PCB元器件的布局及导线的布设原则
pcb布线规则及技巧
使用自动布线工具需 要合理设置参数,以 确保布线的质量和效 果。
自动布线工具可以自 动优化线路布局,减 少线路交叉和干扰。
考虑电磁兼容性
在布线过程中需要考虑电磁兼容 性,避免线路之间的干扰和冲突。
合理选择线宽和间距,以降低电 磁干扰的影响。
考虑使用屏蔽、接地等措施,提 高电磁兼容性。
04 PCB布线中的挑战及应对 策略
模拟电路板布线
总结词:模拟电路板布线需要特别关注信号的 连续性和稳定性。
01
确保信号的连续性和稳定性,避免信号的 突变和噪声干扰。
03
02
详细描述:在模拟电路板布线中,应遵循以 下规则和技巧
04
考虑信号的带宽和频率,以选择合适的传 输线和端接方式。
优化布线长度和布局,以减小信号的延迟 和失真。
05
1 2
高速信号线应进行阻抗匹配
高速信号线的阻抗应与终端负载匹配,以减小信 号反射和失真。
敏感信号线应进行隔离
敏感信号线应与其他信号线隔离,以减小信号干 扰和噪声。
3
大电流信号线应进行散热设计
大电流信号线应考虑散热问题,以保证电路的正 常运行。
03 PCB布线技巧
优化布线顺序
01
02
03
先电源后信号
3. 解决策略:对于已存 在的电磁干扰问题,可 以尝试优化PCB布局、 改进屏蔽设计、增加滤 波器或调整接地方式等 技术手段进行改善。
05 PCB布线实例分析
高速数字电路板布线
在此添加您的文本17字
总结词:高速数字电路板布线需要遵循严格的规则和技巧 ,以确保信号完整性和可靠性。
在此添加您的文本16字
考虑电磁兼容性
布线过程中需要考虑电磁兼容性,通过合理的布线设计减小电磁干扰和辐射,提 高电路板的电磁性能。
PCBLayout 规则(内部资料)
二、元器件排列方式 3、网格排列: 网格排列中的每一个安装孔均设计在正 方形网格的交点上。 在软件中交点间距可以以米制(Metric)或 英制(Imperial)进行设定。 4、同时采用多种相结合。
二、元器件排列方式
3、网格排列: 网格排列中的每一个安装孔均设计在正 方形网格的交点上。 在软件中交点间距可以以米制(Metric)或 英制(Imperial)进行设定。 4、同时采用多种相结合。
一、元件的布局
一、元件布局方式
3、元器件布局顺序:
遵照“先大后小,先难后易”的布置原
则,即先放置占用面积较大的元器件;先 集成后分立;先主后次,多块集成电路 时 先放置主电路。
一、元件的布局
一、元件布局方式
3、 常用元器件的布局方法:
a、可调元件应放在印制板上便于调节的地方; b、质量超过15g的元器件应当用支架; c、大功率器件最好装在整机的机箱底板上; d、热敏元件应远离发热元件; e、对于管状元器件一般采用平放,但PCB尺寸不大时,可采Байду номын сангаас竖放; f、对于集成电路要确定定位槽放置的方位是否正确。
自动布线:针对电路简单而元件数量多的PCB,这种方式很少采纳; 手动布线:电源板和控制板一般采用手动布线; 混合布线:针对电路简单而元件数量多的PCB,这种方式很少采纳;
四、印制导线布线
3、布线优先次序
;
A 、关键信号线优先:电源、摸拟小信号、高速信号、 时钟信号和同步信号 等关键信号优先布线。 B 、密度优先原则:从板上连接关系最复杂的器件着手布线,或 从板上连线最密集的区域开始布线;常规我们从主控IC开始布线。
四、印制导线布线
7、元件去耦原则
• • • • • 增加必要的去藕电容,滤除电源上的干扰信号, 使电源信号稳定。在多层板中,对去藕电容的 位置一般要求不太高,但对双层板,去藕电容 的布局及电源的布线方式将直接影响到整个系 统的稳定性。
印制电路板设计原则和抗干扰措施
印制电路板设计原则和抗干扰措施印制电路板(Printed Circuit Board,PCB)设计是电子产品设计中非常关键的一部分,其设计原则和抗干扰措施对于电路性能和可靠性有着重要的影响。
下面将详细介绍印制电路板设计的原则和抗干扰措施。
一、印制电路板设计原则1.合理布局电路元件:在布局电路元件时,要根据电路功能和信号传输的要求,合理放置各元器件,减少信号线的长度,尽量减少信号线之间的交叉和平行布线,以减小串扰和电磁辐射的影响。
2.最短路径布线:信号线的长度对于高频电路尤为重要,因为在较高的频率下,信号线会表现出电感和电容的性质,对信号引起较大的干扰。
因此,对于高频信号线,需要尽量缩短信号路径,减小电感和电容效应。
3.控制传输线宽度和间距:传输线的宽度和间距会影响阻抗和串扰。
准确计算和控制阻抗可以避免发生信号反射和衰减。
而间距的控制可以减小串扰影响。
因此,在设计中应考虑到实际信号需求,计算并确定传输线的宽度和间距。
4.分层布线:对于复杂的电路设计,分层布线可以将不同功能的信号线分隔开,减小相互之间的干扰。
较高频的信号线可能需要从内层电路板层穿过,这时就需要提前规划分层布线,以保证信号的完整性和正常传输。
5.地线设计:地线是电路中非常重要的参考线,用于提供参考电平和回路。
因此,在进行印制电路板设计时,要考虑地线的设计,确保地线的连续性、稳定性和低石英。
6.飞线布线:飞线布线常用于解决布线空间不足、信号线错位等问题。
在进行飞线布线时,要准确把握长度和位置,避免信号串扰和干扰,尽量使飞线短小精悍。
1.控制层间电容和层间电感:层间电容和层间电感会导致电磁干扰,因此,在进行PCB设计时,要注意层间电容和电感的控制,尽量减少干扰的发生。
可以通过减小板厚、增加层间绝缘材料的相对介电常数、增加层间电缝等手段来降低层间电容和层间电感。
2.象限规划:将信号线按照功能和高低频分布到各象限中,可以降低相互之间的干扰。
例如,可以将数字信号和模拟信号放置在不同的象限中,避免信号之间的相互干扰。
pcb布线常用规则
布局操作的基本原则1、遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局;2、布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件;3、布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分;4、相同结构电路部分,尽可能采用“对称式”标准布局;5、按照均匀分布、重心平衡、版面美观的标准优化布局;器件布局栅格的设置,一般IC器件布局时,栅格应为50--100 mil,小型表面安装器件,如表面贴装元件布局时,栅格设置应不少于25mil;6、发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件;7、元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间;8、BGA与相邻元件的距离>5mm。
其它贴片元件相互间的距离>0.7mm;贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;9、IC去偶电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短。
(电容器通过将高频信号旁路到地而实现去耦作用。
因此,数字芯片电源引脚旁边100nF即0.1uF的小电容,你可以称之为去耦电容,也可以称之为旁路电容。
去耦就是旁路,旁路不一定是去耦。
)10、不同厚度,不同宽度的铜箔的载流量见下表:注:i. 用铜皮作导线通过大电流时,铜箔宽度的载流量应参考表中的数值降额50%去选择考虑。
例如10A工作电流应按20A的载流量进行设计。
ii. 在PCB设计加工中,常用OZ(盎司)作为铜皮厚度的单位, 1 OZ铜厚的定义为1 平方英尺面积内铜箔的重量为一盎,对应的物理厚度为35um; 2OZ 铜厚为70um。
11、布线优先次序关键信号线优先:电源、摸拟小信号、高速信号、时钟信号和同步信号等关键信号优先布线;密度优先原则:从单板上连接关系最复杂的器件着手布线。
PCB板布局原则布线技巧
PCB板布局原则布线技巧1.PCB板布局原则:-分区布局:将电路板分成不同的区域,将功能相似的电路组件放在同一区域内,有利于信号的传输和维护。
比如,将稳压电路、放大电路、数字电路等放在不同的区域内。
-尽量减少线路长度:线路长度越长,电阻和电感越大,会引入更多的信号损耗和噪声,影响电路的性能。
