(解析版)

2024年高三物理二轮常见模型与方法强化专训专练专题04 弹簧模型【特训典例】一、高考真题1.(2023·山东·统考高考真题)餐厅暖盘车的储盘装置示意图如图所示,三根完全相同的弹簧等间距竖直悬挂在水平固定圆环上,下端连接托盘。

托盘上叠放若干相同的盘子,取走一个盘子,稳定后余下的正好升高补平。

已知单个盘子的质量为300g,相邻两盘间距1.0cm,重力加速度大小取10m/s2。

弹簧始终在弹性限度内,每根弹簧的劲度系数为()A.10N/m B.100N/m C.200N/m D.300N/m【答案】B【详解】由题知,取走一个盘子,稳定后余下的正好升高补平,则说明一个盘子的重力可以使弹簧形变相邻两盘间距,则有mg= 3·kx解得k= 100N/m故选B。

2.(2022·湖北·统考高考真题)如图所示,质量分别为m和2m的小物块Р和Q,用轻质弹簧连接后放在水平地面上,Р通过一根水平轻绳连接到墙上。

P的下表面光滑,Q与地面间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力。

用水平拉力将Q向右缓慢拉开一段距离,撤去拉力后,Q恰好能保持静止。

弹簧形变始终在弹性限度内,弹簧的劲度系数为k,重力加速度大小为g。

若剪断轻绳,Р在随后的运动过程中相对于其初始位置的最大位移大小为()A .μmgkB .2mgkμ C .4mgkμ D .6mgkμ 【答案】C【详解】Q 恰好能保持静止时,设弹簧的伸长量为x ,满足2kx mg μ=若剪断轻绳后,物块P 与弹簧组成的系统机械能守恒,弹簧的最大压缩量也为x ,因此Р相对于其初始位置的最大位移大小为42mgs x kμ== 故选C 。

3.(2023·辽宁·统考高考真题)如图,两根光滑平行金属导轨固定在绝缘水平面上,左、右两侧导轨间距分别为d 和2d ,处于竖直向上的磁场中,磁感应强度大小分别为2B 和B 。

已知导体棒MN 的电阻为R 、长度为d ,导体棒PQ 的电阻为2R 、长度为2d ,PQ 的质量是MN 的2倍。

小球落弹簧模型——动力学篇

小球落弹簧模型——动力学篇

027小球落弹簧模型——动力学篇027/112小球落弹簧模型通解——动力学篇金题试做 经典题目 你来挑战例如图所示,小球自由下落,从它接触竖直放置的弹簧开始到弹簧压缩到最短的过程中,小球的加速度和速度的变化情况是()A.加速度变小,速度变小B.加速度变大,速度变小C.加速度先变小后变大,速度先变大后变小D.加速度先变大后变小,速度先变大后变小技巧点拨问题识别小球自由下落(忽略空气阻力)至竖直弹簧,从刚接触弹簧到将弹簧压缩至最短(或从将弹簧压缩至最短到刚离开弹簧)的过程中,分析小球的速度大小、加速度大小分别如何变化。

方法提炼阶段:小球只受重力,做自由落体运动; 阶段:小球受重力和弹簧弹力,且,加速度向下,做加速运动,( 表示不变、 表示变大、 表示变小),加速度逐渐减小,即小球在此阶段做加速度不断减小的加速运动;弹弹点:小球受重力和弹簧弹力,且,加速度为零,速度达到最大值;弹阶段:小球受重力和弹簧弹力,且,加速度向上,做减速运动,弹,加速度逐渐增大,即小球在此阶段做加速度不断增大的减速运动。

弹补充说明小球从点(刚接触弹簧)到 点(将弹簧压缩至最短)的过程中速度先增大后减小、加速度先减小后增大,在 点(受力平衡)时速度最大、加速度为零;小球从 到 的过程中也是如此。

1.除上图所示的情景外,常见的橡皮筋弹弓、弹性绳蹦极等问题均属于此模型。

2.随堂讲义大招笔记系列027金题点睛 课堂思维 妙解点睛例.如图所示,小球自由下落,从它接触竖直放置的弹簧开始到弹簧压缩到最短的过程中,小球的加速度和速度的变化情况是.加速度变小,速度变小.加速度变大,速度变小.加速度先变小后变大,速度先变大后变小.加速度先变大后变小,速度先变大后变小信息解读:小球自由下落,研究从刚接触弹簧到将弹簧压缩至最短的过程,符合小球落弹簧模型的情景思路分析:题目研究加速度和速度的变化情况,可直接套用结论大招解析小球从刚接触弹簧到将弹簧压缩至最短的过程中,重力不变、弹簧弹力随着形变量的增大而增大,时加速度变小、速度变大;时加速度变大、速度变小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模型组合讲解——弹簧模型(动力学问题)
[模型概述]
弹簧模型是高考中出现最多的模型之一,在填空、实验、计算包括压轴题中都经常出现,考查范围很广,变化较多,是考查学生推理、分析综合能力的热点模型。

[模型讲解]
一. 正确理解弹簧的弹力
例1. 如图1所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上。

②中弹簧的左端受大小也为F的拉力作用。

③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动。

④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。

若认为弹簧的质量都为零,以l1、l2、l3、l4依次表示四个弹簧的伸长量,则有()
①②
③④
图1
解析:当弹簧处于静止(或匀速运动)时,弹簧两端受力大小相等,产生的弹力也相等,用其中任意一端产生的弹力代入胡克定律即可求形变。

当弹簧处于加速运动状态时,以弹簧为研究对象,由于其质量为零,无论加速度a为多少,仍然可以得到弹簧两端受力大小相等。

F是作用力与反作用的关系,因此,弹簧
的弹力也处处相等,与静止情况没有区别。

在题目所述四种情况中,由于弹簧的右端受到大小皆为F的拉力作用,且弹簧质量都为零,根据作用力与反作用力关系,弹簧产生的弹力大小皆为F,又由四个弹簧完全相同,根据胡克定律,它们的伸长量皆相等,所以正确选项为D。

二. 双弹簧系统
例2. (2004年苏州调研)用如图2所示的装置可以测量汽车在水平路面上做匀加速直线运动的加速度。

该装置是在矩形箱子的前、后壁上各安装一个由力敏电阻组成的压力传感器。

用两根相同的轻弹簧夹着一个质量为2.0kg的滑块,滑块可无摩擦的滑动,两弹簧的另一端分别压在传感器a、b上,其压力大小可直接从传感器的液晶显示屏上读出。

现将装置沿运动方向固定在汽车上,传感器b在前,传感器a在后,汽车静止时,传感器a、b的示数均为10N
图2
(1)若传感器a的示数为14N、b的示数为6.0N,求此时汽车的加速度大小和方向。

(2)当汽车以怎样的加速度运动时,传感器a的示数为零。

解析:(1
a1的方向向右或向前。

(2
[模型要点]
它引起的物体的加速度、速度、动量、动能等变化不是简单的单调关系,往往有临界值,我们在处理变速问题时要注意分析物体的动态过程,为了快捷分析,我们可以采用极限方法,但要注意“弹簧可拉可压”的特点而忽略中间突变过程,我们也可以利用弹簧模型的对称性。

[模型演练]
(2005年成都考题)如图3所示,一根轻弹簧上端固定在O点,下端系一个钢球P,球处于静止状态。

现对球施加一个方向向右的外力F,吏球缓慢偏移。

若外力F方向始终水平,移
则下面给出弹簧
伸长量x)
图3
答案:D。

相关文档
最新文档