因此,尽量把线路缩短,减少线路长度。
-避免线路交叉:线路交叉会引入互相干扰的可能性,产生串扰和相互耦合。
因此,尽量避免线路的交叉,使布局更加清晰。
-电源和地线布局:电源和地线是电路中非常重要的信号传输线路,应该尽量压缩在一起,减小回路面积,从而降低电磁干扰的发生。
-高频和低频电路分离:将高频电路和低频电路分开布局,避免高频电路对低频电路的干扰。
2.PCB板布线技巧:-网格布线:将布线分成网格形式,每个网格中只允许一条线路通过,可以提高布线的整齐度和美观度。
-使用规则层:在PCB设计软件中,可以使用规则层进行布线规划,指定线路的宽度、间距等参数,保证布线的一致性和可靠性。
-使用层次布线:将线路分成不同的层次进行布线,可以减少线路的交叉,降低噪声的产生。
-注意差分信号的布线:对于差分信号线路,保持两条线路的长度和布线路径尽量相同,可以减小差分信号之间的差别,提高信号完整性。
-避免直角和锐角:直角和锐角容易引起信号反射和串扰,应尽量避免使用直角和锐角的线路走向,采用圆滑的线路路径。
总结:PCB板布局和布线是PCB设计中不可忽视的环节,合理的布局和布线可以提高电路的性能和可靠性。
通过遵循一些原则,如分区布局、减少线路长度、避免线路交叉等,并结合一些布线技巧,如网格布线、使用规则层、使用层次布线等,可以实现高质量的布局和布线。
pcb布局布线技巧及原则(全面)
pcb布局布线技巧及原则[ 2020-11-16 0:19:00 | By: lanzeex ]PCB 布局、布线基本原则一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm 内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC 元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8 mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB 板边≤1mm 的区域内,以及安装孔周围1mm 内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu 入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W 电阻: 51*55mil(0805 表贴);直插时焊盘62mil,孔径42mil;无极电容: 51*55mil(0805 表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
PCB的布线原则介绍
PCB的布线原则介绍PCB(Printed Circuit Board)布线是在电子产品的设计和制造过程中非常重要的一步,它涉及到电路连接的实现和优化,对电气性能和可靠性有着直接影响。
下面将介绍一些PCB布线的原则和技巧。
1.分层布线原则:为了减少信号串扰和提高布线效果,通常使用多层PCB来进行布线。
不同信号层之间约束通过信号引线进行连接。
2.信号流布线原则:PCB布线应遵循信号流动路径的原则,尽量在布线中使用直线、平行和垂直线路,避免使用弯曲和串扰风险较大的线路。
3.引脚位置原则:为了便于布线和减少信号串扰风险,应该将高速信号的输入和输出引脚安排在同一侧或者上下相邻的地方。
4.良好的地平面原则:地平面是整个PCB布线设计中非常重要的一部分,要做到尽量连续、稳定和低阻抗。
良好的地平面可以减少信号回流路径长度,提高信号质量和抗干扰能力。
5.模拟数字分区原则:为了减少模拟信号和数字信号之间的干扰,布线时应该将它们分开布线,模拟信号通常靠近输入/输出接口,数字信号靠近芯片和处理器。
6.信号引线长度控制原则:为了提高信号的稳定性和可靠性,应尽量控制信号引线的长度,避免过长而引起信号失真或者串扰。
7.信号引线宽度控制原则:为了适应高速信号的要求,应尽量增加信号引线的宽度,减小电流密度,提高信号的传输速率。
8.信号层间距控制原则:为了减少层间串扰风险,应根据信号分布和技术需求,适当调整信号层的间距,通常越窄越好,但过窄会增加制造难度。
9.电源与分布原则:为了减少电源干扰,应设计分布式电源和地平面。
并且将电源线和信号线分开布线,以减少干扰。
10.阻抗匹配原则:为了保证传输线和匹配网络的工作效果,应根据设计要求和信号特征,选择合适的阻抗值。
11.元器件布局原则:元器件布局的合理性会直接影响到整个PCB布线的效果,因此在布局时应考虑信号传输要求、热问题、电源分布等因素。
12.电磁兼容原则:为了减少电磁辐射和电磁接收的干扰,应设计良好的屏蔽和周边环境,并尽量使用低辐射的元器件。
PCB设计规范
PCB设计规范一.PCB 设计的布局规范(一)布局设计原则1. 组件距离板边应大于5mm。
2. 先放置与结构关系密切的组件,如接插件、开关、电源插座等。
3. 优先摆放电路功能块的核心组件及体积较大的元器件,再以核心组件为中心摆放周围电路元器件。
4. 功率大的组件摆放在利于散热的位置上,如采用风扇散热,放在空气的主流通道上;若采用传导散热,应放在靠近机箱导槽的位置。
5. 质量较大的元器件应避免放在板的中心,应靠近板在机箱中的固定边放置。
6. 有高频连线的组件尽可能靠近,以减少高频信号的分布参数和电磁干扰。
7. 输入、输出组件尽量远离。
8. 带高电压的元器件应尽量放在调试时手不易触及的地方。
9. 手焊元件的布局要充分考虑其可焊性,以及焊接时对周围器件的影响。
手焊元件与其他元件距离应大于1.5mm.10. 热敏组件应远离发热组件。
对于自身温升高于30℃的热源,一般要求:a.在风冷条件下,电解电容等温度敏感器件离热源距离要求大于或等于2.5mm;b.自然冷条件下,电解电容等温度敏感器件离热源距离要求大于或等于4.0mm。
若因为空间的原因不能达到要求距离,则应通过温度测试保证温度敏感器件的温升在额定范围内。
11. 可调组件的布局应便于调节。
如跳线、可变电容、电位器等。
12. 考虑信号流向,合理安排布局,使信号流向尽可能保持一致。
13. 布局应均匀、整齐、紧凑。
14. 表贴组件布局时应注意焊盘方向尽量取一致,以利于装焊。
15. 去耦电容应在电源输入端就近放置。
16. 可调换组件(如: 压敏电阻,保险管等) ,应放置在明显易见处17. 是否有防呆设计(如:变压器的不对称脚,及Connect)。
18. 插拔类的组件应考虑其可插拔性。
影响装配,或装配时容易碰到的组件尽量卧倒。
(二)对布局设计的工艺要求1. 外形尺寸从生产角度考虑,理想的尺寸范围是“宽(200 mm~250 mm)×长(250 mm ~350 mm)”。
pcb板器件放置原则
在PCB(印刷电路板)设计中,器件的放置原则是至关重要的。
它直接影响到电路的性能、稳定性和可制造性。
以下是一些主要的PCB板器件放置原则:1. 功能原则:首先,应根据电路的功能需求来放置器件。
同一功能模块的器件应尽可能靠近,以减少信号线的长距离传输,降低信号损耗和干扰。
2. 热设计原则:功率器件如二极管、晶体管、集成电路等会产生大量的热量,如果不及时散热,可能会导致器件过热而损坏。
因此,这些器件应放置在PCB上易于散热的位置,如靠近边缘或顶部。
3. 电磁兼容性原则:高频、高速电路的器件应远离模拟电路和电源电路,以防止电磁干扰。
同时,电源线和地线应尽量宽,以减小电阻,降低电磁辐射。
4. 机械稳定性原则:较重的器件应放在PCB的底部,以防止因重力作用而移动或倾斜。
同时,器件之间的距离应适当,以便于安装和维修。
5. 信号完整性原则:高速信号线应尽可能短,且避免交叉。
同时,信号线应尽量避免经过大面积的铜箔区域,以减少阻抗不匹配和信号反射。
6. 可制造性原则:器件的尺寸和形状应适合PCB的制造工艺。
例如,过小的器件可能无法焊接,过大的器件可能会超出PCB的尺寸限制。
7. 电源和地线布局原则:电源和地线应尽量靠近,以减小电源噪声。
同时,电源线和地线应尽量宽,以减小电阻,降低电磁辐射。
8. 信号流向原则:在多层PCB设计中,信号流向应遵循“从上到下”或“从下到上”的原则,以减少信号线的长度和交叉。
9. 测试点布局原则:为了方便测试和调试,应在关键部位设置测试点。
测试点应尽量靠近器件,且易于访问。
10. 预留扩展空间原则:在设计PCB时,应预留一定的扩展空间,以便于后期的修改和升级。
以上就是PCB板器件放置的一些基本原则,但在实际设计中,还需要根据具体的电路特性和设计要求,灵活运用和调整这些原则。
pcb布局的基本原则
pcb布局的基本原则
PCB布局的基本原则是要分隔逻辑路径上的电子元件和线路,使元件
可以更加高效地连接,而线路则可以最小化或甚至完全避免可能出现的干扰。
布局原则也被称为“把元件放在一起,把线路放在一起”。
能够改善
电路板数字和模拟性能,避免跑线和混乱。
具体来说,PCB布局基本原则有以下几点:
一、让线路尽量近似直线:要求电路的线路尽可能的模仿正弦曲线,
而不是斜线,以减少转角处的分布,从而延长电气线路的寿命;
二、保证线路之间及元件之间的距离:当两个线路非常接近时,就会
产生电容耦合,这时就要求在线路之间维持一定的间距,或者在元件之间
维持一定的间距;
三、考虑对线路的影响:在考虑线路布局时,应考虑可能产生的干扰,如静电、磁场、抗反干扰能力等,并采取合理的措施来避免这些干扰;
四、保证电路的灵活性:电路的灵活性可以避免芯片的设计和维护,以及未来技术的发展和改进;
五、考虑PCB板厚度:当考虑一个PCB板时,应审慎考虑PCB板的厚度,以便确保PCB板能够承受电脉冲的振动,而不会发生内部断裂或外部
电气损坏。
印制电路板的元器件布局和布线原则
印制电路板的元器件布局和布线原则摘要: 印制电路板的元器件布局和布线的正确结构设计,是决定电子作品能否可靠工作的一个关键因素.本文详细介绍了印制电路板的元器件布局和布线原则。
印制电路板的元器件布局和布线的正确结构设计,是决定电子作品能否可靠工作的一个关键因素.本文详细介绍了印制电路板的元器件布局和布线原则。
元器件的布局原则在印制电路板的排版设计中,元器件的布局至关重要,它决定了板面的整齐美观程度和印制导线的长短与数量,对整机的可靠性也有一定的影响。
布设元器件时应遵循以下几个原则:1)在通常情况下,所有元器件均应布置在印制电路板的一面。
对于单面印制电路板,元器件只能安装在没有印制电路的一面;对于双面印制电路板,元器件也应安装在印制电路板的一面;如果需要绝缘,可在元器件与印制电路板之间垫绝缘薄膜或元器件与印制电路板之间留有1~2mm 的间隙。
在条件允许的情况下,尽量使元器件在整个板面上分布均匀、疏密一致。
PCB 地线分割2)在保证电气性能的前提下,元器件应相互平行或垂直排列,以求整齐、美观。
3)重而大的元器件,尽量安置在印制电路板上紧靠固定端的位置,并降低重心,以提高机械强度和耐振动、耐冲击能力,减少印制电路板的负荷和变形。
4)发热元器件应优先安排在有利于散热的位置,必要时可单独安装散热器,以降低和减少对邻近元器件的影响。
对热敏感的元器件应远离高温区。
5)对电磁感应较灵敏的元器件和电磁辐射较强的元器件在布局时应避免它们之间相互影响。
印制导线的布线原则元器件布局完成后,就可以根据电路原理图安排和绘制各元器件的连接线,即印制导线的布线设计。
布线对整机的电气性能影响较大,其原则如下:1)公共地线一般布置在印制电路板的最边缘,既便于印制电路板安装在机架上,也便于与机架地相连接。
电源、滤波等低频直流导线和元器件靠边缘布置,高频元器件及导线布置在印制电路板的中间,以减少它们对地线和机壳的分布电容。
2)印制导线与印制电路板的边缘应留有一定的距离(不小于板厚),这不仅便于安装导轨和进行机械加工,还提高了绝缘性能。
PCB板布局原则布线技巧
PCB板布局原则布线技巧一、布局原则:1.功能分区:将电路按照其功能划分为若干区域,不同功能的电路相互隔离,减少相互干扰。
2.信号流向:在布局过程中应保持信号流向规则和简洁,避免交叉干扰。
3.重要元件位置:将较重要的元件、信号线和电源线放置在核心区域,以提高系统的可靠性和抗干扰能力。
4.散热考虑:将产热较大的元件、散热器等布局在较为开阔的地方,利于散热,避免过热导致不正常工作。
5.地线布局:地线的布局和连通应该注意短、宽、粗、低阻、尽可能铺满PCB板的底层,减少环路面积,避免回流信号干扰。
二、布线技巧:1.差分信号布线:对于高速传输的差分信号(如USB、HDMI等),应采用相对的布线方式,尽量保持两条信号线的长度、路径和靠近程度等因素相等。
2.信号线长度控制:对于高速信号线,要控制传输时间差,避免信号的串扰,可以采用长度相等的原则,对多个信号线进行匹配。
3.距离和屏蔽:信号线之间应保持一定的距离,减少串扰。
对于敏感信号线,可以采用屏蔽,如使用屏蔽线或者地层或电源面直接作为屏蔽。
4.平面分布布线:将电路面分布在PCB板的一面,减少控制层(可减少电磁干扰),易于维护。
对于比较大的PCB板,可以将电路分布在多层结构中,减小板子尺寸。
5.电源线和地线:电源线和地线尽量粗而宽,以降低线路阻抗和电压降。
同时,尽量减少电源线和地线与其它信号线的交叉和共面长度,减小可能的电磁干扰。
6.设备端口布局:对于外部设备接口,宜以一边和一角为原则,将各种本机接口尽量分布在同一区域,以保持可维护性和布局的简洁性。
7.组件布局:对于IC和器件的布局,可以按照电路的工作顺序、重要程度和电路结构等因素综合考虑,优先放置重要元件,如主控芯片、存储器等。
三、布局规则:1.尽量缩短信号线的长度,减少信号传输的延迟和串扰。
2.尽量减小信号线的面积,减少对周围信号的干扰。
3.尽量采用四方对称布线,减少线路不平衡引起的干扰。
4.尽量降低线路阻抗,提高信号的传输质量。
PCB线路板元件布局的原则
PCB线路板元件布局的原则1.元件排列规则1).在通常条件下,所有的元件均应布置在印制电路的同一面上,只有在顶层元件过密时,才能将一些高度有限并且发热量小的器件,如贴片电阻、贴片电容、贴IC等放在底层。
2).在保证电气性能的前提下,元件应放置在栅格上且相互平行或垂直排列,以求整齐、美观,一般情况下不允许元件重叠;元件排列要紧凑,输入和输出元件尽量远离。
3).某元器件或导线之间可能存在较高的电位差,应加大它们的距离,以免因放电、击穿而引起意外短路。
4).带高电压的元件应尽量布置在调试时手不易触及的地方。
5).位于板边缘的元件,离板边缘至少有2个板厚的距离6).元件在整个板面上应分布均匀、疏密一致。
2.按照信号走向布局原则1).通常按照信号的流程逐个安排各个功能电路单元的位置,以每个功能电路的核心元件为中心,围绕它进行布局。
2).元件的布局应便于信号流通,使信号尽可能保持一致的方向。
多数情况下,信号的流向安排为从左到右或从上到下,与输入、输出端直接相连的元件应当放在靠近输入、输出接插件或连接器的地方。
3.防止电磁干扰1).对辐射电磁场较强的元件,以及对电磁感应较灵敏的元件,应加大它们相互之间的距离或加以屏蔽,元件放置的方向应与相邻的印制导线交叉。
2).尽量避免高低电压器件相互混杂、强弱信号的器件交错在一起。
3).对于会产生磁场的元件,如变压器、扬声器、电感等,布局时应注意减少磁力线对印制导线的切割,相邻元件磁场方向应相互垂直,减少彼此之间的耦合。
4).对干扰源进行屏蔽,屏蔽罩应有良好的接地。
5).在高频工作的电路,要考虑元件之间的分布参数的影响。
4. 抑制热干扰1).对于发热元件,应优先安排在利于散热的位置,必要时可以单独设置散热器或小风扇,以降低温度,减少对邻近元件的影响。
2).一些功耗大的集成块、大或中功率管、电阻等元件,要布置在容易散热的地方,并与其它元件隔开一定距离。
3).热敏元件应紧贴被测元件并远离高温区域,以免受到其它发热功当量元件影响,引起误动作。
PCB设计布局及布线规则
PCB设计布局规则1. 根据结构图设置板框尺寸,按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性。
按工艺设计规范的要求进行尺寸标注。
2. 根据结构图和生产加工时所须的夹持边设置印制板的禁止布线区、禁止布局区域。
根据某些元件的特殊要求,设置禁止布线区。
3. 综合考虑PCB性能和加工的效率选择加工流程。
加工工艺的优选顺序为:元件面单面贴装--元件面贴、插混装(元件面插装焊接面贴装一次波峰成型)--双面贴装--元件面贴插混装、焊接面贴装。
4.布局操作的基本原则A. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.B. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.C. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分.D. 相同结构电路部分,尽可能采用“对称式”标准布局;E. 按照均匀分布、重心平衡、版面美观的标准优化布局;F. 器件布局栅格的设置,一般IC器件布局时,栅格应为50--100 mil,小型表面安装器件,如表面贴装元件布局时,栅格设置应不少于25mil。
G. 如有特殊布局要求,应双方沟通后确定。
5. 同类型插装元器件在X或Y方向上应朝一个方向放置。
同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。
6. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。
7. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。
8. 需用波峰焊工艺生产的单板,其紧固件安装孔和定位孔都应为非金属化孔。
当安装孔需要接地时, 应采用分布接地小孔的方式与地平面连接。
9. 焊接面的贴装元件采用波峰焊接生产工艺时,阻、容件轴向要与波峰焊传送方向垂直,阻排及SOP(PIN间距大于等于1.27mm)元器件轴向与传送方向平行;PIN间距小于1.27mm(50mil)的IC、SOJ、PLCC、QFP等有源元件避免用波峰焊焊接。
PCB板布局布线基本规则
PCB板布局布线基本规则一、元件布局基本规则1.按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm内不得贴装元、器件,螺钉等安装孔周围3.5mm (对于M2.5)、4mm(对于M3)内不得贴装元器件;3.卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4.元器件的外侧距板边的距离为5mm;5.贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6.金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7.发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8.电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9.其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil (或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
pcb设计注意事项及设计原则
pcb设计注意事项及设计原则
1. 注意电路的布局:将关键的电路元件和元件之间的连接线尽量短,并且按照电路信号流的路径进行布局,以降低电路的干扰和噪声。
2. 确保供电和地线的良好连接:供电和地线必须足够宽,以确保电流的充分通畅,同时尽量减少导线的长度和阻抗。
3. 保持信号的完整性:重要的高频信号和低噪声信号应该有独立的接线层进行隔离,并且保持信号线之间的最小交叉和最小输入/输出延迟。
4. 尽量减少板层数量:增加板层会增加制造成本和装配难度,因此应该尽量减少板层数量,并合理布局各种信号。
5. 为高功率模块提供散热解决方案:对于功率较大的模块,应该考虑合适的散热解决方案,如散热片、散热孔等。
6. 注意阻抗匹配:对于高速信号线,应该根据需求确定合适的阻抗,并尽量避免阻抗不匹配。
7. 考虑EMC问题:应该尽量减少电磁干扰并提高抗干扰能力,如采用合适的屏蔽、阻尼材料和接地。
8. 保证良好的可维护性:电路的布局应该考虑到维修和更换元件的方便性,如保留合适的测试点和备用元件位置。
9. 注意元器件的热分布:对于容易发热的元件,应该注意合适的散热和降温措施。
10. 使用规范的命名和标记:为了方便阅读和维护,应该使用规范的元件命名和标记方法,并为电路板添加清晰的标签和说明。
PCB布局布线的一些规则
PCB布局布线的一些规则一、布局元器件布局的10条规则:1. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.2. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.3. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。
4. 相同结构电路部分,尽可能采用“对称式”标准布局;5. 按照均匀分布、重心平衡、版面美观的标准优化布局;6. 同类型插装元器件在X或Y方向上应朝一个方向放置。
同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验。
7. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件。
8. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分。
9、去偶电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短。
10、元件布局时,应适当考虑使用同一种电源的器件尽量放在一起, 以便于将来的电源分隔。
二、布线(1)布线优先次序键信号线优先:摸拟小信号、高速信号、时钟信号和同步信号等关键信号优先布线密度优先原则:从单板上连接关系最复杂的器件着手布线。
从单板上连线最密集的区域开始布线注意点:a、尽量为时钟信号、高频信号、敏感信号等关键信号提供专门的布线层,并保证其最小的回路面积。
必要时应采取手工优先布线、屏蔽和加大安全间距等方法。
保证信号质量。
b、电源层和地层之间的EMC环境较差,应避免布置对干扰敏感的信号。
c、有阻抗控制要求的网络应尽量按线长线宽要求布线。
(2)四种具体走线方式1 、时钟的布线:时钟线是对EMC 影响最大的因素之一。
在时钟线上应少打过孔,尽量避免和其它信号线并行走线,且应远离一般信号线,避免对信号线的干扰。
PCB布板布线规则
细述PCB板布局布线基本规则的线路连接和功能实现,也是电源电路设计中重要的组成部分。
今天就将以本文来介绍PCB 板布局布线的基本规则。
一、元件布局基本规则1. 按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3. 卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4. 元器件的外侧距板边的距离为5mm;5. 贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6. 金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7. 发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8. 电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9. 其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil (或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil(0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
Pcb布局规则和技巧
Pcb布局规则和技巧Pcb布局规章1、在通常状况下,全部的元件均应布置在电路板的同一面上,只有顶层元件过密时,才能将一些高度有限并且发热量小的器件,如贴片电阻、贴片电容、贴片IC等放在低层。
2、在保证电气性能的前提下,元件应放置在栅格上且相互平行或垂直排列,以求整齐、美观,在一般状况下不允许元件重叠;元件排列要紧凑,元件在整个版面上应分布匀称、疏密全都。
3、电路板上不同组件相临焊盘图形之间的最小间距应在1MM 以上。
4、离电路板边缘一般不小于2MM.电路板的最佳外形为矩形,长宽比为3:2或4:3.电路板面尺大于200MM乘150MM时,应考虑电路板所能承受的机械强度。
Pcb布局技巧在PCB的布局设计中要分析电路板的单元,依据其功能进行布局设计,对电路的全部元器件进行布局时,要符合以下原则:1、根据电路的流程支配各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持全都的方向。
2、以每个功能单元的核心元器件为中心,围绕他来进行布局。
元器件应匀称、整体、紧凑的排列在PCB上,尽量削减和缩短各元器件之间的引线和连接。
3、在高频下工作的电路,要考虑元器件之间的分布参数。
一般电路应尽可能使元器件并行排列,这样不但美观,而且装旱简单,易于批量生产。
特别元器件的位置在布局时一般要遵守以下原则:1、尽可能缩短高频元器件之间的连接,设法削减他们的分布参数及和相互间的电磁干扰。
易受干扰的元器件不能相互离的太近,输入和输出应尽量远离。
2一些元器件或导线有可能有较高的电位差,应加大他们的距离,以免放电引起意外短路。
高电压的元器件应尽量放在手触及不到的地方。
3、重量超过15G的元器件,可用支架加以固定,然后焊接。
那些又重又热的元器件,不应放到电路板上,应放到主机箱的底版上,且考虑散热问题。
热敏元器件应远离发热元器件。
4、对与电位器、可调电感线圈、可变电容器、微动开关等可调元器件的布局应考虑整块扳子的结构要求,一些常常用到的开关,在结构允许的状况下,应放置到手简单接触到的地方。
PCB板基础知识布局原则布线技巧设计规则
PCB 板基础知识一、PCB 板的元素1、 工作层面对于印制电路板来说,工作层面可以分为6大类,信号层 signal layer内部电源/接地层 internal plane layer机械层mechanical layer 主要用来放置物理边界和放置尺寸标注等信息,起到相应的提示作用;EDA 软件可以提供16层的机械层;防护层mask layer 包括锡膏层和阻焊层两大类;锡膏层主要用于将表面贴元器件粘贴在PCB 上,阻焊层用于防止焊锡镀在不应该焊接的地方;丝印层silkscreen layer 在PCB 板的TOP 和BOTTOM 层表面绘制元器件的外观轮廓和放置字符串等;例如元器件的标识、标称值等以及放置厂家标志,生产日期等;同时也是印制电路板上用来焊接元器件位置的依据,作用是使PCB 板具有可读性,便于电路的安装和维修;其他工作层other layer 禁止布线层 Keep Out Layer钻孔导引层 drill guide layer钻孔图层 drill drawing layer复合层 multi-layer2、 元器件封装是实际元器件焊接到PCB 板时的焊接位置与焊接形状,包括了实际元器件的外形尺寸,所占空间位置,各管脚之间的间距等;元器件封装是一个空间的功能,对于不同的元器件可以有相同的封装,同样相同功能的元器件可以有不同的封装;因此在制作PCB 板时必须同时知道元器件的名称和封装形式;(1) 元器件封装分类通孔式元器件封装THT,through hole technology表面贴元件封装 SMT Surface mounted technology另一种常用的分类方法是从封装外形分类: SIP 单列直插封装DIP 双列直插封装PLCC 塑料引线芯片载体封装PQFP 塑料四方扁平封装SOP 小尺寸封装TSOP 薄型小尺寸封装PPGA 塑料针状栅格阵列封装PBGA 塑料球栅阵列封装CSP 芯片级封装2 元器件封装编号编号原则:元器件类型+引脚距离或引脚数+元器件外形尺寸例如 DIP14 等;3常见元器件封装电阻类 普通电阻AXIAL-⨯⨯,其中⨯⨯表示元件引脚间的距离;可变电阻类元件封装的编号为VR ⨯, 其中⨯表示元件的类别;电容类 非极性电容 编号RAD ⨯⨯,其中⨯⨯表示元件引脚间的距离;极性电容 编号RB xx -yy ,xx 表示元件引脚间的距离,yy 表示元件的直径; 二极管类 编号DIODE-⨯⨯,其中⨯⨯表示元件引脚间的距离;晶体管类 器件封装的形式多种多样;集成电路类SIP 单列直插封装DIP 双列直插封装PLCC 塑料引线芯片载体封装PQFP 塑料四方扁平封装SOP 小尺寸封装TSOP 薄型小尺寸封装PPGA 塑料针状栅格阵列封装PBGA 塑料球栅阵列封装CSP 芯片级封装3、 铜膜导线 是指PCB 上各个元器件上起电气导通作用的连线,它是PCB 设计中最重要的部分;对于印制电路板的铜膜导线来说,导线宽度和导线间距是衡量铜膜导线的重要指标,这两个方面的尺寸是否合理将直接影响元器件之间能否实现电路的正确连接关系; 印制电路板走线的原则:◆走线长度:尽量走短线,特别对小信号电路来讲,线越短电阻越小,干扰越小;◆走线形状:同一层上的信号线改变方向时应该走135°的斜线或弧形,避免90°的拐角;◆走线宽度和走线间距:在PCB 设计中,网络性质相同的印制板线条的宽度要求尽量一致,这样有利于阻抗匹配;走线宽度 通常信号线宽为: ~,10mil电源线一般为~ 在条件允许的范围内,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线焊盘、线、过孔的间距要求PAD and VIA : ≥ 12milPAD and PAD : ≥ 12milPAD and TRACK : ≥ 12milTRACK and TRACK : ≥ 12mil密度较高时:PAD and VIA : ≥ 10milPAD and PAD : ≥ 10milPAD and TRACK : ≥ 10milTRACK and TRACK : ≥ 10mil4、 焊盘和过孔引脚的钻孔直径=引脚直径+10~30mil引脚的焊盘直径=钻孔直径+18milPCB 布局原则1、 根据结构图设置板框尺寸,按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性; 按工艺设计规范的要求进行尺寸标注;2. 根据结构图和生产加工时所须的夹持边设置印制板的禁止布线区、禁止布局区域;根据某些元件的特殊要求,设置禁止布线区;3. 综合考虑PCB性能和加工的效率选择加工流程;加工工艺的优选顺序为:元件面单面贴装——元件面贴、插混装元件面插装焊接面贴装一次波峰成型——双面贴装——元件面贴插混装、焊接面贴装;4、布局操作的基本原则A. 遵照“先大后小,先难后易”的布置原则,即重要的单元电路、核心元器件应当优先布局.B. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.C. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分.D. 相同结构电路部分,尽可能采用“对称式”标准布局;E. 按照均匀分布、重心平衡、版面美观的标准优化布局;F. 器件布局栅格的设置,一般IC器件布局时,栅格应为50--100 mil,小型表面安装器件,如表面贴装元件布局时,栅格设置应不少于25mil;G. 如有特殊布局要求,应双方沟通后确定;5. 同类型插装元器件在X或Y方向上应朝一个方向放置;同一种类型的有极性分立元件也要力争在X或Y方向上保持一致,便于生产和检验;6. 发热元件要一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件;7. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间;8. 需用波峰焊工艺生产的单板,其紧固件安装孔和定位孔都应为非金属化孔;当安装孔需要接地时, 应采用分布接地小孔的方式与地平面连接;9. 焊接面的贴装元件采用波峰焊接生产工艺时,阻、容件轴向要与波峰焊传送方向垂直, 阻排及SOPPIN间距大于等于元器件轴向与传送方向平行;PIN间距小于50mil的IC、SOJ、PLCC、QFP等有源元件避免用波峰焊焊接;10. BGA与相邻元件的距离>5mm;其它贴片元件相互间的距离>;贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;有压接件的PCB,压接的接插件周围5mm内不能有插装元、器件,在焊接面其周围5mm内也不能有贴装元、器件;11. IC去耦电容的布局要尽量靠近IC的电源管脚,并使之与电源和地之间形成的回路最短;12. 元件布局时,应适当考虑使用同一种电源的器件尽量放在一起, 以便于将来的电源分隔;13. 用于阻抗匹配目的阻容器件的布局,要根据其属性合理布置;串联匹配电阻的布局要靠近该信号的驱动端,距离一般不超过500mil;匹配电阻、电容的布局一定要分清信号的源端与终端,对于多负载的终端匹配一定要在信号的最远端匹配;14. 布局完成后打印出装配图供原理图设计者检查器件封装的正确性,并且确认单板、背板和接插件的信号对应关系,经确认无误后方可开始布线;布线布线是整个PCB设计中最重要的工序;这将直接影响着PCB板的性能好坏;在PCB的设计过程中,布线一般有这么三种境界的划分:首先是布通,这时PCB设计时的最基本的要求;如果线路都没布通,搞得到处是飞线,那将是一块不合格的板子,可以说还没入门;其次是电器性能的满足;这是衡量一块印刷电路板是否合格的标准;这是在布通之后,认真调整布线,使其能达到最佳的电器性能;接着是美观;假如你的布线布通了,也没有什么影响电器性能的地方,但是一眼看过去杂乱无章的,加上五彩缤纷、花花绿绿的,那就算你的电器性能怎么好,在别人眼里还是垃圾一块;这样给测试和维修带来极大的不便;布线要整齐划一,不能纵横交错毫无章法;这些都要在保证电器性能和满足其他个别要求的情况下实现,否则就是舍本逐末了;布线时主要按以下原则进行:①.一般情况下,首先应对电源线和地线进行布线,以保证电路板的电气性能;在条件允许的范围内,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,通常信号线宽为:~,最细宽度可达~,电源线一般为~;对数字电路的 PCB 可用宽的地导线组成一个回路, 即构成一个地网来使用模拟电路的地则不能这样使用②.预先对要求比较严格的线如高频线进行布线,输入端与输出端的边线应避免相邻平行,以免产生反射干扰;必要时应加地线隔离,两相邻层的布线要互相垂直,平行容易产生寄生耦合;③.振荡器外壳接地,时钟线要尽量短,且不能引得到处都是;时钟振荡电路下面、特殊高速逻辑电路部分要加大地的面积,而不应该走其它信号线,以使周围电场趋近于零;④.尽可能采用45o的折线布线,不可使用90o折线,以减小高频信号的辐射;要求高的线还要用双弧线⑤.任何信号线都不要形成环路,如不可避免,环路应尽量小;信号线的过孔要尽量少;⑥.关键的线尽量短而粗,并在两边加上保护地;⑦.通过扁平电缆传送敏感信号和噪声场带信号时,要用“地线-信号-地线”的方式引出;⑧.关键信号应预留测试点,以方便生产和维修检测用⑨.原理图布线完成后,应对布线进行优化;同时,经初步网络检查和DRC检查无误后,对未布线区域进行地线填充,用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用;或是做成多层板,电源,地线各占用一层;Alitum Designer的PCB板布线规则对于PCB的设计, AD提供了详尽的10种不同的设计规则,这些设计规则则包括导线放置、导线布线方法、元件放置、布线规则、元件移动和信号完整性等规则;根据这些规则, Protel DXP进行自动布局和自动布线;很大程度上,布线是否成功和布线的质量的高低取决于设计规则的合理性,也依赖于用户的设计经验;对于具体的电路可以采用不同的设计规则,如果是设计双面板,很多规则可以采用系统默认值,系统默认值就是对双面板进行布线的设置;本章将对Protel DXP的布线规则进行讲解;设计规则设置进入设计规则设置对话框的方法是在PCB电路板编辑环境下,从Protel DXP的主菜单中执行菜单命令Desing/Rules ……,系统将弹出如图6-1所示的PCB Rules and Constraints EditorPCB设计规则和约束对话框;图6-1 PCB设计规则和约束对话框该对话框左侧显示的是设计规则的类型,共分10类;左边列出的是Desing Rules 设计规则 ,其中包括Electrical 电气类型、 Routing 布线类型、 SMT 表面粘着元件类型规则等等,右边则显示对应设计规则的设置属性;该对话框左下角有按钮Priorities ,单击该按钮,可以对同时存在的多个设计规则设置优先权的大小;对这些设计规则的基本操作有:新建规则、删除规则、导出和导入规则等;可以在左边任一类规则上右击鼠标,将会弹出如6-2所示的菜单;在该设计规则菜单中, New Rule是新建规则; Delete Rule是删除规则; ExportRules是将规则导出,将以 .rul为后缀名导出到文件中; Import Rules是从文件中导入规则;Report ……选项,将当前规则以报告文件的方式给出; 图6 —2设计规则菜单下面,将分别介绍各类设计规则的设置和使用方法;电气设计规则Electrical 电气设计规则是设置电路板在布线时必须遵守,包括安全距离、短路允许等4个小方面设置;1 . Clearance 安全距离选项区域设置安全距离设置的是PCB 电路板在布置铜膜导线时,元件焊盘和焊盘之间、焊盘和导线之间、导线和导线之间的最小的距离;下面以新建一个安全规则为例,简单介绍安全距离的设置方法;1 在Clearance上右击鼠标,从弹出的快捷菜单中选择New Rule ……选项,如图6-3所示;图6-3 新建规则系统将自动当前设计规则为准,生成名为Clearance_1的新设计规则,其设置对话框如图6-4所示;图6-4 新建Clearance_1设计规则2 在Where the First object matches选项区域中选定一种电气类型;在这里选定Net单选项,同时在下拉菜单中选择在设定的任一网络名;在右边Full Query中出现InNet 字样,其中括号里也会出现对应的网络名;3 同样的在where the Second object matches选项区域中也选定Net单选项,从下拉菜单中选择另外一个网络名;4 在Constraints选项区域中的Minimum Clearance文本框里输入8mil ;这里Mil 为英制单位, 1mil=10 -3 inch, linch= ;文中其他位置的mil也代表同样的长度单位;5 单击Close按钮,将退出设置,系统自动保存更改;设计完成效果如图6-5所示;图6-5 设置最小距离2 . Short Circuit 短路选项区域设置短路设置就是否允许电路中有导线交叉短路;设置方法同上,系统默认不允许短路,即取消Allow Short Circuit复选项的选定,如图6- 6所示;图6-6 短路是否允许设置3 . Un-Routed Net 未布线网络选项区域设置可以指定网络、检查网络布线是否成功,如果不成功,将保持用飞线连接;4 . Un-connected Pin 未连接管脚选项区域设置对指定的网络检查是否所有元件管脚都连线了;布线设计规则Routing 布线设计规则主要有如下几种;1 . Width 导线宽度选项区域设置导线的宽度有三个值可以供设置,分别为Max width 最大宽度、 Preferred Width 最佳宽度、 Min width 最小宽度三个值,如图6-7所示;系统对导线宽度的默认值为10mil ,单击每个项直接输入数值进行更改;这里采用系统默认值10mil设置导线宽度;图6 -7 设置导线宽度2. Routing Topology 布线拓扑选项区域设置拓扑规则定义是采用的布线的拓扑逻辑约束; Protel DXP中常用的布线约束为统计最短逻辑规则,用户可以根据具体设计选择不同的布线拓扑规则; Protel DXP提供了以下几种布线拓扑规则;Shortest 最短规则设置最短规则设置如图6-8所示,从Topology下拉菜单中选择Shortest选项,该选项的定义是在布线时连接所有节点的连线最短规则;图6 -8 最短拓扑逻辑Horizontal 水平规则设置水平规则设置如图6- 9所示,从Topoogy下拉菜单中选择Horizontal选基;它采用连接节点的水平连线最短规则;图6-9 水平拓扑规则Vertical 垂直规则设置垂直规则设置如图6-10所示,从Tolpoogy下拉菜单中选择Vertical选项;它采和是连接所有节点,在垂直方向连线最短规则;图 6-10 垂直拓扑规则Daisy Simple 简单雏菊规则设置简单雏菊规则设置如图 6-11所示,从Tolpoogy下拉菜单中选择Daisy simple选项;它采用的是使用链式连通法则,从一点到另一点连通所有的节点,并使连线最短;图 6-11简单雏菊规则Daisy-MidDriven 雏菊中点规则设置雏菊中点规则设置如图6-12所示,从Tolpoogy下拉菜单中选择Daisy_MidDiven 选项;该规则选择一个Source 源点,以它为中心向左右连通所有的节点,并使连线最短;图 6-12雏菊中点规则Daisy Balanced 雏菊平衡规则设置雏菊平衡规则设置如图6-13所示,从Tolpoogy下拉菜单中选择Daisy Balanced 选项;它也选择一个源点,将所有的中间节点数目平均分成组,所有的组都连接在源点上,并使连线最短;图 6-13雏菊平衡规则Star Burst 星形规则设置星形规则设置如图6-14所示,从Tolpoogy下拉菜单中选择Star Burst选项;该规则也是采用选择一个源点,以星形方式去连接别的节点,并使连线最短;图 6-14 Star Burst 星形规则3. Routing Rriority 布线优先级别选项区域设置该规则用于设置布线的优先次序,设置的范围从0~100 ,数值越大,优先级越高,如图6-15所示;图 6-15 布线优先级设置4. Routing Layers 布线图选殴区域设置该规则设置布线板导的导线走线方法;包括顶层和底层布线层,共有32个布线层可以设置,如图6-16所示;图 6-16 布线层设置由于设计的是双层板,故Mid-Layer 1到Mid-Layer30都不存在的,该选项为灰色不能使用,只能使用Top Layer和Bottom Layer两层;每层对应的右边为该层的布线走法;Prote DXP提供了11种布线走法,如图6 -17所示;图 6-17 11 种布线法各种布线方法为: Not Used该层不进行布线; Horizontal该层按水平方向布线 ;Vertical该层为垂直方向布线; Any该层可以任意方向布线; Clock该层为按一点钟方向布线; Clock该层为按两点钟方向布线; Clock该层为按四点钟方向布线;Clock该层为按五点钟方向布线; 45Up该层为向上45 °方向布线、 45Down该层为向下 45 °方法布线; Fan Out该层以扇形方式布线;对于系统默认的双面板情况,一面布线采用Horizontal 方式另一面采用Vertical 方式;5 . Routing Corners 拐角选项区域设置布线的拐角可以有45 °拐角、90 °拐角和圆形拐角三种,如图6-18所示;图 6-18 拐角设置从Style上拉菜单栏中可以选择拐角的类型;如图6 -16中Setback文本框用于设定拐角的长度; To文本框用于设置拐角的大小;对于90 °拐角如图6-19所示,圆形拐角设置如图6-20所示;图 6-19 90 °拐角设置图 6-20 圆形拐角设置6 . Routing Via Style 导孔选项区域设置该规则设置用于设置布线中导孔的尺寸,其界面如图6-21所示;图 6 -21 导孔设置可以调协的参数有导孔的直径via Diameter和导孔中的通孔直径Via Hole Size ,包括Maximum 最大值、 Minimum 最小值和Preferred 最佳值;设置时需注意导孔直径和通孔直径的差值不宜过小,否则将不宜于制板加工;合适的差值在10mil以上;阻焊层设计规则Mask 阻焊层设计规则用于设置焊盘到阻焊层的距离,有如下几种规则;1 . Solder Mask Expansion 阻焊层延伸量选项区域设置该规则用于设计从焊盘到阻碍焊层之间的延伸距离;在电路板的制作时,阻焊层要预留一部分空间给焊盘;这个延伸量就是防止阻焊层和焊盘相重叠,如图6 —22所示系统默认值为4mil,Expansion设置预为设置延伸量的大小;图 6 — 22 阻焊层延伸量设置2 . Paste Mask Expansion 表面粘着元件延伸量选项区域设置该规则设置表面粘着元件的焊盘和焊锡层孔之间的距离,如图6 —23所示,图中的Expansion设置项为设置延伸量的大小;图 6 — 23 表面粘着元件延伸量设置内层设计规则Plane 内层设计规则用于多层板设计中,有如下几种设置规则;1 . Power Plane Connect Style 电源层连接方式选项区域设置电源层连接方式规则用于设置导孔到电源层的连接,其设置界面如图6 —24所示;图 6 — 24 电源层连接方式设置图中共有5项设置项,分别是:Conner Style 下拉列表:用于设置电源层和导孔的连接风格;下拉列表中有 3 个选项可以选择: Relief Connect 发散状连接、 Direct connect 直接连接和 No Connect 不连接;工程制板中多采用发散状连接风格;Condctor Width 文本框:用于设置导通的导线宽度;Conductors 复选项:用于选择连通的导线的数目,可以有 2 条或者 4 条导线供选择;Air-Gap 文本框:用于设置空隙的间隔的宽度;Expansion 文本框:用于设置从导孔到空隙的间隔之间的距离;2. Power Plane Clearance 电源层安全距离选项区域设置该规则用于设置电源层与穿过它的导孔之间的安全距离,即防止导线短路的最小距离,设置界面如图6 — 25所示,系统默认值20mil;图 6 — 25 电源层安全距离设置3 . Polygon Connect style 敷铜连接方式选项区域设置该规则用于设置多边形敷铜与焊盘之间的连接方式,设置界面如图6 — 26所示;图 6 — 26 敷铜连接方式设置该设置对话框中Connect Style 、 Conductors和Conductor width的设置与Power Plane Connect Style选项设置意义相同,在此不同志赘述;最后可以设定敷铜与焊盘之间的连接角度,有90angle90 ° 和45Angle 45 °角两种方式可选;测试点设计规则Testpiont 测试点设计规则用于设计测试点的形状、用法等,有如下几项设置;1 . Testpoint Style 测试点风格选项区域设置该规则中可以指定测试点的大小和格点大小等,设置界面如图6 — 27所示;图 6 — 27 测试点风格设置该设置对话框有如下选项:Size文本框为测试点的大小, Hole Size文本框为测试点的导孔的大小,可以指定Min 最小值、 Max 最大值和 Preferred 最优值;Grid Size文本框:用于设置测试点的网格大小;系统默认为1mil大小;Allow testpoint under component 复选项:用于选择是否允许将测试点放置在元件下面;复选项Top 、 Bottom等选择可以将测试点放置在哪些层面上;右边多项复选项设置所允许的测试点的放置层和放置次序;系统默认为所有规则都选中;2 . Testpoint Usage 测试点用法选项区域设置测试点用法设置的界面如图6 — 28所示;图 6 — 28 测试点用法设置该设置对话框有如下选项:Allow multiple testpoints on same net复选项:用于设置是否可以在同一网络上允许多个测试点存在;Testpoint 选项区域中的单选项选择对测试点的处理,可以是Required 必须处理、 Invalid 无效的测试点和 Don't care 可忽略的测试点;电路板制板规则Manufacturing 电路板制板规则用于对电路板制板的设置,有如下几类设置:1. Minimum annular Ring 最小焊盘环宽选项区域设置电路板制作时的最小焊盘宽度,即焊盘外直径和导孔直径之间的有效期值,系统默认值为10 mil;2 . Acute Angle 导线夹角设置选项区域设置对于两条铜膜导线的交角,不小于90 °;3 . Hole size 导孔直径设置选项区域设置该规则用于设置导孔的内直径大小;可以指定导孔的内直径的最大值和最小值;Measurement Method下拉列表中有两种选项: Absolute以绝对尺寸来设计, Percent以相对的比例来设计;采用绝对尺寸的导孔直径设置对话框如图6 — 29所示以mil为单位;图 6 — 29 导孔直径设置对话框4 . Layers Pais 使用板层对选项区域设置在设计多层板时,如果使用了盲导孔,就要在这里对板层对进行设置;对话框中的复选取项用于选择是否允许使用板层对 layers pairs 设置;本章中,对Protel DXP提供的10种布线规则进行了介绍,在设计规则中介绍了每条规则的功能和设置方法;这些规则的设置属于电路设计中的较高级的技巧,它设计到很多算法的知识;掌握这些规则的设置,就能设计出高质量的PCB电路;双面板布线技巧一双面板布线技巧在当今激烈竞争的电池供电市场中,由于成本指标限制,设计人员常常使用双面板;尽管多层板4层、6层及8层方案在尺寸、噪声和性能方面具有明显优势,成本压力却促使工程师们重新考虑其布线策略,采用双面板;在本文中,我们将讨论自动布线功能的正确使用和错误使用,有无地平面时电流回路的设计策略,以及对双面板元件布局的建议;自动布线的优缺点以及模拟电路布线的注意事项设计PCB 时,往往很想使用自动布线;通常,纯数字的电路板尤其信号电平比较低,电路密度比较小时采用自动布线是没有问题的;但是,在设计模拟、混合信号或高速电路板时,如果采用布线软件的自动布线工具,可能会出现一些问题,甚至很可能带来严重的电路性能问题;例如,图1中显示了一个采用自动布线设计的双面板的顶层;此双面板的底层如图2所示,这些布线层的电路原理图如图3a和图3b所示;设计此混合信号电路板时,经仔细考虑,将器件手工放在板上,以便将数字和模拟器件分开放置;采用这种布线方案时,有几个方面需要注意,但最麻烦的是接地;如果在顶层布地线,则顶层的器件都通过走线接地;器件还在底层接地,顶层和底层的地线通过电路板最右侧的过孔连接;当检查这种布线策略时,首先发现的弊端是存在多个地环路;另外,还会发现底层的地线返回路径被水平信号线隔断了;这种接地方案的可取之处是,模拟器件12位A/D转换器MCP3202和参考电压源MCP4125放在电路板的最右侧,这种布局确保了这些模拟芯片下面不会有数字地信号经过;图3a和图3b所示电路的手工布线如图4、图5所示;在手工布线时,为确保正确实现电路,需要遵循一些通用的设计准则:尽量采用地平面作为电流回路;将模拟地平面和数字地平面分开;如果地平面被信号走线隔断,为降低对地电流回路的干扰,应使信号走线与地平面垂直;模拟电路尽量靠近电路板边缘放置,数字电路尽量靠近电源连接端放置,这样做可以降低由数字开关引起的di/dt效应;这两种双面板都在底层布有地平面,这种做法是为了方便工程师解决问题,使其可快速明了电路板的布线;厂商的演示板和评估板通常采用这种布线策略;但是,更为普遍的做法是将地平面布在电路板顶层,以降低电磁干扰;图 1 采用自动布线为图3所示电路原理图设计的电路板的顶层图 2 采用自动布线为图3所示电路原理图设计的电路板的底层图 3a 图1、图2、图4和图5中布线的电路原理图图 3b 图1、图2、图4和图5中布线的模拟部分电路原理图有无地平面时的电流回路设计对于电流回路,需要注意如下基本事项:1. 如果使用走线,应将其尽量加粗;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PCB元器件的布局及导线的布设原则
PCB设计的一般原则要使电子电路获得最佳性能,元器件的布局及导线的布设是很重要的。
为了设计质量好、造价低的PCB,应遵循以下一般原则:
1、元器件的布局布局
首先,要考虑PCB尺寸大小。
PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。
在确定PCB尺寸后。
再确定特殊组件的位置。
最后,根据电路的功能单元,对电路的全部元器件进行布局。
在确定特殊组件的位置时要遵守以下原则:
(1) 尽可能缩短高频元器件之间的连线,设法减少它们的分布参数和相互间的电磁干扰。
易受干扰的元器件不能相互挨得太近,输入和输出组件应尽量远离。
(2)某些元器件或导线之间可能有较高的电位差,应加大它们之间的距离,以免放电引出意外短路。
带高电压的元器件应尽量布置在调试时手不易触及的地方。
(3) 重量超过15g的元器件、应当用支架加以固定,然后焊接。
那些又大又重、发热量多的元器件,不宜装在印制板上,而应装在整机的机箱底板上,且应考虑散热问题。
热敏组件应远离发热组件。
(4)对于电位器、可调电感线圈、可变电容器、微动开关等可调组件的布局应考虑整机的结构要求。
若是机内调节,应放在印制板上方便于调节的地方;若是机外调节,其位置要与调节旋钮在机箱面板上的位置相适应。
(5)应留出印制扳定位孔及固定支架所占用的位置。
根据电路的功能单元。
对电路的全部元器件进行布局时,要符合以下原则:
1)按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。
2)以每个功能电路的核心组件为中心,围绕它来进行布局。
元器件应均匀、整齐、紧凑地排列在PCB上。
尽量减少和缩短各元器件之间的引线和连接。
3)在高频下工作的电路,要考虑元器件之间的分布参数。
一般电路应尽可能使元器件平行排列。
这样,不但美观。
而且装焊容易。
易于批量生产。
4)位于电路板边缘的元器件,离电路板边缘一般不小于2mm。
电路板的最佳形状为矩形。
长宽比为3:2成4:3。
电路板面尺寸大于200x150mm时。
应考虑电路板所受的机械强度。
2、布线
布线的原则如下;
(1)输入输出端用的导线应尽量避免相邻平行。
最好加线间地线,以免发生反馈藕合。
(2)印制摄导线的最小宽度主要由导线与绝缘基扳间的粘附强度和流过它们的电流值决定。
当铜箔厚度为0.05mm、宽度为1~15mm 时。
通过2A的电流,温度不会高于3℃,因此。
导线宽度为1.5mm可满足要求。
对于集成电路,尤其是数字电路,通常选0.02~0.3mm导线宽度。
当然,只要允许,还是尽可能用宽线。
尤其是电源线和地线。
导线的最小间距主要由最坏情况下的线间绝缘电阻和击穿电压决定。
对于集成电路,尤其是数字电路,只要工艺允许,可使间距小至5~8mm。
(3)印制导线拐弯处一般取圆弧形,而直角或夹角在高频电路中会影响电气性能。
此外,尽量避免使用大面积铜箔,否则,长时间受热时,易发生铜箔膨胀和
脱落现象。
必须用大面积铜箔时,最好用栅格状。
这样有利于排除铜箔与基板间粘合剂受热产生的挥发性气体。
3、焊盘焊盘中心孔要比器件引线直径稍大一些。
焊盘太大易形成虚焊。
焊盘外径D一般不小于(d+1.2)mm,其中d为引线孔径。
对高密度的数字电路,焊盘最小直径可取(d+1.0)mm。
PCB及电路抗干扰措施印制电路板的抗干扰设计与具体电路有着密切的关系,这里仅就PCB抗干扰设计的几项常用措施做一些说明。
(1)地段设计地线设计的原则是:
1)数字地与模拟地分开。
若线路板上既有逻辑电路又有线性电路,应使它们尽量分开。
低频电路的地应尽量采用单点并联接地,实际布线有困难时可部分串联后再并联接地。
高频电路宜采用多点串联接地,地线应短而租,高频组件周围尽量用栅格状大面积地箔。
2)接地线应尽量加粗。
若接地线用很纫的线条,则接地电位随电流的变化而变化,使抗噪性能降低。
因此应将接地线加粗,使它能通过三倍于印制板上的允许电流。
如有可能,接地线应在2~3mm以上。
(3)退藕电容配置PCB设计的常规做法之一是在印制板的各个关键部位配置适当的退藕电容。
退藕电容的一般配置原则是:
1)电源输入端跨接10 ~ 100uf的电解电容器。
如有可能,接100uF以上的更好。
2)原则上每个集成电路芯片都应布置一个0.01pF的瓷片电容,如遇印制板空隙不够,可每4~8个芯片布置一个1 ~ 10pF的但电容。
3)对于抗噪能力弱、关断时电源变化大的器件,如RAM、ROM存储器件,应在芯片的电源线和地线之间直接接入退藕电容。
4)电容引线不能太长,尤其是高频旁路电容不能有引线。
此外,还应注意以下两点:
在印制板中有接触器、继电器、按钮等组件时。
操作它们时均会产生较大火花放电,必须采用附图所示的 RC电路来吸收放电电流。
一般R取 1 ~ 2K,C取2.2 ~ 47UF。
CMOS的输入阻抗很高,且易受感应,因此在使用时对不用端要接地或接正电源
(2)电源线设计根据印制线路板电流的大小,尽量加租电源线宽度,减少环路电阻。
同时、使电源线、地线的走向和数据传递的方向一致,这样有助于增强抗噪声能力。